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AN APPROACH TO THE RELATIVISTIC EXTENDED 
THOMAS-FERMI EXPANSION FOR GREEN'S FUNCTIONS, 

PHASE--SPACE DENSITIES AND DENSITIES. t 

D. Von-Eiff 

Nuclear Science Division 

Lawrence Berkeley Laboratory, University of California 

Berkeley, California 94720, U.S.A. 

S. Haddad and M.K. Weigel 

Sektion Physik der Ludwig-Maximilians-Universitat Miinchen, 

Am Coulombwall 1; D--8046 Garching 

PACS: 21.60.-n, 21.10.Gv, 21.90.rf 

We present an extension of the semiclassical Thomas-Fermi model to relativistic 

systems. These are obtained by application of the gradient expansion scheme on the 

Wigner transformed Dyson equation. Explicitly we give the expansion of the Green 

functions, phase-space densities and densities for a system of nucleons in a vector and 

scalar potential to second order. 

tThis work was supported by the Director, Office of Energy Research, Office of High Energy and 
Nuclear Physics, Division of Nuclear Physics, of the U.S. Department of Energy under Contract 
DE-AC03-76SF00098. 

This report was reproduced directly from the best available copy. 
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I. Introduction 

In recent years the interest in the investigation of nuclear systems has shifted strongly 

towards a relativistic approach (see, for instance, Refs.l-3). However, only little 

research utilizing a semiclassical expansion of the relativistic theory , which was some­

times successful in the simplification of nonrelativistic calculations in atomic and nuclear 

physics (see, for instance, Refs.4-9), has been published, s.Refs. 1, 10-13. Generally the 

advantage of the semiclassical approach is the avoidance of wave function calculations 

by utilizing densities, which in many cases makes the calculations easier. Furthermore 

the gradient ex'"pansion may be needed in relativistic transport theories, where Wigner 

transformed Green functions also occur. In the relativistic case one expects several 

complications, which make the formalism more difficult" ll-1 3. First one faces relativistic 

corrections due to the Dirac structure of the approach. Furthermore one has to deal with 

position dependent Dirac masses, which are absent in ·the standard nonrelativistic 

theory. For these reasons one has restricted oneself to the relativistic Thomas-Fermi 

method in numerical calculations. 1 In the atomic case the semiclassical relativistic 

extended Thomas-Fermi (RETF) expansion for particles in an external potential was 

obtained either by a tricky ansatz for the higher order Green functions 14
"

6 (not suitable 

for a position and density dependent Dirac mass) or 11 Window11 procedures15 (elimination 

of the Dirac sea; but tedious resummation procedures enter for the phase---5pace density), 

respectively. An alternative procedure was proposed in Re£.11, where one expands the 

Bloch equation for the propagator exp( -,BH) and treats the coupled differential equations 

in a recursive scheme. However the solution already becomes quite involved in the 

nonrelativistic case. 6 In this contribution we want to present a pure algebraic method, 

which resembles more to the standard nonrelativistic scheme as described, for instance, 

by Grammaticos and Voros6. It involves only straightforward but tedious algebraic 

methods and the residuum calcules. Furthermore it has the advantage that it can be 

generalized to interacting particles. The paper is organized as follows: In the next section 

we describe the general G-function expansion by utilizing the Wigner transformed 

Dyson equation. From the ~xpansion of the G-function one can obtain by complex 

integration the phase---5pace density. Integration over the momentum gives then the 

density. The energy-<iensity emerges in a similar manner. The explicit expansion for the 

G-function, which is the key expression for the wanted densities, is calculated up to 

second order in the third section. The resulting densities are given, in detail, in the 

appendix. 
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II. General Theory 

The basic quantity for the semiclassical expansion is the Wigner transform of the 

one-particle propagator, defined as (we use the conventions of Bjork en and Drell 16
; IN> 

denotes the grounds tate) 

G(R,p) = J d4r exp(ipr/h) G(R + ~.R- ~) . 

= fd•r (exp(ipr/1'1)(-i)<NI;(W(; + 2J.J.(R-2))1N>) (II.1) 

The Green function obeys in the standard space-time representation the Dyson-equa­

tion 

m c 
{hc(i;

11o
11 
--+\

2 
-~1,2)} G(2,1') =he 0(1,1') , ( II.2) 

where we sum or integrate over all doubly occurring variables (l:=xr spmor index 

etc.). After performing the WT one obtains for the Dyson equation in the mixed 

position-momentum representation the following form (H-. H - fLN): 

,~., I 

[ 
.h .:l ·t.. rJ J .h .:l I p = p ~l 1 U 0 q li L · ., 1 . I 1 U 

c -y (p,L + 71--,J + Jl'Y - mNc- -U',R,p + :'J-:lT"JT) G21 ,(R ,p - 71 -:Jt"l) 
r .. OR.'.- .... un. 12 "" un.. R=RI 

, TF _, [· n. [a a a a]] . = (G \
2
(R,p)exp 12' Oit·Oj)-QR:'op G2p(R,p) =he b11 , . ( II.3) 

Arrows pointing t.o the right. imply that the differentia.! operator acts on the quantities 

to the right etc. 

Knowledge of the zeroth-order (Thomas-Fermi) G-function G TF and of the functional 

dependence of ~ with respect to G is now, in principle, sufficient for the determination 

of the semiclassical expansion. The relevant expansion of the G-functions, phase-space .. 
densities and densities is given by the following scheme (G(R,p) = G(R,p)): 

~ . ljJ .. 
G(R,p) = h4 .l.J hl G. (R.p) , (11.4.1) 

J =o 
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(II.4.2) 

(II.4.3) 

j •o j •o 

The so-<alled extended Thomas-Fermi approximation (ETF) 4'6 is restricted to local 

external potentials, i.e. 

(11.5) 

The same structure is encountered in the Hartree--a.pproximation t, 12• For simplicity we 

will only treat the case N=Z with a hamiltonian of the standard structure1' 2 (l:;..., = 

• • H = c a·p + (3 c2 M(R) + V(R) (11.6) 

(N 1 Z would lead to p -+ p ± ~; E
0 

... l:;
0 

T ~0). The zeroth-order (TF~lution of 

Eq.(II.3) corresponds to the LDA-(nuclear matter) solution .,2, 12: 

(II. 7) 

• with (k = p): 

• 
cko := CPo + J.'- V(R) (11.8) 

(11.9) 

The poles correspond to the single-particle energies: 

• • • nu.(R,p) = V(R) ± f(R,p)- p . (II.lO) 
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The negative energies describe the energy momentum relation for the antiparticles. 

For the energy one obtains: 

= - i Tr { J d3R J ~ 'f( cpo+p)G(Rp)} . (11.11) 

The last expression was obtained by use of the Dyson equation (!!.3). The kinetic energy 

is given by: 

(II.12) 

The interpretation of the integrand as a local kinetic energy density may be misleading, 

since one actually calculates already in the TF-approximation the expectation value of 

the free hamiltonian (minus rest mass) in a "free" relativistic Fermi gas with a position 

and density dependent Dirac mass. For that reason, for instance, is the Dirac energy no 

monotonic function of the density 17• A final point is the calculation of the energy density 

for a mass operator emerging from a self-<onsistent many-body procedure. In such a 
+ + 

case one has to subtract from H the term 1/2(~(R) + 'f V(R)), i.e. the meson contri-

butions. 

The ~xpansion follows from the energy expressions by inserting of the G-function 

expansion (II.4.1). In the following section we will explicitly give the G-function expan­

sion up to second order, which is the relevant ingredient for the calculation of the differ­

ent densities, which are obtainable in the next steps by p-integration. 

'· 
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III. Expansion up to second order in h. 

The RETF~xpansion of the G-!unction can be obtained from a straightforward but 

tedious evolution of the Dyson equation (11.3). With the Wigner operator 

one gets (h=c=l ): 

with 

(2) .. {2) .. + ;t.(2) + + ;t. + 
= Gs (R,p) + i> Go (R,p) -1 u (R,p) + 1>1 uo(R,p) 

(2) + 3 
Gs (R,p) = -m2 ~M 

-fr3 [M2~M + Mko~V + k·V(k·VM) + 2M(Vv)2 

+ 2M(VM)2 + 2ko(VM. Vv)] 

-k4 [2Mko k • V(k • Vv) + 2M2k • V(k • VM) - 2M(k · Vv? 

+ 2E2M(Vv)2 + 2M(k. VM)2 + 2M3(VM)2 

+ 4M2k0(VM • Vv)] , 

(2) + 1 
Go (R,p)=-iiN2AV 

-ka [koM AM + E2~ V + k · V(k · VV) + 2M(VM · VV)] 

-~4 [E2k·V(k·VV) + Mkok·V(k·VM) + koE2(VV)2 

(III.l) 

(III.2) 

(III.3) 

(III.4.1) 
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- ko(k · VV)2 + koM2(VM)2 + ko(k · VM)2 

+ 2ME2(VM. VV)] I 

G121
(R,p) = -k3 [MkAM + k0kAV + 2k(VV)2 -2VV(k·VV) 

+ 2VM(k·VM)] -*~ [kokk · V(k · VV) + Mkk · V(k · VM) + f2k(VV)2 

+ k(k ·VV)2- 2k2VV(k ·VV) + 2k2VM(k ·VM) 

+ M2k(VM)2- k(k · VM)2 + 2Mk0k(VM · VV)] , 

;t,(2).+ f) .t +;t, ;t, +;t, 
uo (R,p) = --&-3 (vM(k ·VV)- vV(k·vM)] . 

(III.4.2) 

(III.4.3) 

(III.4.4) 

The phase-space density is now obtainable from Eqs.(II.4.2, 7,9) and (III.2,3) by comp­

lex integration. Crucial in this contex is the pole structure of G 1 01 or N , respectively, 

which is given in Eq.(Il.9). It permits the decomposition of N-n in powers of (ko =F f). 

The contributions corresponding to the poles at ko = - f are neglected in the further 

procedure. The general space density is obtainable by integration over the momentum. 

Here, one is mainly interested in the scalar and baryonic density, which can be extracted 

from the general density by performing the corresponding traces. For instance, for the 

baryon density one obtains ( G 1 11 is traceless): 

which yields the following expression for each kind of nucleons (xF:= fF/pF) 

+ (2-x2) (VM)2 -(x2 -3) (VV)2 -2x (x2 -3) (Vv. VM)] 
F p F r Pr F F M 

(II1.6) 

• which agrees with Ref.15 for M = mx . The other densities and the energy-density can 
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be calculated by similar procedures and are given explicitly in the appendix . 

As a final remark we would like to mention that the RETF formalism developed above 

on the basis of a relativistic field theoretical scheme is the equivalent of the ETF method 

in nonrelativistic physics (see, for instance, Ref.6). However, due to the more complica­

ted relativistic ingredients caused by the Dirac structure, it involves substantially more 

effort as in the nonrelativistic case in the numerical many-body treatment, which is 

presently under investigation. This feature is not unexpeCted, since also the wave 

function scheme is much more complicated in the relativistic treatment (see, for 

instance, Refs.2,18). 
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Appendix 

a) Phase~pace densities: 

The Wigner function follows accordingly to Eq.(II.4.2) as: 

(A.1) 

The different kinds of phase-5pace densities for each kind of nucleons (no isospin 

trace) are defined by (n
0 
= n

8
): 

(A.2.1) 

(A.2.2) 

(A.2.3) 

Evaluation of (A.1) and (A.2) leads to (9(x) denotes the step function, 1~1 :: q .. 
angle averaging over R is implied): 

(A.3.1) 

+ 4(VV)2r(1 1 -~ 1 )~5"')+(1.s.:_. _1 1 )as~w) l ~ ('TE'J rg {T£J3 3" l~€)4 4 (T£}2 w 

\-,, 
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+ 4(VM)2 [1 1 ~j w) _ 1 ao~ w) + 2 JJ w)](M2 + 1 2) 0 ~3 (TEJ4 w [27}5 \1\. 3 q 

.. 
.;t .;t [1 1 ~5w) 1 ao~w) 4 8 ] + 4M(vV)·(vM) 0~2 -'[2"'ij3 w + f2fJ" <Xw) + (TEjS 9(-w) 

~.) (A.3.2) 

(A.4.1) 

n12l(.0 *) = 4M~V [~ 1 ~jw) +(1 1 _1..s.:_) a~( w) + 
s .L'-'".1-' IR (Tf'J3 4 fm2 3l2f)4 w 

+ 4M(VV)2 [c2 ..s:_ + 1 M
2 

) ~j w) + 4 ..s:_ a~( w) + g l:2e)4 '3" (2 e )4 '3t2e)6 w 

40 ..s:.. 2 ] +(-"'3"' l2eJ1 -('2f'JS)9(-w) + 
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2~ l.S:.. J (~ (:lE)ll- ~ (:lE)3)6( w) 

40L §g!_ ] + ("!" (~E)1 -(2EJ5)9(-w) + 

40Jt_ ~ ] + (- ""3"" ( :l E )1 + fTeJ5) 9( -w) 

20~ 2 1 ~ + (""3"""(:lE)6 + 2Qq
2M ~-(:lE)4)6(w) 

40~ 2 1 ~ ] + ( ""3""" ( :lE )1 + 40q2M {'2"ijT- ( :lE )0)9( -w) 

(A.4.2) 

(A.5.1) 

(A.5.2) 

\' .! 
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Densities: 

The densities emerge from the phase-iipace densities by momentum integration 

(see Eq.(II.4.3)). It follows (The baryon density n0 is given in expression (III.6)): 

(A.6.1) 

.. 1 [ 2M xF+1 
· n! 2>(R) = ~2 - !~.V- + LlM(3ln (-=---r)- 2xF) 

..:;'t1' Py XF-J. 

. (A.6.2) 

(A.7.2) 

(A.7.3) 

-y) Energy density (m = m
1

): 

0 .. 0 .. ,\ .. 0 .. 
e 1 ' 21 (R) = n~ ' 21 (R) + [(1- 1) l:5(R) + m] n! '21 (R) 

+ (1 - fr) v (R) n~ 0' 21 (R) 

= n~ 0' 21 (R) + [(1-~) M + ~m] n! 0
'
21 (R) + (1-~) Vn~0' 21 (R) , 

(A.B) 

,\ = 0 corresponds to a purely external potential; ,\ = 1 describes the case, if me­

son contributions are included (see text). 
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6) Kinetic energy density: 

r(
01 (R) = g~2 [2pFE;-M2(5-4i\1)PrEr+ M4(3-4 M)lntr;fr)J-mn~ 0'(R) 

(A.8.1) 

(A.8.2) 

.. 
By use of the definition of the Fermi momentum V(R) and its derivatives can be .. 
eliminated by means of n

0
(R) and M and their deri_vatives. For M = m the 

relativistic atomic expansion is recovered, 15 which reduces to the nonrelativistic 
• limit for Pr , V(R) << m . In principle one can also eliminate M (i.e. f.s) in 

• favour of n5(R). However such a procedure is not applicable for a general relati-

vistic mass operator, since its Dirac structure is more complicated as the general 

density structure2' 12• 
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