
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Smart Resource Sharing for Concurrency and Security

Permalink
https://escholarship.org/uc/item/4rs6n9s6

Author
Gao, Ying

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4rs6n9s6
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
Santa Barbara

Smart Resource Sharing for Concurrency and
Security

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

by

Ying Gao

Committee in Charge:

Professor Timothy P. Sherwood, Chair

Professor Frederic T. Chong

Professor Yuan Xie

Professor Tao Yang

January 2018

The Dissertation of
Ying Gao is approved:

Professor Frederic T. Chong

Professor Yuan Xie

Professor Tao Yang

Professor Timothy P. Sherwood, Committee Chairperson

December 2017

Smart Resource Sharing for Concurrency and Security

Copyright c© 2018

by

Ying Gao

iii

Acknowledgements

I am very grateful for the opportunity to obtain an academic school life that is
primarily provided by my advisor, Timothy Sherwood. Because of his words-not-
able-to-describe patience, open-mindedness and wisdom, I, once started as a very
junior student from a different major other than computer science or engineering,
have been well guided and nurtured through the wonderful computer world over
the years. In both computer architecture and operating systems, that represents
two of the most critical areas of hardware and software aspects of computing, I
have since tasted the best of interesting knowledge to learn and the “worst” of
intriguing and difficult problems to solve.

Every Ph.D.’s experience could be properly analogized to roller-coaster rides.
The thrilling ups and downs are not for the faint of hearts. I thus deeply appreciate
my parents’ support and faith in me, and their strong insight in pursuing the most
advanced degree. I cherish the spirit learned from my mom, who is extremely
disciplined and seldom gives up. I also want to thank my dad, who consistently
shares his life experience to pull me out of the numerous down times.

I also owe my sincere thank you to my senior, Hassan Wassel, who made my
first publication happen. His diligence and integrity, willingness to help, insights
into research and most importantly, a kind heart, set the best model as a researcher
and a mentor. Every time I thought of that fall when we were discussing on the
NoC project, it would still boost my enthusiasm and keep me forward.

I also appreciate the two summer internships and the people I have met and
worked with from industry. The project at Intel left me tremendous interest in
concurrency problems that pave the way for my future career.

Mysteriously, I want to thank a VP from Google that I do not remember
the name of. Thank you for pointing out the weaknesses in my research and for
changing the way I look at research problems. Your silver hair and flowing pony
tail now remains an unforgettable view.

Of course not the least, a deep thank you to all my collaborators and my
committee who have given inspiring opinions and strong support. Also a thank
you to my teachers, fellow lab mates and class mates, for I have learned so much
from all of you. At last, I thank my close friends for everything.

iv

Curriculum Vitæ

Ying Gao

Education

2017 Doctor of Philosophy, University of California, Santa Barbara
2015 Master of Science, University of California, Santa Barbara
2011 Bachelor of Science, Tianjin University

Awards

Micro Top Pick IEEE Micro Top Pick from Computer Architecture
Conferences, January - February, 2014

Professional Experience

Sept 2012 - 2017 Graduate Research Assistant, University of California,
Santa Barbara

Jun - Sept 2015 Summer Intern, VMware Inc., Palo Alto
Jul - Sept 2013 Research Intern, Intel Corporation, Santa Clara

Publications

2017 Ying Gao and Timothy Sherwood. Cashmere: Application-Driven Com-
putation Concurrency in a Mobile Operating System, to submit.

2017 Ying Gao, Hassan Wassel, Jason Oberg, Frederic Chong, and Timothy
Sherwood. Provably Non-Interfering Architecture for Secure Networks-
On-Chip, to submit.

2016 Ying Gao and Timothy Sherwood. Hardware-Assisted Context Manage-
ment for Accelerator Virtualization - A Case Study with RSA, Proceedings
of the 29th International Conference on Architecture of Computing Systems
(ARCS) 2016.

2014 Hassan Wassel, Ying Gao, Jason Oberg, Ted Huffmire, Ryan Kastner,
Frederic Chong, and Timothy Sherwood. ”Networks on Chip with Provable
Security Properties, IEEE Micro: Micro’s Top Picks from Computer Archit-
ecture Conferences (IEEE Micro - top pick), May-June 2014.

2013 Hassan Wassel, Ying Gao, Jason Oberg, Ted Huffmire, Ryan Kastner, Fre-
deric Chong, and Timothy Sherwood. SurfNoc: A Low Latency and Provably
Non-Interfering Approach to Secure Networks-On-Chip, Proceedings of the 40-
th International Symposium on Computer Architecture (ISCA) 2013.

v

Abstract

Smart Resource Sharing for Concurrency and Security

Ying Gao

Different layers of the computer system, from the low-level hardware accelera-

tors and networks-on-chip (NoC) in multi-core systems, to the upper-level operat-

ing systems and software applications, rely on the sharing of hardware computing

resources. Unfortunately such sharing, when not carefully managed, can introduce

a host of protection problems and sources of information leakage. We describe a

set of methods by which it is possible to systematically scale performance via

hardware sharing without exacerbating security properties by being aware of the

design and characteristics of individual layers and components. The key to this is

efficiently dealing with security vulnerabilities introduced by sharing in terms of

time and space through the creation of new security-conscious sharing interfaces.

In a systematic way is to first define coordination techniques into more detailed

patterns, and by bridging the gap of less efficient universal measures with provably

more performant and secure patterns.

Specifically we demonstrate the usefulness of a sharing pattern for hardware

and software systems where separation is of concern (interference and timing chan-

nel mitigation, etc). The most important insight is that in order to fully utilize

vi

computing resources (to improve performance and availability), the entities that

share these resources must coordinate in a pre-calculated way. More dynamic

approaches to improve performance and concurrency are likely to introduce new

interference in the system. While we show that certain static scheduling measures

in lower level hardware such as networks-on-chip can provably eliminate timing

channels, the dynamic nature of software systems makes covert channels harder

to be confined. Besides, software systems also face other types of security prob-

lems beyond side channels. To improve concurrency and performance without

exacerbating security requires a slightly different approach.

To study the obstacles that hinder software applications’ scaling in a sys-

tem because of security concerns, we delve into the Android operating system

and its appification ecosystem structure. A prime avenue for attack is intro-

duced because of its distributed sharing eco-pattern. We propose a centralized

approach with a single reliable service as a method to enable computation reuse

among applications. The proposed centralization technique favors well-protected

application-to-system communications over vulnerable application-to-application

communications. Thus not only computation concurrency is boosted but also the

possibility of an app being attacked through the attack-prone Inter-Component

Calls (ICCs) due to possible distributed computation sharing is eliminated. This

approach further enables improvements to security with the addition of a novel

vii

application-centric grouping for isolation. We show through a prototype on An-

droid how our approach supports and protects inter-app resource sharing, while

improving concurrency at scale.

viii

Contents

List of Figures xii

1 Introduction 1
1.1 Non-Interference and Domain Isolation 3
1.2 Thesis Statement and Dissertation Roadmap 5

1.2.1 Networks-on-Chip with Provable Security Properties . . . 5
1.2.2 Hardware-Assisted Accelerator Virtualization 6
1.2.3 Application-Centric Access Control and Computation Con-
currency in Mobile Systems . 8

2 Networks on Chip with Provable Security Properties 10
2.1 Related Work . 14
2.2 SurfNoC Architecture . 18

2.2.1 A Motivating Example . 18
2.2.2 SurfNoC Scheduling . 21

2.3 SurfNoC Router Micro-architecture 24
2.3.1 Partitioning Virtual Channels 25
2.3.2 Allocators . 25
2.3.3 Scheduler . 27
2.3.4 Pipelining and separation discussion 28
2.3.5 RTL Implementation . 30

2.4 Evaluation . 37
2.4.1 Experimental setup . 37
2.4.2 Impact on latency . 38
2.4.3 Throughput . 41
2.4.4 Area and power overhead 44

2.5 Verification of Non-interference 45
2.6 Conclusions . 47

ix

3 Hardware-Assisted Context Management for Accelerator Virtu-
alization 65
3.1 Related Work . 68
3.2 Baseline RSA Accelerator Architecture 70

3.2.1 Montgomery’s Modular Multiplication and Exponentiation 70
3.2.2 Sharing an RSA Accelerator 72

3.3 Tightly Integrated Virtual Accelerator Approaches 73
3.3.1 Baseline Virtual RSA Accelerator Design Overview 73

3.4 Optimized Solution . 74
3.5 Experimental Evaluation . 78

3.5.1 Relative Performance . 78
3.5.2 Area Cost and Power Consumption 81

3.6 Conclusions . 83

4 Application-Centric Computation Concurrency 87
4.1 Background on Android Access Model, Security Challenges and
Inter-Application Sharing . 93
4.2 Design: Application Driven Access Control 96

4.2.1 Background on Android Audio Applications 97
4.2.2 Speech Recognition Libraries 98

4.3 Overview of Cashmere Architecture 99
4.3.1 Library Paths Identification 100
4.3.2 Computation Memorization and Management 103
4.3.3 Application-Guided Grouping 104
4.3.4 Concurrent I/O . 105

4.4 Implementation . 107
4.4.1 Two-Phase Grouping . 107
4.4.2 Inner-Group Isolation . 111
4.4.3 Inter-Group Isolation . 111

4.5 Evaluation . 114
4.5.1 Library Call Indirection Overhead 115
4.5.2 Dictionary Model Influence in Latency and Accuracy . . . 115
4.5.3 Concurrent Apps Performance 117
4.5.4 Grouping Overhead and Impact 120
4.5.5 Security Analysis . 127

4.6 Conclusions . 129

5 Conclusions 131
5.1 Contributions . 132
5.2 Looking Forward . 135

x

Bibliography 138

xi

List of Figures

2.1 Time-division multiplexing scheduling in a 16-node 2D mesh (only
one direction of channels is shown for illustration purposes). 50
2.2 Surf scheduling in a 16-node 2D mesh (only one direction of chan-
nels is shown for illustration purposes). 51
2.3 Surf scheduling in 16-node 2D mesh with three application domains
(denoted by white, grey, and black) assuming a single-cycle routers for
illustration purpose. The schedule runs as white, white, grey, and black
and repeats, giving the white domain half the bandwidth. A packet (the
white box under the node S) belongs to the white domain is sent from
the node marked by S to the node marked by R. The figure contains six
consecutive cycles. At T = 1, the packet is forwarded on the S port in
the y-dimension (which is scheduled to forward white packets). It keeps
moving in the y-dimension until T = 3 when it needs to move in the
x-dimension on the W port. The packet waits 2 cycles (T=4 and T=
5) until it is the white domain’s turn on the W port and finally it is
forwarded to its destination on T = 6. Another wait may happen again
in the destination router (R) to forward the packet on the ejection port
waiting for the white domain’s turn. 52
2.4 Partitionable virtual channels . 53
2.5 Virtual channel allocator: A 3x3 separable input-first VC allocator.
In this example, we assume that VC0 and VC2 are assigned to domain
0 and VC1 is assigned to domain 1. Dashed lines shows signals that can
never be 1 due to route computation restrictions. This example shows
that we can reconstruct the allocator into smaller ones. 53
2.6 Crossbar with input speedup to eliminate contention on switch
input port between VCs from different domains. 54
2.7 Scheduler: The scheduler output is used to mask requests to the
switch output ports according to the surf schedule. 54

xii

2.8 a) Buffer write operation from west input port: input flit arrives
from domain-0s VC-0 (D0-VC0), control logic selects D0-VC0 buffer
queue based on the Source ID and the Destination ID of the flit. b)
Result of Buffer write operation: Input flit is queued in the buffer and
the tail pointer increments from 0 to 1). 55
2.9 Description of credit-based flow. a) Initial state: credit count is 4.
b)-f) router 1 sends out four flits H, B, B, and T to router 2; the credit
count decrements to 0. g)-l) router 2 sends out credit signals to router
1; credit count of router 1 becomes 4 again. 55
2.10 RC unit takes 16-bit heads from the flits pointed by buffer queues
head pointers and generates request for output VCs for each input VC.
For example, the IVC0 signal stores the output VC ID requested by
input virtual channel-0 of domain-0 (D0-VC0). 56
2.11 The I/O ports of the VC allocator unit (top) and the VC unit
implementation (bottom). For OVC0, for instance, the 4th bit in the
20-bit vector is set if IVC4 requests for OVC0. The vectors are then
rotated based on the previously granted request such that it receives
the least priority. The priority allocation logic then grants each of the
output VC to the first bit that is set in the respective vector. 57
2.12 The SurfNoC schedule (SA) logic masks all the requests that do
not belong to the scheduled domain for the current clock cycle or do not
satisfy the credit requirements. Thus, at most, only 2 output VCs can
contend for the same output port. The round robin arbiter shown above
allocates each of the five output ports to one of the two potential requests
every clock cycle. The ’tail flit ack’ signal is computed by making use
of the buffer head information that is globally exposed to all the units
by the buffer unit. For instance, the 4th bit is set if the 4th buffer/IVC4
is going to forward a tail flit on the output port. 58
2.13 Zero-load latency for different network size and different number
of security domains (the two baselines are overlapped because zero-load
latency does not depend on buffers and crossbar input speedup). 59
2.14 Zero-load latency against different network size with 16 domains
(the two baselines are overlapped because zero-load latency does not
depend on buffers and crossbar input speedup). 60
2.15 Average latency as a function of aggregate domains offered load for
2D mesh network of 64 Nodes: We can see that latency is stable below
network saturation point. 61
2.16 Throughput as a function of offered load of one domain (only one
domain is injecting) for 2D 64-nodes mesh using different number of
domains. 62

xiii

2.17 Aggregate network throughput as a function of offered load of one
domain (all domains are injecting packets) for 2D 64-nodes mesh using
different number of domains. 63
2.18 Separation of uniformly distributed bandwidth. Throughput as
a function of domain 0 offered load. We can see that, by using surf
scheduling, domain 1 throughput is independent of domain 0 load (same
trend was measured for domain 0 throughput while varying domain 1
load). 64

3.1 Traditional RSA accelerator block architecture 71
3.2 State diagram of the original RSA accelerator design. PRE/PRFC
and POST/POFC are the preprocessing and the post-processing states
for domain format and carry-save format conversions. MUL and SQR
stand for modular multiplication and square operation respectively. . . 71
3.3 State diagram of an example transition case in the baseline archi-
tecture. When receiving active switch signal in SQR state, it will jump
to WAIT SW state to store intermediate results in local RAM. label de-
notes VM ID. If the current requesting VM was in PRE state during last
switch out, next state will be set to PRE. After numerous state tran-
sitions, the VM that was switched off during SQR state might request
again, and have a chance to restore its state 75
3.4 The amount of local memory needed for storing intermediate re-
sults. The y-axis denotes the number of hardware registers and the x-
axis denotes timeline measured by clock cycles during a single modular
exponentiation operation . 75
3.5 Design of optimized context switch enforcement in detail. SW DFF
represents register arrays including Sc SW and Ss SW storing interme-
diate results at previous SP . 77
3.6 State diagram of an example transition case in optimized design.
The abort signal calculated from time bound directs next state when
switch == 1. The current task is allowed to finish current square
operation when abort == 0, sweet state will be updated to its next
square(SQR) or multiplication(MUL) operation judged by E[i] for fu-
ture state retrieval. 77
3.7 Relative performance under light (a), medium (b) and near-saturating
(c) workload scenarios. V-2 and v-4 denotes the default maximum num-
ber of VMs allowed to concurrently occupy the device. 85
3.8 Comparison of area costs for v-1, v-2 and v-4 designs 86
3.9 Comparison of peak power consumption for v-1, v-2 and v-4 designs 86

xiv

4.1 The Cashmere Platform Architecture. Upon an application calling
a lib function, the call will be directed to the modified audio library
extended with binder IPC client interface to send lib call requests to
Shared Lib Service. Shared Lib Service is a registered service served as
a transition channel between client apps and the Cashmere server ap-
plication. Library function table is the major component of the server
application, it records previously computed lib calls and will reply to
future identical calls directly, only un-computed fresh lib calls will be
passed on to the original library. Note that the original audio SR lib,
in our case libpocketsphinx.so will be renamed so applications cannot
directly call it upon and instead the modified lib is named libpocket-
sphinx.so. 101
4.2 Cashmere as a registered service through Service Manager provided
by Android platform. Cashmere is in Android user space. 102
4.3 Average WER to varied vocabulary dictionary sizes on PocketSphinx. 116
4.4 Average latency to varied vocabulary dictionary sizes. 117
4.5 Average latency of concurrently running audio apps natively and
in Cashmere. 119
4.6 Average latency of running an app with small to medium vocabu-
lary sizes without concurrent apps, running exclusively but concurrently
with additional groups, and running non-exclusively but concurrently by
joining one of the additional groups in Cashmere. 121
4.7 Average latency of running an app with large vocabulary sizes with-
out concurrent apps, running exclusively but concurrently with addi-
tional groups, and running non-exclusively but concurrently by joining
one of the additional groups in Cashmere. 122
4.8 Average latency of concurrently running different combinations of
apps in Cashmere. 125
4.9 Average WER to varied vocabulary dictionary sizes. 127

xv

Chapter 1

Introduction

The dissertation presents a step towards a more systematic design methodology

by which one can construct scalable components sharing across hardware software

boundaries. The need to bridging the gap between the diverse heterogeneous hard-

ware landscape envisioned by many as the future, and the designed-for-single-core

simple software operating systems is acute. From the hardware perspective, as we

entered the multi-core and manycore era, communications and sharing efficiency

among cores has become one of the biggest obstacles to efficiency. From the oper-

ating systems perspective, managing the emerging accelerator architectures and

scheduling the complex software that multiplex their resources them becomes a

significant new burden. The problem is especially acute in mobile platforms where

1

the computing resources are diverse, energy is limited, and the demand for new

features is ever present.

While scheduling for performance alone is hard enough, when coupled with

security concerns, the burden is even higher. All sharing comes with the risk of

information leaking. If the shared state is not managed correctly it is possible for

two different subsystems to learn about each others’ actions. A malicious soft-

ware could gain useful information about a victim when conflicts in the resources

appear. Two more malicious subsystems might even purposefully communicate

through such resource contention by forming a covert channel. The classic Denial-

of-Service (DoS) attack is another example of how the system can be broken down

by improper sharing schemes. Of course these specific scenarios are just a tip of

the iceberg of the attacks enabled by systems engineered without a mind to secure

sharing. Due to the creativity of attackers and the lack of established fail-proof

designs, a large body of work exists focused on vulnerability and malware studies

across all system layers.

Designs that attempt to balance security and performance in the context of the

coordinating hardware/software subsystems is the topic of this thesis. It is difficult

to solve performance and security problems at the same time, or at least to enhance

one without hurting another. However, we show in this thesis a set of three

patterns for managing the above attack scenarios while maintaining performance,

2

two in hardware-level (networks-on-chip and accelerators) and one in software

system level (Android mobile OS). We show how careful interface design coupled

with proposed coordination patterns can dramatically boost system performance

and concurrency by efficient sharing without compromising the original system’s

security properties.

Before we dive into the details of either of the scenarios, we begin with some

background on the growing demand for isolation inside hardware units and among

applications in the operating systems.

1.1 Non-Interference and Domain Isolation

In high-assurance systems it is a common practice to break the system into a

set of domains, which are to be kept separate. These domains should have no effect

on one another. For example, the Mars Curiosity rover software runs on a RAD750

processor, a single-core radiation-hardened version of the Power architecture with

a special-purpose separation kernel[1]. The kernel partitions the tasks, such as

guidance, navigation and the various science packages from one another to help

prevent cascading failures. Future space missions are looking to use multicore

systems[2][84], which adds another layer of communication, but there are serious

concerns about the introduction of opportunities for interference between system

components[68]. The problem is that typical networks-on-chip have many internal

3

resources that are shared between packets from different domains, which we would

otherwise wish to keep separate. Such resource contention introduces interference

between these different domains, which can create a performance impact on some

flows, pose a security threat by creating an opportunity for timing channels, and

generally complicates the final verification and certification process of the system

because all of the ways in which that interaction might occur must be accounted

for. Non-interference means that injection of packets from one domain cannot

affect in any way (including the timing of delivery of) packets from other domains.

Similarly, in operating systems such resource contention also exist among ap-

plications. The problem is even more acute in mobile operating systems where a

lot of resources are from I/O devices (usually only one for each type) and often

request real-time processing. To prevent such contention and to keep strict iso-

lation, many mobile systems are designed to allow only one application to access

the device at a time. However, this is in direct conflict with the current need of

running concurrent applications both foreground and background. For example, a

user might use voice command to order food by speech recognition (SR) featured

restaurant apps meanwhile discussing with friends on social apps using audio,

she/he might also require the help of a SR supported search assistant app as well.

In the newest release Android Nougat (2016), the split screen feature is the first

time Android will allow the convenience of running multiple applications in the

4

foreground. To bring isolation into the OS that requires application concurrency

is not an easy task, under limited hardware computing resources and energy, it

becomes even more difficult when we talk about scalability.

1.2 Thesis Statement and Dissertation Roadmap

I propose that under coordinated domain-aware sharing schemes, in almost all

system layers, it is possible to increase concurrency and scalability while main-

taining useful security properties (e.g. isolation). I demonstrate this observation

through its application in low-level networks-on-chip, hardware accelerators, and

higher-level operating systems and applications. The rest of this chapter pro-

vides an overview of our proposed steps towards a system that provides superior

concurrency without exacerbating isolation properties.

1.2.1 Networks-on-Chip with Provable Security Proper-

ties

One simple way to ensure separation within a networks-on-chip is to simply

time multiplex the network. Each “domain” gets it’s turn across the entire network

at a time. However, this approach introduces huge latencies and simple ways of

relaxing TDMA introduce inter-domain interference. In replacing the non-scalable

5

TDMA approach, we propose a technique that assures multi-way non-interference

in NoCs with low overhead on latency to allow for verification of high assur-

ance systems such as those in aerospace and automotive systems. By carefully

scheduling the network into waves that flow across the interconnect, data from

different domains carried by these waves are strictly non-interfering while avoiding

the significant overheads associated with cycle-by-cycle time multiplexing. The

technique, named SurfNoC, significantly reduces the latency incurred by tempo-

ral partitioning. We describe the scheduling policy and router microarchitecture

changes required, and evaluate the information-flow security of a synthesizable

implementation through gate-level information flow analysis. When comparing

our approach for varying numbers of domains and network sizes, we find that in

many cases SurfNoC can dramatically reduce the latency overhead of implement-

ing cycle-level non-interference.

1.2.2 Hardware-Assisted Accelerator Virtualization

In recent years, hardware accelerators are becoming first class citizens on chips

because of their usefulness in improving performance and saving power in compu-

tation intensive tasks. However, unlike CPUs that can context switch effortlessly

(without losing intermediate data) through registers and deep pipe-lining, the

options for time multiplex sharing on accelerators are often limited – one either

6

drops the current computing task or the requesting app should wait in queue for

the occupying task to finish. The former usually introduces wasted cycles and the

latter degrades responsiveness.

In order to fix the designed-not-for-share accelerator architectures, we examine

a set of hardware design approaches whereby the interface is split providing two

virtual units. We build a public-key crypto accelerator virtualization and study

the trade-off between sharing granularity and management overhead in time and

space. Based on observations made during the design of several such systems,

we propose a hybrid local-remote scheduling approach that promotes more intelli-

gent decisions during hardware context switches and enables quick and safe state

packaging. We find that performance can vary significantly among the examined

approaches, and that our new design, with explicit accelerator support for state

management and a modicum of scheduling flexibility, can allow highly contended

resources to be efficiently shared with only moderate gains in area and power con-

sumption. The statically designed separation in interfaces, switching points and

fixed trackable memory are all in support for isolation. The work is also the result

of cooperation within hardware architecture design and software scheduling.

7

1.2.3 Application-Centric Access Control and Computa-

tion Concurrency in Mobile Systems

While the previous two sections introduce the smart sharing schemes in hard-

ware designs, when looking into the higher operating system level we find that

sharing schemes can also be modified to enable application concurrency. A typical

example is the Android system where applications would benefit from further com-

munication and sharing. However, due to Android’s appification [5] (decentral-

ized) nature (each app has a Linux userID along with server client communication

mechanism among apps) and arguably flawed permission model (permissions are

mostly requested by app on installation and the components within an app share

the same permission), there has been huge number of attacks [15][23] targeting

these vulnerabilities. While research on Android has seen a tremendous amount

of effort towards improving the security and privacy issues[96][94][24][31][88][27],

very few have explored the problem with an eye towards enhancing computation

concurrency and performance.

To discover the obstacles hindering the progress of application concurrency and

performance in Android, we systematically studied the system designs and compo-

nents that are both vulnerability-prone and performance-unfriendly. We make the

key observation that the lack of centralization in Android could be hurting both

security and performance. Inspired by the PeerReview[36] concept in distributed

8

systems community, we propose a central platform to guide interested apps in

forming groups for sharing on different I/O libraries and computations. By re-

fraining the communication paths among collaboration-specified apps, server app

side security concerns can be relieved, thus promoting confidence and an improved

willingness to share. Besides, the attack-prone inter-app communications are re-

placed by app-to-central service communications, the client app should be less

worried in being attacked during sharing. For computation heavy library sharing,

the central platform employs computation memorization to record library func-

tion call chains from concurrent running apps and dispatch computations with

superior scalability.

9

Chapter 2

Networks on Chip with Provable

Security Properties

Programmers are increasingly asked to manage a complex collection of com-

puting elements including a variety of cores, accelerators, and special purpose

functions. While these many-core architectures can be a boon for common case

performance and power-efficiency, when an application demands a high degree of

reliability or security the advantages becomes a little less clear. On one hand,

the ability to spatially separate computations means that critical operations can

be physically isolated from malicious or untrustworthy components. There are

many advantages to providing physical separation which have been well explored

in the literature [72, 92]. On the other hand, real systems are likely to use dif-

10

ferent subsets of cores and accelerators based on the needs of the application and

thus will require a shared communication network. When a general purpose inter-

connect is used, analyzing all the ways in which an attacker might influence the

system becomes far more complicated. The problem is hard enough if we restrict

ourselves to considering only average case performance or packet ordering, but

the difficulty of the problem increases even further if we attempt to prevent even

cycle-level variations.

In high assurance systems it is common practice to break the system into a set

of domains which are to be kept separate. These domains should have no-effect on

one another. For example, the Mars Curiosity rover software runs on a RAD750

processor, a single-core radiation-hardened version of the Power architecture with

a special purpose separation kernel [1]. The kernel partitions the tasks such as

guidance, navigation and the various science packages from one another to help

prevent cascading failures. Future space missions are looking to use multicore

systems [84, 2] which adds another layer of communication, but there are serious

concerns about the introduction of opportunities for interference between system

components.

The problem is that typical networks-on-chip have many internal resources

that are shared between packets from different domains which we would other-

wise wish to keep separate. These resources include the buffers holding the pack-

11

ets, the crossbar switches, and the individual ports and channels. Such resource

contention introduces “interference” between these different domains which can

create a performance impact on some flows, pose a security threat by creating an

opportunity for timing channels [89], and generally complicates the final verifica-

tion and certification process of the system because all of the ways in which that

interaction might occur must be accounted for.

These concerns are similar to, but distinct from, the problem of providing

quality-of-service guarantees. While QoS can minimize the performance impact

of sharing between domains by providing a minimum guaranteed level of service

for each domain (or class) [32, 33, 50, 34], as shown by Wang and Suh, qual-

ity of service techniques will still allow timing variations and thus do not truly

support non-interference [89]. The only way to be certain that the domains are

non-interfering is to statically schedule the domains on the network over time.

However, a straightforward application of time multiplexing leads to significant

increases in latencies as each link in the network is now time multiplexed between

many different domains.

The core idea behind our approach is that, if a strictly time multiplexed link

is seen as an oscillating behavior, we can stagger the phases of these oscillations

across the network such that a set of “waves” are created. As these waves traverse

the network they provide an opportunity for packets of the corresponding domain

12

to travel unimpeded along with these waves (thus avoiding excessive latency)

while still requiring no dynamic scheduling between domains (thus preventing

timing corruption or information leakage). Channels in the same dimension and

direction appear to “propagate” different domains such that after passing through

the pipeline of the router, the channel is ready to forward a packet coming from

the same dimension and domain without any additional wait (unless there is

contention from packets of the same domain). In this way packets “surf” the

waves in each dimension. We identify the many potential hazards non-interference

faces in a modern network-on-chip, we discuss the details and ramifications of our

surf scheduling methodology, and we argue that our approach truly does not allow

even cycle-level cross-domain interference. Specifically in this chapter:

1. We present a link scheduling scheme and network router design which si-

multaneously supports both low-latency packet-switched operation and non-

interference between domains.

2. We show that as the network grows in size, as the number of domains in-

creases, and as the asymmetry between domains becomes larger, the benefit

for a surf-scheduled network over TDMA continues to increase.

3. We evaluate the latency, throughput, area, and power consumption of these

approaches through a detailed network simulation.

13

4. Finally, we argue that the technique is truly sound through an analysis of

the router micro-architecture and with the help of formal verification via

gate-level information flow analysis.

The rest of the chapter is organized as follows. We begin with a discussion

of related work and how our proposed solution fits in the design space in Sec-

tion 2.1. Next, in Section 2.2, we describe the core idea behind the SurfNoC

schedule followed by a detailed router micro-architecture discussion in Section 2.3.

Section 2.4 presents the evaluation of the system and explores the relationship

between domains, partition asymmetry, and scheduling. Then, we provide a gate-

level information-flow analysis in Section 2.5 Finally, Section 2.6 concludes the

paper with our final thoughts and a discussion of future directions.

2.1 Related Work

Our proposed solution to non-interference in NoCs touches on many prob-

lems that has been proposed in the literature, such as timing channels in micro

architecture, QoS in network-on-chips, fault-containment and composability in

system-on-chips, and security in NoCs. In this section, we will try to review some

of this related work and show how our work fits in the design space.

14

Timing Channels and Non-interference in Micro-architecture There has

been an recent renewed interest in the analysis of timing channel attacks and mit-

igations through micro-architecture state such as cache interference [6, 90, 91]

and branch predictors [7, 8]. One approach to these problems is a technique that

can verify non-interference of hardware/software systems (including high perfor-

mance features such as pipelining and caching) using gate-level information flow

tracking [87, 85, 86]. More recently, a NoC timing channel protection scheme

for a system with security lattices was been proposed [89]. This paper proposes

a priority-based arbitration scheme to allow packets with LOW labels to always

win arbitration (except when they reach a pre-specified quota during each system

epoch to prevent denial-of-service attacks from the LOW domain). This ensures

that information cannot flow from the domain with HIGH label to the domain

with LOW label, but allows for information flow in the other direction. It can be

extended to multiple security labels as long as they form a lattice. In this work,

we propose a technique that assures multi-way non-interference in NoCs with low

overhead on latency to allow for verification of high assurance systems such as

those in aerospace and automotive systems.

QoS in Network-on-chips Techniques for achieving NoC quality-of-service

guarantees have been proposed based on solutions to analogous problems in macro-

15

scale networks. These approaches for the most part attempt to limit the rates of

each flow [32, 33, 50, 34]. However, quality-of-service guarantees are known to be

not sufficient for timing channel protection [89]. Optimizations that allow flows to

go over their designated rate when uncontended and the lack of fault containment

is problematic for high assurance systems [72] because of the high cost of any

unaccounted variation in such systems. The time division approach proposed

here provides for both fault containment and timing channel elimination.

Security in NoCs Security in NoCs has been studied from several aspects that

focus on specific attack mitigations such as defending against denial-of-service

(DoS), battery-draining attack [26] and maintaining access control of specific mem-

ory region in shared memory systems [26, 69], and buffer overflow attacks [55, 56].

Gebotys and Zhang have focused on confidentiality by providing encryption tech-

niques for data transmitted over the NoC in a SoC setting [28]. Availability is

handled in the Tile64 iMesh networks by separating (and in fact physically sepa-

rating) the network accessible by user applications from the network used by the

OS and IO device traffic [92]. Our scheme can protect against DoS and band-

width depletion attacks between domains because of the static time allocation to

different domains.

16

Non-interference in NoCs Non-interference in network-on-chips has been

studied in the system-on-chip domain to provide composibility and fault contain-

ment as well as time-predictability for real-time performance guarantees [38, 65].

Composibility means that the system can be analyzed as a set of independent

components which allows for easier verification of the overall system without hav-

ing to verify all possible interleavings of events in the system. This has been

specially critical in high assurance systems that requires very high level of verifi-

cation because of safety ramifications of the system. Æthearal proposed a time-

division multiplexed (TDM) virtual circuit switching network to provide guaran-

teed services (GS) for performance critical applications with real-time deadlines

and a packet switched best-effort (BE) network for applications with less require-

ments [29]. A lighter version that only provides GS was proposed to further sim-

plify routers [79, 37]. More recently, Stefan and Goossens proposed a modification

on Æthearal that enables multi-path routing both static and dynamic (based on

a true random number generator) in order to enhance the security by using non-

deterministic path instead of source routing used in Æthearal [80]. In addition,

the need for real-time worst case execution time (WCET) analysis inspired a set of

work, such as, the T-CREST project which tries to build a time-predictable multi-

core for real time applications. They proposed a integer programming technique

17

to minimize the length of static schedule of all-to-all circuit switching connections

in a TDM way [75].

Regarding packet switching networks, Avici TSR network [21] uses separate

virtual channels for each destination in the network but packets destined to dif-

ferent locations share physical channels. Under saturation, physical channels are

allocated fairly, but destinations can go over their fair share when the network is

not saturated which can leak information by detecting the variation of bandwidth

a certain node receives.

To the best of our knowledge, our scheme is the first to provide a packet-

switched network that can guarantee two-way (or multi-way) non-interference and

timing channel protection in a way that is both a) provable down to the gate-level

implementation and b) provides low latency overhead.

2.2 SurfNoC Architecture

2.2.1 A Motivating Example

Consider the 16-node half mesh network (channels are drawn in one direction

left-to-right and top-down for illustration purposes) in Figure 2.1, assuming that

even nodes belong to domain 0 and odd nodes are part of domain 1. A straight

forward way to support non-interference is by partitioning the virtual channels and

18

time-multiplexing the physical channels and crossbars between different domains

such that channels are only allowed to propagate packets from domain 0 (black)

on even cycles and packets from domain 1 (grey) on odd cycles (assuming a single

cycle routers) as shown in Figures 2.1 and 2.1. This time-multiplexing scheme

ensures that the latency and throughput of each domain is completely independent

of the timing of the other domain’s load. However, this baseline scheme means

that packets will have to wait an extra cycles at each hop. Even worse, as we scale

the number of partitions from 1 to D, assuming a single-cycle router each packet

will have to wait D− 1 cycles per hop. This is an expensive price to pay, and one

that continues to get worse the further away you attempt to communicate. If we

want to hold on to non-interference, we will still need these strict time-varying

partitions, but by changing the phase of their oscillations we can dramatically

reduce the latencies involved.

A better schedule for time-multiplexing will make sure that domains wash over

the network as a wave, such that each dimension appears to be “propagating” one

domain in a pipelined fashion. Figure 2.1 shows a simplified view of this point.

Every link still rotates evenly through domain 0 and domain 1, but if we consider

the top row in Figure 2.1, we can see alternating channels (grey, black, grey). In

the next cycle (shown in Figure 2.1, the channels used to propagate packets from

domain 0 (black) will carry packets from domain 1 (grey), and vice versa.

19

Before entering the network, the packet waits in the injection port until its

domain’s turn. The schedule ensures that when the packet is ready to egress the

router that there will be no delay waiting its domain’s turn at the downstream

router. The only exceptions to this rule are when a packet needs to change di-

mensions (such as when the packet turns from traveling along the X dimension to

the Y dimension) and when there is contention from packets in the same domain.

As an optimization, we constrain our schedule such that two directions of the

router propagate packets from the same domain at the same time. For example,

the top-left router in Figure 2.1 propagates packets from domain 0 (black) both

to the right and down. In this case, any packet which is sent in a downward

and/or rightward direction will only have to wait to enter the network and will

have no additional waits during turns between dimensions (again, unless there is

intra-domain contention). Of course this example is very simple as it has only two

domains, even divisions, and does not consider the latency of the network routers.

In the next section, we will show how to devise detailed strategy for k-ary n-cube

meshes and tori networks and discuss how non-interference can be shown at the

level of an implementation..

20

2.2.2 SurfNoC Scheduling

The most basic routing algorithm in meshes and tori is dimension-ordered

routing. That is, a packet walks through a dimension until it cannot move further

without going farther from the destination and then transfers to an other dimen-

sion. Thus, routing is linear in each dimension which provides an opportunity to

reduce wait time between hops. This way packets will only have to wait when they

enter the network from the injection channel and when they change dimensions.

We will describe this idea in details in the rest of this section.

The straightforward way to support time-division multiplexing is to operate

the whole network in time slices that are divided between application domains.

That is a packet waits at each hop until the network is forwarding packets from

that its domain. This approach leads to a zero-load latency L0 that is proportional

to the number of application domains D, pipeline depth P , and the number of

hops H, as shown in Equation 2.1. This solution might work efficiently for a small

number of domains such as 2 to 4 domains but in high assurance applications as

many as tens of domains can be found [72].

L0 = HP (D − 1) (2.1)

Building on the technique we developed in the motivating example, we propose

SurfNoC scheduling in which different routers (and in fact different ports of the

21

same router) can forward packets from different domains at the same cycle. In

this schedule, a packet waits until it can be forwarded in one dimension (i.e. its

output channel is forwarding packets from its domain at this cycle) and then does

not experience any wait at any downstream router in this dimension (assuming

there is no contention from packets from the same domain) in a way similar to the

schedule developed in the half-mesh example. After finishing the first dimension,

the packet may experience another wait until it can be forwarded on the next

dimension. We call this schedule Surf scheduling because a packet is like a surfer

who waits to “ride” a wave until some location and then waits to “ride” another

wave. In this analogy, waves are dimension pipelines. Equation 2.2 shows that

maximum zero-load latency and clearly shows that the overhead is additive not

multiplicative as in the straightforward way. The term (n − 1 + 2) comes from

n−1 transitions between dimensions and 2 waits during injection and ejection. It

is worth noting that this is the maximum wait not the typical one as the schedule

may require less wait.

L0 = HP + ((n− 1) + 2)(D − 1) (2.2)

The way to implement these different “waves” is by scheduling different di-

rections in a router independently; an idea inspired by dimension-slicing used in

dimension-ordered routing in meshes and tori. We used what we call direction-

22

slicing of the pipelines, such that each direction has its own pipeline. This pipeline

is a virtual one going through different routers (not in the same router). We will

describe this idea in the case of a 2D mesh or torus.

In a 2D mesh or torus, each dimension has two directions (E and W for the

x-dimension; N and S for the y-dimension). The pipelines of directions of the

same dimension (i.e. N,S and E,W) are running in opposite ways as shown in

Figure 2.3. In this technique, each port of a router is scheduled independently of

all other ports in a pipelined way such that the downstream router in the same

direction will forward packets from the same domain after P cycles where P is

the pipeline depth of the router. These schedules are imposed on output channels

of each router to avoid timing channels based on contention in the allocator (as

detailed in the next section).

Figure 2.3 illustrates an example of 16-node 2D mesh schedule of 3 domains

(colored white, grey, black). There are two waves south-east (SE) (as the one

shown in Figure 2.2 and north-west (NW) running in the mesh. Each channel

propagates packets according to the following schedule (white, white, gray, and

black) and repeats. It is worth noting that using such a schedule results in half of

the bandwidth being allocated to the white domain, whereas the black and grey

domains guarantee only a quarter of the bandwidth for each of them. This illus-

23

trates the benefit of our schedule in statically assigning non-uniform bandwidth

allocation to domains.

packet ordering and deadlock freedom

2.3 SurfNoC Router Micro-architecture

The micro-architecture of the SurfNoC router has two main goals:

1. Ensuring a timing channel free contention between packets, i.e. contention

can occur between packets from the same domain and not between packets

from different domains;

2. Scheduling the output channels of each routers in a way that maintains the

surf schedule across the whole network;

In order to achieve these two goals, we used a dynamic number of virtual

channels that are partitioned between domains independent of load (§2.3.1). We

analyzed the VC allocator and switch allocators to make sure they are timing-

channel free (§2.3.2). The scheduling of output channels is done through masking

requests to the switch allocator from packets until its turn for the output channel

arrives in the wave pipeline (§2.3.3).

24

2.3.1 Partitioning Virtual Channels

Spatial partitioning of the queues is not a new idea [89, 21]. Static partitioning

of virtual channels is done through restricting the routing algorithm so that it

generates output virtual channels in the range allowed for domain of the packet.

This partitioning ensures non-interference between packets from different domains

while they wait in the buffers before being forwarded, i.e. eliminating the head-

of-line (HOL) problem between domains.

We added support for different queue length as well as different number of

queues (or virtual channels) using the same amount of storage.

2.3.2 Allocators

The SurfNoC router has two allocators, VC allocator and SW allocator. We

used a separable-allocator as the baseline allocator. These allocators use round

robin arbiters. This may lead to timing channels if requests are allowed from

different domains to the same resource. We will detail how we prevent that from

happening for both allocators.

Virtual Channel Allocators The requesters of the VC allocator are pack-

ets requesting the upstream router virtual channels. The resources are virtual

channels of the upstream routers. By restricting the routing circuit to only issue

25

requests for virtual channels that belongs to the corresponding domain, contention

is guaranteed to be between packets from the same domain. Actually, we can use

this property to reconstruct the VC allocator to be D VC allocators of size v × v

where D is the number of domains and v is the number of virtual channels per

domain (across ports not per port) instead of one large VC allocator of size V ×V

where V = D.v. This design can help save power by power-gating some of these

allocators if the number of required domains is less than D for a certain appli-

cation. Figure 2.5 depicts an example of 3 × 3 VC allocator and illustrates the

rational behind the non-interference support in the VA stage as well as the opti-

mization of separate D allocators. This also shows that we can use any arbiters

or allocator design for VC allocation because it is intrinsically interference-free.

Switch Allocator The SW allocator assigns output ports to virtual channels.

Since any virtual channel can request any port, we cannot apply the same tech-

nique we used for the VC allocator of dividing the allocator into separate smaller

allocators. Another problem arises from the fact that switch ports are shared

among virtual channels from different domains (as shown in Figure 2.3.2) which

means that requests to the switch can be denied if two VCs (belonging to two

different domains) on the same input port and requesting two legitimate (accord-

ing to the surf schedule) output ports will contend on the crossbar input port

26

leading to one of them delayed, and thus a timing channel exists. We can solve

this problem by using the input speedup parameter of the crossbar with value D,

and hence no contention between domains on switch input ports. Figure 2.3.2

shows an example of such configuration.

mention the time/space trade-off in the discussion section in the end of the

paper

By solving the input port request of the allocator, we can now design the

switch allocator as a separable one of size Dp× p where p is the number of ports

of the router. It is worth noting that it does not matter if the allocator is input-

first or output-first because of two reasons. First, an input arbiter is responsible

for one input to the crossbar that is shared between VCs from the same domain.

Second, by using dimensional order routing and the surf scheduling, a VC can

request only one output port. Requests to an output port are masked using the

scheduler state so that only requests from the domain which owns the current

time slot reaches the allocator (i.e. no contention between different domains can

happen in the output arbiter).

2.3.3 Scheduler

The scheduler is a set of p tables each indexed by a counter, one for each router

output port. The initial state of the counter is pre-determined at design time in

27

order to enforce the surf schedule. The number of slots in the tables is determined

by the number of domains. The selected element from the array is used as input

to a decoder. The decoder output is used to mask requests to the switch allocator

as shown in Figure 2.7. If the number of domains D is greater than the pipeline

depth (including channel traversal) P , the schedule table is initialized according

to Equation 2.3 where Sid is the schedule of port i at index d, l is the location

of the node in the dimension of port i, l′ is the location of the node in the other

dimension.

Sid =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

((D − P)(l + l′) + d) mod D if i ∈ {0, 2}

(−(D − P)(l + l′) + d) mod D if i ∈ {1, 3}
(2.3)

2.3.4 Pipelining and separation discussion

We have so far discussed separation regarding each pipeline stage separately

but the question remains whether pipelining and pipeline stalls can cause inter-

ference or not. We will discuss each pipeline stage and the basic idea is to ensure

that stalls do not induce interference between separate domains.

Buffer write and route computation (BW/RC) This stage is the first stage

of the pipeline and because of credit-based flow control we are assuming, flits do

not enter the router unless there is a guaranteed space in the buffer for it. Spatial

28

separation is ensured because VC allocation is done in the upstream router. Route

computation can be done in parallel for all flits at the front of all virtual channels

(waiting for RC). No interference can be caused in this stage.

Virtual channel allocation (VA) At this stage all flits send requests to the

VC allocator. Using our design, interference can happen between virtual channels

from the same domain but not between those from distinct domains. Stalled flits

because of lack of free virtual channels (in the downstream router) prevent only

flits from the same virtual channel from making progress. This can be insured by

recording state in the pipeline for each virtual channel, i.e. stalls due to virtual

channel allocation have to be per virtual channel (not per input port).

Switch allocation (SA) Switch allocation can fail, due to contending flits

for switch ports (limited to virtual channels from the same domain), which causes

stalls in the pipeline. We avoid stalling the whole port (which leads to interference

between domains) by having a separate state in the pipeline stage for each virtual

channel. Switch allocation can also be stalled because of lack of buffering in the

downstream router, i.e. waiting for a credit. This stall effect is limited to a virtual

channel and can be handled using the same way the failed SW allocation stall.

29

Table 2.1: Specifications of implemented design.

The key idea here is stalls can affect flits in the stalled stage and all previous

stages only from the same virtual channel. Thus, we can guarantee separation

because we statically assign virtual channels to domains.

2.3.5 RTL Implementation

Table 2.1 briefly describes the specifications of the implemented SurfNoc router

design.

Buffer Write This stage is the first stage of the pipeline, and because we are

assuming a credit-based flow control, flit do not enter the router unless there is a

guaranteed space in the buffer for them. Buffers are implemented as circular FIFO

queues where the incoming flit is queued when it arrives from one of the input

ports. There is one buffer queue for each virtual channel. Buffer unit selects one

of the virtual channel buffers to queue the flit. This decision is made entirely using

30

the source router ID, destination router ID, the current router ID, and the surf

schedule. The flits wait in the buffers to be processed by the route computation

(RC) unit. The flits are de-queued from the buffer when the crossbar sends out

flits to the downstream routers.

In our implementation, we used five ports, two domains, and two virtual chan-

nels per domain. Hence, there were total of twenty virtual channels across all

the ports. The domain of the flit was selected based on the surf schedule and

the virtual channel was selected based on whether there was a need to take the

wraparound link. Wraparound link is taken when the path to the destination

router is shorter through the wraparound link as compared to the normal link.

Virtual channel, VC0 was used when there was no need of wraparound links.

However, if the router selected the wraparound link, VC1 was used for routing to

avoid the deadlock condition and hence, the flit was queued into the VC1 of the

selected port and domain.

Figure 2.8 gives an example of buffer write operation. The upstream router

sends flit from domain 0s virtual channel-0 buffer. The current router receives the

flit at its west port. There are four possible buffers corresponding to each domain

and virtual channel. However, the control logic extracts information about the

source ID and destination ID from the flit and puts the flit in the west ports

31

domain-0 VC-0 buffer (at location pointed by tail pointer). The tail pointer

increments and points to next location in the queue.

Credit Table Since we are using a credit-based flow control, the buffer unit

maintains a credit table that stores the number of buffer space available in the

downstream routers for each virtual channel buffer. The router can de-queue the

current routers buffer and send out the flit from one of the output ports only when

there is at least one buffer space available in the downstream router. The router

stalls if there are no credits available for the downstream routers virtual channel

buffer. Credit table is not maintained for the port connected to the processor are

the flits are sent to the processor if it is ready to accept the flit. A valid signal is

kept that tells if the processor is ready to accept the flits. The router looks for

this signal and sends out the flit only when the signal is set.

The credit count of the credit table is incremented and decremented based on

the credit in and credit out signals. The current router sends out credit out signal

to the upstream router when a flit is de-queued from the current routers virtual

channel buffer to indicate that a space is emptied in the current router. The

upstream router in turn increments the credit count upon receiving this signal.

Similarly, when the downstream router sends out flit from one of its virtual channel

buffer, the current router receives credit in signal from the downstream router and

32

it increments the credit count for that virtual channel buffer. Figure 2.9 illustrates

the above description of credits flow and the result of flit transfer on the credit

table count.

Route Computation As we implemented deterministic dimension order rout-

ing, a flit first travels in east/west dimension until it reaches the destination

column (router); then, it changes dimension and travels in north/south dimension

until it reaches the destination row (router). If the routing distance from current

router to the destination router is equal from two paths, the deterministic routing

always selects the path which does not has wraparound link in order to avoid any

dependency that might arise if the decision is made on fly. RC unit processes

the current flit (pointed by head pointer) in the buffer queue and if the flit type

is head or head-tail, it computes the output port and output virtual channel for

routing. In other words, RC unit computes the route on per packet basis (not per

flit). Also, similar to the buffer unit, RC unit computes the route that is based

entirely on the source router ID, destination router ID, and the current router

ID. After selecting the output virtual channel for the route, RC unit sends this

request to the VC allocator unit to actually allocate the output virtual channel

for a packet Figure 2.10.

33

When the RC unit takes a flit from the buffer, it already knows the domain

of the flit because there are separate buffers for each domains virtual channels.

Because the output port and domain are known, the RC has only two choices

of output virtual channels for the selected domain and the output port. In our

implementation, because there are two virtual channels for a domain, there are

only two choices of output virtual channels, VC0 and VC1. RC unit selects either

VC0 or VC1 based on the need of taking the wraparound link. Wraparound link is

taken when the path to the destination router is shorter through the wraparound

link as compared to the normal link.

Virtual Channel Allocation The VC unit performs the function of arbitrating

between the 20 input virtual channels for allocating the 20 output virtual channels.

The inputs to the VC unit are 20 requests from the input virtual channels, each

request holding the 5 bit ID of the desired output virtual channel, as computed

by the RC unit. For each output virtual channel, a 20-bit vector is extracted

from these inputs. In this vector, each bit is set if the corresponding input VC

requests that output VC. This concept is shown in Figure 2.11.These vectors are

then rotated based on a round-robin scheme that ensures fairness in arbitration.

Here the zeroth bit of the vector gets the highest priority and the nineteenth bit

gets the lowest priority. In every round of arbitration, original vector is rotated a

34

number of times such that the request that was granted in the previous round is

pushed to the nineteenth bit. Thus the request that is granted the output virtual

channel in the current round of arbitration gets the least priority in the next

round of arbitration. After the rotation, a priority allocator is implemented that

allocates each output virtual channel to the highest priority requester which is the

first valid request starting from the zeroth bit. Once an output VC is allocated, its

state is changed to ’BUSY’. The output VC is freed (status changed to ’FREE’)

when the switch allocation unit sends an acknowledgement that the outgoing flit

is the tail flit of the current packet. Thus, an output VC is allocated when the

head flit of a packet is encountered and is held by the same packet/input VC till it

forwards all its flits. The outputs of the VC unit are the 5-bit input VC IDs that

have been granted the 20 output virtual channels and a 20-bit ’VC alloc done’

vector in which each bit is set if the corresponding output VC is busy.

Switch Allocation The primary role of the switch allocator is to allocate the

five output ports among the 20 output virtual channels. Additionally, it also sends

out the tail flit acknowledgement signal for the other units, whenever the flit that

is going to be forwarded on an output port is a tail flit. The main difference

between the virtual channel arbitration and switch port arbitration is that the

former is on per-packet basis, whereas the latter is on per-flit basis. Thus, the SA

35

unit performs the arbitration for the output port on every clock cycle. In other

words, it does it for each flit based on the SurfNoC schedule. At a given clock

cycle, there can be contention between packets of same domain only, as per the

SurfNoC schedule. So, for every output port, the SA unit checks the schedule and

allows only valid requests to contend for the output ports. A request is realized

as valid if there is a credit available in the corresponding downstream router and

if the flit belongs to the right domain. Again, the output port is granted to

one of the valid requests based on a round robin scheme. The inputs to this

unit are the input VC IDs that have been granted the 20 output VCs and the

credit table information from the buffer unit. The outputs are the 5-bit input VC

IDs that have been granted each of the five output ports and the 20-bit tail flit

acknowledgement signal (Figure 2.12).

Crossbar Switch or Buffer Read The SA unit provides the connection infor-

mation in the form of 5-bit virtual channel IDs for each of the five output ports.

This makes a connection from the input virtual channel buffers to the output

ports. The buffer unit pops out flits from these input virtual channel buffers on

the corresponding output ports. At the same time, buffer unit sends out credit

out signals to the upstream routers to indicate that a space is emptied in the

current routers buffer.

36

2.4 Evaluation

In this section, we evaluate the performance and separation features of our

SurfNoC scheme. We also evaluate the area and power overhead compared to a

mesh network without non-interference support.

2.4.1 Experimental setup

We implemented a model of the SurfNoC router in BookSim 2.0 [22], a cycle-

level interconnection network simulator. The simulator is warmed up until steady

state is reached and statistics are reset, then a sample of the packets is measured

from the time it enters the source queue until it is received. For latency measure-

ments, the simulation runs until all packets under measurement leave the network.

Table 2.2 provides the simulation parameters used for different schemes. We evalu-

ated four schemes, two which do not provide separation guarantees while the other

two support strong separation. The non-separation baselines are an input-queued

router with minimal resources which achieves almost 40% saturation throughput

(Baseline-small), and a similar router but with much more resources (buffers and

input-speedup in the crossbar switch) which we call Baseline-fast. We chose to use

two baselines because the separation supporting router includes more resources

and would achieve more throughput than a baseline with minimal area, which

will hide the lost throughput due to the static scheduling. The non-interference

37

���������� 	�
���
��
����� 	�
���
����
�� ������
�������

���� ��� ��� 	

���
�
���

���
����
����� �� �� 	

���
�
���

������	�

���� �� ��� 	

���
�
���

�������
������
�� ��

����
���
���� ������
��

	 ��������
!����������

	
�
��
�
�"�����#$���%�

���&�'� (���

Table 2.2: Simulation Parameters.

�������� 	�
� �� �� 	
� �
�

��������	�
���
���
���� ��� ��� ��� ��� ��� ���

��������	������
���
��� �� �� �� �� �� ��

��
����
����
� �� �� �� �� ��� ���

Table 2.3: Different configurations

supporting schemes are a straightforward (TDMA) (the whole network forwards

packets from the same domain) and an input-queued router which enforces the

surf schedule (Surf). Table 2.3 shows the different configurations used for different

number of domains for Surf and TDMA.

2.4.2 Impact on latency

We first examine the impact of our non-interference support on latency with

different number of domains and different number of nodes under the uniform

random traffic pattern. In order to understand the effect of time-division multi-

plexing of channels, we measure zero-load latency (latency at offered load of 0.1%

38

of capacity for only one domain) and plot it for different number of domains in

Figure 2.13. In this figure, we plot latency in cycles (y-axis) vs. number of do-

mains on the x-axis for two network sizes of 64-nodes (Figure 2.4.2) and 256-nodes

(Figure 2.4.2). We compare 4 configurations: baseline-small, baseline-fast, tdma

and surf. It is clear that the latency overhead of surf scales much better than

tdma for the same network size (for example, the overhead is reduced the over-

head from 66 to 19 cycles by 71.3% for network sizes of 64 nodes with 16 domains.

The savings is even greater (up to 84.7%) for a 256-node network. We can see that

there is one exception to this reduction in latency which happens for 5 domains.

It is a subtle case that happens only for 5 domains, because the packet leaves the

router after 1 cycle of switch traversal (ST), spends 1 cycle for link traversal (LT)

and after 2 cycles of buffer write (BW) and virtual channel allocation (VA) in the

upstream router (total of 4 cycles during which the upstream router propagates

packets form other domains), it becomes ready for switch allocation (SA) without

any wait using tdma leading to same latency overhead of surf scheduling. One

would also notice that the benefits are higher for larger networks because of the

increased average number of hops. We can conclude that, in general, the savings

of surf scheduling is more scalable with larger networks as well as higher number

of domains.

39

In order to clearly understand how the overhead scales with network sizes or

average number of hops, we re-plotted zero-load latency of 2D mesh networks

of sizes varied from 16 to 256 nodes with 16-domains under the uniform random

traffic pattern. It is clear that the latency of both baselines increases with network

size due to higher average number of hops. We can see that the overhead of surf

scheduling is almost independent of network size (average number of hops) leading

to a parallel line to the baseline with constant overhead of 19 cycles (except for

16-nodes) because the packet wait-time depends only on the number of dimensions

and number of domains. On the other hand, the larger the network, the higher the

overhead for TDMA scheduling because a packet has to wait for its turn at each

hop in the path to its destination. This clearly shows that our scheme is scalable

with network size and proves our intuition of latency overhead independence of

number of hops.

Zero-load latency is just one latency metric, thus, we now study latency as

a function of network offered load. Figure 2.15 shows average latency measured

after convergence as a function of offered load for a 2D mesh network of 64-nodes

under uniform random and transpose traffic patterns. We vary aggregate network

offered load on the x-axis, i.e. if we have D domains, all domains offered load

is the value on the x-axis. We used 2 domains in this experiment. We can see

that surf scheduling maintains its latency saving at all offered load values lower

40

that the saturation point of the network. We can also see that loss saturation

bandwidth of the separation supporting networks is small compared to that of the

baseline-fast configuration. We will examine individual domain throughput of the

network in the next section.

2.4.3 Throughput

We want to understand the effect of non-interference on throughput from three

perspectives: single domain throughput, aggregate network throughput and sin-

gle domain throughput independence of other domains load. We checked these

properties for a 2D mesh 64-nodes network with 2 and 8 domains.

Figure 2.16 shows the effect of supporting non-interference on single domain

throughput for the two schemes: tdma and surf. We can observe that before

the saturation point, the throughput of a single domain (only one domain is

allowed to inject packets in the network regardless of the number of domains) is

exactly the same as if the network is not partitioned. However, we can also see

that one domain saturation throughput is inversely proportional to the number

of domains. In fact, it is almost half(one eighth) of the saturation throughput of

baseline configuration using the same resources (buffers and input speedup of the

switch) as can be seen in Figure 2.4.3 (2.4.3) for two(eight) domains. This even

41

distribution of bandwidth is expected because of uniformly dividing the virtual

channels among domains and time-division multiplexing of channels.

In order to understand the effect of separation on aggregate throughput of the

whole network, we run an experiment varying offered load of all domains from 0 to

1 and measuring the aggregate network throughput (average number of packets re-

ceived during a certain time slot) of all domains for all configurations. The results

are plotted in Figure 2.17 for 2 and 8 domains. In this experiment “baseline-

fast” uses the same buffer and input speedup values of the separation-supporting

configurations(tdma and surf) in order to measure the performance loss due to

non-interference support using the same set of resources. Although we can see

that saturation throughput is reduced by around 11.7%, aggregate throughput

loss is only limited to 5% and 4% for 2 and 8 domains, respectively. Figure 2.4.3

clearly shows that the network can operate when offered load is below satura-

tion throughput without any performance loss. Non-interference configurations

have higher saturation throughput than the small baseline because it uses more

resources, and lower than the fast baseline that include same resources because

of unused time slots due to schedule enforcement. Moreover, we can see in Fig-

ure 2.4.3 that if all domains are trying to inject packets at just 10% of the network

capacity the network reach saturation leading to increased latencies. This can be

42

tackled by non-uniformly allocating the bandwidth according to application spe-

cific requirements.

In order to verify the benefits of assigning bandwidth non-uniformly, we per-

formed an experiment on a 2D mesh network with 64 nodes and 3 domains.

Bandwidth (VCs and time slots in the schedule) is assigned as follows: quarter

of the bandwidth is assigned to domain-0 and domain-1, each; half of the band-

width is assigned to domain-2. This non-uniform allocation is done by devising a

schedule with 4 slots and assigning domain-3 time slots to domain-2. Saturation

throughput as expected is 0.09 for both domain 0 and 1, while it is 0.21 for domain

2. Latency at 5% injection rate is 36(53) cycles for domain-2 and 39(53) cycles for

domains 0 and 1 using surf scheduling(straightforward tdma). This shows that

our scheme can have latency benefits as well as throughput benefit by designing

a non-uniform surf schedule.

We examine the non-interference between domains by varying one domain’s

offered load while keeping the other domain offered load constant at maximum

in a 2D 64-nodes mesh with 2 domains. We plot both domain’s throughput for

baseline-fast and domain 1 throughput for surf as a function of domain 0 offered

load in Figure 2.18. We can see that domain 1 throughput is independent of

domain 0 traffic if we use the surf scheduling but not for the baseline case.

43

2.4.4 Area and power overhead

Area The SurfNoC router requires modifications to the crossbar, more buffering

and bigger switch allocator (due to bigger crossbar). For a D domain network, we

added D input speedup in crossbars. Crossbars area scales linearly with the input

speedup D because we increase only one dimension of the crossbar. We verified

this trend using DSENT [83] (with 45 nm bulk LVT running at 1 GHz with 0.3

injection rate) and it scales linearly. For example, while a 5× 5 crossbar occupies

1598.08 μm2, a 20 × 5 consumes are of 7525.76 μm2 which is almost a factor of

4.7 for input speedup 4.

Baseline-small uses 48 entries per input port, assuming 32-bit flits, DSENT

estimates an area of 0.0125 mm2. On the other hand, surf and baseline-fast uses

128 entries occupying 0.0327 mm2, a factor of 2.62 overhead against the baseline-

small.

We also added the scheduler which is mainly p copies of a a counter (where p is

the number of output ports), D entries memory a D× 2D decoder and D.p AND

gates (assuming that each domain requests one port regardless of the number of

VCs per domain). We estimate the scheduler to be of negligible area compared to

the router. For example, the storage requirement for a 16-domain 5-port router

is just 324 bits.

44

Power Having seen area overhead, we now discuss power consumption overhead.

Buffers power consumption increases from 11.9 mW for the baseline-small to 29.3

mW for the baseline-fast and surf schemes, an overhead of 146%. We couldn’t

model crossbars power using DSENT because it uses multiplexer-based crossbars

which is not suitable for large crossbars (as in the case of 80× 5 crossbar, a 5× 5

crossbar with input speedup of 16). However, we estimate that crossbar power

consumption with input speedup would scale linearly with the input speedup

because dynamic power consumption is directly proportional to capacitance which

is directly proportional to wire length which increases only linearly with input

speedup without output speedup. DSENT estimates a 5× 5 crossbar to consume

1.24 mW of power. If we scaled that by 16x, a crossbar with input speedup of 16

would consume a 19.9 mW.

2.5 Verification of Non-interference

In order to prove non-interference between domains of our arbitration scheme,

we used Gate-level information-flow tracking (GLIFT) logic [87, 86]. GLIFT logic

captures all digital information, including implicit and timing-channel flows, be-

cause all information flows represent themselves in decision-making circuit con-

structs such as multiplexers. For example, an arbitration operation leaks infor-

mation if the control bits of the multiplexers depend on one of the two domains

45

but it will not leak information (or cause interference) if arbitration is based on a

static schedule. GLIFT tracking logic can accurately capture this fact because it

is precise (i.e. not conservative in the primitive shadow gates but is conservative

in compositional shadow circuit). For example, a shadow-AND gate propagates

a label of HIGH only if the output of the AND gate depends on the HIGH in-

put(i.e. if one of a two-input AND gate is LOW zero, the output is guaranteed

to be zero and thus does not depend on the HIGH input). GLIFT automatically

generates conservative shadow logic that can be used to prove non-interference

between domains for a given circuit. Shadow logic is a tracking logic used as a

verification technique (and is not intended to be part of the final system, thus

does not cost any area or power). We integrated the scheduler (§2.3.3) enforcing

the surf schedule into a Verilog implementation of a switch allocator [46]. We

used a two-domain allocator that allocates requests of different virtual channels

to output ports. We modified the allocator to have a request per VC rather than

per input port (as in the original design [46]). We synthesized the allocator using

Synopsis Design compiler, then generated its shadow logic and verified the sep-

aration property using simulation of the resulting circuit. We assigned a LOW

label for VC 0 requests and a HIGH label for VC 1. We tested inputs for VCs

sharing the same input port requesting different and same output port. In all

cases grants signals had the same label of its respective virtual channels which

46

proves that grants are independent of requests from the other domain. We also

reversed labels of VC0 (HIGH) and VC1 (LOW) to verify that separation holds

for the other way of information flow (Domain 0 to Domain 1). This proves that

the crossbar arbitration, and thus physical channels, is timing-channel free which

(in addition to static VC allocation) ensures network non-interference. Freedom

of two-way information flow, or complete non-interference was verified.

2.6 Conclusions

Network-on-chips play an important role in integrating many components,

whether they are accelerators, cores, or memories. Not only are they increasingly

prevalent in consumer general purpose silicon, but they also seeing introduction

in high assurance domains where security and verification accuracy are crucial

in saving time, money, and potentially even lives. Separation is an important

property that allows designers to reason about systems efficiently by defining sub-

components that can be verified independently while limiting the design space.

While we believe this paper is an important step regarding gate-level separa-

tion in NoCs, there are many questions that merit further investigation. First,

we make no use of application-level knowledge that might shed light on the ex-

pected communication patterns. Co-scheduling communicating tasks (with global

traffic knowledge) [57] to be near to one another might introduce the oppor-

47

tunities for non-homogeneous yet non-interfering schedules across the network.

Application-level knowledge of lattice-based information flow policies might be

combined with this work to allow more flexibility in scheduling between compa-

rable domains [89]. Second, our approach uses a dimension ordered routing that

is oblivious to our time-division multiplexing scheme (surf-scheduling). As such,

a packet will only change dimensions after it finishes traversing one dimension. A

non-interference aware routing technique might minimize wait time by introduc-

ing more turns opportunistically. In general, the relationship between interference

and more aggressive optimizations would be interesting to explore. Third, there

are other topologies to consider, e.g. high-radix routers such as flattened butter-

flies [45]. Although flattened butterflies can use dimension-order routing and thus

surf scheduling might directly be applied, non-minimal routing is usually required

to improve throughput. Enforcing a surf-like schedule with adaptive routing might

increase latency. However, all of these open questions require a foundation from

which to build.

The foundation we propose here is SurfNoC, an efficient time-division-multiplexed

packet-switched k-ary n-cube network. SurfNoC exploits the dimension-ordered

routing algorithms in mesh networks by scheduling channels in each dimension in

a pipelined fashion so that packets propagate in the dimension as if there is no

domain restrictions on channels. Packets have to wait for their domain’s turn only

48

when they enter, exit, and potentially in changing dimensions. We discuss our

wave-based domain scheduled network and describe the implementation at the

level of the router micro-architecture with respect to non-interference support.

Importantly, while several works have discussed interference at a high level, we

believe this is the first time that true cycle-level non-interference has been proven

to hold at the gate-level. In addition to the formal gate-level analysis needed to

demonstrate that, we show that our schedule latency overhead scales efficiently

with number of separation domains compared to a straightforward synchronous

TDMA scheme (saving up to 75% of latency overhead in the case of 64-node with

32 domains). Although each domain’s throughput suffers as the network is parti-

tioned (as would be expected), the aggregate network performance remains very

close to no-separation baseline. More importantly, the latency overhead remains

constant with respect to network size.

49

[][Odd cycles.] [][Even cycles]

Figure 2.1: Time-division multiplexing scheduling in a 16-node 2D mesh (only one direction
of channels is shown for illustration purposes).

50

[][Odd cycles] [][Even cycles]

Figure 2.2: Surf scheduling in a 16-node 2D mesh (only one direction of channels is shown for
illustration purposes).

51

[][T=1]

S

R [][T=2]

S

R [][T=3]

S

R [][T=4]

S

R [][T=5]

S

R [][T=6]

S

R

Figure 2.3: Surf scheduling in 16-node 2D mesh with three application domains (denoted by
white, grey, and black) assuming a single-cycle routers for illustration purpose. The schedule
runs as white, white, grey, and black and repeats, giving the white domain half the bandwidth.
A packet (the white box under the node S) belongs to the white domain is sent from the node
marked by S to the node marked by R. The figure contains six consecutive cycles. At T = 1,
the packet is forwarded on the S port in the y-dimension (which is scheduled to forward white

packets). It keeps moving in the y-dimension until T = 3 when it needs to move in the
x-dimension on the W port. The packet waits 2 cycles (T=4 and T= 5) until it is the white
domain’s turn on the W port and finally it is forwarded to its destination on T = 6. Another
wait may happen again in the destination router (R) to forward the packet on the ejection

port waiting for the white domain’s turn.

52

Figure 2.4: Partitionable virtual channels

3x1 Arb
For IVC0

3x1 Arb
For IVC1

3x1 Arb
For IVC2

3x1 Arb
For OVC1

3x1 Arb
For OVC2

r00

r01
r02

r10

r11
r12

r20

r21
r22

g00
g10

g20

g10
g11

g12

g20g21

g22

3x1 Arb
For OVC0

Figure 2.5: Virtual channel allocator: A 3x3 separable input-first VC allocator. In this
example, we assume that VC0 and VC2 are assigned to domain 0 and VC1 is assigned to

domain 1. Dashed lines shows signals that can never be 1 due to route computation
restrictions. This example shows that we can reconstruct the allocator into smaller ones.

53

[][No speedup]

Port 0
VC0

VC1

Port 1

Port 2

VC0

VC1

VC0

VC1

Port 3

VC1

ort 3
VC0

[][Crossbar with input

speedup]

Port 0
VC0

VC1

Port 1

Port 2

VC0

VC1

ort 2
VC0

VC1

Port 3

VC1

ort 3
VC0

Figure 2.6: Crossbar with input speedup to eliminate contention on switch input port
between VCs from different domains.

Requests
from VCs

To SW
Allocator

Scheduler State

2+1

White

White

Grey

Black

Figure 2.7: Scheduler: The scheduler output is used to mask requests to the switch output
ports according to the surf schedule.

54

Figure 2.8: a) Buffer write operation from west input port: input flit arrives from domain-0s
VC-0 (D0-VC0), control logic selects D0-VC0 buffer queue based on the Source ID and the

Destination ID of the flit. b) Result of Buffer write operation: Input flit is queued in the buffer
and the tail pointer increments from 0 to 1).

Figure 2.9: Description of credit-based flow. a) Initial state: credit count is 4. b)-f) router 1
sends out four flits H, B, B, and T to router 2; the credit count decrements to 0. g)-l) router 2

sends out credit signals to router 1; credit count of router 1 becomes 4 again.

55

Figure 2.10: RC unit takes 16-bit heads from the flits pointed by buffer queues head pointers
and generates request for output VCs for each input VC. For example, the IVC0 signal stores

the output VC ID requested by input virtual channel-0 of domain-0 (D0-VC0).

56

Figure 2.11: The I/O ports of the VC allocator unit (top) and the VC unit implementation
(bottom). For OVC0, for instance, the 4th bit in the 20-bit vector is set if IVC4 requests for
OVC0. The vectors are then rotated based on the previously granted request such that it

receives the least priority. The priority allocation logic then grants each of the output VC to
the first bit that is set in the respective vector.

57

Figure 2.12: The SurfNoC schedule (SA) logic masks all the requests that do not belong to
the scheduled domain for the current clock cycle or do not satisfy the credit requirements.
Thus, at most, only 2 output VCs can contend for the same output port. The round robin

arbiter shown above allocates each of the five output ports to one of the two potential requests
every clock cycle. The ’tail flit ack’ signal is computed by making use of the buffer head

information that is globally exposed to all the units by the buffer unit. For instance, the 4th
bit is set if the 4th buffer/IVC4 is going to forward a tail flit on the output port.

58

[64 Nodes]

��

���

���

���

���

����

����

����

����

����

����

�� �� ��� ��� ��� ��� 	��

��
��
���

�	
���

�
��

�
��

�
��
��
�

����������	�������

��
���
����������
��
���
��������� �������� ��������

[256 Nodes]

��

���

����

����

����

����

����

����

����

�� �� ��� ��� ��� ��� ���

��
��
���

�	
���

�
��

�
��

�
��
��
�

����������	�������

	
��
������

����� 	
��
�����
������� ���
����� ���������

Figure 2.13: Zero-load latency for different network size and different number of security
domains (the two baselines are overlapped because zero-load latency does not depend on

buffers and crossbar input speedup).

59

��

���

���

���

���

����

����

����

����

����

����

�� ��� ���� ���� ���� ����

��
��
���

��
���
�	

�
��

�
��
�	
��
�

����	��������	��

	
��
������

� 	
��
�����
��� ���
� �����

Figure 2.14: Zero-load latency against different network size with 16 domains (the two
baselines are overlapped because zero-load latency does not depend on buffers and crossbar

input speedup).

60

[Uniform random (2 Domains)]

	��

���

���

���

���

���

���

����

�� �	�� �	
� �	�� �	�� �	�� �	��

��
	�
��
��
��
��
��
��
��
��
��

�
�

���	
����
������
�������
������
��

��������������
������������� ����� �����

[Transpose (2 Domains)]

���

���

���

���

���

���

���

����

�� �	��� �	�� �	��� �	
� �	
��

��
��
��
��
��
��
��
��
��
��
��

�
�

���	
����
������
�������
������
��

��������������
������������� ����� �����

Figure 2.15: Average latency as a function of aggregate domains offered load for 2D mesh
network of 64 Nodes: We can see that latency is stable below network saturation point.

61

[2 classes]

��

�	��

�	
�

�	��

�	��

�	��

�	��

�� �	�� �	
� �	�� �	�� �	�� �	�� �	�� �	�� �	�� ��

�
��

��
��

��
��
�	
��
�

	�

��
��

��

��
��
��
��

������������������������
��
��������

��������������
������������� ����� �����

[8 classes]

��

�	��

�	
�

�	��

�	��

�	��

�	��

�� �	�� �	
� �	�� �	�� �	�� �	�� �	�� �	�� �	�� ��

�
��

��
��

��
��
�	
��
�

	�

��
��

��

��
��
��
��

������������������������
��
��������

��������������
������������� ����� �����

Figure 2.16: Throughput as a function of offered load of one domain (only one domain is
injecting) for 2D 64-nodes mesh using different number of domains.

62

[2 classes]

��

�	���

�	��

�	���

�	
�

�	
��

�	��

�	���

�	��

�	���

�	��

�� �	�� �	
� �	�� �	�� �	�� �	�� �	�� �	�� �	�� ��

��
��
��
��

��
��	

��
��

�
��
���

��������
���������������	
����
�����

��������������
������������� ����� �����

[8 classes]

��

�	���

�	��

�	���

�	
�

�	
��

�	��

�	���

�	��

�	���

�	��

�� �	�� �	
� �	�� �	�� �	�� �	�� �	�� �	�� �	�� ��

��
��
��
��

��
��	

��
��

�
��
���

��������
���������������	
����
�����

��������������
������������� ����� �����

Figure 2.17: Aggregate network throughput as a function of offered load of one domain (all
domains are injecting packets) for 2D 64-nodes mesh using different number of domains.

63

��

�����

����

�����

����

�����

����

�����

����

�����

�� ���� ���� ���� ���� ���� ��	� ��
� ���� ���� ��

��
��
��
��

��
���
	

��
��

�
��
��

����
�����������������	
����
�����

���������������
��������������� �������

Figure 2.18: Separation of uniformly distributed bandwidth. Throughput as a function of
domain 0 offered load. We can see that, by using surf scheduling, domain 1 throughput is
independent of domain 0 load (same trend was measured for domain 0 throughput while

varying domain 1 load).

64

Chapter 3

Hardware-Assisted Context

Management for Accelerator

Virtualization

Virtualization has emerged as a common means by which one may share and

more optimally utilize underlying physical resources. As custom hardware acceler-

ators are called upon to take significant portions of the workload from traditional

CPUs, the state of computing tasks is increasingly spread across a set of highly

heterogeneous devices. Effective virtualization of a system with such distributed

and heterogeneous memory elements can be extremely complicated as both fine-

grained scheduling and the safe management of the underlying hardware state

65

may be required [61] [54] [35]. For each distinct type of accelerator, the virtual

machine monitor (VMM) must be aware of what subset of the machine state is

critical to maintain correctness, which subset is potentially damaging if leaked

to other VMs, and how critical parts of the hardware state can be managed and

restored by the interface provided by that accelerator core.

This complexity also comes with a performance and system management cost,

specifically in that it leads to an inability to coordinate the accelerators effectively.

Switching the context for an accelerator can have a non-negligible cost (driver/OS

and driver/device communication, cleanup, power management, etc) and that cost

can be variable based on time. If the VMM is to coordinate the accelerators it

must have an accurate view of what resources are free for scheduling and what

the costs of scheduling might be. The VMM must either be able to estimate

those costs from models, gather them through further communication with the

accelerators (which may be then subject to delay due to resource contention), or

give up the opportunity for efficient coordinated control.

There are several ways in which a designer may approach this problem. First,

they might consider fixed pass-through (e.g. Intel VT-d [40]) where an accelerator

is exclusively assigned to one VM, but this exclusive relationship limits sharing.

A second approach is for the hypervisor to arbitrate between several VMs with

one VM having access at a time, where the hypervisor halts operation of the

66

accelerator and restores it to a known state between guests [71]. This approach

requires very little in the way of both additional memory and network communi-

cation, but carries a risk of significantly reduced throughput when interruptions

cause the loss of interrupted but unfinished work. A third approach is to avoid

dropping unfinished tasks, instead storing the intermediate results in memory

for future retrieval. This method prevents wasting of allocated timing slots, but

might incur heavy data communication [43] [47]. A fourth option is to involve the

accelerator itself in the alleviation of context switch overhead. If the accelerator

is granted some leeway in when the context switch occurs through a modicum

of automation inside of a device, smarter switch timing might be possible saving

both time and space. This might require an understanding of the computation

and a careful re-architecting of the accelerator.

While performance is one important factor, the sharing of state also needs

to be completed in a way that is secure. Given the importance of crypto oper-

ations, both in performance and security, they are a natural space in which to

study accelerator design tradeoffs. To study the impact and suitability of differ-

ent accelerator virtualization strategies and to provide optimizations for crypto

devices, we implement a series of fast modular exponentiation engines. By mak-

ing minimum changes to the device interface, we enable hardware assisted context

management in such a way as to avoid exposing sensitive intermediate results to

67

the upper system and as to involve local scheduling to improve performance. Our

experimental results suggest that above certain switching frequencies, the local

context switch approaches achieve significantly higher throughput rate than more

traditional schemes and thus enable a new level of fine-grain and fair scheduling.

The additional area overhead for our baseline and optimized design to implicitly

accommodate four VMs is only 36% and 15%.

3.1 Related Work

The management of accelerator-rich architectures is a very active topic of

research, but much of the work is focused on application partitioning and fair

scheduling, but less with VM-level sharing. HiPPAI [82] alleviates the overheads

of system calls and memory access by using a uniform virtual memory addressing

model based on IOMMU support and direct user mode access to accelerators.

While it is efficient in limiting overheads at the user/kernel boundary, it lacks

support in resource sharing. Traditional accelerator scheduling schemes still rely

heavily on usage statistics collected from hardware. Pegasus [35] manages accel-

erators as first class schedulable entities and uses coordinated scheduling methods

to align accelerator resource usage with platform-level management. Disengaged

scheduling [61] advocates a strategy in which the kernel intercedes between ap-

plications and the accelerator on an infrequent basis, with overuse control that

68

guarantees fairness. Some work tackles the management problem by simplifying

accelerator/application integration. VEAL [17] proposes a hybrid static-dynamic

compilation approach to map a loop to a template for inner loop accelerators.

DySER [30] utilizes program phase and integrates a configurable accelerator into

specialized data-path to dynamically encode program regions into custom instruc-

tions. While these approaches are intelligent in software partitioning and mapping,

they fail to take advantage of hardware assistance in resource managing. Some

work starts to look into hardware device reusability: CHARM [20] and CAMEL

[19] tackle the sharing and management problem mainly by automating composi-

tion of accelerator building blocks (ABBs), primarily stateless arithmetic units in

ASICs.

Some projects favor managing hardware states implicitly. Task specific access

structures(TSAS) [43] inserts a multiplexer as the input of each FF to select be-

tween updating its value from the combinational logic or from previously stored

data, or simply remaining its value from the last cycle. This scheme takes the

majority of the context switch workload within the device and enables fast switch-

ing, but at the sacrifice of non-negligible augmented logic and memory. Hardware

checkpointing [47] where the hardware states of a device can be stored and be

rolled back regarding checkpoint, hold the potential to minimize area overhead

wisely. We recognize the value of hardware checkpointing - in fact we extend its

69

role in coordinated resource management: for accelerators like an RSA engine that

implements real-time requests, hardware support in context management will be

of great help to fast and fine-grained accelerator sharing.

3.2 Baseline RSA Accelerator Architecture

3.2.1 Montgomery’s Modular Multiplication and Expo-

nentiation

The core computation in an RSA crypto engine is modular exponentiation,

consisting of a number of modular multiplications. Montgomery’s modular mul-

tiplication algorithm [64] employs simply additions, subtractions, and shift oper-

ations to avoid expensive divisions. In this paper we work with an extension to

this algorithm [77]. Three k-bit integers, the modulus N , the multiplicand A and

the multiplier B are needed as inputs for computation.

Algorithm MM UMS is defined as follows:

for i = 0 to i = k - 1 :

q = (S + A ∗B[i]) mod 2 (3.1)

S = (S + A ∗B[i] + q ∗N) / 2 (3.2)

70

S is restructured in carry-save form as (Sc, Ss) where Sc and Ss respectively

denotes the carry and sum components of S. H-algorithm [16] transforms the com-

putation of modular exponentiation into a sequence of squares and multiplications.

Square operation could be performed when both multiplicand and multiplier are

identical. The modular exponentiation algorithm, ME UMS(M,E,N), iteratively

applies a unified multiplication or square operation, where for each bit E[i] in ex-

ponent E, both a single square operation and multiplication will be performed

when E[i] = 1 while only a square operation will be performed otherwise.

Figure 3.1: Traditional RSA accelerator
block architecture

Figure 3.2: State diagram of the original
RSA accelerator design. PRE/PRFC and

POST/POFC are the preprocessing and the
post-processing states for domain format and
carry-save format conversions. MUL and
SQR stand for modular multiplication and

square operation respectively.

Figure 3.1 shows the baseline design. The unified modular multiplication/square

module is highlighted in the shadowed region. The nine states in Figure 3.2 cap-

71

ture the major stages of the entire modular exponentiation process, as discussed

in the algorithm ME UMS.

3.2.2 Sharing an RSA Accelerator

One traditional method of device sharing is hard preemptive multitasking.

The obvious drawback is that as the switching frequencies increase during heavy

sharing, the throughput rate might suffer significant degradation.

To avoid the cost, two options are clear, either the OS relaxes its schedule to

wait for the task to complete or the intermediate results from hardware have to be

saved for future retrieval. The first option is becoming increasingly difficult since

an application can occupy several accelerators simultaneously, thus a perfect point

where all devices have just finished their current tasks can be extremely hard to

identify or even exist. The latter option seems to comply well with software sched-

ules, but the data movement required to store the intermediate results, coupled

with the corresponding memory updates, making this option surprisingly tricky

to execute well in practice. Moreover, exposing intermediate results to DMA are

also risky due to DMA attacks [81]. A good solution should manage these bur-

dens carefully and a new set of interfaces is needed to simplify the synchronization

process.

72

3.3 Tightly Integrated Virtual Accelerator Ap-

proaches

The simplest tightly integrated design might store all local state in a set of

D flip-flops sprinkled throughout the design. However, this approach is also pro-

hibitively expensive. Simulation results suggest that regarding area (and power)

efficiency, such virtualized accelerator can add up to a 78% area overhead.

So what can we do if we want to maintain the accelerator’s capability of being

fast switched without giving up almost nearly all of our efficiency? We describe

two different solutions – the simplest being to replace the local and distributed

storage elements with a set of RAMs.

3.3.1 Baseline Virtual RSA Accelerator Design Overview

In general, most sharing patterns fall into one of the four categories:

• Double Vacancy. No VM is occupying the device.

• Single occupancy. The accelerator is currently dominated by one VM while

another VM requires input data streaming for starting a new task.

• Double occupancy. One VM is scheduled to resume a previous uncompleted

computation while the other VM is in the process of computing.

73

• Single occupancy. One VM requires to resume a suspended task while the

other VM is performing output data streaming.

Note that in scenario 3, two whole sets of states need to be stored. Based on

this, we include 2KB of RAM alongside the core for temporary storage. We build

a simple layer above the RSA accelerator to forward switching commands rather

than changing the slave interface directly. We add a switch signal underneath

the layer to help the controller determine the next state. In order to be able to

interrupt a task in the middle of such computation, four more states are added to

the FSM. We show the resulting state diagram in Fig. 3.3.

By enabling hardware preemption, the proposed accelerator virtualization ap-

proach successfully realizes the goal of abstracting away hardware details from

software without abandoning tasks, at the sacrifice of increasing critical path de-

lay by 16%.

3.4 Optimized Solution

In order to eliminate the increased critical path delay, we examine the registers

that contain useful intermediate results along the entire process of a single modular

exponentiation task. We measure the amount of memory needed to store these

intermediate results against execution time cycle Fig. 3.4.

74

Figure 3.3: State diagram of an example transition case in
the baseline architecture. When receiving active switch signal

in SQR state, it will jump to WAIT SW state to store
intermediate results in local RAM. label denotes VM ID. If
the current requesting VM was in PRE state during last
switch out, next state will be set to PRE. After numerous
state transitions, the VM that was switched off during SQR
state might request again, and have a chance to restore its

state

Figure 3.4: The amount of local memory needed for storing
intermediate results. The y-axis denotes the number of hardware
registers and the x-axis denotes timeline measured by clock cycles

during a single modular exponentiation operation

75

At the completion of a modular multiplication or a square computation, only

the value of Sc and Ss (1025-bit register arrays) are a must-save among all

the large register arrays. These transition points, which we informally call SP

(sweetspots), can be intuitively pinned from the FSM inside the device controller.

If we can make sure all switching operations happen at these sweet spots, we can

significantly reduce the RAM size required.

To achieve this goal, the device controller is slightly modified to ensure switch-

ing always happens at these spots. Upon each major state transition, the con-

tents of Sc and Ss will be forwarded to two designated register arrays Sc SW

and Ss SW . Note that the contents of these two registers will be refreshed every

time an SP is identified and will be flushed during switching operation Fig. 3.5.

We also want to make sure that the OS gets control of the preemption delay so

that it can make scheduling decisions easily when it needs to context switch among

a number of concurrent applications. Upon receiving the switching command, the

device will compare the time bound to its backward counter and make a decision

about whether to reach the next SP or to simply fall back to the last stored

one. If the time bound is equal to or smaller than the value of the counter, the

current multiplication computation will be abandoned and contents of Sc SW and

Ss SW will be stored to RAM. An extra state, SWEET , is added to allow data

transfers between registers and RAMs during task switching. The state that leads

76

Figure 3.5: Design of
optimized context switch
enforcement in detail.

SW DFF represents register
arrays including Sc SW and
Ss SW storing intermediate

results at previous SP

Figure 3.6: State diagram of an example transition
case in optimized design. The abort signal calculated
from time bound directs next state when switch == 1.
The current task is allowed to finish current square

operation when abort == 0, sweet state will be updated
to its next square(SQR) or multiplication(MUL)
operation judged by E[i] for future state retrieval.

to SWEET will be recorded. The relaxed timing bound can be very convenient

for scheduling purposes, considering it is difficult for OS to decide the exact best

timing to switch in a device. Granted with local scheduling power, the device can

wisely help a task fully utilize its time slots. We show an example state transition

scenario in Fig. 3.6 for illustration.

The design removes multiplexer arrays from the critical paths, significantly

lowering area cost. Meanwhile responsiveness to interrupts or context switch

commands is still guaranteed. Note that these modifications can be generally

applied to public-key crypto accelerators. By simplifying the device interfaces, the

VMM’s scheduling becomes easier and more flexible. Tasks with higher priorities

77

can always be ensured a quick access to hardware acceleration. The hardware

accelerator manages to secure itself in a blackbox, without exposing hardware

information unnecessarily.

3.5 Experimental Evaluation

Our evaluations are based on RTL prototypes of accelerators with standard

AHB I/O interfaces written in Verilog under the ModelSim [63] environment. We

test through the encryption process and use a Verilog testbench with a public

exponent 65537 and modulus generated from OpenSSL [67] for encryption. We

synthesize all of the RTL designs using the Synopsys Design Compiler [18] with a

45nm library and collect critical path delays and executing clock frequencies. The

area and peak power models for our embedded memories are based on CACTI 5.3

[4] and for logic and registers based on the results from Design Compiler.

3.5.1 Relative Performance

One important measure of performance is the total virtualized device through-

put as measured by the numbers of encryptions per second. We compare the virtu-

alized throughput rate from each of the designs to the upper bound of performance

where each VM is given a completely independent copy of the device (i.e. no in-

78

terference at all). We simulate three scenarios representing light (concurrently

running two VMs while requests from each VM fills 10% of its timeline), medium

(two VMs with 20% requests) and near-saturating workloads (four VMs with 20%

requests) respectively. The only contention for the crypto accelerator is from mul-

tiple VMs attempting to access the engine at the same time. Figs. 3.5.1, 3.5.1,

and 3.5.1 depict the relative performance of virtualized devices under these loads

respectively.

The y-axis of each of these plots is the relative performance of the different

schemes (as compared to our ideal case). The x-axis is the time slice granularities

under which the VMs are driving our accelerators. To simulate the fact that one

does not switch between VMs instantaneously, a running task will not attempt to

switch in a period smaller than a defined time slice. In real-time, latency sensitive,

or reactive systems a design may be called upon to switch very quickly. To quantify

the suitability of each of the previously described accelerator virtualization under

various different switching speeds, we inject requests with the size of one task

(for us, the crypto operation) but constrain the minimum window under which

those switches might occur. The courser the minimum time between switches, the

less we would expect to lose in wasted cycles as computation is abandoned on a

switch, but more applications will have to wait to get their computation onto the

accelerator. On each of the graphs there are 3 different bars labeled “Tra” for

79

“Traditional” which drops unfinished tasks on a switch. “Base” saves all of the

hardware state as described in Section 3.3.1. Finally, “Opti” adds the hardware

necessary to allow the accelerator to delay the switching under a fixed bound as

described in Section ??.

As can be seen in these graphs, when the request workload is comparatively

low, the performance disparities among the three approaches are not as significant

as those when task workload is heavier. However, the performance of the opti-

mized design is consistently the highest throughout all the switching frequencies

simulated. The base design has a slight advantage over traditional design when the

time slice is smaller than the time for one encryption operation. The advantage

more fully manifests when the amount of requests increases. The performance of

all three approaches in all the scenarios reaches a peak around and slightly above

25 time slice. However, when we compare 25 to 100 granularities of the three

figures, we can clearly see that the peak period tends to shrink as the workload

increases. When reaching a comparatively coarse grain scenario around 200 the

performance of all of the virtual devices suffer significantly. In these situations

the bounds on switching time is large enough to cause a significant amount of idle

time in the hardware. The optimized design outperforms the baseline consistently

because the more restricted save points limit the hardware needed and the longer

paths they cause.

80

One interesting observation is the non-monotonic performance of the tradi-

tional design. The throughput rate drops as the switching frequency rises until

it reaches around 1/25. The reason behind this pattern is that when a task is

switched off and dropped, the device is more likely to waste more computation

cycles when the device is only allowed to be switched at a granularity slightly

smaller than time of one operation. Provided that the v-4 optimized design shows

at most a 3.6X performance improvement compared to the traditional design, in

20% workload scenario and reliably high efficiency throughout fine-grain granu-

larities, the optimized design appears to be a clear choice in systems requiring

very fine-grain switching when we consider performance alone.

3.5.2 Area Cost and Power Consumption

To model the area overhead and power consumption of the three virtual accel-

erators, we synthesized our RTL design in the TSMC 45nm technology. Results

show that the original accelerator occupies 0.11mm2 with a peak power consump-

tion of 54.7mW at 1.6GHz. Due to the lack of publicly available SRAM compilers

in this technology, we use CACTI 5.3 [4] to estimate the area and power of RAMs.

The area cost is shown in Fig. 3.8. The y-axis of the area plot is the absolute

area costs measured inmm2 unit of the different schemes. The x-axis is the number

bounds of VMs that are allowed to be running concurrently on the accelerator

81

(e.g. 2 corresponds to v-2 design). As we can see in the graph, the additional area

overhead of the baseline design compared to the traditional design can increase

area by up to 29% for v-2 and up to 36% for v-4. This extra price paid is primarily

due to the additional arrays of multiplexers needed to switch between states and

the additional RAMs needed to store the contents of all registers. Note that the

optimized design scales better than than the baseline. The area overhead is merely

12% and 15% for v-2 and v-4 respectively.

Similar to the area costs trends, plots of the peak power consumption present

an increasing pattern somewhat proportional to area costs. As we can see from

Fig. 3.9, where the y-axis denotes the absolute peak power consumption measured

in mW unit of the different devices, the optimized design scales better from v-1

to v-4 than the baseline design as the default bounds of running VMs increase.

The traditional design stands out due to its more uniform power consumption.

An important conclusion is that the baseline design performs slightly worse

than both the traditional and the optimized design regarding power consumption,

whereas the traditional one suffers significantly reduced throughput/watt rate for

near saturating workloads when the time slice is small. While baseline and op-

timized design already provide with most responsiveness, it is as well likely that

energy consumption can be compensated from simplified software level synchro-

82

nization. Moreover, the internal memory read/write structure guarantees a quick

and safe access to intermediate data without dealing with I/O hazards.

Due to its performance and power-friendly benefits, the optimized design im-

proves the throughput/watt rate by at most 3.1X over traditional design when

above switching frequency of 45 KHz magnitude and remains competitive to tra-

ditional design throughout all sharing granularity range under examination.

3.6 Conclusions

Growing heterogeneity in hardware devices continues to put easy and safe man-

agement in direct conflict with fine-grain scheduling and virtualization. Rather

than take a top-down approach requiring that all accelerators be implemented

in a particular style, we take a bottom up approach, looking at what it takes to

manage the state of a device. In particular we found that there is a small but

non-negligible penalty for adding in explicit access to the accelerator state both

in terms of area and power. However, we also observe that there is an interesting

and previously unexplored trade-off between the scheduling power one imbues the

accelerator with and the efficiency with which the schedule can be managed to

minimize the waste of timing slots.

With that said, under these limitations we presented comparisons of three dif-

ferent accelerator virtualization schemes working to manage a critical device - an

83

RSA accelerator. When a high degree of sharing and switching is required, the

traditional task-dropping scheme can suffer significant performance degradation.

If such conditions are expected, a hardware preemption scheme can be adopted,

and with a bit of analysis, is able to alleviate the burden of resource scheduling

and context management, and to prevent sensitive intermediate data exposure.

Results show that our proposed approach manages to dramatically diminish the

performance degradation of the traditional scheme and to compensate a naive

TSAS in a low-overhead manner both in area and power. Although not yet veri-

fied by timing flow tracking tools, the optimized design provided decent isolation

among concurrent tasks (sharing entities) by static virtual interfaces and fixed

allocated memory. We also envision that with much wider granularity of high

efficiency and concurrency this accelerator design can provide, different security

favored pre-defined coordination can be more easily enforced.

84

(a)

(b)

(c)

Figure 3.7: Relative performance under light (a), medium (b) and near-saturating (c)
workload scenarios. V-2 and v-4 denotes the default maximum number of VMs allowed to

concurrently occupy the device.

85

Figure 3.8: Comparison of area costs for v-1,
v-2 and v-4 designs

Figure 3.9: Comparison of peak power
consumption for v-1, v-2 and v-4 designs

86

Chapter 4

Application-Centric Computation

Concurrency

While the last two section focus on sharing that comes up in the context

of cpu-to-cpu and accelerator-to-cpu communcation, we wanted to explore the

full system stack up through to the operating system running on one cpu. An-

droid is the most popular mobile operating system with the market share over

80 percent[3]. Its open source base and friendly libraries attract a large amount

of contributions from the app development community. In 2012, the number of

apps available in the market exceeded a million. These apps influence users’ daily

lives in communication, health, transportation, social networks, finance, enter-

tainment, etc. Undoubtedly functionality, reliability and performance of these

87

apps and the underlying Android OS has crucial impact on users’ life quality

(daily experience). In 2016, with the release of Android Nougat featuring split

screen for multiple foreground apps, the need of system support for application

concurrency is unprecedented.

Within the many types of applications, human-computer interaction compo-

nents including I/Os are often the focus of user experience enhancement. That

usually includes audio and speech. For a user to truly manipulate multiple ap-

plications concurrently, speech is the optimal choice of input to advance beyond

traditional keyboard typing. However, many successful speech interfaces Apple’s

Siri, Microsoft’s Cortana are either OS specific or only targets system apps. Google

also provides interface for voice searching [73], however, it has to be performed

on a server. This becomes a major limitation of availability since mobile network

connections are often slow or intermittent, and sometimes non-existant [53]. For

a third party Android app to employ speech recognition feature, it is still incon-

venient and inefficient. As speech recognition algorithms and functions are often

computation exhaustive, currently there is no feasible way to support running

multiple audio apps scalably in local environment. This fact is in direct conflict

with the increasing concurrency need.

To resolve the conflict, one has to investigate deeper. By examining the speech

recognition computations from different libraries, we find out that when applica-

88

tions use the same library, many of their speech recognition procedures adopt sim-

ilar function calls and chains, meaning even from different apps, the computation

paths might have considerable overlap. To take advantage of these computation

overlaps, the computation paths should at some point have the same entry point

(input). Yet another key observation is more exciting, that the speech computa-

tions are originally from the same device input (mic) and thus can have the same

set of input data. We call these data seed data. Originating from seed data, iden-

tical subsequent computations can theoretically be shared among applications.

The question is now how to share their computations safely and efficiently?

Fortunately on Android, there is one approach for applications to share – Inter-

Component Calls (ICCs). An application can expose functionalities through APIs

and intents. However, due to Android’s appification [5] (decentralized) nature

(each app has a Linux userID along with server client communication mechanism

among apps) and arguably flawed permission model (permissions are mostly re-

quested by app on installation and the components within an app share the same

permission), there has been huge amount of various attacks [15][23] targeting

these system design vulnerabilities. A large amount of research work has seen on

security and privacy issues[96][94][24][31][88][27], yet the inter-app attacks have

not been solved systematically. Meaning to simply share computations among

applications on a pairing basis, is not only non-scalable (overwhelmed by ICC

89

communication overhead), but is also at great risk of compromised security and

privacy.

We cannot help asking these questions: What are the security obstacles fun-

damentally introduced by the appification ecosystem layout (app isolation and

decentralization)? Whether and how we can bypass these obstacles? In the mean-

while what are the feature and components in the Android OS that can positively

influence the application sharing and concurrency?

To discover the obstacles hindering the progress of application concurrency and

performance in Android, we analyzed the major security issues and categorized

them based on the different system components involved.

Based on the study, we made the following discovery: The supposedly “per-

formance promoting” functionality sharing mechanism through app APIs is both

vulnerability-prone (suffer from privilege escalation attacks[15]) and sharing-unfriendly

as not representing the server app’s best interest in a lack of system procedure

to confine the sharing parties in a fine-grain manner (the server app is not able

to define the scope of sharing within specific apps). The mechanism carries the

general decentralized system weaknesses but not the software-friendly business

model. We realize the unfriendly model can be another challenge in promoting

application sharing.

90

We further made the key observation that centralization is strongly lacking

in Android where it is hurting both security and performance. Inspired by the

PeerReview[36] concept in distributed systems community, we propose Cashmere

– a central processing platform to guide interested apps in forming groups for shar-

ing computation on libraries. Cashmere utilizes shared memory to cache library

function call chains from concurrent running apps. By refraining the interactive

paths among service-specified apps, seed app (the app feeds the original com-

putation) side security concerns can be relieved, thus promoting confidence and

willingness in sharing. The centralized scheme is well complementing the weak-

ness of the decentralized Android base (in the pure decentralized scheme, an app

is able to delay IPC communications, send incorrect results or even malicious

calls/intents; On another note, pairing apps using IPC is not scalable). Thus

the scheme boosts the client app side’s confidence in sharing and can improve

computation concurrency due to the provably increased number of sharing enti-

ties and the reduced/ramified IPC overhead. Note that without the confidence in

sharing, an app might choose to compile its own local library and prohibit shar-

ing radically. Thus Cashmere’s support of fine-grained confinement is critical in

promoting sharing and computation concurrency.

To summarize our contributions in this chapter:

91

• We analyze Android ecosystem structure and propose a central platform to

support cooperative services to more securely improve application compu-

tation concurrency in the Android OS.

• We demonstrate its usefulness (performance wise) through a case study on

a popular open-source speech recognition library.

• We initialize application-centric primary grouping to grant individual app’s

flexibility of action in determining security and performance trade-offs.

• We further solve the increased word error rate (WER) problem due to vocab-

ulary dictionary model differences among speech recognition applications.

We propose clustering-based sub-grouping on top of primary grouping, based

on vocabulary similarities and overall WER friendliness.

The rest of the chapter is organized as follows. Section 4.2 provides background

on Android system and discusses related work. Section 4.3 discusses the need

for central access control and describes the procedure of speech recognition. Sec-

tion 4.4 presents the architecture design of Cashmere – our application centric

access concurrency platform. Section 4.5 details the prototype implementation of

Cashmere and explains the sub-grouping algorithm. Section 4.6 evaluates Cash-

mere and discusses security impacts. Section 4.7 briefly describes future work and

concluding marks.

92

4.1 Background on Android Access Model, Se-

curity Challenges and Inter-Application Shar-

ing

Android’s appification system has long been scolded for its lack of fail-safe

defaults[5]. Although each app is represented by a unique Linux UserID, Android

extends IPC to ICC where apps are able to communicate with each other beyond

their own boxes. These ICCs are often the leak holes (through overt or covert

channels) that break the boundary of inter-app data isolation and privacy pro-

tection that Android is aimed to achieve in the first place with its appification

structure.

In the contrary, there has been attacks targeting different layers of Android sys-

tem. RiskRanker[31] categorized apps threat severity to high-risk (root exploits),

medium risk (privilege escalation) and low risk (non-critical data stealing) based

on malware potential. High risk apps, although may cause severe damage and loss,

of whom malicious components are obvious to detect. Medium risk apps might

have the culprit since most of their attacks directly take advantage of Android’s

ICC mechanism rather than exploiting careless system bugs. Once succeeded,

the malicious app can potentially gain dangerous permissions and sensitive data.

The study also provided interesting findings that some of the reputable apps also

93

exhibit inappropriate behaviours or minor violations that make its benign title

hard to judge.

We are inspired by this observation that we can further conjecture that these

borderline apps may be categorized by other apps as dangerous or non-dangerous

apps based on the judging apps’ criteria. Currently Android only allows an app

choose to share with either system apps or all apps[5], thus an individual app’s

interest and security requirement is not protected in a fine-grain manner during

sharing. When an app clearly knows (by analyzing the market and its business

models, offline checking tools and anti-virus software) the interested apps to share

and certain apps to isolate, the system will not be able to grant such client app-

specific access and communication paths. Meanwhile an app is provably not able

to defend signature obfuscation techniques [11] without system intervention. It

is worth mentioning that since current Android is strongly lacking support for

third-party anti-virus apps/software [5], offline anti-virus check with reconfigured

permissions (grant anti-virus app root privilege) can be a much more effective

approach. To off-load this huge real-time/real-world scanning work on Google

Play or other app market vendors (not to mention some of them are not reli-

able/benign) is impossible, it is more practical for an individual app development

company to run the process within its interested sharing parties. We discuss this

in detail in section 6.

94

On the optimistic side of Android’s appification structure, Android is designed

for apps to share functionalities. However, it is almost impossible to pair apps

and share concurrently through inter-app ICCs in a scalable way. Based on the

incredible growth in the number of apps, increased memory capacity on hardware,

and the newest Android’s split screen feature, we can only foresee that the de-

mand/requirement for scalability will be significantly increased. Concurrent app

sharing has been a rather new topic and there has been research work on the con-

text analysis for coordinated scheduling on sensor devices [44]. Similar frameworks

have been seen on a larger sensor-rich platform [52]. Although these works ad-

vance system support for sharing, there is almost no measure taken at the system

level in preventing or mitigating certain vulnerabilities like covert channels [74].

Also none of these works extend to third-party libraries that have been heavily

used, decentralized in nature and most attack-prone. Tackling with third-party

library security and privacy issues has been among the most challenging in the

Android security community [5] [76] due to Android’s lack of privilege separation

policy within an app.

Many tricky and unsolved security issues in Android should be the results

of a lack of centralized system support, meanwhile the performance enhancing

work is relying on system centralization. It is intuitive to suggest that in order to

95

improve application concurrency and performance without compromising security,

wise system centralization mechanism is the key.

4.2 Design: Application Driven Access Control

Android system has been recently seen a shift to the dynamic and fine-grained

permission control. It is already possible for developers to define custom permis-

sions that can grant access to their app’s functionality to other apps written by

the same developer, system apps, or all apps installed on the device. However, al-

though this mechanism improves the sharing realm among apps, it is still holding

two factors that hinder the deeper and cleaner sharing.

First, applications require the same functionalities are more likely to be in

direct competition. It is misleading and naive to assume that an app is willing

to share features or computing results to all other installed apps (basically all

apps). To preserve this competition edge, an app may choose to share only among

its sister apps (written by the same developer or company) rather than sharing

towards a much unbounded base of apps. In this case, the benefit of sharing is

much more limited. Even if an app wants to share to a grander but limited group

of apps beyond its own relatives, there currently exists no means for a third-party

app to identify another app’s true identity to enforce the desired permission grant.

96

Second, from the receiver client app point of view, the service given by other

third party apps is ultimately decentralized - that unavoidably carries the (un-

deniable) security defect - malicious intentions including not conforming to the

communication protocol or aiming at privilege escalation attacks [23] through in-

terfaces/IPC (it is not easy to avoid these attacks since all components in an

app enjoys the same permission), or providing incorrect results or unwanted data

(tamper). Note that current Android OS does not provide central witness or

regulating.

To promote clean, safe and at-will sharing among applications, we propose

signature-based grouping (permission control). In this section, we discuss system

implications and opportunities in the case study of audio/ speech recognition (SR)

applications and libraries.

4.2.1 Background on Android Audio Applications

Audio recording and processing is among the most primary functions of a mo-

bile device. With the growing popularity for user voice control, speech recognition

applications have been developed and improved for fast computing needs and low

latency. Typical audio applications read audio files or streams from the audio

service of the device and use libraries of speech recognition algorithms to decode

and extract important information about the content.

97

Several technical challenges have hindered the deployment of such applications

on mobile devices. The most difficult of these is the computational requirements

of continuous speech recognition for a medium to large vocabulary scenario. The

need to minimize the size and power consumption for these devices leads to com-

promises in their hardware and operating system software that further restrict

their capabilities below what one might assume from their raw CPU speed [41].

Moreover, memory, storage capacity and bandwidth on mobile devices are also

very limited.

4.2.2 Speech Recognition Libraries

Automatic speech recognition (ASR) is broadly defined as the translation of

spoken words, or an acoustic waveform containing speech, into a string of words

[59]. In modern ASR speech is modelled as a mixture of acoustic and language

properties [9]. The acoustic models attempt to move from audio samples of speech

to potential phonemes being spoken, and from these phonemes to possible words.

The language model provides the probability of a specific sequence of words

occurring given a particular form of speech such as news, lectures or conver-

sation. This is used in conjunction with the output by the acoustic model to

identify the spoken phrases which are most likely to be correct [59]. Constraining

the vocabulary of the model is used to increase the identification rate for systems

98

like telephone interfaces and controlling subsystems in a car [48]. Larger, yet

still constrained, models are used for tasks such as Internet search and calendar

management [78]. The advantages of such a system are that with a tightly de-

fined language model recognition rates can be greatly increased. Constraining the

vocabulary can improve the accuracy between 50% and 80% [14].

Platform speed directly affected our choice of a speech recognition system for

our work. The SPHINX speech recognizer of CMU [51] provides the acoustic as

well as the language models used for recognition. It is based on the Hidden Markov

Models (HMM). Though all the members of the SPHINX recognizer family have

well-developed programming interfaces, and are actively used by researchers in

fields such as spoken dialog systems and computer-assisted learning, we chose the

PocketSphinx [41] as our speech decoder which is particularly meant for embedded

platforms. It is a version of open-source Sphinx2 speech recognizer which is faster

than any other SR system.

4.3 Overview of Cashmere Architecture

We present a software platform design called Cashmere. Cashmere enables

Android system to concurrently run multiple audio/speech applications with im-

proved overall system efficiency, reducing computational overhead and major ma-

licious concerns. Cashmere’s key innovation in providing this central layer be-

99

tween applications and computation libraries, is of significance in transferring

vulnerability-prone app-to-app communications into safer app-to-system commu-

nications.

4.3.1 Library Paths Identification

For continuous audio applications, the microphone service streams audio frames

from the mic to the application as they become available. This stream becomes

the seed data for repetitively computed audio processing operations within an

application. Initial-level audio processing operations, such as configuration ini-

tialization and sampling, create derivative objects from the seed data. Other

processing operations then generate successive derivatives when decode sample

data, mark progress, get hypothesis or more feature-based operations.

Since the computing process basically is a library function call chain, we call

these call chains library paths. Comparing a set of audio and SR applications, we

observe the initial-level library paths are usually the same. This key observation

promotes the first steps in computation sharing and concurrency. Since each

application’s library path can only differ from another application at the beginning

of a library call, we define these bifurcations as branch points.

To provide structured sharing of paths, Cashmere exerts a layer between a

library call and the actual target library. This layer is a central platform that

100

Figure 4.1: The Cashmere Platform Architecture. Upon an application calling a lib function,
the call will be directed to the modified audio library extended with binder IPC client interface
to send lib call requests to Shared Lib Service. Shared Lib Service is a registered service served

as a transition channel between client apps and the Cashmere server application. Library
function table is the major component of the server application, it records previously

computed lib calls and will reply to future identical calls directly, only un-computed fresh lib
calls will be passed on to the original library. Note that the original audio SR lib, in our case
libpocketsphinx.so will be renamed so applications cannot directly call it upon and instead the

modified lib is named libpocketsphinx.so.

101

receives library call requests from all running applications and dispatches accord-

ing function returns. Cashmere matches library calls with identical parameters,

reusing computation results to reduce computational redundancy. Cashmere and

applications establish server client relations. Leveraged on Android’s binder mech-

anism, a library call will be directed to Cashmere through binder IPC. The accord-

ing replies will also feed through binder handles. The architecture of Cashmere is

illustrated in figure 4.1.

Cashmere itself is designed as a registered binder service within Android Plat-

form but outside of Android kernel space. Figure 4.2 shows Cashmere’s relations

to the Android system.

Figure 4.2: Cashmere as a registered service through Service Manager provided by Android
platform. Cashmere is in Android user space.

102

4.3.2 Computation Memorization and Management

Although automatic memorization [60] is not a new topic, there is still difficulty

and room for optimization. For instance, only pure functions, those whose output

is determined solely by their input arguments, can be memorized.

Besides, in our scenario, we also need to enable general access to the memorized

library call computations from different apps. To allow this, an efficient common

memory region is required.

We design a hash table to store the functions and computations. To correctly

maintain the matching table, procedures of write to and read from the shared

region must be carefully designed. Since there is no need to use a sorted map

while unordered map in C++ does not allow complex key format such as pair or

vector, we assign the function name as the entry key, while storing the value as a

vector of pairs with each pair containing a Boolean variable ready (set true if the

computation of the entry is completed) and a pair containing a vector of input

parameters and a vector of the according output parameters.

Upon receiving a function call, look up is performed by comparing the function

name first, then compare the input parameters of the function against each pair

in the value entry. If a match is found, a read will be issued by simply returning

the output of the entry if the Boolean variable ready is true.

103

Otherwise a new pair with the input parameters will be appended to the vector

(ready marked false), and the function call is forwarded to the original library.

Once the execution is finished, the output part of the pair will be updated from

the function computation and ready set true. Note that the above only works for

flat function calls (whose parameters do not contain returns from other functions).

To allow memorization for nested calls, we introduce void pointers to represent

all parameter vectors. Such that a function return can be equally seen as normal

parameters by retrieving the region the pointer points to.

4.3.3 Application-Guided Grouping

Applications tend to be professionals in sharing users’ privacy, however, they

are not able to use their expertise where they can more wisely and ethically

collaborate - I/O devices and computation results. Our study of tracing general

interactions among the most used mobile applications has found out that resource

contentions have been a major kill in performance and energy-efficiency.

We propose application-guided grouping, supervised by Cashmere within An-

droid OS. The central platform is equipped with the partition ability based on

each application’s collaboration interest by initializing and updating group match-

ing table entries during an application’s first invocation of the library. Note that

104

apps can be in the same group only when in direct or indirect mutual agreement

(trust), the details will be discussed in section 5.

4.3.4 Concurrent I/O

Conventional sharing is discussed on the basis of context switch, while in our

terms we define it as an altruistic behavior. A lot of work has been discussing

improving concurrent I/O application performance [39][42][13]. However, their

focus is on paralleling the I/O access within a single application while do not see

the missed opportunity of more concurrency among multiple applications.

Our intuition is that if improving parallelism and concurrency within a sin-

gle application can improve its performance, it will be similarly beneficial to the

overall system performance if we improve the concurrency by solving resource

contention across application boundaries. Although the idea seems promising, it

exerts a difficult problem as secure isolation standards among applications are

usually significantly higher than within one application itself (among its compo-

nents). The key insight behind our proposed technique is that the vast majority of

applications are not malicious (The signature signing party performs checks and

Google Play as well normally will remove malicious apps within a short period

of time) and they can be scanned and reversed engineered offline for anomaly

detection. Also considering there has been established trust among many appli-

105

cations for functionality sharing through APIs, it is reasonable to form groups

for mutually trusted applications, thus extending the per-application boundary to

group-based boundary.

One could argue that such mechanism will create unfairness by benefiting more

to the applications in a large group and create disadvantage towards more isolated

applications. However, the evaluation results indicate quite the contrary. Even if

there is unfairness in computations without system intervention, we can solve this

by strategically promoting the groups containing foreground running app(s) (be it

multi-app group or single app-group), that is, for inter-group applications, we use

non-cooperative method, the groups of applications that seem more important to

the user will be promoted. Thus it is a reasonable strategy because it is user-

guided and user-friendly. Note that the absolute fairness perceived by the system

may not be demanded by users.

Also if an application is isolated, even if it cannot benefit from obvious perfor-

mance gains, it may either purposely chooses to sacrifice performance advantage

for security reasons or be offered such luxury of lower leakage risks without com-

promising performance.

Note that once the group formation is determined, it will be memorized by the

system. No further negotiations will be needed among applications in the same

group should the user starts running a subset of the same group again.

106

To illustrate of the usefulness of concurrency through cooperation, consider a

scenario where a user wants to voice order food through restaurant apps and share

this information during audio chatting with friends. He is probably running several

restaurant software in the front while he wants to share these apps’ information in

real-time to his friends and family who by the chance are using three different apps

to communicate with him (which isn’t rare considering the amount of different

social network apps we have). Rather than rotating the usage of the CPU and

audio I/O among these software, if the applications are in the same group, they

can share I/O data and subsequent computations. This greatly eliminates context

switch cost and computing resources, and both the front and background software

can get real-time audio information constantly (responsiveness is important in

communications). This greatly increases the convenience to the background apps

that are usually less favored and thus only get occasional audio data or even no

data in the original Android environment.

4.4 Implementation

4.4.1 Two-Phase Grouping

Out of both security and performance concerns, we design a two-phase group-

ing. Phase One defines the primary boundaries among non-trusted parties. We

107

require each application to provide grouping information, e.g. the list of trusted

application IDs. Since every Android app has a unique application ID, this ID

can uniquely identify the app on the device and in Google Play. However, con-

sidering the large base of application collections, we also provide options for only

specifying non-trusted applications, or delegating grouping obligation to a subset

of other applications (meaning the app will use the same list as its representative)

or simply use system default. Note that based on the fact that most malicious

apps in Google Play can be cleaned up in a short period [31], we can design sys-

tem default based on popular anomaly detection tool (RiskRanker [31]) and the

existence length of an app (the longer it has been in Google Play and since its

last update, the less the risk.). In this paper, we will not extend the discussion

on anomaly detection and system default.

Phase Two further divides group members based on vocabulary dictionary

similarities. As we mentioned, in speech recognition services, constraining the

vocabulary of the model is used to increase the identification rate for systems.

Thus one application’s vocabulary corpus can be dramatically different from one

another and using uniform speech models will kill precision and accuracy, and

might incur significant delays due to the potentially enlarged model. However, if

each application uses their own models there will be limited room for computation

sharing. It is crucial for Cashmere system to define the boundaries of similarity,

108

and to rebuild models for each subgroup. Note that all members within the

same group still share the audio record resources and pre-processing procedures

regardless of subgroup boundaries.

To accurately categorize subgroup interests, we use information retrieval tech-

niques to rank the closeness to a subgroup should a new app be added to the

group. The primary information we use is the text corpus collection of both the

subgroups and the new member app. During our evaluation, we find out that the

word error rate is beyond linear to the size of the dictionary. It suggests that

groups with smaller vocabulary should benefit more from grouping by sacrificing

less in accuracy. The indication creates very subtle trade-offs in grouping since

it basically implies that when looking at the overall platform performance and

accuracy, it is more advantageous to add the new app into a group with smaller

vocabulary size than into the ones with larger sizes when the vocabulary increase

caused by the new app is similar in both cases.

Additionally, since the number of applications and groups are not fixed from

the beginning of sub-grouping and is primarily restrained by the platform compu-

tation capacity, the straight forward k -means clustering algorithm [49] of simply

repeatedly computing new centroids of k groups will not work properly and will be

very inefficient. Especially in the scenario when only a small number of applica-

tions needs to run concurrently, the expansion to a comparatively large number k

109

is unnecessary. On the other hand, although increasing k (the number of groups)

may be friendly towards recognition accuracy, each increase of a new group might

result in significantly increased latency as well.

Due to the dynamic nature of k in our case, we have to adapt the clustering

algorithm based on the platform computation performance we collect and thus

determine the maximum number of groups allowed and the appropriate point of

regrouping or generating new groups. The subgrouping algorithm is illustrated in

Algorithm 1.

The present standard index for ASR system assessment is WER, which is

defined as the proportion of word errors to words processed. Let N, S, D and I

denote the total number of reference words, substitutions, deletions and insertions

(see Equation.1). In Connected Speech Recognition, WER is defined [12] as

WER =
S +D + I

N
(4.1)

We compute the overall temporarily increased WER upon app joining for each

sub group, so the lowest of all will be selected as the candidate group. We use

the temporarily updated WER of the candidate group to guide regrouping. If

the updated WER is below the default WER limit, then the candidate group is

accepted for the app to join. If the WER is above the limit but the maximum

number of subgroups is below the count limit, we can rely on k-means clustering, in

110

the hope that total regrouping will help decreasing overall WER given k (subgroup

count) is increased by one.

We compare the corpus file of the new app to the corpus file of each sub

group. Upon joining the subgroup, the subgroup’s corpus file will be updated

combining the new app’s corpus information. The updated corpus file will then

be fed into Sphinx lmtool [70] to generate a new dictionary model accordingly.

For this reason, we require that each app provides their original corpus file along

with the app, either locally or though web access (remained as future work).

4.4.2 Inner-Group Isolation

Due to performance and user interests concerns, we assign the foreground app

as the leader app of the group. The leader app will always have its own extra

copy of data inaccessible by other members, thus that even a malicious member

will not be able to manipulate the leader’s original data. And if there exists a

malicious app modifying the shared data for damage purposes, the group always

has the original copy to reset with.

4.4.3 Inter-Group Isolation

We are very conservative in designing inter-group isolation for the purpose of

keeping data leak risk at the lowest among applications that have no foundation of

111

Algorithm 1: Sub-grouping algorithm.

Given: Groups G, WER(dictSize), App A

foreach g ∈ G do

g.tmpWER ← WER(combineDict(g, A))

g.ΔWER ← g.numOfApps × (g.tmpWER - g.WER) + g.tmpWER -

A.WER

end

sort g ∈ G with g.ΔWER in ascending order;

foreach g ∈ G do

if g.tmpWER ≤ WERLimit then

return g

end

end

if G.cnt ¡ groupCntLimit then

run KMeansClustering(G.cnt+1, G, A)

else

return first g ∈ G

end

112

trust. There is no sharing of computing results nor even the seed data. Since An-

droid adopts Linux’s UID permission system and there has been extensive research

in refraining or sandboxing untrusted third- party applications’ aggressive/sneaky

access to other apps or the user’s data [95][93], we assume applications of different

groups have no knowledge or execution power of other groups’ data given there is

no direct inter group communications and the OS is not corrupted.

In our Cashmere source code, we initialize separate function lookup tables to

the exact amount of maximum groups allowed rather than initializing a single big

table using the groupID as the first-layer entry key.

Since the maximum concurrent ASR apps in normal scenario is below hundreds

on a device, for safety concerns we design separate vectors storing appIDs for each

group rather than using the appID as a hash key. Upon receiving a function call

request, the appID will be compared against each element in each vector of the

groups. If there is a match, then the app is allowed access to the memorized

function layer where the group’s data is stored. The search time is still constant

due to the minimum number of apps.

If there exists no groupID for the app, Cashmere starts group forming based

on the grouping information the app provides and the group’s collaboration pref-

erence. Thus there is strong isolation among different group’s data and computa-

tion.

113

4.5 Evaluation

We evaluate Cashmere implementation in an Android emulator with instance

setting as Lollipop version 5.4, hardware Nexus 5x hexa-core Cortex-A57. In

addition to our case study utility, we design a set of micro benchmark apps to

characterize the actual performance of our platform. As we focus on the perfor-

mance side among applications, we extensively examine the varied latencies and

show how our approach bypass the bottlenecks. Note that since Lollipop does not

support split screen (multiple foreground apps), we design most benchmark apps

as background services in order to create and characterize concurrent running

scenarios.

Our evaluation addresses the following research questions:

RQ1 How does Cashmere compare to commercial mobile environment in terms

of latency in concurrent application computation?

RQ2 How do various optimizations and groupings affect performance and se-

curity of applications running on Cashmere?

RQ3 Can sub-grouping lower recognition WER in the presence of multiple

speech applications of different functionalities and to what degree?

114

4.5.1 Library Call Indirection Overhead

We microbenchmark a major ps decode() library call on a one sentence audio

record using the original vocabulary model. The computationally intensive decode

library call takes 1.71 s, exhibiting the potential benefits of caching expensive

library calls. We do a single-call analysis on our microbenchmarks by averaging

10 instances of library calls. Cashmere introduces a minimal overhead (memory

allocation and redirection) of as much as 12.8 ms per call, yielding overhead to

0.75% for expensive calls.

4.5.2 Dictionary Model Influence in Latency and Accu-

racy

We also proceed the experiment with a more constrained dictionary model

(with the minimum vocabulary corpus needed for the scenario of 10 words), and it

takes 350 ms. It shows the drastic impacts different vocabulary models can exert.

However, even in such low latency calls, Cashmere only adds 3.7% overhead. Note

that the recognition accuracy is 100% under this extremely tailored scenario. To

characterize the the relation of WER to the vocabulary dictionary size, we increase

the dictionary size on varying granularities and repeat the experiment. Figure 4.3

and 4.4 show the relationship of WER to dictionary size and latency to dictionary

115

size respectively. WER increases nearly linearly (less than exponential) to the

word counts in a vocabulary dictionary. When the word count is smaller than

20000, WER is below 2%, which is highly acceptable. However, WER tends to

increase faster when word count exceeds 80000. The reason behind is that the

more word counts, the less difference between recognition candidates and the more

error-prone combinations of words. In contrast, average latency is nearly linear

to word count while scales even better. This is due to the audio pre-processing

time and other application system communication cost.

Figure 4.3: Average WER to varied vocabulary dictionary sizes on PocketSphinx.

116

Figure 4.4: Average latency to varied vocabulary dictionary sizes.

4.5.3 Concurrent Apps Performance

We next analyze the ability of Cashmere to service concurrent Apps. We em-

ploy fundamental audio tasks as benchmarks to examine the benefits and overhead

of Cashmere on Apps.

We use audio tasks of Voice Recording and Speech Recognition. Apps employ

these audio tasks to perform a diverse set of duties. These tasks comprehensively

cover the PocketSphinx library, and serve as a basis for many audio applications

that can potentially run concurrently. In our evaluation, each of our apps re-

ceives the audio stream through the Cashmere platform distribution. An app

sends the stream through each benchmark audio task, which begins by recording,

and read it to samples. We include these pre-processing steps in our evaluation

results. Speech recognition algorithms decode and identify speech contents in a

117

Table 4.1: Applications with Dictionary Word Counts

Applications
Application DictWordCount (Average)
Restaurant 216
Airline 21350
Mini Health Assistant 1158
Advanced Health Assistant 69812
Direction 370
Search 31756
E-Commerce 14620

voice record, useful for applications such as social apps, gaming and vehicle GPS.

Speech recognition consists of two components: decode and classification. The

Vertibi Search algorithm compares a computed distance against a cascade of pre-

trained classifiers. Speech classification identifies contents by matching against a

vocabulary dictionary and voice dataset. The nearest neighbor is determined to

be the content word.

Our benchmarks consist of two combinations of apps running audio tasks. In

a potential scenario, a mobile device would run simultaneous background appli-

cations running multiple audio tasks, e.g., logging social interactions with speech

recognition, recording speeches, directing locations. We selected and coded a set

of speech recognition tasks with a variety of duties (as shown in Table 4.1). The

vocabulary of each task is formed with either the guidance of the widely referred

speech dataset website Linguistic Data Consortium [66] and VoxForge [58] or open

sourced software.

118

Figure 4.5: Average latency of concurrently running audio apps natively and in Cashmere.

As as can be seen from Figure 4.5, Cashmeres efficiency benefits become ap-

parent when running multiple identical speech recognition audio tasks. While

native processing time is doubled when running two tasks on the original plat-

form, Cashmere manages to maintain the increased processing time within 19.0%

of the original frame processing time. This reduces the per-frame processing time

of running two audio task instances by 41.9%. The advantage is even more sub-

stantial when running more than 5 instances where the latency of the original

platform has strongly exceeded the limit of human tolerable latency of 1s [62]

while Cashmere stands firmly within. Combinations of applications with different

categories also benefit from Cashmere efficiency. Through sharing the decode()

library call on the input frame, Cashmere decreases the processing time of the

combination of voice recording and speech recognition by 11.2%.

119

Thus, Cashmere provides app scalability, as many apps can run with minimally

impacted frame rate performance.

4.5.4 Grouping Overhead and Impact

Grouping happens exactly the very first time an app calls the library. We

measure grouping overhead by averaging 2 to 15 apps grouping overhead. The

overhead is 0.033 ms, as an one time overhead per app joining, is minimum com-

pared to speech processing and recognition time.

Impact of Primary-grouping on Timing Channels

We consider the scenario when an app requires more security protection (e.g.

less induced timing channel), so it chooses to form a group owned only by itself.

From section 6.3 we know that if there are concurrently running groups (apps),

the latency will slow down for each concurrent entity. However, what kind of

apps (defined and mostly influenced by dictionary size) will be influenced to what

degree under different group formations is not clear. Since timing channels can

be quantified by latency variations [10], we run apps with small to medium (300

- 20000) and large (80000) dictionary models concurrently with additional 1 to

3 groups and compare the latency with its original latency. We use additional

120

groups with average medium to large vocabularies considering the normal group

formation. To verify the effectiveness of using primary grouping to mitigate timing

channels, we also compare the above results with the latency in the scenario when

the app simply joins another group.

Figure 4.6: Average latency of running an app with small to medium vocabulary sizes
without concurrent apps, running exclusively but concurrently with additional groups, and

running non-exclusively but concurrently by joining one of the additional groups in Cashmere.

From Figure 4.6 we can see that apps with small and medium dictionary

sizes are only influenced minimally when running exclusively. In contrast, with-

out grouping, their latency increases significantly due to usually dramatically

increased combined dictionary size of a group. That means that by running ex-

clusively, the timing channel created by differences in latency is significantly alle-

viated. Apps with large dictionary sizes (Figure 4.7) seems not benefit by running

121

Figure 4.7: Average latency of running an app with large vocabulary sizes without
concurrent apps, running exclusively but concurrently with additional groups, and running

non-exclusively but concurrently by joining one of the additional groups in Cashmere.

exclusively from the timing channel alleviation perspective. However, one reason

is that we run concurrent groups with medium to large vocabularies, which is

rather conservative. One can imagine that if we use much larger dictionaries

(above 100000, which is not unusual) for the additional groups, the exclusively

running app can benefit as well similar to the first small/medium app scenario.

Also note that although timing channels are one of the major concerns in

security issues, an app can potentially benefit from forming an exclusive group

by owning its own computations and memories. Usually it is less likely to be

corrupted by techniques like stack overflow that might target the library’s own

vulnerabilities. Note that the fact that apps with small and medium vocabulary

122

sizes can benefit well with security is sufficiently useful since security-sensitive apps

are normally word restrictive, e.g. financial apps. Besides, from a performance

perspective, adding a few new exclusive groups with small/medium dictionaries

has only minimum to moderate impact on overall system performance. On the

other hand, since it is relatively performance unfriendly for an app with a large

dictionary to start a new exclusive group, if not for security reasons, an app should

be inclined towards joining a current group. Also note that the difference between

an app running exclusively and simply running without Cashmere with its own

compiled library is the flexibility of forming its own group, and it will be beneficial

with future potential collaborators. The evaluation is to show the trade-off in

forming a new group beyond the scenario of simply exclusively running.

On another note, we experimentally confirmed that an app requiring primary

grouping for its own partition will not change its WER from original. This sup-

ports the flexibility of action when an app determines performance, security and

WER trade-offs.

Sub-grouping Performance

In order to characterize the influence of sub-grouping based on vocabulary sim-

ilarities. We conduct three combinations of different scenarios. The first scenario

123

is for restaurant apps with voice commands. We select major inter chain pizza

restaurants and port their menu into sentence corpus respectively. The corpus files

are then extracted to generate dictionary models accordingly. Using prerecorded

audio files, the original latency were measured as 207 ms. To evaluate the effi-

ciency of sub-grouping, we run the four apps concurrently on Cashmere. Cashmere

will extract the corpus files and generate a model covering all the vocabularies of

the four and thus the model can be shared. The latency of concurrently running

four apps is shown in Figure 4.8. The second scenario is targeting more profound

speech recognition usage (personal assistant, searching, etc) that requires a sig-

nificantly broader vocabulary, we use both the minimum and advanced health

assistant applications. This scenario also represents the sub-grouping formation

of apps with similar functionality but significantly different vocabulary sizes. The

third scenario is the combination of all the apps and their sister apps listed in

Table 4.1.

We test if Cashmere can perform desired sub-grouping and the latency is listed

in Figure 4.8. For restaurant apps in scenario 1, the dictionary of each app is very

small and has major overlaps. Simply to divide the apps into more groups will

only create new computations that sharply increases latency without noticeable

benefit from nearly identical separate dictionaries. For health assistant apps in

scenario 2, since the category contains both minimum and advanced dictionary

124

Figure 4.8: Average latency of concurrently running different combinations of apps in
Cashmere.

models, when sub-grouping happens, the minimum apps can form a new group

that only adds a fraction of burden to the original computation. The third sce-

nario reveals the fact that latency scale better than linear throughout different sub

group formations for even very diverse apps. The reason is that the divided dictio-

naries tend to be significantly smaller than combined, the more sub groups formed,

the more sharply decreased average dictionary sizes. Although our sub-grouping

algorithm targets WER, it directly boosts intelligent dividing of dictionaries as

well. We also stress test the limit of the number and formation of apps that Cash-

mere can sustain. It turns out that Cashmere can support 15 concurrent apps

with different functionalities and dictionary models, which is far beyond the capa-

125

bility of the original Android commercial environment without relying on a server.

How does sub-grouping improve recognition accuracy

Since the main reason of sub-grouping is to increase accuracy of the recognizer.

We evaluate the average WER for each category of apps listed in Table 1 with sub-

grouping formation in the third scenario. Note that number of subgroup equaling

to 1 represents no sub-grouping. We findWER decreases significantly when proper

formation of sub-grouping is allowed as shown in Figure 4.9. We adjust param-

eters in the sub-grouping algorithms to allow different sub-grouping formations.

As seen from the results, without sub-grouping (number of sub groups is 1), all

apps have to share the full combination of all vocabularies, which is mounted to

approximately 156,000, yielding very bad WER for all apps. When two sub groups

are formed, the largest dict category – advanced health assistants is excluded to

a new group. Thus the health assistant apps and the rest both have cut-to-half

dict sizes, which leads to dramatically decreased WER. Similarly, when four sub

groups are formed, the formation is nearly ideal since the resulted WER for each

app is very close to the original WER for each app without sharing dictionaries

with other apps. Notably, sub-grouping is very efficient in lowering WER (im-

126

proving recognition accuracy) and is essential in compensating the accuracy loss

during computation sharing.

Figure 4.9: Average WER to varied vocabulary dictionary sizes.

4.5.5 Security Analysis

Our system can ensure individual application’s library grouping privacy policy

enforcement on Android device through dynamic binding.

Malicious apps. Cashmere allows device users to install their favorite apps on

their Android smartphones. Some apps may be malicious and target at compro-

mising our policy enforcement mechanism. However, since the user-level malicious

processes are securely isolated into separate group containers, they cannot manip-

ulate the code or the control flow of cashmere unless they have the root privilege.

127

We assume the Android OS can be trusted. Therefore, without the root privilege,

malicious apps cannot compromise our mechanism.

Permission escalation attacks. Android system may suffer from permission es-

calation attacks, such as confused deputy attack and collusion attack[15][25]. In

confused deputy attack, a malicious application exploits the vulnerable interfaces

of another privileged (but confused) application to perform unauthorized opera-

tions. This kind of attack usually happens when a privileged app unintentionally

exposes interfaces of sensitive operation to an app without required permissions.

We have considered this attack during the design of guideline of grouping - when

selecting grouping members, it is recommended to check candidate member’s in-

terface as strict as one’s own interface to allow collaborations, this interface check

can be achieved using reverse engineering and normal anti-virus software, such as

AVG Antivirus Free, Lookout Security Antivirus, Norton Mobile Security Lite,

etc. Since we design grouping to be a two-way agreement, it’s reasonable to an-

ticipate that the interface security of a group is not dramatically different from

individual member apps alone. Meaning, even without grouping, the individual

app’s interface security is likely to be similar to its group’s lowest.

In collusion attacks, malicious apps collude and combine their permissions in

order to perform actions beyond their individual privileges.

128

Our platform defends this kind of attack through fine-grained low-level control.

Permission is not able to be combined simply by primary grouping since our

mechanism does not change permission in setgroups in Process Creation Request

directly, thus grouping is on library service level rather than system level like (e.g.

an app without 1007 CAMERA permission is not allowed to access camera even

it is in a group where a group member is actively accessing camera). We carefully

design the control level to as low level as possible to not to be confused with

system permission.

4.6 Conclusions

Application concurrency has become the primary need of a mobile system.

However, I/O and sensor related computation is usually expensive and is in di-

rect conflict with the limited computation resources. Specifically on Android, its

decentralized nature is another obstacle from applications’ safe sharing of compu-

tation. By exploring the possibility of centralization, our proposed application-

centric platform Cashmere is able to efficiently isolate applications based on each

application’s interests and saves computation by memorizing library calls within

the group boundary. In dealing with applications using computation exhaustive

speech recognition libraries, subgrouping (grouping based on vocabulary similar-

ities) is further useful in improving and balancing latency and accuracy. The

129

concept can potentially be extended to other I/O areas. Although in this pa-

per we assume PocketSphinx a benign library, the collaborate primary grouping

approach proposed in the paper is promising in solving the third party library

sharing problem that is widely considered one of the most challenging in the An-

droid security community. Future investigations into how to radically eliminate

timing channels among groups is also a valuable topic.

130

Chapter 5

Conclusions

We conclude this dissertation by summarizing our key contributions and dis-

cussing the utility and trade-offs in hardware and software sharing patterns.

Sharing for efficiency is one of the most common tricks in the computing

system designers “handbook”. Sharing through a traditional strict time division

(e.g. via predetermined context switches) can be almost universally applied when

multiple entities are supposed to utilize common resources. However, such strict

time division is subject to significant performance degradation.

As noted by Menychtas et al. [61] the goals of protection, efficiency, and fair-

ness can often be in direct conflict. Indeed, as more freedom is introduced into the

schedule, more issues of protection arise. Timing channels are inevitably intro-

duced because of contention on resources. These timing differences can introduce

131

both opportunities for denial-of-service attacks and more subtle leakage such as

those that target cache and crypto-graphic engines to retrieve secret data. Under

static sharing, e.g. using pre-defined static scheduling algorithms, the timing usage

of any entity is strictly bounded and unaffected by other parties, thus eliminating

timing channels. The difficulty is that there is no universal static schemes one can

apply to any component that also provide performances. As such they require a

deeper examination of the particular component and often demand optimizations

to avoid other overhead (additional area, etc).

Across the three different systems examined, the network-on-chip, the acceler-

ators, and the operating systems sharing scheme, we find different sharing patterns

with a common theme. While schemes closer to the hardware can be more care-

fully scheduled to hide latency it is difficult to carry those ideas up the software

stack where timing is less easy to control. However, careful static coordination of

the sharing parties is still useful. At the software level this can instead manifest

as collaboration groups.

5.1 Contributions

For hardware level sharing, the scalability increase usually comes from the

hardware architecture design itself and has little to do with the properties of the

concurrent tasks running on them. From the lessons of our successful design of

132

SurfNoC, we learn that to be able to defend timing channels, static schemes might

have far less overhead than previously believed when latency is taken as a first

class design constraint. In the case of hardware accelerators the key insight is to

allow flexibility in being static or approaching static. Flexibility is important since

security has to be balanced with performance. Traditional methods of sharing on

accelerators are through full context switches, and for simplicity, one often chooses

to drop tasks or wait for an unfinished task to finish. The former is detrimental to

performance if fine-grained sharing is required, and the latter is subject to more

timing leaks. By chopping states at the optimal points along a computation, and

by providing a minimum interface to the software, an accelerator architecture

can be granted the capability to locally determine the best time to switch. Thus

a pre-defined switching frequency, that shields timing leaks, is unlikely to incur

more than the minimum performance overhead. Although the verification and

quantification of actual timing information leaks are not evaluated in this thesis,

we can conclude from our current characterizations that flexibility of sharing is

guaranteed and that the design is at least as secure has having multiple interfaces.

By comparing to the verified timing channel-free SurfNoC, we know that if the

number of sharing domains is pre-determined, then the waiting time and latency

can be fixed. This can also be applied to the sharing scheme proposed in this

133

thesis, and because of its low context switch overhead, it can endure as many

domains as the system requires, which is unlikely with traditional context switch.

Building from this success we were also very curious to find out if the patterns

can be applied in scaling software as well. However, due to the more dynamic na-

ture of software systems, applying static scheduling when the number and prop-

erties of entities are unknown is unwise. We were inspired by the cooperative

distributed systems algorithm and thought that the spirit of that work could be

extended to elsewhere in systems. We also wanted to push the work toward a

more commodity application space so, in choosing a software operating system

to work with, we target one that requires concurrency improvement and is under

difficult security concerns, which makes Android a perfect candidate.

Fortunately, Android is already on a path that leads toward application col-

laboration, however, until now, it is still deeply trapped in numerous different

attacks and privacy leaks from malicious applications. Even anti-virus software

(third-party apps) have no privilege on Android which makes them essentially

useless. Flow-tracking software can consume a significant amount of energy and

is simply not realistic on many devices. In such a vulnerable state, any software

applications that suffer from attack once or more will reasonably consider closing

collaboration channels (ICCs), which are the source of many problems. On the

other hand Android applications are also demanding more concurrency, e.g. the

134

newest version features split screen for multiple foreground apps. Without volun-

tary acts in collaborations nor a feasible static sharing scheme, how can Android

improve computation concurrency?

By looking into ASR apps, we propose two key techniques – a central service

platform and an application-centric grouping. The details of both techniques

have already been well explained in the thesis. Although it is studied through

a speech recognition library, it has general indications to other I/O libraries,

and concurrent I/O designs. But beyond that, it also has potential in dealing

with third-party library and third-party application sharing ultimately. This is

a very hard problem due to Android’s one permission for all, the whole app can

be corrupted by a un-verified third-party app or library. By being central, rather

than verifying (time-consuming) and storing (memory-consuming) identical third-

party libraries, the verification and sharing work all come to one point of control.

Note that if the multiple version and upgrade issues of a library can be dealt with,

it will attract even more applications to collaborate.

5.2 Looking Forward

While this work demonstrates the power of coordinated sharing to strike a

balance between security and performance, the universal pattern of developing

static approaches for even hardware systems are still not addressed in this thesis.

135

For software systems the patterns might be too complicated to be generalized. An

emerging scheme for sharing is through collaborations and we see a great deal of

space for future work here. This is by no means a new topic, the cooperative and

non-cooperative game theories have been well studied and applied in Economics

and Computer Science. Nash equilibrium is discussed during the design for the

famous distributed system algorithms for fault-tolerance. However, these and

other intelligent theories are still not widely applied. When the options are very

limited because we are busy defending attacks while simultaneously trying to scale

performance, it can be difficult to invest the time to see if these more fundamental

approaches could shift the problem significantly.

The work presented here is a step towards new sharing patterns for both

computation concurrency and security. The proposed collaboration pattern can

be seen as between hardware and software, and between software applications who

are supposed to be competitors. While Android has already done wonderful work

in promoting collaborations among applications through interfaces and function

calls, the flood of malicious acts has given us an important lesson. We must

amend or reform the sharing pattern in software and operating systems. We

should also carry this lesson down to accelerator rich platforms where similar

sharing approaches are developing to avoid repeating the same mistakes there.

136

Application-centric grouping is only a tip of an iceberg of new patterns for safe

and high performance sharing that we believe will be an important and continuing

conversation by the community going forward. Many software sub-systems are in

competition as they are controlled by different sets of stake holders, but they

are also subject to limited resources – this is the typical game theory pattern.

Looking forward we think the study of game theory might give further insight on

the design of future platforms. At the simplest, each application can define its

sharing realm with even hierarchies. As we get more advanced, applications might

delegate work to other representatives (an authority app it trusts or an anti-virus

app that is not favored by the system but might help). Beyond that, the sharing

is not limited to computation concurrency, it can cover more general sharing of

functionality including for security or for storage. It might not be confined within

Android, nor within operating system. The usage is only natural, the Android

ecosystem is just like a society. Without collaborations, how can one go far?

137

Bibliography

[1] http://www.windriver.com/announces/curiosity/Wind-River_NASA_

0812.pdf.

[2] https://nepp.nasa.gov/mapld_2009/talks/083109_Monday/03_Malone_

Michael_mapld09_pres_1.pdf.

[3] https://qz.com/826672/android-goog-just-hit-a-record-88-market-share-of-

all-smartphones.

[4] CACTI 5.3. http://quid.hpl.hp.com:9081/cacti.

[5] Yasemin Acar, Michael Backes, Sven Bugiel, Sascha Fahl, Patrick McDaniel,

and Matthew Smith. Sok: Lessons learned from android security research

for appified software platforms. In Security and Privacy (SP), 2016 IEEE

Symposium on, pages 433–451. IEEE, 2016.

138

[6] Onur Aciiçmez. Yet another microarchitectural attack:: exploiting i-cache.

In Proceedings of the 2007 ACM workshop on Computer security architecture,

CSAW ’07, pages 11–18, New York, NY, USA, 2007. ACM.

[7] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. Predicting secret

keys via branch prediction. In Proceedings of the 7th Cryptographers’ track

at the RSA conference on Topics in Cryptology, CT-RSA’07, pages 225–242,

Berlin, Heidelberg, 2006. Springer-Verlag.

[8] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. On the power of

simple branch prediction analysis. In Proceedings of the 2nd ACM symposium

on Information, computer and communications security, ASIACCS ’07, pages

312–320, New York, NY, USA, 2007. ACM.

[9] MA Anusuya and Shriniwas K Katti. Speech recognition by machine, a

review. arXiv preprint arXiv:1001.2267, 2010.

[10] Aslan Askarov, Danfeng Zhang, and Andrew C Myers. Predictive black-box

mitigation of timing channels. In Proceedings of the 17th ACM conference on

Computer and communications security, pages 297–307. ACM, 2010.

[11] Michael Backes, Sven Bugiel, and Erik Derr. Reliable third-party library

detection in android and its security applications. In Proceedings of the

139

2016 ACM SIGSAC Conference on Computer and Communications Security,

pages 356–367. ACM, 2016.

[12] L Bahl and Frederick Jelinek. Decoding for channels with insertions, dele-

tions, and substitutions with applications to speech recognition. IEEE Trans-

actions on Information Theory, 21(4):404–411, 1975.

[13] Suparna Bhattacharya, Steven Pratt, Badari Pulavarty, and Janet Morgan.

Asynchronous i/o support in linux 2.5. In Proceedings of the Linux Sympo-

sium, pages 371–386, 2003.

[14] S Boyce and A Gorin. User interface issues for natural spoken dialog systems.

Proc. ISSD, 96:65–68, 1996.

[15] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, Ahmad-

Reza Sadeghi, and Bhargava Shastry. Towards taming privilege-escalation

attacks on android. In NDSS, volume 17, page 19, 2012.

[16] Jun-Hong Chen, Haw-Shiuan Wu, Ming-Der Shieh, and Wen-Ching Lin. A

new montgomery modular multiplication algorithm and its vlsi design for rsa

cryptosystem. In Circuits and Systems, 2007. ISCAS 2007. IEEE Interna-

tional Symposium on, pages 3780–3783. IEEE, 2007.

140

[17] Nathan Clark, Amir Hormati, and Scott Mahlke. Veal: Virtualized execu-

tion accelerator for loops. In Computer Architecture, 2008. ISCA’08. 35th

International Symposium on, pages 389–400. IEEE, 2008.

[18] Design Compiler. https://www.synopsys.com/tools/implementation/rtlsynthesis.

[19] Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Beayna Grigorian, Hui

Huang, and Glenn Reinman. Composable accelerator-rich microprocessor

enhanced for adaptivity and longevity. In Low Power Electronics and Design

(ISLPED), 2013 IEEE International Symposium on, pages 305–310. IEEE,

2013.

[20] Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Beayna Grigorian, and

Glenn Reinman. Charm: a composable heterogeneous accelerator-rich micro-

processor. In Proceedings of the 2012 ACM/IEEE international symposium

on Low power electronics and design, pages 379–384. ACM, 2012.

[21] W. J. Dally, P. P. Carvey, and L. R. Dennison. The avici terabit

switch/router. In IEEE Hot Interconnects, 1998.

[22] William Dally and Brian Towles. Principles and Practices of Interconnection

Networks. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

141

[23] Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, and Marcel

Winandy. Privilege escalation attacks on android. In International Con-

ference on Information Security, pages 346–360. Springer, 2010.

[24] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon

Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth.

Taintdroid: an information-flow tracking system for realtime privacy moni-

toring on smartphones. ACM Transactions on Computer Systems (TOCS),

32(2):5, 2014.

[25] Adrienne Porter Felt, Helen J Wang, Alexander Moshchuk, Steve Hanna,

and Erika Chin. Permission re-delegation: Attacks and defenses. In USENIX

Security Symposium, volume 30, 2011.

[26] Leandro Fiorin, Gianluca Palermo, and Cristina Silvano. A security moni-

toring service for nocs. In Proceedings of the 6th IEEE/ACM/IFIP inter-

national conference on Hardware/Software codesign and system synthesis,

CODES+ISSS ’08, pages 197–202, New York, NY, USA, 2008. ACM.

[27] Yanick Fratantonio, Antonio Bianchi, William Robertson, Engin Kirda,

Christopher Kruegel, and Giovanni Vigna. Triggerscope: Towards detect-

ing logic bombs in android applications. In Security and Privacy (SP), 2016

IEEE Symposium on, pages 377–396. IEEE, 2016.

142

[28] C. H. Gebotys and Y. Zhang. Security wrappers and power analysis for soc

technologies. In Proceedings of the 1st IEEE/ACM/IFIP international con-

ference on Hardware/software codesign and system synthesis, CODES+ISSS

’03, pages 162–167, New York, NY, USA, 2003. ACM.

[29] K. Goossens, J. Dielissen, and A. Radulescu. Aethereal network on chip:

concepts, architectures, and implementations. Design Test of Computers,

IEEE, 22(5):414 – 421, sept.-oct. 2005.

[30] Venkatraman Govindaraju, Chen-Han Ho, and Karthikeyan Sankaralingam.

Dynamically specialized datapaths for energy efficient computing. In High

Performance Computer Architecture (HPCA), 2011 IEEE 17th International

Symposium on, pages 503–514. IEEE, 2011.

[31] Michael Grace, Yajin Zhou, Qiang Zhang, Shihong Zou, and Xuxian Jiang.

Riskranker: scalable and accurate zero-day android malware detection. In

Proceedings of the 10th international conference on Mobile systems, applica-

tions, and services, pages 281–294. ACM, 2012.

[32] Boris Grot, Joel Hestness, Stephen W. Keckler, and Onur Mutlu. Kilo-

noc: a heterogeneous network-on-chip architecture for scalability and service

guarantees. In Proceedings of the 38th annual international symposium on

143

Computer architecture, ISCA ’11, pages 401–412, New York, NY, USA, 2011.

ACM.

[33] Boris Grot, Stephen W. Keckler, and Onur Mutlu. Preemptive virtual clock:

a flexible, efficient, and cost-effective qos scheme for networks-on-chip. In

Proceedings of the 42nd Annual IEEE/ACM International Symposium on

Microarchitecture, MICRO 42, pages 268–279, New York, NY, USA, 2009.

ACM.

[34] Boris Grot, Stephen W. Keckler, and Onur Mutlu. Topology-aware quality-

of-service support in highly integrated chip multiprocessors. In Proceedings of

the 2010 international conference on Computer Architecture, ISCA’10, pages

357–375, Berlin, Heidelberg, 2012. Springer-Verlag.

[35] Vishakha Gupta, Karsten Schwan, Niraj Tolia, Vanish Talwar, and

Parthasarathy Ranganathan. Pegasus: Coordinated scheduling for virtu-

alized accelerator-based systems. In 2011 USENIX Annual Technical Con-

ference (USENIX ATC’11), page 31, 2011.

[36] Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel. Peerreview: Prac-

tical accountability for distributed systems. In ACM SIGOPS operating sys-

tems review, volume 41, pages 175–188. ACM, 2007.

144

[37] A. Hansson, M. Subburaman, and K. Goossens. Aelite: A flit-synchronous

network on chip with composable and predictable services. In Design, Au-

tomation Test in Europe Conference Exhibition, 2009. DATE ’09., pages 250

–255, april 2009.

[38] Andreas Hansson, Kees Goossens, Marco Bekooij, and Jos Huisken. Compsoc:

A template for composable and predictable multi-processor system on chips.

ACM Trans. Des. Autom. Electron. Syst., 14(1):2:1–2:24, January 2009.

[39] Tyler Harter, Chris Dragga, Michael Vaughn, Andrea C Arpaci-Dusseau,

and Remzi H Arpaci-Dusseau. A file is not a file: understanding the i/o

behavior of apple desktop applications. ACM Transactions on Computer

Systems (TOCS), 30(3):10, 2012.

[40] R Hiremane. Intel virtualization technology for directed i/o (intel vt-d).

Technology@ Intel Magazine, 4(10), 2007.

[41] David Huggins-Daines, Mohit Kumar, Arthur Chan, Alan W Black, Mosur

Ravishankar, and Alexander I Rudnicky. Pocketsphinx: A free, real-time

continuous speech recognition system for hand-held devices. In Acoustics,

Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE

International Conference on, volume 1, pages I–I. IEEE, 2006.

145

[42] Daeho Jeong, Youngjae Lee, and Jin-Soo Kim. Boosting quasi-asynchronous

i/o for better responsiveness in mobile devices. In FAST, pages 191–202,

2015.

[43] Slavisa Jovanovic, Camel Tanougast, and Serge Weber. A hardware preemp-

tive multitasking mechanism based on scan-path register structure for fpga-

based reconfigurable systems. In Adaptive Hardware and Systems, 2007. AHS

2007. Second NASA/ESA Conference on, pages 358–364. IEEE, 2007.

[44] Younghyun Ju, Youngki Lee, Jihyun Yu, Chulhong Min, Insik Shin, and

Junehwa Song. Symphoney: A coordinated sensing flow execution engine for

concurrent mobile sensing applications. In Proceedings of the 10th ACM Con-

ference on Embedded Network Sensor Systems, pages 211–224. ACM, 2012.

[45] John Kim, James Balfour, and William Dally. Flattened butterfly topol-

ogy for on-chip networks. In MICRO 40: Proceedings of the 40th Annual

IEEE/ACM International Symposium on Microarchitecture, pages 172–182,

Washington, DC, USA, 2007. IEEE Computer Society.

[46] Michel Kinsy and Michael Pellauer. Heracles: Fully synthesizable parameter-

ized mips-based multicore system. Technical Report MIT-CSAIL-TR-2010-

058, MIT Computer Science and Artificial Intelligence Laboratory, December

2010.

146

[47] Dirk Koch, Christian Haubelt, and Jürgen Teich. Efficient hardware check-

pointing: concepts, overhead analysis, and implementation. In Proceedings of

the 2007 ACM/SIGDA 15th international symposium on Field programmable

gate arrays, pages 188–196. ACM, 2007.

[48] Thomas Kuhn, Akhtar Jameel, M Stumpfle, and Afsaneh Haddadi. Hybrid

in-car speech recognition for mobile multimedia applications. In Vehicular

Technology Conference, 1999 IEEE 49th, volume 3, pages 2009–2013. IEEE,

1999.

[49] Bjornar Larsen and Chinatsu Aone. Fast and effective text mining using

linear-time document clustering. In Proceedings of the fifth ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 16–

22. ACM, 1999.

[50] Jae W. Lee, Man Cheuk Ng, and Krste Asanovic. Globally-synchronized

frames for guaranteed quality-of-service in on-chip networks. In Proceedings of

the 35th Annual International Symposium on Computer Architecture, ISCA

’08, pages 89–100, Washington, DC, USA, 2008. IEEE Computer Society.

[51] K-F Lee, H-W Hon, and Raj Reddy. An overview of the sphinx speech

recognition system. IEEE Transactions on Acoustics, Speech, and Signal

Processing, 38(1):35–45, 1990.

147

[52] Youngki Lee, Chulhong Min, Younghyun Ju, Seungwoo Kang, Yunseok Rhee,

and Junehwa Song. An active resource orchestration framework for pan-

scale, sensor-rich environments. IEEE Transactions on Mobile Computing,

13(3):596–610, 2014.

[53] Xin Lei, Andrew W Senior, Alexander Gruenstein, and Jeffrey Sorensen.

Accurate and compact large vocabulary speech recognition on mobile devices.

In Interspeech, volume 1, 2013.

[54] Jiuxing Liu and Bulent Abali. Virtualization polling engine (vpe): using

dedicated cpu cores to accelerate i/o virtualization. In Proceedings of the 23rd

international conference on Supercomputing, pages 225–234. ACM, 2009.

[55] Slobodan Lukovic and Nikolaos Christianos. Enhancing network-on-chip

components to support security of processing elements. In Proceedings of the

5th Workshop on Embedded Systems Security, WESS ’10, pages 12:1–12:9,

New York, NY, USA, 2010. ACM.

[56] Slobodan Lukovic and Nikolaos Christianos. Hierarchical multi-agent pro-

tection system for noc based mpsocs. In Proceedings of the International

Workshop on Security and Dependability for Resource Constrained Embed-

ded Systems, S&D4RCES ’10, pages 6:1–6:7, New York, NY, USA, 2010.

ACM.

148

[57] Sheng Ma, Natalie Enright Jerger, and Zhiying Wang. Dbar: an efficient

routing algorithm to support multiple concurrent applications in networks-on-

chip. In Proceedings of the 38th annual international symposium on Computer

architecture, ISCA ’11, pages 413–424, New York, NY, USA, 2011. ACM.

[58] Ken MacLean. http://www.voxforge.org.

[59] James H Martin and Daniel Jurafsky. Speech and language processing. In-

ternational Edition, 710:25, 2000.

[60] Paul McNamee and Marty Hall. Developing a tool for memoizing functions

in c++. ACM SIGPLAN Notices, 33(8):17–22, 1998.

[61] Konstantinos Menychtas, Kai Shen, and Michael L Scott. Disengaged

scheduling for fair, protected access to fast computational accelerators. In

Proceedings of the 19th international conference on Architectural support for

programming languages and operating systems, pages 301–316. ACM, 2014.

[62] Robert B Miller. Response time in man-computer conversational transac-

tions. In Proceedings of the December 9-11, 1968, fall joint computer confer-

ence, part I, pages 267–277. ACM, 1968.

[63] ModelSim. http://www.mentor.com/products/fv/modelsim.

149

[64] Peter L Montgomery. Modular multiplication without trial division. Mathe-

matics of computation, 44(170):519–521, 1985.

[65] R. Obermaisser and O. Hoftberger. Fault containment in a reconfigurable

multi-processor system-on-a-chip. In Industrial Electronics (ISIE), 2011

IEEE International Symposium on, pages 1561 –1568, june 2011.

[66] The Trustees of the University of Pennsylvania. https://www.ldc.upenn.edu.

[67] OpenSSL. https://www.openssl.org.

[68] William R Otte, Abhishek Dubey, Subhav Pradhan, Prithviraj Patil, Anirud-

dha Gokhale, Gabor Karsai, and Johnny Willemsen. F6com: A component

model for resource-constrained and dynamic space-based computing environ-

ments. In Object/Component/Service-Oriented Real-Time Distributed Com-

puting (ISORC), 2013 IEEE 16th International Symposium on, pages 1–8.

IEEE, 2013.

[69] J. Porquet, A. Greiner, and C. Schwarz. Noc-mpu: A secure architecture for

flexible co-hosting on shared memory mpsocs. In Design, Automation Test

in Europe Conference Exhibition (DATE), 2011, pages 1 –4, march 2011.

[70] Alex Rudnicky. Sphinx knowledge base tool (2010). URL http://www. speech.

cs. cmu. edu/tools/lmtool. html.[Online].

150

[71] Kyle Rupnow, Wenyin Fu, and Katherine Compton. Block, drop or roll

(back): Alternative preemption methods for rh multi-tasking. In Field Pro-

grammable Custom Computing Machines, 2009. FCCM’09. 17th IEEE Sym-

posium on, pages 63–70. IEEE, 2009.

[72] John Rushby. Partitioning for avionics architectures: Requirements, mech-

anisms, and assurance. NASA Contractor Report CR-1999-209347, NASA

Langley Research Center, June 1999. Also to be issued by the FAA.

[73] Johan Schalkwyk, Doug Beeferman, Françoise Beaufays, Bill Byrne, Ciprian

Chelba, Mike Cohen, Maryam Kamvar, and Brian Strope. your word is my

command: Google search by voice: a case study. In Advances in Speech

Recognition, pages 61–90. Springer, 2010.

[74] Roman Schlegel, Kehuan Zhang, Xiao-yong Zhou, Mehool Intwala, Apu Ka-

padia, and XiaoFeng Wang. Soundcomber: A stealthy and context-aware

sound trojan for smartphones. In NDSS, volume 11, pages 17–33, 2011.

[75] Martin Schoeberl, Florian Brandner, Jens Sparsø, and Evangelia Kasapaki. A

statically scheduled time-division-multiplexed network-on-chip for real-time

systems. In Proceedings of the 2012 IEEE/ACM Sixth International Sym-

posium on Networks-on-Chip, NOCS ’12, pages 152–160, Washington, DC,

USA, 2012. IEEE Computer Society.

151

[76] Jaebaek Seo, Daehyeok Kim, Donghyun Cho, Taesoo Kim, and Insik Shin.

Flexdroid: Enforcing in-app privilege separation in android. In Proceedings

of the 2016 Annual Network and Distributed System Security Symposium

(NDSS), pages 1–53, 2016.

[77] Ming-Der Shieh, Jun-Hong Chen, Hao-Hsuan Wu, and Wen-Ching Lin. A

new modular exponentiation architecture for efficient design of rsa cryptosys-

tem. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,

16(9):1151–1161, 2008.

[78] Thad E Starner, Cornelis M Snoeck, Benjamin A Wong, and R Martin

McGuire. Use of mobile appointment scheduling devices. In CHI’04 Extended

Abstracts on Human Factors in Computing Systems, pages 1501–1504. ACM,

2004.

[79] R. Stefan, A. Molnos, A. Ambrose, and K. Goossens. A tdm noc supporting

qos, multicast, and fast connection set-up. In Design, Automation Test in

Europe Conference Exhibition (DATE), 2012, pages 1283 –1288, march 2012.

[80] Radu Stefan and Kees Goossens. Enhancing the security of time-division-

multiplexing networks-on-chip through the use of multipath routing. In Pro-

ceedings of the 4th International Workshop on Network on Chip Architectures,

NoCArc ’11, pages 57–62, New York, NY, USA, 2011. ACM.

152

[81] Patrick Stewin and Iurii Bystrov. Understanding dma malware. In Detec-

tion of Intrusions and Malware, and Vulnerability Assessment, pages 21–41.

Springer, 2013.

[82] Paul M Stillwell, Vineet Chadha, Omesh Tickoo, Steven Zhang, Ramesh Il-

likkal, Ravishankar Iyer, and Don Newell. Hippai: High performance portable

accelerator interface for socs. In High Performance Computing (HiPC), 2009

International Conference on, pages 109–118. IEEE, 2009.

[83] Chen Sun, Chia-Hsin Owen Chen, George Kurian, Lan Wei, Jason Miller,

Anant Agarwal, Li-Shiuan Peh, and Vladimir Stojanovic. Dsent - a tool

connecting emerging photonics with electronics for opto-electronic networks-

on-chip modeling. In Proceedings of the 2012 IEEE/ACM Sixth International

Symposium on Networks-on-Chip, NOCS ’12, pages 201–210, Washington,

DC, USA, 2012. IEEE Computer Society.

[84] Jean-Loup Terraillon. Multicore processors - the next generation com-

puter for esa space missions. http://www.cister.isep.ipp.pt/ae2012/

presentations_pdf/thursday/k/terraillon.pdf. ”Keynote address.”.

[85] Mohit Tiwari, Xun Li, Hassan M. G. Wassel, Frederic T. Chong, and Timothy

Sherwood. Execution leases: a hardware-supported mechanism for enforcing

strong non-interference. In Proceedings of the 42nd Annual IEEE/ACM Inter-

153

national Symposium on Microarchitecture, MICRO 42, pages 493–504, New

York, NY, USA, 2009. ACM.

[86] Mohit Tiwari, Jason K. Oberg, Xun Li, Jonathan Valamehr, Timothy Levin,

Ben Hardekopf, Ryan Kastner, Frederic T. Chong, and Timothy Sherwood.

Crafting a usable microkernel, processor, and i/o system with strict and prov-

able information flow security. In Proceedings of the 38th annual international

symposium on Computer architecture, ISCA ’11, pages 189–200, New York,

NY, USA, 2011. ACM.

[87] Mohit Tiwari, Hassan M.G. Wassel, Bita Mazloom, Shashidhar Mysore, Fred-

eric T. Chong, and Timothy Sherwood. Complete information flow tracking

from the gates up. In Proceedings of the 14th international conference on

Architectural support for programming languages and operating systems, AS-

PLOS ’09, pages 109–120, New York, NY, USA, 2009. ACM.

[88] Xueqiang Wang, Kun Sun, Yuewu Wang, and Jiwu Jing. Deepdroid: Dy-

namically enforcing enterprise policy on android devices. In NDSS, 2015.

[89] Yao Wang and G.E. Suh. Efficient timing channel protection for on-chip

networks. In Networks on Chip (NoCS), 2012 Sixth IEEE/ACM International

Symposium on, pages 142 –151, may 2012.

154

[90] Zhenghong Wang and Ruby B. Lee. New cache designs for thwarting software

cache-based side channel attacks. In Proceedings of the 34th annual interna-

tional symposium on Computer architecture, ISCA ’07, pages 494–505, New

York, NY, USA, 2007. ACM.

[91] Zhenghong Wang and Ruby B. Lee. A novel cache architecture with enhanced

performance and security. In Proceedings of the 41st annual IEEE/ACM In-

ternational Symposium on Microarchitecture, MICRO 41, pages 83–93, Wash-

ington, DC, USA, 2008. IEEE Computer Society.

[92] David Wentzlaff, Patrick Griffin, Henry Hoffmann, Liewei Bao, Bruce Ed-

wards, Carl Ramey, Matthew Mattina, Chyi-Chang Miao, John F. Brown III,

and Anant Agarwal. On-chip interconnection architecture of the tile proces-

sor. IEEE Micro, 27(5):15–31, September 2007.

[93] Rubin Xu, Hassen Säıdi, and Ross J Anderson. Aurasium: practical pol-

icy enforcement for android applications. In USENIX Security Symposium,

volume 2012, 2012.

[94] Lok-Kwong Yan and Heng Yin. Droidscope: Seamlessly reconstructing the os

and dalvik semantic views for dynamic android malware analysis. In USENIX

security symposium, pages 569–584, 2012.

155

[95] Nan Zhang, Kan Yuan, Muhammad Naveed, Xiaoyong Zhou, and XiaoFeng

Wang. Leave me alone: App-level protection against runtime information

gathering on android. In Security and Privacy (SP), 2015 IEEE Symposium

on, pages 915–930. IEEE, 2015.

[96] Yuan Zhang, Min Yang, Bingquan Xu, Zhemin Yang, Guofei Gu, Peng Ning,

X Sean Wang, and Binyu Zang. Vetting undesirable behaviors in android

apps with permission use analysis. In Proceedings of the 2013 ACM SIGSAC

conference on Computer & communications security, pages 611–622. ACM,

2013.

156

