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ABSTRACT

Bayesian Phylogenetic Inference for Viral Dispersal Process

Phylogenies have been increasingly used in studying the spatial and temporal dynamics of

infectious disease outbreaks; this phylodynamic approach encompasses a suite of methods for

inferring various aspects of pathogen biology, including: (1) patterns of variation in demogra-

phy through time; (2) the history of geographic spread either over continuous space or among a

set of discrete-geographic areas, and; (3) the interaction between demography and geographic

history.

This dissertation focuses on the discrete-geographic phylodynamic methods, which have

been used extensively to understand the spatial and temporal spread of infectious disease out-

breaks, and have played a central role for inferring key aspects of the COVID-19 pandemic,

such as the geographic location and time of origin of the disease, the rates and geographic

routes by which it spread, and the efficacy of various mitigation measures to limit its geo-

graphic expansion. These phylodynamic methods adopt an explicitly probabilistic approach

that model the process of pathogen dispersal among a set of discrete-geographic areas (e.g.,

cities, states, countries) over the branches of the pathogen phylogeny. The observations in-

clude the times and locations of pathogen sampling, and the genomic sequences of the sam-

pled pathogens. These data are used to estimate the parameters of discrete-geographic phy-

lodynamic models, which include a dated phylogeny of the pathogen samples, the average

dispersal rate among all areas, and the relative dispersal rates (the dispersal rate between each

pair of areas). Inference under these models is performed within a Bayesian statistical frame-

work.

Although these phylodynamic models provide a powerful tool for understanding pathogen

spread, they contain many parameters that must be inferred from minimal information (i.e.,

the single geographic area in which each pathogen occurs). As a result, inferences under these

models are inherently sensitive to our prior assumptions about the model parameters. In Chap-

ter 1, I (and co-authors) demonstrate that the priors on the average dispersal rate and the num-

ber of dispersal routes, implemented as defaults in BEAST (and assumed in the vast majority of

empirical studies) make strong and biologically unrealistic assumptions about the underlying
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dispersal process. I present empirical evidence demonstrating that these priors are strongly

disfavored by real data, and that these priors strongly (and adversely) distort central conclu-

sions of epidemiological studies, including the importance of dispersal routes for the spread

of pathogens and the ancestral area in which a given epidemic originated. I conclude this

chapter by offering strategies and introducing an interactive web utility, PrioriTree, to help

researchers avoid these issues.

Chapter 2 presents PrioriTree in detail. This utility is designed to help researchers follow

the strategies I explored and recommended in Chapter 1 more easily. Specifically, it provides

a suite of functions to allow users to interactively set up BEAST discrete-geographic phylody-

namic analyses with visualized priors, and specify BEAST analyses and and summarize the re-

sults for assessing prior sensitivity and model fit. Apart from generating BEAST analysis scripts

and figures summarizing the analyses, PrioriTree also dynamically generates a description of

the associated methods to facilitate transparent and explicit communications in empirical bio-

geographic studies regarding what exact priors are used, how they are chosen, and how their

impacts are assessed, eventually enhancing the reproducibility of biogeographic studies.

Virtually all discrete-geographic phylodynamic studies are based on models that assume

that pathogen dispersal dynamics—including the average and relative rates of pathogen

dispersal—remain constant over time. However, the dispersal dynamics of emerging

pathogens (e.g., SARS-CoV-2) may have been impacted by the initiation (or alteration or ces-

sation) of intervention measures. Moreover, pathogen dispersal processes may inevitably vary

over time due to temporal variation of human travel dynamics even without the impact of

intervention measures.

In Chapter 3, I (and co-authors) (1) extend discrete-geographic phylodynamic models to

allow both the average and relative dispersal rates to vary independently across pre-specified

time intervals; (2) enable stochastic mapping under these interval-specific models to infer the

number and timing of pathogen dispersal events between areas, and; (3) develop posterior-

predictive statistics to assess the absolute fit of discrete-geographic phylodynamic models to

empirical datasets. I first validate the new methods using simulations, and then apply them to

a SARS-CoV-2 dataset from the early phase of the COVID-19 pandemic. These analyses reveal

that: (1) under simulation, failure to accommodate interval-specific variation in the study data

will severely bias parameter estimates; (2) in practice, the interval-specific models can signifi-
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cantly improve the relative and absolute fit to empirical data; and (3) the increased realism of

these interval-specific models provides qualitatively different inferences regarding key aspects

of the COVID-19 pandemic—revealing significant temporal variation in global viral dispersal

rates, viral dispersal routes, and the number of viral dispersal events between areas—and al-

ters interpretations regarding the efficacy of intervention measures to mitigate the spread of

SARS-CoV-2.

Together, this dissertation serves as a careful and thorough exploration of various aspects

of the phylodynamic methods for inferring pathogen dispersal process, and represents an ad-

vance in the conceptual and statistical framework of Bayesian phylogenetic inference.
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Chapter 1

The Impact of Prior Misspecification on
Bayesian Phylodynamic Inference of
Biogeographic History

Abstract.—Epidemiology has been transformed by the advent of Bayesian phylodynamic

models that allow researchers to infer the biogeographic history of pathogens over a set

of discrete geographic areas (Lemey et al. 2009; Edwards et al. 2011). These biogeographic

models provide powerful tools for understanding the spatial dynamics of epidemics, but

contain many parameters that are inferred from minimal information (i.e., the single ge-

ographic area in which each pathogen occurs). Consequently, inferences under these bio-

geographic models may be sensitive to our prior assumptions about the model parameters.

Here, we demonstrate that the priors assumed in empirical phylodynamic studies make

strong and biologically unrealistic assumptions about the underlying biogeographic pro-

cess. We provide empirical evidence that these unrealistic priors strongly (and adversely)

impact commonly reported aspects of epidemiological studies, including: (1) the relative

rates of dispersal between areas; (2) the importance of dispersal routes for the spread of

pathogens; (3) the number of dispersal events between areas, and; (4) the ancestral area in

which a given epidemic originated. We offer strategies to avoid these problems, and de-

velop tools to help researchers specify more biologically reasonable prior models that will

realize the full potential of phylodynamic methods to understand pathogen biology and,

ultimately, inform surveillance and monitoring policies to mitigate the impacts of disease.

INTRODUCTION

Phylogenies are increasingly used to study epidemiological dynamics; this phylodynamic ap-

proach is used to infer various aspects of pathogen biology, including patterns of variation
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in demography through time and biogeographic history. The approach developed by Lemey

et al. (Lemey et al. 2009; Edwards et al. 2011)—implemented in the BEAST software package

Drummond et al. (2012)—is now the standard approach used to infer key aspects of the bio-

geographic history of pathogen epidemics, including: (1) the area in which an epidemic first

originated; (2) the dispersal routes by which the pathogen spread among geographic areas,

and; (3) the number of dispersal events between areas.

Under this approach, biogeographic history involves changes among a set of discrete ar-

eas (e.g., cities, states, countries) over the branches of the pathogen phylogeny. Biogeographic

history is modeled as a probabilistic process with parameters that specify the average rate of

pathogen dispersal, and the relative rate of pathogen dispersal between each pair of geographic

areas. Inference under these biogeographic models is performed within a Bayesian statistical

framework. Bayesian inference requires that we specify a prior probability distribution for each

parameter of the biogeographic model (reflecting our beliefs about the corresponding param-

eter values before evaluating the data at hand); the priors are updated by the information in

our data (the observed geographic area from which each pathogen was sampled) to provide a

posterior probability distribution for each of the model parameters (reflecting our beliefs about

the parameter values after evaluating our data).

These biogeographic models contain many parameters that must be inferred from minimal

information; the data are limited to a single observation (i.e., the area in which each pathogen

occurs). Accordingly, biogeographic inference under this approach may be sensitive to the

assumed priors. Here, we demonstrate that the priors on the average dispersal rate and the

number of dispersal routes implemented as defaults in BEAST (and used in most empirical

studies; Fig. 1.1) make strong and biologically unrealistic assumptions about the underlying

biogeographic process. We present empirical evidence demonstrating that these priors are

strongly disfavored by real data, and that these priors strongly (and adversely) distort cen-

tral conclusions of epidemiological studies. Finally, we offer strategies—and provide tools—to

help researchers specify more biologically reasonable priors that will enhance the potential of

phylodynamic methods to understand pathogen biology.
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Figure 1.1: Empirical phylodynamic studies of pathogen biogeographic history. The bar plot at left depicts the
choice of priors on the average dispersal rate and/or number of dispersal routes in the 651 published empirical
studies (obtained from Google Scholar on June 30, 2021) that have inferred biogeographic history using the ap-
proach of (Lemey et al. 2009). The vast majority of these studies explicitly (orange) or implicitly (gray) specified
default priors on these parameters; only 7.2% of published studies explicitly used non-default priors on the average
dispersal rate and/or number of dispersal routes (blue). The right panel characterizes the size of published empir-
ical datasets in terms of the number of discrete geographic areas (x-axis) and the number of tips (y-axis). Orange
dots indicate the empirical datasets that we have examined in our study, and blue circled dots indicate datasets
from SARS-CoV-2 studies.

THEORETICAL CONCERNS AND PROPOSED SOLUTIONS

We assume that the tips of the study phylogeny occur in one of k discrete geographic areas.

For clarity, we assume that the study phylogeny with divergence times is known. (In practice,

the biogeographic history and the study phylogeny are usually inferred simultaneously; see

Supplemental Material.) We first briefly describe the model proposed by Lemey et al. (Lemey

et al. 2009) to infer biogeographic history; we then discuss theoretical concerns related to the

priors on the parameters of that model; finally, we suggest alternative priors to address the

concerns.

The Model

The model describes the evolution of the biogeographic history over the tree, Ψ, as a

continuous-time Markov chain (CTMC). For a biogeographic history with k discrete areas, this

stochastic process is fully specified by a k× k instantaneous-rate matrix, Q, where an element

of the matrix, qij, is the instantaneous rate of change between state i and state j (i.e., the instan-

taneous rate of dispersal from area i to area j). In principle, we may wish to treat each element
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of this matrix as a free parameter to be estimated from the data. In practice, k is typically large,

such that the biogeographic model includes many parameters, while the data are limited to a

single observation (the geographic location of each tip), which raises concerns about our ability

to estimate each parameter in the matrix. This concern motivated Lemey et al. (Lemey et al.

2009) to develop a Bayesian approach to simplify the biogeographic model. This is accom-

plished by specifying each element, qij, of the instantaneous-rate matrix, Q, as:

qij = rijδij,

where rij is the relative rate of dispersal between areas i and j, and δij is an indicator variable

that takes one of two states (0 or 1). When δij = 1, the instantaneous dispersal rate for the corre-

sponding element, qij, is simply qij = rij. Conversely, when δij = 0, the instantaneous dispersal

rate for the corresponding element, qij, is zero, effectively removing that parameter from the

biogeographic model. For a given Q matrix there is a vector of δij and a vector of rij. Each

unique vector of δij—i.e., δ, a string of zeros and ones for each of the possible pairwise dis-

persal routes between the k geographic areas—corresponds to a unique biogeographic model

(Fig. 1.2). By convention, we rescale the Q matrix such that the expected number of dispersal

events in one time unit is equal to the parameter µ (Yang 2014).

The original method (Lemey et al. 2009) assumes that instantaneous-rate matrix, Q, is sym-

metric, where qij = qji (i.e., rij = rji and δij = δji). Accordingly, this model assumes that the

instantaneous rate of dispersal from area i to area j is equal to the dispersal rate from area j to

area i. For a dataset with k areas, the symmetric model has (k
2) dispersal-route indicators and

up to (k
2) relative-rate parameters. A subsequent extension (Edwards et al. 2011) allows the Q

matrix to be asymmetric, i.e., qij and qji are not constrained to be equal. Accordingly, this model

allows the rate of dispersal from area i to area j to be different from the rate of dispersal from

area j to area i. For a dataset with k areas, the asymmetric model has k× (k− 1) dispersal-route

indicators and up to k× (k− 1) relative-rate parameters.

We estimate the parameters of these biogeographic models in a Bayesian framework. Fol-

lowing Bayes’ theorem, the joint posterior probability distribution of the model parameters is
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(Bayes 1763):

posterior distribution︷ ︸︸ ︷
P(r, δ, µ | G, Ψ) =

likelihood︷ ︸︸ ︷
P(G | r, δ, µ, Ψ)

prior distribution︷ ︸︸ ︷
P(r)P(δ)P(µ)

P(G | Ψ)︸ ︷︷ ︸
marginal likelihood

,

where r is a vector that contains all of the relative-rate parameters, δ is a vector that contains

all of the dispersal-route indicators, µ is the average rate of dispersal, Ψ is the phylogeny, and

G is the observed geographic data. The likelihood function is equal to the probability of the

observed geographic data, G, given the biogeographic model, Q, and the phylogeny, Ψ. The

joint prior probability distribution reflects our beliefs about the model parameters before eval-

uating the geographic data at hand; the prior is updated by the information in the geographic

data via the likelihood function to produce the joint posterior distribution, which reflects our

beliefs about the model parameters after observing the geographic data. When there is little in-

formation in the data to update the assumed priors, our posterior estimates are apt to be quite

sensitive to the chosen priors; this phenomenon is referred to as prior sensitivity.

The denominator of Bayes theorem is called the marginal likelihood, and is the likelihood

function averaged over all possible values of the parameters in proportion to their prior prob-

ability (i.e., it is the average probability of the data under the model). We approximate the joint

posterior probability distribution using Markov chain Monte Carlo, which samples parameter

values with a frequency proportional to their posterior probabilities, including in this case the

dispersal routes defined by δ. Below, we detail our theoretical concerns regarding the priors on

the number of dispersal routes, δ, and average dispersal rate, µ.

Prior on the Number of Dispersal Routes

Recall that each vector, δ, specifies a unique configuration of dispersal routes, which corre-

sponds to a unique biogeographic model. The total number of dispersal routes for a given

biogeographic model is denoted ∆. For a given value of ∆, there may be multiple distinct bio-

geographic models (e.g., for ∆ = 2, there are three distinct symmetric models; Fig. 1.2). Lemey

et al. (Lemey et al. 2009) impose a prior on biogeographic models by: (1) placing a prior on

the total number of dispersal routes, ∆, and; (2) assuming that all biogeographic models with a

given value of ∆ are equiprobable. For example, the three distinct biogeographic models with

∆ = 2 depicted in Fig. 1.2 are assumed to have equal prior probability. Together, these assump-
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corresponding to different vectors of dispersal-route indicators, δ (right panels). The total number of dispersal
routes for a given biogeographic model is ∆. Note that there may be multiple distinct biogeographic models with
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tions induce a prior probability that a given dispersal route between areas i and j exists, i.e.,

that δij = 1.

For the symmetric model, Lemey et al. (Lemey et al. 2009) specify an offset Poisson prior

on the total number of dispersal routes, ∆. That is, the prior on ∆ assigns zero probability
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Figure 1.3: Prior on dispersal routes under the symmetric biogeographic model. The left panel illustrates the
default (orange) and alternative (blue) prior distributions on the total number of dispersal routes, ∆, as a function
of the number of areas, k. The default-prior distributions are highly focused on the minimal number of dispersal
routes, k− 1, whereas the alternative-prior distributions are centered on an intermediate number of dispersal routes
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default-prior model, the probability that a given dispersal route exists drops rapidly for datasets with a moderately
large (and common; c.f., Fig. 1.1) number of geographic areas; by contrast, under the alternative-prior model, this
probability remains relatively constant for all values of k.
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to all biogeographic models with fewer than k− 1 dispersal routes; this reflects the constraint

that a dataset with k geographic areas cannot be realized under a CTMC with fewer than k− 1

non-zero qij values (i.e., dispersal routes).1 The prior on the number of dispersal routes greater

than k− 1 is described by a Poisson prior with rate parameter, λ. Lemey et al. (Lemey et al.

2009) express an explicit prior preference for biogeographic models with the minimal number

of dispersal routes. Specifically, by default, λ = ln(2), which places 50% of the prior probability

on biogeographic models with the minimum number of dispersal routes, ∆ = (k− 1) (Fig. 1.3,

left panel). For the asymmetric model (Edwards et al. 2011), the number of dispersal routes is

assumed to be drawn from a Poisson prior with rate λ. In this case, λ is specified such that the

expected number of dispersal routes is k− 1 (Figure S.1.1; Note that this prior does not enforce

a minimum number of dispersal routes).

Recall that the number of dispersal-route indicators grows rapidly as a function of the num-

ber of areas, k; however, the prior expected number of dispersal routes grows linearly as a

function of k. Consequently, the prior probability that any given dispersal route exists rapidly

decreases as k increases (Fig. 1.3, right panel). For large (and common; c.f., Fig. 1.1) values of k,

the default prior on ∆ results in an extremely informative prior on models with the minimum

number of dispersal routes.

In the experiments below, we specify alternative and more diffuse priors on ∆, where the

expected number of dispersal routes is about half the maximum number; this results in a rel-

atively flat prior probability that any given dispersal route exists for all values of k (Fig. 1.3).

Specifically, for the symmetric model, we specify an offset (i.e., by k− 1) Poisson prior on ∆

with λ specified so that the expected number of dispersal routes is about half of the maximum

number, (k
2), for a dataset with k areas. For the asymmetric model, we specify a Poisson prior

distribution on ∆ with λ = (k
2), which represents a prior belief that half of all possible dispersal

routes are included in the biogeographic model.

Prior on the Average Dispersal Rate

Recall that the rate matrix, Q, is rescaled so that the average rate of dispersal between all areas

is µ. For a tree of length T (i.e., the sum of the durations of all branches in the tree), the expected

number of dispersal events is µ× T. Therefore, the prior on µ represents our prior belief about

1We note that the real constraint on the symmetric model is that it must be irreducible, i.e., it must be possible to
reach each area from every other area either directly or indirectly. A model with fewer than k− 1 dispersal routes
cannot be irreducible; however, a model with at least k− 1 dispersal routes is not guaranteed to be irreducible.

7



default
T = 100
T = 1000
T = 10000

alternative

0 1 2 3 4 5

0
1

2
3

4
5

pr
io

r p
ro

ba
bi

lit
y

average dispersal rate, μ

default alternative
T = 100
T = 1000
T = 10000

0 1 2 3 4 >= 50.
0

0.
2

0.
4

0.
6

0.
8

1.
0

pr
io

r p
ro

ba
bi

lit
y

number of dispersal events

Figure 1.4: Prior on the average dispersal rate and the implied prior on the number of dispersal events. The
left panel illustrates the default (orange) and alternative (blue) prior distributions on the average dispersal rate as
a function of the duration of the biogeographic history, T. The default-prior distributions are highly focused on
extremely low average dispersal rates, whereas the alternative-prior distribution is more permissive of higher rates.
The right panel illustrates the implied prior distribution on the total number of dispersal events under the default
(orange) and alternative (blue) prior models. Under the default-prior model, the expected number of dispersal
events is 0.5, independent of the duration of the biogeographic history, T, whereas under the alternative-prior
model, the expected number of dispersal events sensibly increases with the duration of the biogeographic history.

the number of dispersal events over the tree. By default, µ is assigned a gamma prior with

shape parameter α = 0.5 and rate parameter β = T. (Note that the gamma prior on the average

dispersal rate is referred to as the CTMC-rate reference prior in the BEAUTi program used to

generate input files for BEAST analyses.) The gamma distribution has a mean of α/β; therefore

this prior expresses the belief that the average rate of dispersal is 0.5/T (Fig. 1.4, left panel).

Because the expected number of dispersal events is µ× T, the prior expected number of

dispersal events under this prior is 0.5, independent of the duration of the entire biogeographic

history (i.e., the tree length, T), or the number of areas, k, in which the pathogen occurs. Sim-

ilarly, the prior distribution on the number of dispersal events is independent of T and k: the

95% prior interval is [0, 3] dispersal events, which implies that we would be very surprised if

a biogeographic history of any duration with any number of areas involved more than three

dispersal events (see Fig. 1.4, right panel). Logically, however, a biogeographic history that

includes k areas minimally requires k− 1 dispersal events. Therefore, this prior becomes in-

creasingly unreasonable as k grows to large (and common; c.f., Fig. 1.1) values.

In the experiments below, we specify a more diffuse prior on the dispersal rate, µ. Specif-

ically, we specify a more permissive exponential prior on µ; this prior has a rate parameter θ,

and a mean of 1/θ. To address concerns about the potential impact of assuming a fixed value of

θ on posterior estimates, we treat the mean of the exponential prior, 1/θ, as a random variable
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to be estimated from the data. Specifically, we specify a gamma prior on 1/θ; this gamma hy-

perprior has shape parameter α = 0.5 and rate parameter β = 0.5 (enforcing the shape and rate

parameters to be equal ensures that the resulting prior on µ is proper). The resulting prior—

known as the K-distribution (Jakeman and Pusey 1978)—is more diffuse than the default prior

on µ (Fig. 1.4, right panel), as is the resulting prior distribution on the number of dispersal

events (Fig. 1.4, left panel). Importantly, this alternative prior distribution on the number of

dispersal events scales with the duration of the entire biogeographic history, T.

EMPIRICAL CONSEQUENCES

In this section, we explore the empirical consequences arising from our theoretical concerns

with the informative default priors on the number of dispersal routes and the average disper-

sal rate. We collected eleven datasets from published empirical studies, and reanalyzed each

under a suite of biogeographic models, including all combinations of: (1) symmetric and asym-

metric Q matrices; (2) default and alternative priors on the number of dispersal routes; and (3)

default and alternative priors on the average dispersal rate. For each dataset, we estimated the

marginal likelihood for each of the eight candidate models, and used Bayes factors to under-

stand the impacts of both priors on the fit of the model to these datasets. For each dataset, we

also estimated the joint posterior distribution for all eight models to explore the impact of the

default and alternative priors on estimates of commonly reported biogeographic inferences.

We describe the details of these analyses in the Supplemental Material.

The Impact of Prior Choice on Model Fit.

Our concern regarding the default priors is that they represent strongly informative and bio-

logically unrealistic beliefs about the process that generated the data. Accordingly, the fit of

these prior models to empirical data should be relatively low compared to more biologically

reasonable prior models. Following Lemey et al. (Lemey et al. 2009), we assessed the relative fit

of these competing prior models to the data by Bayes factor, which is computed using the esti-

mated marginal likelihood (i.e., the probability of the data under a given prior model). Because

Bayes factors represent the relative fit of competing models to the data, they are often used as

a way of selecting among alternative models.

Bayes-factor comparisons of all eight candidate models indicate that the default prior on

the number of dispersal routes and the default prior on the average dispersal rate are both
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biologically implausible (Table S.1.2). In all cases, the alternative prior on the average dispersal

rate strongly outperformed the default prior; for all but one case (for which the Bayes factor was

equivocal), the alternative prior on the number of dispersal routes outperformed the default

prior.

Bayes factors assess the relative fit of competing prior models to the datasets; we also as-

sessed the absolute fit of the prior models to the data using posterior-predictive simulation

(Gelman et al. 1996; Bollback 2002). This approach is based on the following premise: if a

given model provides an adequate description of the process that gave rise to our observed

data, then we should be able to use that model to simulate new datasets that resemble our

observed data. Results of the posterior-predictive simulations corroborate our findings based

on Bayes-factor comparisons: in all cases, the alternative-prior models provide an adequate fit

to the empirical datasets, whereas the default-prior models are generally inadequate (Figures

S.1.2–S.1.3; Tables S.1.3–S.1.4).

Table 1.1: The relative fit of the default- and alternative-prior models. We inferred marginal likelihoods for each
dataset under two models: one with both default priors, the other with both alternative priors. For each combina-
tion of priors, we assumed the preferred biogeographic model (i.e., with a symmetric or asymmetric rate matrix).
Marginal-likelihood estimates for the default- and alternative-prior models are listed in the first two columns (±
SD among four replicates); 2 ln BF between the two models are listed in the third column. The default-prior models
are decisively rejected for all datasets (i.e., 2 ln BF� 10; Kass and Raftery 1995).

Dataset*Default Alternative 2 ln BF

1 −190.48± 0.10 −147.32± 0.11 86.33

2 −144.08± 0.05 −128.80± 0.09 30.56

3 −214.89± 0.12 −173.90± 0.23 81.98

4 −106.37± 0.09 −91.47± 0.12 29.79

5 −1176.37± 0.24 −1037.60± 0.26 277.54

6 −1310.88± 0.43 −1164.63± 0.24 292.50

7 −837.68± 0.27 −726.79± 0.17 221.78

8 −2875.30± 1.42 −2275.52± 0.39 1199.55

9 −2334.51± 0.94 −1872.97± 0.32 923.08

10 −309.90± 0.59 −258.14± 0.29 103.52

11 −2525.85± 1.11 −2160.57± 0.65 730.56

12 −1989.18± 2.22 −1721.17± 1.03 536.01

13 −1747.10± 1.75 −1531.50± 1.40 431.21

14 −1368.66± 2.70 −1221.43± 0.82 294.45

*Dataset sources: 1 (Dash et al. 2015); 2–4 (Wilfert et al. 2016); 5–7 (Faria et al. 2014); 8–9 (Bedford et al. 2015); 10 (Yao et al. 2015);
11 (Gao et al. 2022); 12 (Alpert et al. 2021), and; 13–14 (Candido et al. 2020).
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Given that both default priors—on the number of dispersal routes and the average dispersal

rate—negatively impact the relative and absolute fit of biogeographic models to our empirical

datasets, we focus on two candidate prior models: one model with both default priors, and

one model with both alternative priors. For both the default- and alternative-prior models, we

identified the preferred biogeographic model (i.e., symmetric or asymmetric). In every case, the

default-prior models were decisively disfavored relative to the alternative-prior models (Table

1.1). Below, we explore the impact of these prior models on commonly reported biogeographic

inferences.

The Impact of Prior Choice on Pairwise Dispersal Rates.

We first explored estimates of the model parameters that comprise the Q matrix—i.e., r, δ,

and µ—under the default-prior model to those estimated under the alternative-prior model.

Although these parameters are seldom (if ever) reported in empirical studies, they are the

actual basis of commonly reported aspects of biogeographic history, i.e., commonly reported

inferences are a function of these Q-matrix parameters. The left two panels of Fig. 1.5 com-

pare posterior-mean estimates of Q under the default- and alternative-prior models for the

deformed-wing virus dataset (Wilfert et al. 2016); the choice of prior model strongly impacts

estimates of the dispersal rates between many areas. We also summarized the impact of the

default- and alternative-prior models across all datasets (Fig. 1.5, right panel), demonstrating
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Figure 1.5: The impact of prior choice on estimates of pairwise dispersal rates. Heatmaps summarize posterior-
mean estimates of the instantaneous rate of dispersal between each pair of geographic areas, qij, estimated for the
deformed-wing virus dataset (Wilfert et al. 2016) under the default (left) and alternative (middle) prior models.
At right, we summarize dispersal-rate estimates for each pair of areas across all eleven empirical datasets. Note
that dispersal-rate estimates under the default-prior model are consistently lower than those estimated under the
alternative-prior model.
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the pervasive impact of the default priors on estimates of the Q-matrix parameters. Perhaps

unsurprisingly—given that the default priors imply fewer dispersal routes and a lower num-

ber of dispersal events—posterior-mean estimates under the default-prior models are system-

atically much lower than those inferred under the alternative-prior models.

The Impact of Prior Choice on the Inferred Support for Dispersal Routes.

Empirical studies often focus on the evidential support for dispersal routes between each pair

of geographic areas; these inferences are intended to identify the set of dispersal routes that

were important in the geographic spread of the pathogen. This involves computing Bayes fac-

tors for each of the dispersal-rate parameters in the biogeographic model. Above, we computed

Bayes factors for models as the difference in their log marginal likelihoods; an alternative (but

equivalent) formulation is to compute the ratio of the posterior and prior odds for two alterna-

tive models. For each dispersal-rate parameter in the Q matrix, we compute the Bayes factor

as:

BFij =
P(δij = 1 | G)

P(δij = 0 | G)
÷ P(δij = 1)

P(δij = 0)
,
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Figure 1.6: The impact of prior choice on the inferred support for dispersal routes. The left panel compares the
evidential support for dispersal routes under the default (orange) and alternative (blue) prior models for the H3N2
influenza virus dataset (Bedford et al. 2015). Each bar indicates the 2 ln BF (Bayes factor) for the corresponding
dispersal route between two geographic areas; only “significant” dispersal routes (i.e., 2 ln BF > 2) are figured. Some
dispersal routes identified as significant under the default-prior model have no support under the alternative-prior
model, and vice versa. Additionally, the rank order of dispersal routes according to their Bayes-factor support differs
between the default- and alternative-prior models. The right panel plots the 2 ln BF for each dispersal route under
the default (y-axis) alternative (x-axis) prior models across all empirical datasets. Note that, under the alternative-
prior model, many dispersal routes have equivocal Bayes-factor support (i.e., −2 ≤ 2 ln BF ≤ 2); conversely, Bayes
factors under the default-prior model tend to be larger than those under the alternative-prior model (dots above the
diagonal indicate greater support under the default-prior model compared to the alternative-prior model).
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where P(δij = 1) is the prior probability that the dispersal route exists, and P(δij = 1 | G) is

the posterior probability that the dispersal route exists, which is computed as the fraction of

MCMC samples for which δij = 1. This formulation of the Bayes factor captures the degree to

which our beliefs in the existence of a dispersal route changed after observing the geographic

data. Because the default-prior model focuses on biogeographic models with a small number of

dispersal routes, the prior probability that each dispersal route exists is correspondingly small.

As a result, we expect the default-prior model to increase the apparent Bayes-factor support for

individual dispersal routes.

Our analyses of the H3N2 influenza virus dataset (Bedford et al. 2015) illustrate the im-

pact of the default- and alternative-prior models on the inferred support for dispersal routes

(Fig. 1.6, left panel). Specifically, Bayes factors inferred under the default-prior model are much

higher than those inferred under the alternative-prior model; e.g., of the 38 dispersal routes

that are decisively supported under the default-prior model (i.e. where 2 ln BF ≥ 10), only 15

of those routes are decisively supported under the alternative-prior model. Additionally, the

rank order of these decisively supported dispersal routes differs markedly under the two prior

models. The impact of prior choice on the estimated support for individual dispersal routes

is pervasive across all of the empirical datasets (Fig. 1.6, right panel). The scale of the Bayes

factors inferred under the default-prior model is much higher than that under the alternative-

prior model, which is consistent with the fact that the prior ratio is smaller for a given dispersal

route under the default-prior model.

The Impact of Prior Choice on the Inferred Biogeographic History.

Empirical studies frequently report summaries that are based on the conditional probability

distribution of biogeographic histories over the tree. The distribution of histories depends

on—i.e., is conditioned on—the instantaneous-rate matrix, Q, the biogeographic data, G, and

the phylogeny, Ψ. Conceptually, for a given tree and rate matrix, we imagine simulating a

geographic history over the tree from the root to its tips, where the rate matrix specifies the

waiting times between dispersal events. We can construct the conditional distribution of bio-

geographic histories by simulating a large number of individual histories, and retaining only

those histories that realize the observed geographic areas at the tips, G. This conditional distri-

bution contains all of the information required to compute two commonly reported summaries:

the ancestral areas at internal nodes of the tree, and the number of dispersal events between ge-
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Figure 1.7: The impact of prior choice on ancestral-area estimates. The left panel compares the posterior proba-
bilities for the geographic source of the Washington state outbreak clade of SARS-CoV-2 inferred under the default-
and alternative-prior models for the SARS-CoV-2 Global dataset (Gao et al. 2022). Under the default-prior model,
the virus is inferred to be introduced from Western North America to the Washington state with very high prob-
ability (90.8%); under the alternative-prior model, it is almost equally probable that SARS-CoV-2 was introduced
to Washington from either Western North America (37.4%) or China (subarea combined, 38.7%). The right panel
plots the posterior probability of the most probable ancestral area under the default-prior model for each node
across all datasets (y-axis) against the corresponding posterior probability of that area under the alternative-prior
model (x-axis). The summary statistic p denotes the fraction of internal nodes that are shared under the default-
and alternative-prior models; f is the fraction of shared nodes where the MAP ancestral area differs under the
default- and alternative-prior models. Note that the posterior probability of the MAP ancestral area inferred under
the default-prior model is generally higher than that under the alternative-prior model.

ographic areas. Because these summaries depend on the rate matrix, which in turn is sensitive

to the choice of prior (Fig. 1.5), we expect the choice of prior model to have a corresponding

influence on these summaries. We detail the impacts of default- and alternative-prior models

on each of these commonly reported summaries below.

Many studies aim to infer the probability that a pathogen occurred in each of the k geo-

graphic areas at internal nodes of the tree (including the root), e.g., to infer the point of origin

of an epidemic. The probability that a given node was in a particular area is simply the frac-

tion of conditional histories where the node was in that area. Our reanalysis of the SARS-CoV-2

Global dataset (Gao et al. 2022) reveals that the choice of prior model may exert a strong impact

on estimates of ancestral areas. For example, the most probable ancestral area to the “Wash-

ington state outbreak clade”—the earliest documented community COVID-19 outbreak in the

United States (Bedford et al. 2020; Worobey et al. 2020)—is Western North America (poste-

rior probability 90.8%) under the default-prior model, while Western North America (posterior

probability 37.4%) and China (posterior probability 38.7% combining subareas) are effectively

equally probable under the alternative-prior model (Fig. 1.7, left panel). This impact is preva-

lent across the 14 datasets. The choice of prior not only impacted the inferred probability of the
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most probable area at an internal node, but in some fraction of cases (≈9%) also changed the

identity of the most probable ancestral area (Fig. 1.7, right panel).

Empirical phylodynamic studies often infer the number of dispersal events between each

pair of areas, e.g., to understand whether a given area is a major source of viral outbreaks. A

given geographic history includes the number of dispersal events between each pair of areas;

therefore, we can compute the average number of dispersal events between each pair of areas

as the posterior-mean number of events over the conditional distribution of histories. The

choice of prior model exerts a strong influence on estimates of the number of dispersal events.

For example, our analyses of the SARS-CoV-2 Brazil dataset (Candido et al. 2020) inferred São

Paulo to be the only major source of SARS-CoV-2 dispersal within Brazil under the default-

prior model, as 84.6% of the domestic dispersal events originated from it (compared to the

second largest source, Rio de Janeiro, with only 3.7%). Conversely, six areas are inferred to
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Figure 1.8: The impact of prior choice on the inferred number of dispersal events between areas. The left panel
compares the number of dispersal events inferred under the default (orange) and alternative (blue) prior models
for the SARS-CoV-2 Brazil dataset (Candido et al. 2020). Each bar indicates the estimated fraction of domestic dis-
persal events originated from each area in Brazil (mean [bar height] and 95% credible interval [whiskers]). Under
the default-prior model, São Paulo is inferred to be the only major source of SARS-CoV-2 dispersal within Brazil as
84.6% of the domestic dispersal events originated from it (compared to the second largest source, Rio de Janeiro,
with only 3.7%). Conversely, under the alternative-prior model, we inferred that only 19.4% of the domestic dis-
persal events originated from São Paulo, while five other areas each occupies a fraction that is �5%, including
two areas in Southeast Brazil (Minas Gerais [13.2%] and Rio de Janeiro [9.4%]), two areas in South Brazil (Santa
Catarina [10.7%] and Rio Grande do Sul [9.5%]), and one area in Central-West Brazil (Distrito Federal [9.0%]). Note
that the rank order of dispersal routes according to their inferred fraction of dispersal events differs between the
default- and alternative-prior models. The right panel plots the number of dispersal events across each dispersal
route inferred under the default (y-axis) and alternative (x-axis) prior models across all empirical datasets. On av-
erage, the inferred number of dispersal events under the alternative-prior model is larger than that inferred under
the default-prior model. As for the SARS-CoV-2 Brazil dataset, the number of dispersal events over the dispersal
routes that are inferred with very small number of dispersal events are inferred to be generally much larger under
the alternative-prior model.
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have �5% of the domestic dispersal events originated from each of them, among which São

Paulo is the source of only 19.4% of all the domestic dispersal events (Fig. 1.8, left panel). The

impact of prior choice on the inferred number of dispersal events was pervasive across all of

our empirical datasets. As might be expected from the default prior on the number of events,

we infer a larger number of dispersal events under the alternative-prior model (Fig. 1.8, right

panel).

DISCUSSION

The development of Bayesian biogeographic models has the potential to transform our ability

to study pathogen biology. The complexity of these biogeographic models is both an asset and

a liability. It is an asset because these complex models provide the ability to describe com-

plex biogeographic processes. It is a liability because the biogeographic inference under these

models inherently involves minimal information (i.e., the single geographic area in which each

pathogen occurs), which renders the posterior estimates sensitive to the choice of priors. More-

over, the complexity of these biogeographic models obscures the biological interpretation of

their parameters, which makes it difficult to formulate biologically sensible prior beliefs about

these parameter values. We suspect this underlies the fact that the vast majority of empirical

phylodynamic biogeographic studies (≈93%) have assumed default priors.

In the present study, we have demonstrated that the default priors on the average dispersal

rate and the number of dispersal routes implemented in BEAST imply biologically unrealistic

assumptions about the biogeographic process (Figs. 1.3 and 1.4). We have presented empirical

evidence demonstrating that these default priors are in fact biologically unrealistic, i.e., they

are strongly disfavored by all of the empirical datasets that we evaluated (Tables 1.1 and S.1.2).

We have also demonstrated the consequences of these strongly misinformative priors; their

use qualitatively changes our understanding of many key aspects of pathogen biogeographic

history, including inferences of relative dispersal rate between areas, the number of significant

dispersal routes, the ancestral geographic areas, and the number of dispersal events between

areas (Figures 1.5–1.8).

The results of our study highlight the need to adopt—and offer insights on—best practices

for empirical phylodynamic studies. For all of the empirical datasets in our study (which are

typical examples of empirical datasets, see Fig. 1.1), the choice of prior had a strong impact on
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commonly reported biogeographic inferences. For any given empirical dataset, however, the

impact of prior choice remains an open question. To be clear, the alternative priors explored in

our study should not be treated as a panacea; rather, empirical biogeographic analyses should

consider the biological meaning of alternative prior models, and assess their impact on a case-

by-case basis. This first requires establishing a clear connection between the parameters of the

biogeographic model and the implied process of biogeographic evolution. To this end, we have

attempted to clarify the biological interpretation of the parameters (and their corresponding

priors) of these biogeographic models. The next step is to evaluate the empirical impact of

alternative prior models. For example, empirical biogeographic studies could adopt a robust

Bayesian approach, i.e., to assess the sensitivity of biogeographic inferences to alternative prior

choices. To estimate the posterior under a set of k candidate prior models requires only a

modest k-fold increase in computation.

The results of our study also highlight priorities for developers of statistical phylody-

namic methods. A short-term priority is to provide tools for empirical users to visualize

the biological implications of various prior models, to develop prior models that are moti-

vated by biological processes, and to specify such prior models in inferences with popular

phylogenetic programs (e.g., BEAST). We have developed such a tool, PrioriTree (https:

//github.com/jsigao/prioritree), as an early attempt; PrioriTree allows users to explore

the biological consequences under various biogeographic models and customizable prior dis-

tributions, meanwhile generating readily runnable BEAST XML script on the fly. This tool also

provides an accessible way for users to configure further BEAST inferences—e.g., marginal like-

lihood estimation—to evaluate the empirical impact of alternative prior models, following the

procedure adopted in this study. We describe the details of PrioriTree in Chapter 2.

We are optimistic that rigorous empirical application of current phylodynamic models, and

focused efforts to develop novel phylodynamic approaches, will help advance our understand-

ing of pathogen biology and minimize the impact of infectious disease.

DATA AND CODE AVAILABILITY

The sequence, sampling time and geography data used in this study, as well as the phylogenies

we marginalized over or conditioned on in the biogeographic inference, are maintained in the

GitHub repository (https://github.com/jsigao/prior_misspecification_phylodynamic_
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biogeography) and archived in the Dryad repository (https://datadryad.org/stash/share/

7Rd5kdTh7V66w9XefTuSeoui0LLv6LAwcY_5buMwUZU). Our repositories also contain BEAST XML

scripts used to perform the phylodynamic analyses and R scripts used to post process the anal-

yses and perform posterior-predictive simulation.
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SUPPLEMENTARY MATERIAL

Supplemental Figures and Tables for the Main Text

Priors on the Number of Dispersal Routes: Asymmetric Model
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Figure S.1.1: Prior probability on dispersal routes under the asymmetric geographic model. The left panel illus-
trates the default (orange) and alternative (blue) prior distributions on the total number of dispersal routes, ∆, as
a function of the number of areas, k. The default-prior distributions are highly focused on the minimal number
of dispersal routes, (k− 1), whereas the alternative-prior distributions are centered on an intermediate number of
dispersal routes (i.e., the expected number of dispersal routes is half the maximum number). The right panel il-
lustrates the prior probability under the default (orange) and alternative (blue) prior models that a given dispersal
route exists (i.e., δij = 1) as a function of the total number of areas, k. Under the default-prior model, the probability
that a given dispersal route exists drops rapidly for moderately large (and common) values of k, whereas under the
alternative-prior model, this probability remains constant for all values of k.

Table S.1.1: Default and alternative prior specifications.

Parameter Model Default Alternative

Number of dispersal routes, ∆
Symmetric [∆− (k− 1)] ∼ Pois(ln 2) [∆− (k− 1)] ∼ Pois(d k(k−5)

4 + 1e)
Asymmetric ∆ ∼ Pois(k− 1) ∆ ∼ Pois( k(k−1)

2 )

Average dispersal rate, µ —
µ ∼ Γ(0.5, T)

(i.e., CTMC-rate reference)

µ ∼ Exp(1/λ)

λ ∼ Γ(0.5, 0.5)
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Assessing the Fit of Default- and Alternative-Prior Models to Empirical Datasets

Using Bayes Factors to Assess Relative Model Fit

Table S.1.2: Assessing the relative fit of all eight candidate biogeographic models to the 14 empirical datasets.
For each dataset we computed the marginal likelihood for the eight candiate models corresponding to all possible
combinations of: (1) default and alternative priors on the average rate of dispersal, µ; (2) default and alternative
priors on the number of dispersal routes, ∆, and; (3) symmetric and asymmetric biogeographic models. For each
dataset, we computed twice the log Bayes factors (2 ln BF) between each model and the best model (i.e., the model
with the highest marginal likelihood; blue cells). For each dataset, N is the number of sequences (i.e., tips), and k is
the number of biogeographic areas.

P(µ) default P(µ) alternative

P(∆) default P(∆) alternative P(∆) default P(∆) alternative

Dataset* N k Qs Qa Qs Qa Qs Qa Qs Qa

1 62 23−86.33 −91.04 −47.80 −47.03 −10.54 −22.53 0.00 −1.78

2 209 8 −32.52 −30.56 −25.91 −23.27 −9.12 −4.55 −1.88 0.00

3 183 7 −84.72 −96.15 −81.45 −89.27 −18.42 0.00 −18.50 −2.74

4 96 7 −29.79 −32.50 −25.20 −26.02 −2.72 −4.85 0.00 −1.08

5 792 8 −277.54 −284.58 −275.52 −279.72 −36.33 −8.96 −26.09 0.00

6 927 10−343.58 −292.50 −340.53 −291.05 −46.51 −8.46 −42.63 0.00

7 466 8 −264.37 −221.78 −262.28 −217.02 −6.47 −11.93 −3.29 0.00

8 1391 9 −1223.03 −1199.55 −1125.60 −1101.86 −70.98 −55.88 −9.77 0.00

9 1240 9 −957.42 −923.08 −870.67 −840.93 −114.60 −54.48 −51.26 0.00

10 141 18−122.46 −103.52 −82.88 −78.19 −22.35 −17.00 −0.87 0.00

11 1271 23−799.28 −730.56 −685.88 −687.87 −191.91 −8.26 −79.71 0.00

12 1908 22−659.32 −536.01 −515.86 −493.10 −252.06 −22.00 −142.19 0.00

13 1182 10−486.13 −431.21 −456.26 −410.96 −126.13 −33.07 −80.22 0.00

14 1182 22−308.19 −294.45 −267.17 −264.91 −137.99 −8.57 −45.28 0.00

* Dataset sources: 1) Dengue virus from Dash et al. (2015); 2–4) Deformed wing virus from Wilfert et al. (2016); 5–7)

HIV from Faria et al. (2014); 8–9) Seasonal Influenza viruses from Bedford et al. (2015); 10) Rabies virus from Yao

et al. (2015); 11) SARS-CoV-2 (Global) from Gao et al. (2022); 12) SARS-CoV-2 (B.1.1.7 USA) from Alpert et al.

(2021), and; 13–14) SARS-CoV-2 (Brazil) from Candido et al. (2020).
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Using Posterior-Predictive Simulation to Assess Absolute Model Fit

Table S.1.3: Assessing the adequacy of all eight candidate biogeographic models for the 14 empirical datasets
using the parsimony statistic. Each row summarizes model adequacy for a given dataset (numbered as described
in Table S.1.2). For each dataset, N is the number of sequences (i.e., tips), and k is the number of biogeographic areas.
Each column lists the posterior-predictive p-values for a given prior model (notation follows Table S.1.2) based on
the parsimony summary statistic. Red p-values indicate that the model is inadequate at the 95% level.

P(µ) default P(µ) alternative

P(∆) default P(∆) alternative P(∆) default P(∆) alternative

Dataset N k Qs Qa Qs Qa Qs Qa Qs Qa

1 62 23 0.00 0.00 0.00 0.00 0.93 0.33 0.74 0.64

2 209 8 0.01 0.01 0.01 0.01 0.51 0.43 0.47 0.43

3 183 7 0.00 0.00 0.00 0.00 0.71 0.10 0.64 0.11

4 96 7 0.01 0.01 0.01 0.00 0.46 0.27 0.43 0.25

5 792 8 0.00 0.00 0.00 0.00 0.08 0.51 0.09 0.58

6 927 10 0.00 0.00 0.00 0.00 0.21 0.36 0.23 0.39

7 466 8 0.00 0.00 0.00 0.00 0.07 0.08 0.08 0.08

8 1391 9 0.00 0.00 0.00 0.00 0.68 0.15 0.47 0.11

9 1240 9 0.00 0.00 0.00 0.00 0.75 0.34 0.57 0.28

10 141 18 0.00 0.00 0.00 0.00 0.62 0.13 0.51 0.32

11 1271 23 0.00 0.00 0.00 0.00 0.50 0.45 0.14 0.43

12 1908 22 0.00 0.01 0.00 0.00 0.78 0.57 0.85 0.88

13 1182 10 0.00 0.00 0.00 0.00 0.42 0.52 0.31 0.58

14 1182 22 0.00 0.00 0.00 0.00 0.94 0.85 0.89 0.95
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Table S.1.4: Assessing the adequacy of all eight candidate biogeographic models for the 14 empirical datasets
using the tip-wise multinomial statistic. Each row summarizes model adequacy for a given dataset (numbered
as described in Table S.1.2). For each dataset, N is the number of sequences (i.e., tips), and k is the number of
biogeographic areas. Each column lists the posterior-predictive p-values for a given prior model (notation follows
Table S.1.2) based on the tip-wise multinomial statistic. Red p-values indicate that the model is inadequate at the
95% level.

P(µ) default P(µ) alternative

P(∆) default P(∆) alternative P(∆) default P(∆) alternative

Dataset N k Qs Qa Qs Qa Qs Qa Qs Qa

1 62 23 1.00 1.00 1.00 1.00 0.46 0.96 0.44 0.62

2 209 8 0.98 0.97 0.96 0.96 0.70 0.80 0.59 0.61

3 183 7 0.91 0.96 0.88 0.93 0.18 0.93 0.21 0.89

4 96 7 1.00 1.00 1.00 1.00 0.92 0.97 0.89 0.94

5 792 8 0.98 0.92 0.97 0.93 0.87 0.75 0.81 0.58

6 927 10 1.00 1.00 1.00 1.00 0.98 0.99 0.96 0.93

7 466 8 1.00 0.99 1.00 0.99 0.96 0.96 0.96 0.95

8 1391 9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

9 1240 9 1.00 1.00 1.00 1.00 0.39 0.99 0.40 0.98

10 141 18 1.00 1.00 1.00 1.00 0.97 1.00 0.92 0.96

11 1271 23 1.00 1.00 1.00 1.00 0.77 0.99 0.51 0.90

12 1908 22 0.97 0.95 0.96 0.96 0.42 0.72 0.19 0.19

13 1182 10 0.91 0.95 0.91 0.95 0.40 0.68 0.20 0.52

14 1182 22 0.89 0.94 0.84 0.89 0.06 0.22 0.02 0.09

22



1 2 3 4 5 6 7 8 9 10 11 12 13 14

−
40

0
−

20
0

0
20

0

pa
rs

im
on

y 
st

at
is

tic

default−prior model
alternative−prior model

1 2 3 4 5 6 7 8 9 10 11 12 13 14

−
20

00
−

10
00

0
10

00
20

00
30

00

tip
−

w
is

e 
m

ul
tin

om
ia

l s
ta

tis
tic

dataset

Figure S.1.2: Posterior-predictive distributions of the parsimony statistic (top panel) and the tip-wise multino-
mial statistic (bottom panel) under the preferred default- and alternative-prior models for all datasets. Each
column depicts estimates for one of the 14 datasets (numbered as described in Table S.1.2). Within each column, the
pair of boxplots depicts the posterior-predictive distributions of the summary statistic under the default (orange)
and alternative (blue) prior models: the center of each box is the median predictive value of the summary statistic;
the box and whiskers indicate the corresponding 50% and 95% posterior-predictive intervals, respectively. The hor-
izontal dashed line indicates when the simulated and observed datasets produce identical value for the summary
statistic. A model is judged to be inadequate (i.e., incapable of generating geographic datasets that are similar to the
observed data) if its 95% posterior-predictive interval does not overlap with the dashed line. Importantly, posterior-
predictive simulation allows us to compare the absolute fit of the candidate models to the 14 geographic datasets:
the preferred default prior models (orange) are always inadequate, whereas the preferred alternative prior models
(blue) are almost always adequate.
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Figure S.1.3: Posterior-predictive distributions of the parsimony statistic (top panel) and the tip-wise multino-
mial statistic (bottom panel) under each of the eight prior models for all datasets. Each column depicts estimates
for one of the 14 datasets (numbered as described in Table S.1.2). Within each column, the set of 8 boxplots depicts
the posterior-predictive distributions of the summary statistic under each of the 8 prior models: the center of each
box is the median predictive value of the summary statistic; the box and whiskers indicate the corresponding 50%
and 95% posterior-predictive intervals, respectively. The horizontal dashed line indicates when the simulated and
observed datasets produce identical value for the summary statistic. A model is judged to be inadequate (i.e., inca-
pable of generating geographic datasets that are similar to the observed data) if its 95% posterior-predictive interval
does not overlap with the dashed line.
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Joint and Sequential Bayesian Phylodynamic Inference

For simplicity, our description of the biogeographic model in the main text assumes that the

phylogeny, Ψ, is known without error. However, empirical applications typically embed this

biogeographic model in a larger “phylodynamic” model, which jointly models multiple as-

pects of epidemiological evolution, namely: (1) the diversification model, with parameters θΨ

that describe the branching process that generates the phylogeny; (2) the substitution model,

with parameters θS that describe the process of molecular evolution over the branches of the

tree, and; (3) the geographic model, with parameters θG = {r, δ, µ} that describe the dispersal of

pathogens among areas. The resulting joint posterior density for the full phylodynamic model

can be written as:

P(Ψ, θΨ, θS, θG | X, G) =
P(X, G | Ψ, θΨ, θS, θG)P(Ψ, θΨ, θS, θG)

P(X, G)
, (S.1.1)

where X is an alignment of molecular sequence data and G is the geographic data. Conditional

on the phylogeny, the processes of molecular and geographic evolution are assumed to be in-

dependent. Combined with an assumption that the parameters of the three model components

are independent a priori, eq. S.1.1 can be written:

P(Ψ, θΨ, θS, θG | X, G) =
P(X | Ψ, θS)P(G | Ψ, θG)P(Ψ | θΨ)P(θΨ)P(θS)P(θG)

P(X, G)
. (S.1.2)

In principle, this joint posterior density can be approximated using Markov chain Monte

Carlo (MCMC). However, owing to the complexity of the joint model, these MCMC analyses

may perform poorly in practice. To simplify the MCMC, it is possible to perform a “sequen-

tial” analysis consisting of two steps that together are equivalent to a joint analysis. The first

step estimates the joint posterior density of phylogenies, diversification-model parameters, and

substitution-model parameters:

P(Ψ, θΨ, θS | X) =
P(X | Ψ, θS)P(Ψ | θΨ)P(θΨ)P(θS)

P(X)
; (S.1.3)

this joint posterior density is approximated using MCMC. The second step uses the marginal

posterior density of phylogenies from the first step as a prior to estimate the joint posterior

distribution of the geographic-model parameters:

P(Ψ, θG | G) =
P(G | Ψ, θG)P(Ψ)P(θG)

P(G)
, (S.1.4)
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where P(Ψ) corresponds to the marginal posterior distribution of phylogenies from the first

step, P(Ψ | X). Again, this joint posterior density is estimated using MCMC. Proposals for the

phylogeny are made by drawing a new phylogeny, Ψ′, from the marginal prior distribution,

P(Ψ | X), and accepting the proposal with probability:

A = min

[
1,

P(G | Ψ′, θG)P(Ψ′)
P(G | Ψ, θG)P(Ψ)

× P(Ψ | X)

P(Ψ′ | X)

]
. (S.1.5)

Recognizing that each sample from the joint posterior distribution in second step is associ-

ated with a sample of Ψ from the first step, we can reconstitute the full joint posterior distri-

bution (eq. S.1.1). That is, for the ith sample from the posterior distribution of the second step

with phylogeny Ψi, we can find the sample of the first step associated with Ψi, and “attach” the

corresponding sample of parameters from the first step to the ith sample of the second step. The

resulting distribution of samples is theoretically equivalent to the joint posterior distribution of

the full model (i.e., the sequential analysis is theoretically equivalent to the joint analysis).

We note that BEAST provides two options for performing sequential analysis through

empiricalTreeDistributionModel. The first option, evoked with the argument

MetropolisHastings = "true" of the empiricalTreeDistributionOperator, uses the

proposal mechanism described above and uses eq. S.1.5 to accept or reject proposals on

the tree. The second option, evoked with the argument MetropolisHastings = "false",

proposes new trees by drawing them from the marginal prior density, and then accepts the

proposed tree with probability 1. The second option does not result in an ergodic Markov

chain with a stationary distribution equivalent to eq. S.1.4, and therefore is not equivalent

to a full joint phylodynamic analysis (eq. S.1.1). For this reason, we use the argument

MetropolisHastings = "true" for all empirical analyses described below.
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Analyses of Empirical Datasets

General Analysis Protocol

To explore the empirical consequences arising from our theoretical concerns with the infor-

mative default priors, we collected 14 datasets from published empirical studies (see Table

S.1.5), and reanalyzed each dataset using the sequential approach under a suite of biogeo-

graphic models, including all combinations of: (1) a symmetric and asymmetric rate matrix; (2)

default and alternative priors on the number of dispersal routes; and (3) default and alterna-

tive priors on the average dispersal rate. We provide details of these two prior models in the

Theoretical Concerns section of the main text and in Table S.1.1.

Table S.1.5: Empirical datasets information.

Study Virus Dataset N k

Dash et al. (2015) Dengue — 62 23

Wilfert et al. (2016) DWV

lp 209 8

rdrp 183 7

vp3 96 7

Faria et al. (2014) HIV

A 792 8

B 927 10

C 466 8

Bedford et al. (2015) Influenza
H3 1391 9

Yam 1240 9

Yao et al. (2015) Rabies — 141 18

Gao et al. (2022) SARS-CoV-2 Global 1271 23

Alpert et al. (2021) SARS-CoV-2 B.1.1.7 US 1908 22

Candido et al. (2020) SARS-CoV-2
Brazil SchemeB 1182 10

Brazil SchemeC 1182 22

Estimating the Marginal Posterior Distribution of Phylogenies from Molecular Sequence Data,

P(Ψ | X)

The marginal posterior distribution of trees inferred in three of the empirical studies (Faria

et al. 2014; Bedford et al. 2015; Candido et al. 2020) were available directly; we used these
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posterior distributions of trees as the corresponding prior distributions for the second step of

our sequential phylodynamic analyses. For the SARS-CoV-2 Global dataset (Gao et al. 2022), we

conditioned the subsequent phylodynamic analyses on the maximum clade credibility (MCC)

tree summarized from the marginal posterior distribution to ensure numerical stability of the

analyses. We also conditioned on the MCC tree for the SARS-CoV-2 B.1.1.7 US dataset (Alpert

et al. 2021) as original empirical study conditioned on that tree (instead of averaging over the

marginal posterior distribution of trees).

The posterior distributions of trees were not published for the remainder of the empirical

studies; accordingly, in these cases we first inferred the posterior distributions of trees from

the corresponding sequence data, and then used the resulting posterior distributions of trees

as the prior distributions in the second step of our sequential phylodynamic analyses. For each

of these latter studies, we obtained the nucleotide sequences and sampling-time information

from the original studies. When only the raw sequence data were available for a given study,

we inferred the sequence alignment using MUSCLE version 3.8 (Edgar 2004). For each of the five

(published or inferred) sequence alignments, we inferred the posterior probability density of

trees under the identical diversification and substitution models as those used in the original

studies, and then performed MCMC simulations to approximate the joint posterior distribution

using BEAST version 1.8.2 (Drummond et al. 2012) (with BEAGLE version 3.1.2 [Ayres et al. 2019]

enabled). Details of these analyses are available in the XML scripts included in our GitHub

and Dryad repositories. For each dataset, we performed four replicate MCMC simulations;

we set the length (100–200 million generations) and sampling frequency of each simulation to

values that provided an adequate approximation of the posterior distribution of model param-

eters. We combined the posterior samples of trees from the four replicate simulations (after

discarding burnin samples from each simulation) using LogCombiner version 1.8.2. We then

subsampled the resulting composite posterior sample of trees to retain a total of 500–1000 trees

(available in our GitHub and Dryad repositories); we used this posterior sample of trees as

the prior distribution for the second step of the corresponding sequential analyses (detailed

below).

Estimating the Joint Posterior Distribution of Geographic-Model Parameters, P(r, δ, µ, Ψ | G)

For each empirical dataset, we performed MCMC simulations to infer the joint posterior prob-

ability distribution under each prior model using BEAST version 1.8.2 (Drummond et al. 2012),
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with BEAGLE version 3.1.2 (Ayres et al. 2019) enabled (except for the SARS-CoV-2 datasets, for

which we used BEAST version 1.10.5 with BEAGLE version 3.2.0). For each candidate model,

we performed four replicate MCMC simulations; we set the length (10–50 million generations)

and sampling frequency of each MCMC simulation to values that provided an adequate ap-

proximation of the posterior distribution of the geographic-model parameters. Details of these

analyses are available in the XML scripts included in our GitHub and Dryad repositories. In

these repositories, we also provide R scripts that can be used to generate the XML scripts.

We then discarded burnin samples drawn from the first 5–20% of each MCMC simulation,

and then combined the remaining samples from the four replicate MCMC simulations using

LogCombiner version 1.8.2. Finally, we generated the MCC tree from the composite posterior

sample for each unique analysis using TreeAnnotator version 1.8.2.

Estimating the Posterior Distribution of Biogeographic History

We estimated the ancestral area at each internal node using the ancestral-state estimation al-

gorithm (Yang 2014) implemented in BEAST. We calculated the expected number of dispersal

events between each pair of areas using the “fast stochastic-mapping algorithm” developed

by Minin and Suchard (2008a, see also Minin and Suchard 2008b, O’Brien et al. 2009) imple-

mented in BEAST. The exceptions are SARS-CoV-2 datasets, where we inferred the number of

dispersal events between each pair of areas by simulating the full biogeographic history us-

ing the stochastic-mapping algorithm Nielsen (2002); Hobolth and Stone (2009) implemented

in BEAST. These two statistics were computed during the MCMC simulation used to infer the

joint posterior distribution of geographic-model parameters, P(r, δ, µ, Ψ | G) (i.e., in the second

step of our sequential analyses).

Estimating Marginal Likelihoods, P(G)

We used Bayes factors to evaluate the relative fit of each candidate prior model to each of

the biogeographic datasets; to this end, we estimated the marginal likelihood for each prior

model using both thermodynamic integration (Lartillot and Philippe 2006) and stepping-stone

sampling (Xie et al. 2011; Baele et al. 2012). We ran four independent series of power-posterior

simulations to estimate the marginal likelihood of each prior model. We set the chain length

and sampling frequency of the power-posterior analysis at each stone, as well as the number

of stones, to achieve stable marginal-likelihood estimates (both among the four replicates and
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also between thermodynamic integration and stepping-stone sampling estimators). Details of

these analyses are available in the XML scripts included in our GitHub and Dryad repositories.

Posterior-Predictive Simulations

We used posterior-predictive simulation to evaluate the absolute fit of each candidate prior

model to each of the biogeographic datasets (Gelman et al. 1996; Bollback 2002). For each

model and dataset combination, we combined the four MCMC replicates and simulated

m = 2500 predictive datasets. For each predictive dataset, Gsim
i , we drew a vector of parame-

ters, θi = {Ψi, ri, δi, µi}, at random from the combined MCMC samples, and simulated a dataset

conditional on those parameters using the sim.history() function in the R package phytools

(Revell 2012). We then calculated a difference statistic for the ith simulated dataset as:

Di = T(Gsim
i | θi)− T(Gobs | θi),

where Gobs is the observed biogeographic dataset, and T(· | θi) is a summary statistic (detailed

below). For the m predictive datasets for a given model and dataset combination, we calculated

the posterior-predictive p-value as:

P =

[
1
m

m

∑
i=1

Di > 0

]
+

[
1
2

1
m

m

∑
i=1

Di = 0

]
,

where the first term measures the fraction of simulated statistics that are more extreme than the

observed statistic, and the second term measures half the fraction of simulated statistics that

are equal to the observed statisic (to accommodate discrete summary statistics, as described by

Gelman et al. 2013). Posterior-predictive p-values between 0.025 and 0.975 indicating that the

model is adequate and cannot be rejected (i.e., the observed statistic is within the 95% posterior-

predictive interval).

We used two summary statistics to assess model adequacy: (1) the parsimony statistic, and;

(2) the tip-wise multinomial statistic. We calculated the posterior-predictive p-value for both of

these statistics for each model and dataset combination. For the parsimony statistic, we simply

calculated the parsimony score for the given simulated or observed dataset, conditional on the

sampled tree, Ψi, using the parsimony() function in R package phangorn (Schliep 2010). The

tip-wise multinomial statistic is similar to the multinomial statistic introduced by Goldman

(1993) and used in posterior-predictive simulation by Bollback (2002), which treats the sites

(columns) in a molecular alignment as outcomes of a multinomial trial. Our tip-wise statistic is
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similar, but treats the states at the tips of the tree for the single geographic character (i.e., site)

as the outcomes of the multinomial trial. For the tip-wise multinomial statistic, we calculated:

T(G | θi) =
k

∑
i=1

ni ln(ni/n),

where n is the number of tips, and ni is the number of tips in state i. (Note that this statistic is

also similar to the entropy statistic used to assess genetic variability along sequences; Shannon

1948; Schneider et al. 1986). Details about the computation of these two summary statistics are

available in the R script included in our GitHub and Dryad repositories.

Data Cloning

We explored the use of a computational technique called data cloning to understand the sen-

sitivity of posterior estimates to the choice of prior. Originally developed as a tool for using

MCMC to perform maximum-likelihood inference (Robert 1993), and later used as a tool for

understanding model identifiability for complex Bayesian models (Lele et al. 2007; Ponciano

et al. 2009, 2012), data cloning involves performing a sequence of MCMC analyses with an in-

creasing number of duplicates of the observed data. A particular MCMC in the sequence is

defined by the number of duplicated datasets, βi ≥ 1, with the resulting posterior distribution

being:

P(θ | X)βi ∝ P(X | θ)βi P(θ).

As βi → ∞ (assuming the model is identifiable), the joint posterior distribution converges to a

point that corresponds to the joint maximum-likelihood estimate (MLE); if the joint posterior

distribution does not converge to a point, then the model is non-identifiable (i.e., the MLE may

not be unique). When the model is identifiable, the rate at which the joint posterior distribution

converges to the MLE is proportional to the amount of information available in the data relative

to the strength of the prior, i.e., when the prior is extremely (mis)informative, convergence to

the MLE will be very slow.

We used data cloning to analyze each of the biogeographic datasets under the symmetric

default- and alternative-prior models, with β = {1, 5, 10, 20}. This is achieved by duplicating

the discrete-geography data in the BEAST XML scripts. These XML scripts are available in our

GitHub and Dryad repositories. In these repositories, we also provide R scripts that can be used

to generate the XML scripts.

31

https://github.com/jsigao/prior_misspecification_phylodynamic_biogeography
https://datadryad.org/stash/share/7Rd5kdTh7V66w9XefTuSeoui0LLv6LAwcY_5buMwUZU
https://github.com/jsigao/prior_misspecification_phylodynamic_biogeography
https://datadryad.org/stash/share/7Rd5kdTh7V66w9XefTuSeoui0LLv6LAwcY_5buMwUZU


To ensure good MCMC performance, we conducted the biogeographic inferences condi-

tioning on the MCC tree inferred using the sequence data. In all cases, the inferred posterior

distributions shrink as β increases. Under the alternative-prior model, the posterior-mean esti-

mates remain mostly constant as β increases (i.e., the posterior-mean estimates are almost iden-

tical to the MLEs). By contrast, the posterior-mean estimates under the default-prior model

change drastically as β increases, converging to the MLEs very slowly (Figs. S.1.12 and S.1.13).

These results indicate that the default-prior models exert much stronger influence on posterior

estimates relative to the alternative-prior models.

MCMC Diagnosis

After initial inspection of the output log files using Tracer version 1.7.1 (Rambaut et al. 2018),

we assessed MCMC performance using the coda package (Plummer et al. 2006) in R (R Core

Team 2020). Specifically, we assess mixing and adequacy within each MCMC replicate by cal-

culating the effective sample size (ESS) diagnostic for each continuous parameter (ensuring

ESS values� 100) after discarding the first 5–20% of samples from each replicate simulation as

the burn-in. We assessed convergence among replicate MCMC simulations by calculating the

potential scale reduction factor (PSRF Gelman and Rubin 1992) diagnostic for each continuous

parameter (ensuring R ≈ 1). We also assessed the convergence among replicates by calcu-

lating the ESS for each continuous parameter for each combined MCMC chain (independent

replicates combined after discarding the burn-in), ensuring the ESS values� 200.

Parameter Summaries

As described in the Empirical Consequences section of the main text, for each dataset we

summarized the following statistics: (1) marginal likelihood; (2) posterior-predictive summary

statistics; (3) rate of dispersal between each pair of areas; (4) support for dispersal routes be-

tween each pair of areas; (5) average dispersal rate among all areas; (6) ancestral area at each

internal node of the phylogeny; (7) total number of dispersal events among all areas, and;

(8) number of dispersal events between each pair of areas. The R scripts used to summarize

these statistics are available in our GitHub and Dryad repositories. We compared estimates of

these statistics across all candidate models to assess the impact of the default and alternative

priors. We report the meta summaries of these statistics across all the empirical datasets in this

section, and provide these summaries for each dataset in detail in this section.
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Expanded Meta Summaries of Empirical Analyses

In this section, we provide various summaries across all the empirical datasets. In the main

text, we focus on comparisons between the preferred default-prior model and the preferred

alternative-prior model; here, we provide results for pairwise comparisons between all the

eight candidate prior models.

The Impact of Prior Choice on Pairwise Dispersal Rates
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Figure S.1.4: The impact of prior choice on pairwise dispersal rates. Each cell of the plot compares posterior-mean
estimate of the rate of dispersal between each pair of geographic areas, qij, between each pair of prior models,
summarized across all datasets. Axis label notation for the prior models follows Table S.1.2.
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The Impact of Prior Choice on Average Dispersal Rate
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Figure S.1.5: The impact of prior choice on the average dispersal rate. Each column depicts estimates for one
empirical dataset (see Table S.1.5 for the description of datasets). Within each column, each pair of boxplots depicts
posterior estimates of the average dispersal rate, µ, under the default (orange) and alternative (blue) prior models:
the center of each box indicates the posterior-median rate; the box and whiskers indicate the corresponding 50%
and 95% credible intervals, respectively.
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Figure S.1.6: The impact of prior choice on the average dispersal rate. Each column depicts estimates for one
of the 14 datasets (description of datasets see Table S.1.5). Within each column, the set of eight boxplots depicts
posterior estimates of the average dispersal rate, µ, under the prior models: the center of each box indicates the
posterior-median rate; the box and whiskers indicate the corresponding 50% and 95% credible intervals.
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The Impact of Prior Choice on the Inferred Support for Dispersal Routes
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Figure S.1.7: The impact of prior choice on the inferred support for dispersal routes. Each cell of the plot compares
the inferred support (2 ln BF) for pairwise dispersal routes between each pair of prior models, summarized across
all datasets. Axis label notation for the prior models follows Table S.1.2.
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The Impact of Prior Choice on the Inferred Biogeographic History
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Figure S.1.8: The impact of prior choice on ancestral-area estimates. Each cell of the plot compares the estimated
posterior probability of the maximum a posteriori (MAP) ancestral area between each pair of prior models, sum-
marized across all datasets. Diagonal cells are comparisons between two replicates under the same prior model,
assessing the convergence of MCMC simulations; off-diagonal cells are comparisons between different prior mod-
els, demonstrating the impact of the prior model on both the posterior probability and the identity of the MAP
ancestral-area estimates at internal nodes. Pink dots represent the internal nodes where the MAP ancestral area
inferred under the default-prior model differs from that inferred under the alternative-prior models. The statistic p
denotes the fraction of internal nodes that are shared under the default- and alternative-prior models; f is the frac-
tion of shared nodes where the MAP ancestral area differs under the default- and alternative-prior models. Axis
label notation for the prior models follows Table S.1.2.
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Figure S.1.9: The impact of prior choice on the inferred number of dispersal events between each pair of areas.
Each cell of the plot compares the inferred number of pairwise dispersal events between each pair of prior models,
summarized across all datasets. Model notation on the axis follows Table S.1.2.
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Figure S.1.10: The impact of prior choice on the inferred total number of dispersal events between all areas. Each
column depicts estimates for one of the 14 datasets (description of datasets see Table S.1.5). Within each column, the
pair of boxplots depicts posterior estimates of the total number of dispersal events under the default (orange) and
alternative (blue) prior models: the center of each box indicates the posterior-median number of dispersal events;
the box and whiskers indicate the corresponding 50% and 95% credible intervals, respectively.
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Figure S.1.11: The impact of prior choice on the inferred total number of dispersal events between all areas. Each
column depicts estimates for one of the 14 datasets (description of datasets see Table S.1.5). Within each column,
the set of eight boxplots depicts posterior estimates of the total number of dispersal events under each of the prior
models: the center of each box indicates the posterior-median number of dispersal events; the box and whiskers
indicate the corresponding 50% and 95% credible intervals, respectively.
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Data Cloning
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Figure S.1.12: Using data cloning to explore the impact of prior choice on posterior estimates of the average
dispersal rate. Each column depicts estimates for one of the 14 datasets (description of datasets see Table S.1.5).
Within each column, the set of eight boxplots depicts posterior estimates inferred from the associated dataset that
has been cloned 1, 5, 10, 20 times: the center of each box indicates the posterior-median average dispersal rate; the
box and whiskers indicate the corresponding 50% and 95% credible intervals, respectively.
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Figure S.1.13: Exploring the impact of prior choice on posterior estimates of the number of dispersal routes via
data cloning. Each column depicts estimates for one of the 14 datasets (description of datasets see Table S.1.5).
Within each column, the set of eight boxplots depicts posterior estimates inferred from the associated dataset that
has been cloned 1, 5, 10, 20 times: the center of each box indicates the posterior-median number of dispersal events;
the box and whiskers indicate the corresponding 50% and 95% credible intervals, respectively.
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Expanded Dataset-Specific Summaries of Empirical Analyses

In this section, we provide dataset-specific summaries of the statistics we reported in the section

above. These results reveal a highly consistent pattern across all the datasets, further demon-

strating the widespread impact of prior misspecification in biogeographic inferences and the

universality of this issue.

Dengue Virus

Dash et al. (2015) studied the geographic dynamics of Dengue virus type 1 (DENV-1) in In-

dia and inferred the history by which this virus dispersed throughout the world. This study

contains a single dataset comprised of sequences of (part of) the envelope gene, sampled from

across a large number of distant geographic areas over a protracted sampling interval (1956–

2011). We acquired the sampling time and location data, as well as the GenBank accession num-

bers from the sequence names in the MCC tree figured in Dash et al. (2015, Fig. 3), and then

obtained the nucleotide sequences from GenBank. This dataset has 62 sequences distributed

among 23 defined geographic areas. We aligned the nucleotide sequences using MUSCLE version

3.8 (Edgar 2004). The files containing the GenBank accession numbers, the sequence alignment,

and the sampling time and location data are available in our GitHub and Dryad repositories.

To infer the marginal posterior distribution of phylogenies given the sequence alignment,

we specified a phylogenetic model with the following components: (1) the GTR+I+Γ4 substi-

tution model (Tavaré 1986; Yang 1994; Gu et al. 1995); (2) the uncorrelated lognormal (UCLN)

branch-rate prior model (Drummond et al. 2006; Rannala and Yang 2007), and; (3) the Gaus-

sian Markov Random Field (GMRF) Bayesian Skyride coalescent node-age model (Minin et al.

2008). Details of these analyses are available in the XML scripts included in our GitHub and

Dryad repositories.

We ran four independent MCMC simulations in BEAST version 1.8.2 for 200 million gen-

erations each, sampling every 15000 generations. We first assessed the performance of each

MCMC simulation using Tracer version 1.7.1 (Rambaut et al. 2018), removed the first 10% of

samples from each chain as the burn-in, and then combined the remaining posterior samples

of trees from the replicate simulations using LogCombiner version 1.8.2. This resulted in a pos-

terior sample of 1200 trees (available in our GitHub and Dryad repositories), which we then

used as the prior distribution of phylogenies for the second step of our sequential analyses.
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The MCMC simulations used in the second step of our sequential analyses and of the anal-

yses used to estimate marginal likelihoods under each prior model are described above in this

section. Details of these analyses are available in the XML scripts included in our GitHub and

Dryad repositories.

The Impact of Prior Choice on Biogeographic Model Fit

Table S.1.6: Marginal-likelihood estimates of the eight prior models for the Dengue virus dataset. Columns 2–5
list marginal likelihoods inferred from four replicate analyses; the last two columns list the mean and standard
deviation of these marginal-likelihood estimates. Candidate models are listed in rows and include all possible
combinations of: (1) instantaneous-rate matrices (symmetric, Qs or asymmetric, Qa); (2) priors on the average
dispersal rate [default, Pd(µ) or alternative, Pa(µ)], and; (3) priors on the number of dispersal routes [default, Pd(∆)
or alternative, Pa(∆)]. The preferred default- and alternative-prior models are indicated in bold text.

Model replicate1 replicate2 replicate3 replicate4 mean sd

Pd(µ)QaPd(∆) -193.12 -192.95 -192.90 -192.38 -192.84 0.32

Pd(µ)QaPa(∆) -170.72 -171.16 -170.55 -170.90 -170.83 0.26

Pd(µ)QsPd(∆) -190.44 -190.62 -190.47 -190.39 -190.48 0.10

Pd(µ)QsPa(∆) -170.91 -171.57 -171.24 -171.15 -171.22 0.27

Pa(µ)QaPd(∆) -158.16 -158.68 -158.82 -158.68 -158.58 0.29

Pa(µ)QaPa(∆) -148.27 -148.10 -148.14 -148.31 -148.21 0.10

Pa(µ)QsPd(∆) -152.76 -152.36 -152.54 -152.69 -152.59 0.18

Pa(µ)QsPa(∆) -147.24 -147.46 -147.24 -147.33 -147.32 0.11
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The Impact of Prior Choice on Pairwise Dispersal Rates
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Figure S.1.14: The impact of prior choice on pairwise dispersal rates for the Dengue virus dataset. Heatmaps
summarize posterior-mean estimates of the instantaneous rate of dispersal between each pair of geographic areas,
qij, under the default (left) and alternative (right) prior models.
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Figure S.1.15: The impact of prior choice on the inferred support for dispersal routes for the Dengue virus
dataset. We compare the evidential support for each dispersal route for the Dengue virus dataset under the default
(orange) and alternative (blue) prior models. Each bar indicates the 2 ln BF for the corresponding dispersal route
between two areas; only supported dispersal routes (i.e., 2 ln BF > 2) are plotted.
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The Impact of Prior Choice on the Inferred Biogeographic History
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Figure S.1.16: The impact of prior choice ancestral-area estimates for the Dengue virus dataset. The left panel
compares the posterior probability of each ancestral area at the root node under the default- and alternative-prior
models for the Dengue virus dataset. The right panel plots the posterior probability of the most probable ancestral
area under the default-prior model for each node in the MCC tree (y-axis) against the corresponding posterior prob-
ability of that area under the alternative-prior model (x-axis). Pink dots represent the internal nodes where the MAP
ancestral area inferred under the default-prior model differs from that inferred under the alternative-prior models.
The statistic p denotes the fraction of internal nodes that are shared under the default- and alternative-prior mod-
els; f , is the fraction of shared nodes where the MAP ancestral area differs under the default- and alternative-prior
models. Note that the posterior probabilities of the MAP ancestral area under the default-prior model are generally
higher than those under the alternative-prior model (i.e., the default-prior model tends to mask uncertainty in the
ancestral-area estimates).
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Figure S.1.17: The impact of prior choice on the inferred number of dispersal events between each pair of areas
for the Dengue virus dataset. The reflected bar plot depicts the number of dispersal events inferred under the
default (orange) and alternative (blue) prior models for the Dengue virus dataset. Each bar indicates the posterior-
mean number of dispersal events between a pair of areas; whiskers indicate the 95% credible interval. Note that
only the number of dispersal events over the “significant” dispersal routes (i.e., 2 ln BF > 2) are figured.
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Deformed Wing Virus

Wilfert et al. (2016) explored the role of Varroa in the spread of DWV in honeybees (i.e., whether

they were the source of the virus or merely facilitated its spread among honeybees), and also

identified significant dispersal routes of DWV between geographic populations. This study

contains six datasets, including three molecular sequence alignments (lp, rdrp, and vp3) and

two discrete-trait datasets (geographic areas and host species). We re-inferred the biogeo-

graphic history for each of the three molecular datasets (see Wilfert et al. (2016) for details

about these datasets).

We acquired the BEAST XML scripts used in the original study—containing both the se-

quence alignment and sampling time and geographic location data—directly from the authors.

For each gene region, we inferred the marginal posterior distribution of phylogenies under

the phylogenetic models identical to those specified in Wilfert et al. (2016). Specifically, for

each gene region we partitioned the alignments into two subsets (where the first subset in-

cluded sites at the first and second codon positions, and the second subset included sites at

the third codon position), and specified independent substitution models for each of these two

partitions. Our phylogenetic models assume that the two data partitions share the same un-

correlated exponential (UCED) branch-rate model (Drummond et al. 2006; Rannala and Yang

2007), and the same exponential coalescent node-age model, but we specified a rate multiplier

for each data subset to allow the average substitution rate to vary among data partitions. We

constrained the mean of these rate multipliers to one so that these rates are identifiable un-

der the uncorrelated branch-rate model. The phylogenetic models were identical for all three

gene regions except for the substitution model specified for the partitions of each alignment.

Following Wilfert et al. (2016), we specified independent TN93+I+Γ4 model (Tamura and Nei

1993; Gu et al. 1995; Yang 1994) for the two partitions of the lp fragment, and specified indepen-

dent HKY+Γ4 model (Hasegawa et al. 1984, 1985) for the two partitions of the rdrp fragment,

and specified independent HKY+I model for the two partitions of the vp3 fragment. Details of

these analyses are available in the XML scripts included in our GitHub and Dryad repositories.

For each gene region, we ran four independent MCMC simulations in BEAST version 1.8.2

for 100 million generations each, sampling every 10000 generations (except for the rdrp frag-

ment, where we it was necessary to run simulations for 200 million cycles and sample every

20000 generations to achieve adequate MCMC performance). We first assessed the performance
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of each MCMC simulation, removed the first 10% of samples from each chain as the burn-in,

and then combined the remaining posterior samples of trees from the replicate simulations us-

ing LogCombiner version 1.8.2. This resulted in a posterior sample of 360 trees (available in our

GitHub and Dryad repositories), which we then used as the prior distribution of phylogenies.

The MCMC simulations used in the second step of our sequential analyses and of the anal-

yses used to estimate marginal likelihoods under each prior model are described above in this

section. Details of these analyses are available in the XML scripts included in our GitHub and

Dryad repositories.

Lp fragment

The Impact of Prior Choice on Biogeographic Model Fit

Table S.1.7: Marginal-likelihood estimates of the eight prior models for the Deformed wing virus lp fragment
dataset. Columns 2–5 list marginal likelihoods inferred from four replicate analyses; the last two columns list the
mean and standard deviation of these marginal-likelihood estimates. Candidate models are listed in rows and
include all possible combinations of: (1) instantaneous-rate matrices (symmetric, Qs or asymmetric, Qa); (2) priors
on the average dispersal rate [default, Pd(µ) or alternative, Pa(µ)], and; (3) priors on the number of dispersal routes
[default, Pd(∆) or alternative, Pa(∆)]. The preferred default- and alternative-prior models are indicated in bold text.

Model replicate1 replicate2 replicate3 replicate4 mean sd

Pd(µ)QaPd(∆) -144.01 -144.10 -144.14 -144.08 -144.08 0.05

Pd(µ)QaPa(∆) -140.28 -140.33 -140.46 -140.68 -140.44 0.18

Pd(µ)QsPd(∆) -145.12 -145.14 -145.03 -144.95 -145.06 0.09

Pd(µ)QsPa(∆) -141.90 -141.88 -141.62 -141.63 -141.76 0.15

Pa(µ)QaPd(∆) -130.94 -131.39 -130.97 -131.01 -131.08 0.21

Pa(µ)QaPa(∆) -128.78 -128.90 -128.83 -128.69 -128.80 0.09

Pa(µ)QsPd(∆) -133.11 -133.43 -133.43 -133.48 -133.36 0.17

Pa(µ)QsPa(∆) -129.85 -129.66 -129.76 -129.71 -129.74 0.08
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The Impact of Prior Choice on Pairwise Dispersal Rates

default−prior model alternative−prior model

4.0e−05 1.0e−02 1.2e−02

Figure S.1.18: The impact of prior choice on pairwise dispersal rates for the Deformed wing virus lp fragment
dataset. Heatmaps summarize posterior-mean estimates of the instantaneous rate of dispersal between each pair of
geographic areas, qij, under the default (left) and alternative (right) prior models.
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Figure S.1.19: The impact of prior choice on the inferred support for dispersal routes for the Deformed wing
virus lp fragment dataset. We compare the evidential support for each dispersal route for the Deformed wing virus
lp fragment dataset under the default (orange) and alternative (blue) prior models. Each bar indicates the 2 ln BF for
the corresponding dispersal route between two areas; only supported dispersal routes (i.e., 2 ln BF > 2) are plotted.
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The Impact of Prior Choice on the Inferred Biogeographic History
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Figure S.1.20: The impact of prior choice ancestral-area estimates for the Deformed wing virus lp fragment
dataset. The left panel compares the posterior probability of each ancestral area at the root node under the default-
and alternative-prior models for the Deformed wing virus lp fragment dataset. The right panel plots the posterior
probability of the most probable ancestral area under the default-prior model for each node in the MCC tree (y-axis)
against the corresponding posterior probability of that area under the alternative-prior model (x-axis). Pink dots
represent the internal nodes where the MAP ancestral area inferred under the default-prior model differs from that
inferred under the alternative-prior models. The statistic p denotes the fraction of internal nodes that are shared
under the default- and alternative-prior models; f , is the fraction of shared nodes where the MAP ancestral area
differs under the default- and alternative-prior models. Note that the posterior probabilities of the MAP ances-
tral area under the default-prior model are generally higher than those under the alternative-prior model (i.e., the
default-prior model tends to mask uncertainty in the ancestral-area estimates).
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Figure S.1.21: The impact of prior choice on the inferred number of dispersal events between each pair of areas
for the Deformed wing virus lp fragment dataset. The reflected bar plot depicts the number of dispersal events
inferred under the default (orange) and alternative (blue) prior models for the Deformed wing virus lp fragment
dataset. Each bar indicates the posterior-mean number of dispersal events between a pair of areas; whiskers indicate
the 95% credible interval. Note that only the number of dispersal events over the “significant” dispersal routes (i.e.,
2 ln BF > 2) are figured.
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Rdrp fragment

The Impact of Prior Choice on Biogeographic Model Fit

Table S.1.8: Marginal-likelihood estimates of the eight prior models for the Deformed wing virus rdrp fragment
dataset. Columns 2–5 list marginal likelihoods inferred from four replicate analyses; the last two columns list the
mean and standard deviation of these marginal-likelihood estimates. Candidate models are listed in rows and
include all possible combinations of: (1) instantaneous-rate matrices (symmetric, Qs or asymmetric, Qa); (2) priors
on the average dispersal rate [default, Pd(µ) or alternative, Pa(µ)], and; (3) priors on the number of dispersal routes
[default, Pd(∆) or alternative, Pa(∆)]. The preferred default- and alternative-prior models are indicated in bold text.

Model replicate1 replicate2 replicate3 replicate4 mean sd

Pd(µ)QaPd(∆) -220.28 -220.43 -221.02 -220.70 -220.61 0.32

Pd(µ)QaPa(∆) -217.03 -217.13 -217.16 -217.36 -217.17 0.14

Pd(µ)QsPd(∆) -214.77 -215.04 -214.84 -214.93 -214.89 0.12

Pd(µ)QsPa(∆) -213.43 -213.19 -213.25 -213.16 -213.26 0.12

Pa(µ)QaPd(∆) -172.54 -172.34 -172.70 -172.55 -172.53 0.14

Pa(µ)QaPa(∆) -173.62 -173.82 -174.01 -174.16 -173.90 0.23

Pa(µ)QsPd(∆) -181.72 -181.87 -181.81 -181.56 -181.74 0.13

Pa(µ)QsPa(∆) -181.86 -181.55 -181.81 -181.91 -181.78 0.16
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The Impact of Prior Choice on Pairwise Dispersal Rates

default−prior model alternative−prior model

1.4e−04 1.0e+00 1.9e+00

Figure S.1.22: The impact of prior choice on pairwise dispersal rates for the Deformed wing virus rdrp fragment
dataset. Heatmaps summarize posterior-mean estimates of the instantaneous rate of dispersal between each pair of
geographic areas, qij, under the default (left) and alternative (right) prior models.
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Figure S.1.23: The impact of prior choice on the inferred support for dispersal routes for the Deformed wing
virus rdrp fragment dataset. We compare the evidential support for each dispersal route for the Deformed wing
virus rdrp fragment dataset under the default (orange) and alternative (blue) prior models. Each bar indicates the
2 ln BF for the corresponding dispersal route between two areas; only supported dispersal routes (i.e., 2 ln BF > 2)
are plotted.
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The Impact of Prior Choice on the Inferred Biogeographic History
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Figure S.1.24: The impact of prior choice ancestral-area estimates for the Deformed wing virus rdrp fragment
dataset. The left panel compares the posterior probability of each ancestral area at the root node under the default-
and alternative-prior models for the Deformed wing virus rdrp fragment dataset. The right panel plots the posterior
probability of the most probable ancestral area under the default-prior model for each node in the MCC tree (y-axis)
against the corresponding posterior probability of that area under the alternative-prior model (x-axis). Pink dots
represent the internal nodes where the MAP ancestral area inferred under the default-prior model differs from that
inferred under the alternative-prior models. The statistic p denotes the fraction of internal nodes that are shared
under the default- and alternative-prior models; f , is the fraction of shared nodes where the MAP ancestral area
differs under the default- and alternative-prior models. Note that the posterior probabilities of the MAP ances-
tral area under the default-prior model are generally higher than those under the alternative-prior model (i.e., the
default-prior model tends to mask uncertainty in the ancestral-area estimates).
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Figure S.1.25: The impact of prior choice on the inferred number of dispersal events between each pair of areas
for the Deformed wing virus rdrp fragment dataset. The reflected bar plot depicts the number of dispersal events
inferred under the default (orange) and alternative (blue) prior models for the Deformed wing virus rdrp fragment
dataset. Each bar indicates the posterior-mean number of dispersal events between a pair of areas; whiskers indicate
the 95% credible interval. Note that only the number of dispersal events over the “significant” dispersal routes (i.e.,
2 ln BF > 2) are figured.
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Vp3 fragment

The Impact of Prior Choice on Biogeographic Model Fit

Table S.1.9: Marginal-likelihood estimates of the eight prior models for the Deformed wing virus vp3 fragment
dataset. Columns 2–5 list marginal likelihoods inferred from four replicate analyses; the last two columns list the
mean and standard deviation of these marginal-likelihood estimates. Candidate models are listed in rows and
include all possible combinations of: (1) instantaneous-rate matrices (symmetric, Qs or asymmetric, Qa); (2) priors
on the average dispersal rate [default, Pd(µ) or alternative, Pa(µ)], and; (3) priors on the number of dispersal routes
[default, Pd(∆) or alternative, Pa(∆)]. The preferred default- and alternative-prior models are indicated in bold text.

Model replicate1 replicate2 replicate3 replicate4 mean sd

Pd(µ)QaPd(∆) -107.55 -107.90 -107.80 -107.65 -107.73 0.15

Pd(µ)QaPa(∆) -104.57 -104.38 -104.47 -104.51 -104.48 0.08

Pd(µ)QsPd(∆) -106.43 -106.45 -106.25 -106.35 -106.37 0.09

Pd(µ)QsPa(∆) -104.08 -104.15 -103.95 -104.11 -104.07 0.09

Pa(µ)QaPd(∆) -93.58 -94.16 -93.99 -93.87 -93.90 0.25

Pa(µ)QaPa(∆) -91.98 -92.00 -92.01 -92.06 -92.01 0.04

Pa(µ)QsPd(∆) -93.00 -92.86 -92.76 -92.72 -92.84 0.12

Pa(µ)QsPa(∆) -91.56 -91.30 -91.53 -91.51 -91.47 0.12
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The Impact of Prior Choice on Pairwise Dispersal Rates

default−prior model alternative−prior model

2.4e−04 1.0e−02 5.1e−02

Figure S.1.26: The impact of prior choice on pairwise dispersal rates for the Deformed wing virus vp3 fragment
dataset. Heatmaps summarize posterior-mean estimates of the instantaneous rate of dispersal between each pair of
geographic areas, qij, under the default (left) and alternative (right) prior models.
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Figure S.1.27: The impact of prior choice on the inferred support for dispersal routes for the Deformed wing
virus vp3 fragment dataset. We compare the evidential support for each dispersal route for the Deformed wing
virus vp3 fragment dataset under the default (orange) and alternative (blue) prior models. Each bar indicates the
2 ln BF for the corresponding dispersal route between two areas; only supported dispersal routes (i.e., 2 ln BF > 2)
are plotted.
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The Impact of Prior Choice on the Inferred Biogeographic History

default−prior model alternative−prior model

Pakistan
America

Australia
East Asia

Europe
Hawaii

New Zealand

p = 1.00
f = 0.00

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

de
fa

ul
t−

pr
io

r 
m

od
el

alternative−prior model

Figure S.1.28: The impact of prior choice ancestral-area estimates for the Deformed wing virus vp3 fragment
dataset. The left panel compares the posterior probability of each ancestral area at the root node under the default-
and alternative-prior models for the Deformed wing virus vp3 fragment dataset. The right panel plots the posterior
probability of the most probable ancestral area under the default-prior model for each node in the MCC tree (y-axis)
against the corresponding posterior probability of that area under the alternative-prior model (x-axis). Pink dots
represent the internal nodes where the MAP ancestral area inferred under the default-prior model differs from that
inferred under the alternative-prior models. The statistic p denotes the fraction of internal nodes that are shared
under the default- and alternative-prior models; f , is the fraction of shared nodes where the MAP ancestral area
differs under the default- and alternative-prior models. Note that the posterior probabilities of the MAP ances-
tral area under the default-prior model are generally higher than those under the alternative-prior model (i.e., the
default-prior model tends to mask uncertainty in the ancestral-area estimates).
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Figure S.1.29: The impact of prior choice on the inferred number of dispersal events between each pair of areas
for the Deformed wing virus vp3 fragment dataset. The reflected bar plot depicts the number of dispersal events
inferred under the default (orange) and alternative (blue) prior models for the Deformed wing virus vp3 fragment
dataset. Each bar indicates the posterior-mean number of dispersal events between a pair of areas; whiskers indicate
the 95% credible interval. Note that only the number of dispersal events over the “significant” dispersal routes (i.e.,
2 ln BF > 2) are figured.
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HIV

Faria et al. (2014) explored the origin and early spread of HIV-1 in human populations by an-

alyzing sequences collected from central and southeast Africa and America between the 1980s

and early 2000s. The authors used a down-sampling scheme of the complete dataset to ver-

ify the robustness of the main conclusions in the original study: this involved the creation of

four data(sub)sets. Specifically, Dataset A includes 792 envelope C2V3 sequences collected be-

tween 1985–2004 from eight cities in the Democratic Republic of the Congo and the Republic

of the Congo. Dataset B includes 927 sequences, with the addition of 67 subtype C sequences

from southeast Africa (Zambia, Botswana, Tanzania, Kenya, Uganda, Burundi, Ethiopia and

South Africa) sampled between 1986–2005, 67 sequences from the Americas (Haiti, Trinidad

and Tobago and the USA) sampled between 1978–1997, and the ZR59 isolate obtained in 1959

from blood collected in Kinshasa. Dataset C includes 466 sequences that were down-sampled

from Dataset A; Dataset D includes 601 sequences that were down-sampled from Dataset B;

this down-sampling was motivated to decrease the representation of sequences sampled from

Kinshasa (see (Faria et al. 2014) for details).

We acquired the sampling geographic location data of Datasets A, B, and C from the

BEAST XML scripts provided by the original study; this sampling-area data are available in

our GitHub and Dryad repositories.

The posterior distribution of phylogenies (used to perform sequential analyses in Faria et al.

2014) was obtained directly from the Dryad repository of the original study (also available in

our GitHub and Dryad repositories).

We reanalyzed Datasets A, B, and C. The MCMC simulations used in the second step of our

sequential analyses and of the analyses used to estimate marginal likelihoods under each prior

model are described above in this section. Details of these analyses are available in the XML

scripts included in our GitHub and Dryad repositories.
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Dataset A

The Impact of Prior Choice on Biogeographic Model Fit

Table S.1.10: Marginal-likelihood estimates of the eight prior models for HIV dataset A. Columns 2–5 list
marginal likelihoods inferred from four replicate analyses; the last two columns list the mean and standard de-
viation of these marginal-likelihood estimates. Candidate models are listed in rows and include all possible combi-
nations of: (1) instantaneous-rate matrices (symmetric, Qs or asymmetric, Qa); (2) priors on the average dispersal
rate [default, Pd(µ) or alternative, Pa(µ)], and; (3) priors on the number of dispersal routes [default, Pd(∆) or alter-
native, Pa(∆)]. The preferred default- and alternative-prior models are indicated in bold text.

Model replicate1 replicate2 replicate3 replicate4 mean sd

Pd(µ)QaPd(∆) -1180.03 -1180.04 -1179.66 -1179.84 -1179.89 0.18

Pd(µ)QaPa(∆) -1177.42 -1177.23 -1177.56 -1177.63 -1177.46 0.18

Pd(µ)QsPd(∆) -1176.34 -1176.65 -1176.07 -1176.43 -1176.37 0.24

Pd(µ)QsPa(∆) -1175.19 -1175.21 -1175.62 -1175.43 -1175.36 0.20

Pa(µ)QaPd(∆) -1041.67 -1042.14 -1042.10 -1042.41 -1042.08 0.30

Pa(µ)QaPa(∆) -1037.31 -1037.94 -1037.65 -1037.51 -1037.60 0.26

Pa(µ)QsPd(∆) -1055.82 -1055.68 -1055.75 -1055.83 -1055.77 0.07

Pa(µ)QsPa(∆) -1050.73 -1050.38 -1050.69 -1050.79 -1050.65 0.19
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The Impact of Prior Choice on Pairwise Dispersal Rates

default−prior model alternative−prior model

7.9e−07 1.0e−02 1.2e−02

Figure S.1.30: The impact of prior choice on pairwise dispersal rates for HIV dataset A. Heatmaps summarize
posterior-mean estimates of the instantaneous rate of dispersal between each pair of geographic areas, qij, under
the default (left) and alternative (right) prior models.
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Figure S.1.31: The impact of prior choice on the inferred support for dispersal routes for HIV dataset A. We
compare the evidential support for each dispersal route for HIV dataset A under the default (orange) and alternative
(blue) prior models. Each bar indicates the 2 ln BF for the corresponding dispersal route between two areas; only
supported dispersal routes (i.e., 2 ln BF > 2) are plotted.
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The Impact of Prior Choice on the Inferred Biogeographic History
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Figure S.1.32: The impact of prior choice ancestral-area estimates for HIV dataset A. The left panel compares the
posterior probability of each ancestral area at the root node under the default- and alternative-prior models for HIV
dataset A. The right panel plots the posterior probability of the most probable ancestral area under the default-
prior model for each node in the MCC tree (y-axis) against the corresponding posterior probability of that area
under the alternative-prior model (x-axis). Pink dots represent the internal nodes where the MAP ancestral area
inferred under the default-prior model differs from that inferred under the alternative-prior models. The statistic
p denotes the fraction of internal nodes that are shared under the default- and alternative-prior models; f , is the
fraction of shared nodes where the MAP ancestral area differs under the default- and alternative-prior models. Note
that the posterior probabilities of the MAP ancestral area under the default-prior model are generally higher than
those under the alternative-prior model (i.e., the default-prior model tends to mask uncertainty in the ancestral-area
estimates).
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Figure S.1.33: The impact of prior choice on the inferred number of dispersal events between each pair of areas
for HIV dataset A. The reflected bar plot depicts the number of dispersal events inferred under the default (orange)
and alternative (blue) prior models for HIV dataset A. Each bar indicates the posterior-mean number of dispersal
events between a pair of areas; whiskers indicate the 95% credible interval. Note that only the number of dispersal
events over the “significant” dispersal routes (i.e., 2 ln BF > 2) are figured.
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Dataset B

The Impact of Prior Choice on Biogeographic Model Fit

Table S.1.11: Marginal-likelihood estimates of the eight prior models for HIV dataset B. Columns 2–5 list
marginal likelihoods inferred from four replicate analyses; the last two columns list the mean and standard de-
viation of these marginal-likelihood estimates. Candidate models are listed in rows and include all possible combi-
nations of: (1) instantaneous-rate matrices (symmetric, Qs or asymmetric, Qa); (2) priors on the average dispersal
rate [default, Pd(µ) or alternative, Pa(µ)], and; (3) priors on the number of dispersal routes [default, Pd(∆) or alter-
native, Pa(∆)]. The preferred default- and alternative-prior models are indicated in bold text.

Model replicate1 replicate2 replicate3 replicate4 mean sd

Pd(µ)QaPd(∆) -1311.00 -1310.50 -1310.59 -1311.44 -1310.88 0.43

Pd(µ)QaPa(∆) -1309.74 -1310.36 -1310.37 -1310.16 -1310.15 0.29

Pd(µ)QsPd(∆) -1335.72 -1336.59 -1336.31 -1337.06 -1336.42 0.56

Pd(µ)QsPa(∆) -1335.18 -1334.56 -1334.92 -1334.93 -1334.90 0.26

Pa(µ)QaPd(∆) -1168.93 -1168.28 -1169.26 -1168.98 -1168.86 0.41

Pa(µ)QaPa(∆) -1164.71 -1164.34 -1164.92 -1164.55 -1164.63 0.24

Pa(µ)QsPd(∆) -1188.41 -1187.71 -1187.91 -1187.51 -1187.89 0.39

Pa(µ)QsPa(∆) -1185.73 -1186.09 -1186.03 -1185.93 -1185.94 0.16
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The Impact of Prior Choice on Pairwise Dispersal Rates

default−prior model alternative−prior model

2.0e−06 1.1e−02

Figure S.1.34: The impact of prior choice on pairwise dispersal rates for HIV dataset B. Heatmaps summarize
posterior-mean estimates of the instantaneous rate of dispersal between each pair of geographic areas, qij, under
the default (left) and alternative (right) prior models.
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Figure S.1.35: The impact of prior choice on the inferred support for dispersal routes for HIV dataset B. We
compare the evidential support for each dispersal route for HIV dataset B under the default (orange) and alternative
(blue) prior models. Each bar indicates the 2 ln BF for the corresponding dispersal route between two areas; only
supported dispersal routes (i.e., 2 ln BF > 2) are plotted.
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The Impact of Prior Choice on the Inferred Biogeographic History
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Figure S.1.36: The impact of prior choice ancestral-area estimates for HIV dataset B. The left panel compares the
posterior probability of each ancestral area at the root node under the default- and alternative-prior models for
HIV dataset B. The right panel plots the posterior probability of the most probable ancestral area under the default-
prior model for each node in the MCC tree (y-axis) against the corresponding posterior probability of that area
under the alternative-prior model (x-axis). Pink dots represent the internal nodes where the MAP ancestral area
inferred under the default-prior model differs from that inferred under the alternative-prior models. The statistic
p denotes the fraction of internal nodes that are shared under the default- and alternative-prior models; f , is the
fraction of shared nodes where the MAP ancestral area differs under the default- and alternative-prior models. Note
that the posterior probabilities of the MAP ancestral area under the default-prior model are generally higher than
those under the alternative-prior model (i.e., the default-prior model tends to mask uncertainty in the ancestral-area
estimates).
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Figure S.1.37: The impact of prior choice on the inferred number of dispersal events between each pair of areas
for HIV dataset B. The reflected bar plot depicts the number of dispersal events inferred under the default (orange)
and alternative (blue) prior models for HIV dataset B. Each bar indicates the posterior-mean number of dispersal
events between a pair of areas; whiskers indicate the 95% credible interval. Note that only the number of dispersal
events over the “significant” dispersal routes (i.e., 2 ln BF > 2) are figured.
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Dataset C

The Impact of Prior Choice on Biogeographic Model Fit

Table S.1.12: Marginal-likelihood estimates of the eight prior models for HIV dataset C. Columns 2–5 list
marginal likelihoods inferred from four replicate analyses; the last two columns list the mean and standard de-
viation of these marginal-likelihood estimates. Candidate models are listed in rows and include all possible combi-
nations of: (1) instantaneous-rate matrices (symmetric, Qs or asymmetric, Qa); (2) priors on the average dispersal
rate [default, Pd(µ) or alternative, Pa(µ)], and; (3) priors on the number of dispersal routes [default, Pd(∆) or alter-
native, Pa(∆)]. The preferred default- and alternative-prior models are indicated in bold text.

Model replicate1 replicate2 replicate3 replicate4 mean sd

Pd(µ)QaPd(∆) -837.74 -837.45 -838.03 -837.49 -837.68 0.27

Pd(µ)QaPa(∆) -835.21 -835.34 -835.25 -835.38 -835.29 0.08

Pd(µ)QsPd(∆) -859.10 -859.03 -858.77 -858.98 -858.97 0.14

Pd(µ)QsPa(∆) -858.01 -858.00 -858.05 -857.66 -857.93 0.18

Pa(µ)QaPd(∆) -732.64 -732.74 -732.66 -732.95 -732.75 0.14

Pa(µ)QaPa(∆) -726.94 -726.82 -726.55 -726.83 -726.79 0.17

Pa(µ)QsPd(∆) -730.16 -730.01 -730.04 -729.88 -730.02 0.11

Pa(µ)QsPa(∆) -728.56 -728.34 -728.44 -728.38 -728.43 0.09
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The Impact of Prior Choice on Pairwise Dispersal Rates

default−prior model alternative−prior model

4.8e−06 9.9e−03

Figure S.1.38: The impact of prior choice on pairwise dispersal rates for HIV dataset C. Heatmaps summarize
posterior-mean estimates of the instantaneous rate of dispersal between each pair of geographic areas, qij, under
the default (left) and alternative (right) prior models.
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Figure S.1.39: The impact of prior choice on the inferred support for dispersal routes for HIV dataset C. We
compare the evidential support for each dispersal route for HIV dataset C under the default (orange) and alternative
(blue) prior models. Each bar indicates the 2 ln BF for the corresponding dispersal route between two areas; only
supported dispersal routes (i.e., 2 ln BF > 2) are plotted.
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The Impact of Prior Choice on the Inferred Biogeographic History
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Figure S.1.40: The impact of prior choice ancestral-area estimates for HIV dataset C. The left panel compares the
posterior probability of each ancestral area at the root node under the default- and alternative-prior models for HIV
dataset C. The right panel plots the posterior probability of the most probable ancestral area under the default-
prior model for each node in the MCC tree (y-axis) against the corresponding posterior probability of that area
under the alternative-prior model (x-axis). Pink dots represent the internal nodes where the MAP ancestral area
inferred under the default-prior model differs from that inferred under the alternative-prior models. The statistic
p denotes the fraction of internal nodes that are shared under the default- and alternative-prior models; f , is the
fraction of shared nodes where the MAP ancestral area differs under the default- and alternative-prior models. Note
that the posterior probabilities of the MAP ancestral area under the default-prior model are generally higher than
those under the alternative-prior model (i.e., the default-prior model tends to mask uncertainty in the ancestral-area
estimates).
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Figure S.1.41: The impact of prior choice on the inferred number of dispersal events between each pair of areas
for HIV dataset C. The reflected bar plot depicts the number of dispersal events inferred under the default (orange)
and alternative (blue) prior models for HIV dataset C. Each bar indicates the posterior-mean number of dispersal
events between a pair of areas; whiskers indicate the 95% credible interval. Note that only the number of dispersal
events over the “significant” dispersal routes (i.e., 2 ln BF > 2) are figured.
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Influenza Virus

Bedford et al. (2015) inferred the geographic dynamics of the four most prevalent, globally cir-

culating human seasonal influenza viruses (A/H3N2, A/H1N1, B/Victoria, and B/Yamagata).

The authors collected complete sequences of the HA1 domain of the hemagglutinin (HA) gene

for these influenza viruses, sampled across most of the major geographic areas between 2000–

2012. They applied down-sampling schemes to the complete dataset to reduce the impact of

possible surveillance biases, resulting into three data(sub)sets that were used to assess the ro-

bustness of the main conclusions to sampling effects. These includes: the “large” datasets

(containing between 1999 to 4006 sequences for each virus); the “small” datasets (containing

between 1240 to 1391 sequences for each virus), and the “alternative” datasets (containing be-

tween 1223 to 1967 sequences for each virus) (details see Bedford et al. 2015).

We explored the impact of prior choice on phylodynamic inferences for two of the datasets

from their study; the “small” versions of the A/H3N2 and B/Yamagata datasets. Our choice of

datasets was motivated by computational considerations (the comprehensive series of analyses

in our study entails a very large computational burden even for the “small” datasets), coupled

with our desire to include one virus from each of the two major types of human seasonal in-

fluenza virus (i.e., A and B).

We acquired the marginal posterior probability distribution of phylogenies (inferred from

the sequence data and used to perform sequential analyses in Bedford et al. 2015) directly from

the Github repository of the original study. Each posterior distribution included 101 trees,

which was then treated as the prior distribution of phylogenies in the second step of the se-

quential phylodynamic inference. The trees files containing these distributions are available

in our GitHub and Dryad repositories. We acquired the sampling geographic location data

from the XML scripts provided by the original study; this sampling-area data are available in

our GitHub and Dryad repositories.

The MCMC simulations used in the second step of our sequential analyses and of the anal-

yses used to estimate marginal likelihoods under each prior model are described above in this

section. Details of these analyses are available in the XML scripts included in our GitHub and

Dryad repositories.
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A/H3N2 Dataset

The Impact of Prior Choice on Biogeographic Model Fit

Table S.1.13: Marginal-likelihood estimates of the eight prior models for Influenza A/H3N2 dataset. Columns
2–5 list marginal likelihoods inferred from four replicate analyses; the last two columns list the mean and standard
deviation of these marginal-likelihood estimates. Candidate models are listed in rows and include all possible
combinations of: (1) instantaneous-rate matrices (symmetric, Qs or asymmetric, Qa); (2) priors on the average
dispersal rate [default, Pd(µ) or alternative, Pa(µ)], and; (3) priors on the number of dispersal routes [default, Pd(∆)
or alternative, Pa(∆)]. The preferred default- and alternative-prior models are indicated in bold text.

Model replicate1 replicate2 replicate3 replicate4 mean sd

Pd(µ)QaPd(∆) -2873.22 -2876.37 -2875.62 -2875.98 -2875.30 1.42

Pd(µ)QaPa(∆) -2825.59 -2827.47 -2826.41 -2826.32 -2826.45 0.77

Pd(µ)QsPd(∆) -2883.60 -2887.96 -2889.36 -2887.22 -2887.03 2.46

Pd(µ)QsPa(∆) -2838.53 -2837.93 -2838.49 -2838.33 -2838.32 0.27

Pa(µ)QaPd(∆) -2303.17 -2303.72 -2303.91 -2303.04 -2303.46 0.42

Pa(µ)QaPa(∆) -2275.33 -2276.09 -2275.23 -2275.43 -2275.52 0.39

Pa(µ)QsPd(∆) -2310.78 -2309.85 -2312.15 -2311.25 -2311.01 0.96

Pa(µ)QsPa(∆) -2280.06 -2280.62 -2280.40 -2280.54 -2280.40 0.25
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The Impact of Prior Choice on Pairwise Dispersal Rates

default−prior model alternative−prior model
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Figure S.1.42: The impact of prior choice on pairwise dispersal rates for Influenza A/H3N2 dataset. Heatmaps
summarize posterior-mean estimates of the instantaneous rate of dispersal between each pair of geographic areas,
qij, under the default (left) and alternative (right) prior models.

The Impact of Prior Choice on the Inferred Support for Dispersal Routes

In
f

20
15

10
5

0
5

10
15

20
In

f
2 

ln
 B

F

default−prior model
alternative−prior model

positive support
strong support
decisive support

Figure S.1.43: The impact of prior choice on the inferred support for dispersal routes for Influenza A/H3N2
dataset. We compare the evidential support for each dispersal route for Influenza A/H3N2 dataset under the
default (orange) and alternative (blue) prior models. Each bar indicates the 2 ln BF for the corresponding dispersal
route between two areas; only supported dispersal routes (i.e., 2 ln BF > 2) are plotted.

66



The Impact of Prior Choice on the Inferred Biogeographic History
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Figure S.1.44: The impact of prior choice ancestral-area estimates for Influenza A/H3N2 dataset. The left panel
compares the posterior probability of each ancestral area at the root node under the default- and alternative-prior
models for Influenza A/H3N2 dataset. The right panel plots the posterior probability of the most probable ancestral
area under the default-prior model for each node in the MCC tree (y-axis) against the corresponding posterior prob-
ability of that area under the alternative-prior model (x-axis). Pink dots represent the internal nodes where the MAP
ancestral area inferred under the default-prior model differs from that inferred under the alternative-prior models.
The statistic p denotes the fraction of internal nodes that are shared under the default- and alternative-prior mod-
els; f , is the fraction of shared nodes where the MAP ancestral area differs under the default- and alternative-prior
models. Note that the posterior probabilities of the MAP ancestral area under the default-prior model are generally
higher than those under the alternative-prior model (i.e., the default-prior model tends to mask uncertainty in the
ancestral-area estimates).
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Figure S.1.45: The impact of prior choice on the inferred number of dispersal events between each pair of areas
for Influenza A/H3N2 dataset. The reflected bar plot depicts the number of dispersal events inferred under the
default (orange) and alternative (blue) prior models for Influenza A/H3N2 dataset. Each bar indicates the posterior-
mean number of dispersal events between a pair of areas; whiskers indicate the 95% credible interval. Note that
only the number of dispersal events over the “significant” dispersal routes (i.e., 2 ln BF > 2) are figured.

67



B/Yamagata Dataset

The Impact of Prior Choice on Biogeographic Model Fit

Table S.1.14: Marginal-likelihood estimates of the eight prior models for Influenza B/Yamagata dataset. Columns
2–5 list marginal likelihoods inferred from four replicate analyses; the last two columns list the mean and standard
deviation of these marginal-likelihood estimates. Candidate models are listed in rows and include all possible
combinations of: (1) instantaneous-rate matrices (symmetric, Qs or asymmetric, Qa); (2) priors on the average
dispersal rate [default, Pd(µ) or alternative, Pa(µ)], and; (3) priors on the number of dispersal routes [default, Pd(∆)
or alternative, Pa(∆)]. The preferred default- and alternative-prior models are indicated in bold text.

Model replicate1 replicate2 replicate3 replicate4 mean sd

Pd(µ)QaPd(∆) -2335.56 -2333.27 -2334.64 -2334.57 -2334.51 0.94

Pd(µ)QaPa(∆) -2293.14 -2293.52 -2293.87 -2293.23 -2293.44 0.33

Pd(µ)QsPd(∆) -2351.22 -2351.73 -2351.95 -2351.83 -2351.68 0.32

Pd(µ)QsPa(∆) -2308.93 -2308.12 -2308.29 -2307.89 -2308.31 0.45

Pa(µ)QaPd(∆) -1900.36 -1899.46 -1900.33 -1900.69 -1900.21 0.53

Pa(µ)QaPa(∆) -1873.21 -1872.88 -1872.55 -1873.24 -1872.97 0.32

Pa(µ)QsPd(∆) -1929.77 -1930.08 -1930.90 -1930.34 -1930.27 0.48

Pa(µ)QsPa(∆) -1898.25 -1898.70 -1898.84 -1898.62 -1898.60 0.25
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The Impact of Prior Choice on Pairwise Dispersal Rates
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Figure S.1.46: The impact of prior choice on pairwise dispersal rates for Influenza B/Yamagata dataset. Heatmaps
summarize posterior-mean estimates of the instantaneous rate of dispersal between each pair of geographic areas,
qij, under the default (left) and alternative (right) prior models.
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Figure S.1.47: The impact of prior choice on the inferred support for dispersal routes for Influenza B/Yamagata
dataset. We compare the evidential support for each dispersal route for Influenza B/Yamagata dataset under the
default (orange) and alternative (blue) prior models. Each bar indicates the 2 ln BF for the corresponding dispersal
route between two areas; only supported dispersal routes (i.e., 2 ln BF > 2) are plotted.
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The Impact of Prior Choice on the Inferred Biogeographic History
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Figure S.1.48: The impact of prior choice ancestral-area estimates for Influenza B/Yamagata dataset. The left
panel compares the posterior probability of each ancestral area at the root node under the default- and alternative-
prior models for Influenza B/Yamagata dataset. The right panel plots the posterior probability of the most probable
ancestral area under the default-prior model for each node in the MCC tree (y-axis) against the corresponding poste-
rior probability of that area under the alternative-prior model (x-axis). Pink dots represent the internal nodes where
the MAP ancestral area inferred under the default-prior model differs from that inferred under the alternative-prior
models. The statistic p denotes the fraction of internal nodes that are shared under the default- and alternative-prior
models; f , is the fraction of shared nodes where the MAP ancestral area differs under the default- and alternative-
prior models. Note that the posterior probabilities of the MAP ancestral area under the default-prior model are
generally higher than those under the alternative-prior model (i.e., the default-prior model tends to mask uncer-
tainty in the ancestral-area estimates).

15
0

10
0

50
0

20
40

60
80

nu
m

be
r 

of
 d

is
pe

rs
al

 e
ve

nt
s

default−prior model
alternative−prior model

Figure S.1.49: The impact of prior choice on the inferred number of dispersal events between each pair of areas
for Influenza B/Yamagata dataset. The reflected bar plot depicts the number of dispersal events inferred under
the default (orange) and alternative (blue) prior models for Influenza B/Yamagata dataset. Each bar indicates the
posterior-mean number of dispersal events between a pair of areas; whiskers indicate the 95% credible interval.
Note that only the number of dispersal events over the “significant” dispersal routes (i.e., 2 ln BF > 2) are figured.

70



Rabies Virus

Yao et al. (2015) explored the geographic dynamics of the rabies virus in China based on se-

quences sampled across 19 provinces between 1986–2012. The authors performed separate

phylodynamic analyses on two main lineages, Clade I and Clade II. Our reanalyses are based

on the dataset defined by Clade I.

We acquired the sampling time and location data, as well as the GenBank accession num-

bers from Table S1 in Yao et al. (2015), and then obtained the nucleotide sequences from Gen-

Bank. This dataset has 141 sequences distributed among 18 geographic areas. We aligned the

nucleotide sequences using MUSCLE version 3.8 (Edgar 2004). The files containing the GenBank

accession numbers, the sequence alignment, and the sampling time and location data are avail-

able in our GitHub and Dryad repositories.

To infer the marginal posterior distribution of phylogenies given the sequence alignment,

we specified a phylogenetic model with the following components: (1) the GTR+I+Γ4 substi-

tution model (Tavaré 1986; Yang 1994; Gu et al. 1995); (2) the uncorrelated lognormal (UCLN)

branch-rate prior model (Drummond et al. 2006; Rannala and Yang 2007), and; (3) the Gaus-

sian Markov Random Field (GMRF) Bayesian Skyride coalescent node-age model (Minin et al.

2008). Details of these analyses are available in the XML scripts included in our GitHub and

Dryad repositories.

We ran four independent MCMC simulations in BEAST version 1.8.2 for 200 million gen-

erations each, sampling every 15000 generations. We first assessed the performance of each

MCMC simulation using Tracer version 1.7.1 (Rambaut et al. 2018), removed the first 10% of

samples from each chain as the burn-in, and then combined the remaining posterior samples

of trees from the replicate simulations using LogCombiner version 1.8.2. This resulted in a pos-

terior sample of 1200 trees (available in our GitHub and Dryad repositories), which we then

used as the prior distribution of phylogenies for the second step of our sequential analyses.

The MCMC simulations used in the second step of our sequential analyses and of the anal-

yses used to estimate marginal likelihoods under each prior model are described above in this

section. Details of these analyses are available in the XML scripts included in our GitHub and

Dryad repositories.
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The Impact of Prior Choice on Biogeographic Model Fit

Table S.1.15: Marginal-likelihood estimates of the eight prior models for the Rabies virus dataset. Columns 2–5
list marginal likelihoods inferred from four replicate analyses; the last two columns list the mean and standard
deviation of these marginal-likelihood estimates. Candidate models are listed in rows and include all possible
combinations of: (1) instantaneous-rate matrices (symmetric, Qs or asymmetric, Qa); (2) priors on the average
dispersal rate [default, Pd(µ) or alternative, Pa(µ)], and; (3) priors on the number of dispersal routes [default, Pd(∆)
or alternative, Pa(∆)]. The preferred default- and alternative-prior models are indicated in bold text.

Model replicate1 replicate2 replicate3 replicate4 mean sd

Pd(µ)QaPd(∆) -310.66 -310.07 -309.44 -309.42 -309.90 0.59

Pd(µ)QaPa(∆) -297.53 -297.26 -296.90 -297.23 -297.23 0.26

Pd(µ)QsPd(∆) -319.33 -319.90 -319.12 -319.13 -319.37 0.37

Pd(µ)QsPa(∆) -299.37 -299.85 -299.47 -299.63 -299.58 0.21

Pa(µ)QaPd(∆) -266.85 -266.86 -266.05 -266.78 -266.64 0.39

Pa(µ)QaPa(∆) -258.36 -257.80 -258.00 -258.39 -258.14 0.29

Pa(µ)QsPd(∆) -269.21 -269.26 -269.49 -269.30 -269.32 0.12

Pa(µ)QsPa(∆) -258.67 -258.73 -258.40 -258.49 -258.57 0.15
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The Impact of Prior Choice on Pairwise Dispersal Rates
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Figure S.1.50: The impact of prior choice on pairwise dispersal rates for the Rabies virus dataset. Heatmaps
summarize posterior-mean estimates of the instantaneous rate of dispersal between each pair of geographic areas,
qij, under the default (left) and alternative (right) prior models.
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Figure S.1.51: The impact of prior choice on the inferred support for dispersal routes for the Rabies virus dataset.
We compare the evidential support for each dispersal route for the Rabies virus dataset under the default (orange)
and alternative (blue) prior models. Each bar indicates the 2 ln BF for the corresponding dispersal route between
two areas; only supported dispersal routes (i.e., 2 ln BF > 2) are plotted.

73



The Impact of Prior Choice on the Inferred Biogeographic History
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Figure S.1.52: The impact of prior choice ancestral-area estimates for the Rabies virus dataset. The left panel
compares the posterior probability of each ancestral area at the root node under the default- and alternative-prior
models for the Rabies virus dataset. The right panel plots the posterior probability of the most probable ancestral
area under the default-prior model for each node in the MCC tree (y-axis) against the corresponding posterior prob-
ability of that area under the alternative-prior model (x-axis). Pink dots represent the internal nodes where the MAP
ancestral area inferred under the default-prior model differs from that inferred under the alternative-prior models.
The statistic p denotes the fraction of internal nodes that are shared under the default- and alternative-prior mod-
els; f , is the fraction of shared nodes where the MAP ancestral area differs under the default- and alternative-prior
models. Note that the posterior probabilities of the MAP ancestral area under the default-prior model are generally
higher than those under the alternative-prior model (i.e., the default-prior model tends to mask uncertainty in the
ancestral-area estimates).
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Figure S.1.53: The impact of prior choice on the inferred number of dispersal events between each pair of areas
for the Rabies virus dataset. The reflected bar plot depicts the number of dispersal events inferred under the
default (orange) and alternative (blue) prior models for the Rabies virus dataset. Each bar indicates the posterior-
mean number of dispersal events between a pair of areas; whiskers indicate the 95% credible interval. Note that
only the number of dispersal events over the “significant” dispersal routes (i.e., 2 ln BF > 2) are figured.
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SARS-CoV-2 Global

Gao et al. (2022) explored the early spread of the COVID-19 pandemic and the efficacy of

mitigation measures on limiting the spread using publicly available SARS-CoV-2 genomic se-

quences collected during the early phase of the pandemic. Here we used one of the datasets

produced in that study to assess the impact of prior misspecification on phylodynamic infer-

ence of biogeographic history. This dataset contains 1271 SARS-CoV-2 genomic sequences that

were originally obtained from the Global Initiative on Sharing All Influenza Data (GISAID,

Shu and McCauley 2017). Details about the data curation process can be found in Gao et al.

(2022). An alignment were then inferred using MUSCLE version 3.8 (Edgar 2004) with the cu-

rated dataset. The sampling time and geographic location associated with each sequence of the

alignment were also acquired from GISAID.

Different from the other datasets, where we performed the second step of the sequential

phylodynamic inferences by marginalizing over the posterior distribution of trees inferred us-

ing sequence data and the associated sampling times (but not sampling locations), here we

conditioned on the maximum clade credibility (MCC) tree summarized from the posterior dis-

tribution to ensure numerical stability of the analyses. This MCC tree was obtained directly

from Gao et al. (2022); details (including model and prior specification, as well as the BEAST

analyses settings) about the analyses that estimated the tree can be found in that study. Follow-

ing Gao et al. (2022), we discretized the globe into 23 geographic areas to; see Gao et al. (2022)

for detailed description of the geographic-area delineation. The MCC tree and the file contain-

ing the associated sampling time and location of each sequence are available in our GitHub

and Dryad repositories.

The MCMC simulations used in the second step of our sequential analyses and of the anal-

yses used to estimate marginal likelihoods under each prior model are described above in this

section. Details of these analyses are available in the XML scripts included in our GitHub and

Dryad repositories.
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The Impact of Prior Choice on Biogeographic Model Fit

Table S.1.16: Marginal-likelihood estimates of the eight prior models for the SARS-CoV-2 Global dataset.
Columns 2–5 list marginal likelihoods inferred from four replicate analyses; the last two columns list the mean
and standard deviation of these marginal-likelihood estimates. Candidate models are listed in rows and include all
possible combinations of: (1) instantaneous-rate matrices (symmetric, Qs or asymmetric, Qa); (2) priors on the av-
erage dispersal rate [default, Pd(µ) or alternative, Pa(µ)], and; (3) priors on the number of dispersal routes [default,
Pd(∆) or alternative, Pa(∆)]. The preferred default- and alternative-prior models are indicated in bold text.

Model replicate1 replicate2 replicate3 replicate4 mean sd

Pd(µ)QaPd(∆) -2527.09 -2526.18 -2525.69 -2524.43 -2525.85 1.11

Pd(µ)QaPa(∆) -2503.84 -2504.09 -2505.79 -2504.27 -2504.50 0.88

Pd(µ)QsPd(∆) -2559.29 -2560.11 -2561.17 -2560.25 -2560.21 0.77

Pd(µ)QsPa(∆) -2504.00 -2504.09 -2502.86 -2503.08 -2503.51 0.63

Pa(µ)QaPd(∆) -2166.40 -2164.48 -2162.31 -2165.59 -2164.69 1.78

Pa(µ)QaPa(∆) -2161.51 -2160.05 -2160.49 -2160.21 -2160.57 0.65

Pa(µ)QsPd(∆) -2255.39 -2255.53 -2260.00 -2255.15 -2256.52 2.33

Pa(µ)QsPa(∆) -2200.05 -2200.87 -2200.58 -2200.18 -2200.42 0.37
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The Impact of Prior Choice on Pairwise Dispersal Rates

default−prior model alternative−prior model

1.0e−06 1.0e−02 7.1e−02

Figure S.1.54: The impact of prior choice on pairwise dispersal rates for the SARS-CoV-2 Global dataset.
Heatmaps summarize posterior-mean estimates of the instantaneous rate of dispersal between each pair of geo-
graphic areas, qij, under the default (left) and alternative (right) prior models.

The Impact of Prior Choice on the Inferred Support for Dispersal Routes

In
f

25
20

15
10

5
0

5
10

15
20

25
In

f
2 

ln
 B

F

default−prior model
alternative−prior model

positive support
strong support
decisive support

Figure S.1.55: The impact of prior choice on the inferred support for dispersal routes for the SARS-CoV-2 Global
dataset. We compare the evidential support for each dispersal route for the SARS-CoV-2 Global dataset under the
default (orange) and alternative (blue) prior models. Each bar indicates the 2 ln BF for the corresponding dispersal
route between two areas; only supported dispersal routes (i.e., 2 ln BF > 2) are plotted.
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Figure S.1.56: The impact of prior choice ancestral-area estimates for the SARS-CoV-2 Global dataset. The left
panel compares the posterior probability of each ancestral area at the root node under the default- and alternative-
prior models for the SARS-CoV-2 Global dataset. The right panel plots the posterior probability of the most probable
ancestral area under the default-prior model for each node in the MCC tree (y-axis) against the corresponding poste-
rior probability of that area under the alternative-prior model (x-axis). Pink dots represent the internal nodes where
the MAP ancestral area inferred under the default-prior model differs from that inferred under the alternative-prior
models. The statistic p denotes the fraction of internal nodes that are shared under the default- and alternative-prior
models; f , is the fraction of shared nodes where the MAP ancestral area differs under the default- and alternative-
prior models. Note that the posterior probabilities of the MAP ancestral area under the default-prior model are
generally higher than those under the alternative-prior model (i.e., the default-prior model tends to mask uncer-
tainty in the ancestral-area estimates).
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Figure S.1.57: The impact of prior choice on the inferred number of dispersal events between each pair of areas
for the SARS-CoV-2 Global dataset. The reflected bar plot depicts the number of dispersal events inferred under
the default (orange) and alternative (blue) prior models for the SARS-CoV-2 Global dataset. Each bar indicates the
posterior-mean number of dispersal events between a pair of areas; whiskers indicate the 95% credible interval.
Note that only the number of dispersal events over the “significant” dispersal routes (i.e., 2 ln BF > 2) are figured.

78



SARS-CoV-2 B.1.1.7 US

Alpert et al. (2021) explored the introduction, establishment, and geographic dispersal dy-

namics of the B.1.1.7 variant of SARS-CoV-2 in the United States. The authors produced a

dataset containing 1908 SARS-CoV-2 genomic sequences, subsampled from all the B.1.1.7 vari-

ant genomes available on GISAID (Shu and McCauley 2017) as of February 26, 2021, focussing

on the samples from the US. They discretized the geographic space by states (for the US sam-

ples) or by Europe or not Europe (for the international samples), resulting in 22 (20 US and

2 international) geographic areas. Details about the data and the curation procedures can be

found in Alpert et al. (2021).

Here we explored the impact of prior choice on phylodynamic inference of biogeographic

history using this dataset. Following the original study, we conditioned on the summary tree

(obtained directly from the Github repository of Alpert et al. 2021) inferred without the geo-

graphic data (i.e., using the sequence data and the sampling time for each sequence) to perform

the biogeographic inference. This summary tree and the file containing the associated sampling

time and location of each sequence are available in our GitHub and Dryad repositories.

The MCMC simulations used in the second step of our sequential analyses and of the anal-

yses used to estimate marginal likelihoods under each prior model are described above in this

section. Details of these analyses are available in the XML scripts included in our GitHub and

Dryad repositories.
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The Impact of Prior Choice on Biogeographic Model Fit

Table S.1.17: Marginal-likelihood estimates of the eight prior models for the SARS-CoV-2 B.1.1.7 US dataset.
Columns 2–5 list marginal likelihoods inferred from four replicate analyses; the last two columns list the mean and
standard deviation of these marginal-likelihood estimates. Candidate models are listed in rows and include all pos-
sible combinations of: (1) instantaneous-rate matrices (symmetric, Qs or asymmetric, Qa); (2) priors on the average
dispersal rate [default, Pd(µ) or alternative, Pa(µ)], and; (3) priors on the number of dispersal routes [default, Pd(∆)
or alternative, Pa(∆)]. The preferred default- and alternative-prior models are indicated in bold text.

Model replicate1 replicate2 replicate3 replicate4 mean sd

Pd(µ)QaPd(∆) -1992.03 -1988.56 -1986.68 -1989.42 -1989.18 2.22

Pd(µ)QaPa(∆) -1968.56 -1967.08 -1967.14 -1968.09 -1967.72 0.73

Pd(µ)QsPd(∆) -2052.70 -2049.29 -2051.74 -2049.58 -2050.83 1.66

Pd(µ)QsPa(∆) -1980.12 -1979.06 -1977.57 -1979.64 -1979.10 1.11

Pa(µ)QaPd(∆) -1733.59 -1734.20 -1731.54 -1729.36 -1732.17 2.19

Pa(µ)QaPa(∆) -1720.18 -1722.60 -1721.11 -1720.78 -1721.17 1.03

Pa(µ)QsPd(∆) -1848.77 -1845.14 -1847.95 -1846.93 -1847.20 1.56

Pa(µ)QsPa(∆) -1792.84 -1790.98 -1793.38 -1791.87 -1792.27 1.06
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The Impact of Prior Choice on Pairwise Dispersal Rates
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Figure S.1.58: The impact of prior choice on pairwise dispersal rates for the SARS-CoV-2 B.1.1.7 US dataset.
Heatmaps summarize posterior-mean estimates of the instantaneous rate of dispersal between each pair of geo-
graphic areas, qij, under the default (left) and alternative (right) prior models.
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Figure S.1.59: The impact of prior choice on the inferred support for dispersal routes for the SARS-CoV-2 B.1.1.7
US dataset. We compare the evidential support for each dispersal route for the SARS-CoV-2 B.1.1.7 US dataset
under the default (orange) and alternative (blue) prior models. Each bar indicates the 2 ln BF for the corresponding
dispersal route between two areas; only supported dispersal routes (i.e., 2 ln BF > 2) are plotted.
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Figure S.1.60: The impact of prior choice ancestral-area estimates for the SARS-CoV-2 B.1.1.7 US dataset. The left
panel compares the posterior probability of each ancestral area at the root node under the default- and alternative-
prior models for the SARS-CoV-2 B.1.1.7 US dataset. The right panel plots the posterior probability of the most
probable ancestral area under the default-prior model for each node in the MCC tree (y-axis) against the corre-
sponding posterior probability of that area under the alternative-prior model (x-axis). Pink dots represent the
internal nodes where the MAP ancestral area inferred under the default-prior model differs from that inferred un-
der the alternative-prior models. The statistic p denotes the fraction of internal nodes that are shared under the
default- and alternative-prior models; f , is the fraction of shared nodes where the MAP ancestral area differs under
the default- and alternative-prior models. Note that the posterior probabilities of the MAP ancestral area under the
default-prior model are generally higher than those under the alternative-prior model (i.e., the default-prior model
tends to mask uncertainty in the ancestral-area estimates).
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Figure S.1.61: The impact of prior choice on the inferred number of dispersal events between each pair of areas
for the SARS-CoV-2 B.1.1.7 US dataset. The reflected bar plot depicts the number of dispersal events inferred
under the default (orange) and alternative (blue) prior models for the SARS-CoV-2 B.1.1.7 US dataset. Each bar
indicates the posterior-mean number of dispersal events between a pair of areas; whiskers indicate the 95% credible
interval. Note that only the number of dispersal events over the “significant” dispersal routes (i.e., 2 ln BF > 2) are
figured.
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SARS-CoV-2 Brazil

Candido et al. (2020) investigated the early spread of the SARS-CoV-2 epidemic in Brazil and

the efficacy of mitigation measures on limiting that spread. The authors combined newly se-

quenced SARS-CoV-2 genomes sampled from Brazil with the genomes available on GISAID

(Shu and McCauley 2017) as April 24, 2020 to produce a SARS-CoV-2 sequence dataset fo-

cussing on the epidemic in Brazil. This dataset contains 1182 SARS-CoV-2 genomes, including

490 sampled from Brazil and 692 subsampled from the sequences collected outside of Brazil.

The authors then discretized the geographic space with three different ways, generating three

geographic datasets, including: (1) Brazil or not Brazil (totaling two areas, scheme A); (2) five

Brazilian regions (“Southeast’‘, “Northeast”, “North”, “Centre-West”, and “South”) and five

international regions (North America, Europe, Asia, Oceania, and Africa) (totaling 10 areas,

scheme B), and; (3) 21 Brazil states and one other area representing the sampling location for

all the international sequences (totaling 22 areas, scheme C). Details about the data and the

curation procedures can be found in Candido et al. (2020).

Here we explored the impact of prior choice on phylodynamic inference of biogeographic

history using the second (SchemeB) and third (SchemeC) geographic datasets. We acquired

the marginal posterior probability distribution of phylogenies (inferred from the sequence data

and used to perform sequential analyses in Candido et al. 2020) directly from the Dryad repos-

itory of the original study. This posterior distribution included 1000 trees, which was then

treated as the prior distribution of phylogenies in the second step of the sequential phylody-

namic inference. The trees file containing this distribution is available in our GitHub and

Dryad repositories. We acquired the sampling geographic location data from the XML scripts

provided by the original study; this sampling-area data are available in our GitHub and Dryad

repositories.

The MCMC simulations used in the second step of our sequential analyses and of the anal-

yses used to estimate marginal likelihoods under each prior model are described above in this

section. Details of these analyses are available in the XML scripts included in our GitHub and

Dryad repositories.
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SchemeB Dataset

The Impact of Prior Choice on Biogeographic Model Fit

Table S.1.18: Marginal-likelihood estimates of the eight prior models for SARS-CoV-2 Brazil SchemeB dataset.
Columns 2–5 list marginal likelihoods inferred from four replicate analyses; the last two columns list the mean and
standard deviation of these marginal-likelihood estimates. Candidate models are listed in rows and include all pos-
sible combinations of: (1) instantaneous-rate matrices (symmetric, Qs or asymmetric, Qa); (2) priors on the average
dispersal rate [default, Pd(µ) or alternative, Pa(µ)], and; (3) priors on the number of dispersal routes [default, Pd(∆)
or alternative, Pa(∆)]. The preferred default- and alternative-prior models are indicated in bold text.

Model replicate1 replicate2 replicate3 replicate4 mean sd

Pd(µ)QaPd(∆) -1745.64 -1745.52 -1748.64 -1748.59 -1747.10 1.75

Pd(µ)QaPa(∆) -1736.13 -1734.77 -1738.46 -1738.56 -1736.98 1.85

Pd(µ)QsPd(∆) -1772.70 -1772.92 -1776.57 -1776.07 -1774.57 2.04

Pd(µ)QsPa(∆) -1758.22 -1757.65 -1761.34 -1761.31 -1759.63 1.97

Pa(µ)QaPd(∆) -1546.46 -1547.06 -1549.53 -1549.10 -1548.04 1.51

Pa(µ)QaPa(∆) -1530.22 -1530.37 -1532.87 -1532.54 -1531.50 1.40

Pa(µ)QsPd(∆) -1592.98 -1593.10 -1596.21 -1595.96 -1594.56 1.76

Pa(µ)QsPa(∆) -1570.65 -1569.97 -1572.74 -1573.07 -1571.61 1.53
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The Impact of Prior Choice on Pairwise Dispersal Rates

default−prior model alternative−prior model
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Figure S.1.62: The impact of prior choice on pairwise dispersal rates for SARS-CoV-2 Brazil SchemeB dataset.
Heatmaps summarize posterior-mean estimates of the instantaneous rate of dispersal between each pair of geo-
graphic areas, qij, under the default (left) and alternative (right) prior models.
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Figure S.1.63: The impact of prior choice on the inferred support for dispersal routes for SARS-CoV-2 Brazil
SchemeB dataset. We compare the evidential support for each dispersal route for SARS-CoV-2 Brazil SchemeB
dataset under the default (orange) and alternative (blue) prior models. Each bar indicates the 2 ln BF for the corre-
sponding dispersal route between two areas; only supported dispersal routes (i.e., 2 ln BF > 2) are plotted.
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Figure S.1.64: The impact of prior choice ancestral-area estimates for SARS-CoV-2 Brazil SchemeB dataset.
The left panel compares the posterior probability of each ancestral area at the root node under the default- and
alternative-prior models for SARS-CoV-2 Brazil SchemeB dataset. The right panel plots the posterior probability
of the most probable ancestral area under the default-prior model for each node in the MCC tree (y-axis) against
the corresponding posterior probability of that area under the alternative-prior model (x-axis). Pink dots represent
the internal nodes where the MAP ancestral area inferred under the default-prior model differs from that inferred
under the alternative-prior models. The statistic p denotes the fraction of internal nodes that are shared under the
default- and alternative-prior models; f , is the fraction of shared nodes where the MAP ancestral area differs under
the default- and alternative-prior models. Note that the posterior probabilities of the MAP ancestral area under the
default-prior model are generally higher than those under the alternative-prior model (i.e., the default-prior model
tends to mask uncertainty in the ancestral-area estimates).
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Figure S.1.65: The impact of prior choice on the inferred number of dispersal events between each pair of areas
for SARS-CoV-2 Brazil SchemeB dataset. The reflected bar plot depicts the number of dispersal events inferred
under the default (orange) and alternative (blue) prior models for SARS-CoV-2 Brazil SchemeB dataset. Each bar
indicates the posterior-mean number of dispersal events between a pair of areas; whiskers indicate the 95% credible
interval. Note that only the number of dispersal events over the “significant” dispersal routes (i.e., 2 ln BF > 2) are
figured.
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SchemeC Dataset

The Impact of Prior Choice on Biogeographic Model Fit

Table S.1.19: Marginal-likelihood estimates of the eight prior models for SARS-CoV-2 Brazil SchemeC dataset.
Columns 2–5 list marginal likelihoods inferred from four replicate analyses; the last two columns list the mean and
standard deviation of these marginal-likelihood estimates. Candidate models are listed in rows and include all pos-
sible combinations of: (1) instantaneous-rate matrices (symmetric, Qs or asymmetric, Qa); (2) priors on the average
dispersal rate [default, Pd(µ) or alternative, Pa(µ)], and; (3) priors on the number of dispersal routes [default, Pd(∆)
or alternative, Pa(∆)]. The preferred default- and alternative-prior models are indicated in bold text.

Model replicate1 replicate2 replicate3 replicate4 mean sd

Pd(µ)QaPd(∆) -1366.00 -1366.66 -1370.88 -1371.08 -1368.66 2.70

Pd(µ)QaPa(∆) -1351.90 -1352.41 -1355.62 -1355.61 -1353.89 2.01

Pd(µ)QsPd(∆) -1374.38 -1373.54 -1376.97 -1377.22 -1375.53 1.85

Pd(µ)QsPa(∆) -1353.55 -1353.73 -1355.72 -1357.09 -1355.02 1.69

Pa(µ)QaPd(∆) -1226.37 -1225.32 -1226.78 -1224.41 -1225.72 1.07

Pa(µ)QaPa(∆) -1220.44 -1221.27 -1222.42 -1221.61 -1221.43 0.82

Pa(µ)QsPd(∆) -1290.69 -1288.45 -1291.19 -1291.38 -1290.43 1.35

Pa(µ)QsPa(∆) -1242.86 -1242.87 -1244.99 -1245.57 -1244.07 1.42
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The Impact of Prior Choice on Pairwise Dispersal Rates
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Figure S.1.66: The impact of prior choice on pairwise dispersal rates for SARS-CoV-2 Brazil SchemeC dataset.
Heatmaps summarize posterior-mean estimates of the instantaneous rate of dispersal between each pair of geo-
graphic areas, qij, under the default (left) and alternative (right) prior models.
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Figure S.1.67: The impact of prior choice on the inferred support for dispersal routes for SARS-CoV-2 Brazil
SchemeC dataset. We compare the evidential support for each dispersal route for SARS-CoV-2 Brazil SchemeC
dataset under the default (orange) and alternative (blue) prior models. Each bar indicates the 2 ln BF for the corre-
sponding dispersal route between two areas; only supported dispersal routes (i.e., 2 ln BF > 2) are plotted.
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Figure S.1.68: The impact of prior choice ancestral-area estimates for SARS-CoV-2 Brazil SchemeC dataset.
The left panel compares the posterior probability of each ancestral area at the root node under the default- and
alternative-prior models for SARS-CoV-2 Brazil SchemeC dataset. The right panel plots the posterior probability
of the most probable ancestral area under the default-prior model for each node in the MCC tree (y-axis) against
the corresponding posterior probability of that area under the alternative-prior model (x-axis). Pink dots represent
the internal nodes where the MAP ancestral area inferred under the default-prior model differs from that inferred
under the alternative-prior models. The statistic p denotes the fraction of internal nodes that are shared under the
default- and alternative-prior models; f , is the fraction of shared nodes where the MAP ancestral area differs under
the default- and alternative-prior models. Note that the posterior probabilities of the MAP ancestral area under the
default-prior model are generally higher than those under the alternative-prior model (i.e., the default-prior model
tends to mask uncertainty in the ancestral-area estimates).
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Figure S.1.69: The impact of prior choice on the inferred number of dispersal events between each pair of areas
for SARS-CoV-2 Brazil SchemeC dataset. The reflected bar plot depicts the number of dispersal events inferred
under the default (orange) and alternative (blue) prior models for SARS-CoV-2 Brazil SchemeC dataset. Each bar
indicates the posterior-mean number of dispersal events between a pair of areas; whiskers indicate the 95% credible
interval. Note that only the number of dispersal events over the “significant” dispersal routes (i.e., 2 ln BF > 2) are
figured.
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Chapter 2

PrioriTree: an Interactive Web Utility for
Specifying Priors and Assessing Their Impacts
in BEAST Biogeographic Analysis

Abstract.—Phylodynamic methods are central to studies of the geographic and demographic history of

pathogen outbreaks. Inference under discrete-geographic phylodynamic models—which involve many

parameters that must be inferred from minimal information—may be sensitive to our prior beliefs about

the model parameters. We present an interactive utility, PrioriTree, to help researchers identify and ac-

commodate prior sensitivity in discrete-geographic inferences. Specifically, PrioriTree provides a suite

of functions to generate input files for—and summarize output from—BEAST analyses for performing ro-

bust Bayesian inference, data-cloning analyses, and assessing the relative and absolute fit of candidate

discrete-geographic (prior) models to empirical datasets. PrioriTree is distributed as an R package

available at https://github.com/jsigao/prioritree, with a comprehensive user manual provided at

https://bookdown.org/jsigao/prioritree_manual/.

INTRODUCTION

Phylogenies are increasingly used to study the dispersal dynamics and history of spread of

pathogens. The discrete-geographic phylodynamic method developed by Lemey et al. (Lemey

et al. 2009; Edwards et al. 2011)—implemented in the popular BEAST software package (Drum-

mond et al. 2012; Suchard et al. 2018)—is now the standard approach used to infer key as-

pects of the biogeographic history of pathogen epidemics, including: (1) the area in which an

epidemic first originated; (2) the dispersal routes by which the pathogen spread among geo-

graphic areas, and; (3) the number of dispersal events between areas. However, these discrete-

90

https://github.com/jsigao/prioritree
https://bookdown.org/jsigao/prioritree_manual/


geographic models contain many parameters that must be inferred from minimal information

(the single geographic area in which each pathogen occurs); inferences under this approach are

therefore inherently sensitive to the assumed priors on the model parameters. Unfortunately,

the priors implemented as the defaults in BEAST—and used in the vast majority of published

studies—are strongly informative and extremely unrealistic; these misinformative priors dis-

tort inferences of biogeographic history (see Chapter 1 for details).

Motivated by these considerations, here we present PrioriTree, an interactive web utility

developed to help researchers set up and summarize BEAST biogeographic analysis. Specifi-

cally, PrioriTree is designed to help researchers: (1) interactively (and graphically) specify

priors to generate input files for phylodynamic analyses using BEAST; (2) specify input files for

(and generate summaries from) BEAST analyses to assess the prior sensitivity biogeographic

inferences, and; (3) specify input files for (and generate summaries from) BEAST analyses to

assess the relative and absolute fit of discrete-geographic (prior) models.

FEATURES

There are several non-mutually exclusive strategies to deal with prior sensitivity: (1) specify

biologically-motivated/informed priors (i.e., where the prior probability is focussed on ‘rea-

sonable’ values); (2) specify diffuse/uninformative priors (i.e., where the prior probability is

spread (virtually) evenly over a wide range of ‘plausible’ values); (3) assess whether the poste-

rior estimates (especially of the focal parameters) are sensitive to the prior choice (e.g., perform

replicate inferences under a range of candidate priors), and; (4) assess whether the specified

prior model adequately describes the underlying data-generating process or compare the rela-

tive fit of competing prior models to the data. PrioriTree provides a suite of functions to help

users pursue these strategies.

Interactively Set up BEAST Discrete-Geographic Phylodynamic Analyses with Visualized

Priors

Before performing the analysis, users may have some intuitions (e.g., knowledge learned from

previous analyses) about the parameters that they want to express in their priors. PrioriTree

allows users to specify these biologically motivated priors in an interactive manner; it provides

the flexibility to specify a range of (hyper)priors and dynamically renders the resulting prior

distribution according to the specification in real time (Fig. 2.1).
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Alternatively, when users have no prior knowledge about the parameter or prefer not to

express such knowledge, they may choose to specify a generic uninformative prior probability

distribution that is flexible enough to be updated by the data. PrioriTree provides multiple

such distributions to serve as the candidate choice, where the default choice of each prior has

been identified to perform well in many empirical analyses (see Chapter 1). PrioriTree dis-

plays the distribution of the selected prior on discrete-geographic model parameter—including

the number of dispersal routes, ∆, the average dispersal rate, µ, and the resulting prior distri-

bution on the expected number of dispersal events—with the associated prior mean and 95%

credible interval listed alongside (Fig. 2.1).

Specify BEAST Analyses and Summarize the Results to Assess Prior Sensitivity in

Biogeographic Inference

In either of these scenarios, users may wish to ensure that the impact of the specified prior on

the posterior is minimal, and the posterior estimates—which they will draw their biological

conclusions upon—are rather robust to the prior choice. A simple but effective way to identify

prior sensitivity is to compare the prior to the posterior for each parameter: if the inferred pos-

Figure 2.1: PrioriTree main interface. The main interface is divided into two panels: user input in the
left panel, and the right panel dynamically renders the corresponding prior distributions, methods text,
and BEAST XML script.
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terior distribution appears to be (virtually) identical to the specified prior distribution, users

should be concerned and motivated to further examine the potential prior-sensitivity issue.

Although PrioriTree allows users to visualize the prior distribution, the induced prior may

deviate substantially from the specified prior due to parameter interactions. It may thus be

safer to estimate the joint prior probability distribution of our model parameters using MCMC,

and then compare the inferred marginal prior distribution for each parameter to its correspond-

ing inferred marginal posterior distribution. PrioriTree provides functions for setting up and

summarizing BEAST analyses that infer the joint prior distribution (Fig. 2.2, top panel, green).

If the inferred posterior appears to be substantially different from the specified prior, it is

still plausible that the prior has exerted a stronger impact than the user would like. To ad-

dress this concern, we can perform a series of MCMC analyses—of the same dataset under

the same inference model—where we iteratively change one (or more) (hyper)priors of our

inference model for each separate analysis. We then compare the resulting series of marginal

posterior probability distributions for a given parameter to assess whether (or how much) our

estimates change under different priors. If the marginal posterior probability distributions

vary substantially (especially if they resemble their corresponding marginal prior probability

distributions), then we conclude that this parameter exhibits prior sensitivity. This approach,

called robust Bayesian inference, is especially applicable when users have multiple candidate

priors in mind—either from competing prior hypotheses or alternative flexible probability

distributions—when configuring the analysis. PrioriTree allows users to set up and sum-

marize BEAST robust-Bayesian analyses to examine whether the posterior estimates of a given

parameter are robust to the choice of prior (Fig. 2.2, top panel, purple).

Complementary to robust Bayesian inference, another approach called data cloning can also

be used to assess prior sensitivity of the biogeographic inference (Robert 1993; Lele et al. 2007;

Ponciano et al. 2009, 2012). Under this approach, we also perform a series of MCMC analyses—

but under identical priors—where we iteratively increment the number of copies (“clones”) of

our original dataset used in each separate analysis. We then explore the resulting series of

marginal posterior probability distributions for a given parameter to assess how our estimates

change as the level of information in the data increases (i.e., as we increment the number of

data clones). PrioriTree allows users to set up and summarize BEAST data-cloning analyses

(Fig. 2.2, top panel, gray).
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Figure 2.2: Example figures produced by PrioriTree. PrioriTree allows users to summarize BEAST

biogeographic analyses for assessing prior sensitivity and model fit. We present the result figures using a
SARS-CoV-2 dataset as an example. Top) Combination of inferred distributions of the average dispersal
rate, µ, to show the prior (i.e., inferred with no data; green), the posterior (i.e. inferred with the data;
purple), and the data-cloned posterior (i.e. inferred with various numbers of clones of the data; gray).
Each box plot corresponds to a single BEAST MCMC simulation; the pair of box plots under each type
of inference indicates effectively identical distributions, confirming the convergence between MCMC
replicates. The left subpanel shows the resulting distributions under the BEAST default prior on µ, and
the right subpanel shows the corresponding distributions under an alternative diffuse prior. Bottom)
Posterior-predictive distribution of the parsimony statistic under the BEAST default prior (left subpanel)
and the alternative diffuse prior (right subpanel). The statistic computed for the observed data (dash
horizontal line) overlaps with the posterior-predictive distributions under the alternative prior while
falls outside of the 95% distributions under the BEAST default prior, indicating that the default prior is
inadequate while the alternative is adequate.
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Specify BEAST Analyses and Summarize the Results to Assess Relative or Absolute Model Fit

To assess the impacts of the priors in the discrete-geographic phylodynamic model, PrioriTree

also implements functions to help users perform posterior-predictive checking (Gelman et al.

1996; Bollback 2002) to assess the adequacy (i.e., absolute fit) of the specified (prior)model in

describing the underlying dispersal process. Posterior-predictive checking assesses how close

our inferred dispersal process is to the true process by simulating datasets under the assumed

model and posterior estimates, and then comparing them with the observed data. When the

simulated data resemble the observed data closely, we consider that the assumed model pro-

vides an adequate fit to the data in an absolute sense (i.e., not comparing to other competing

(prior)models). PrioriTree allows users to perform posterior-predictive simulations using the

output of BEAST discrete-geographic analyses, and then compute and visualize the test statis-

tics to assess the model adequacy (Fig. 2.2, bottom panel). PrioriTree also provides functions

to set up BEAST power-posterior analyses to estimate the marginal likelihood (Lartillot and

Philippe 2006; Xie et al. 2011; Baele et al. 2012) for comparing the relative fit of competing

(prior)models to the geographic data.

Additional Features of PrioriTree

PrioriTree assumes that the phylogeny and biogeographic history are inferred sequentially

in the discrete-geographic phylodynamic analysis. Under this sequential-inference approach,

the phylogeny of the study group has typically been estimated from an alignment of sequence

data using BEAST. PrioriTree therefore requires users to provide an input file containing a

previously inferred tree or distribution of trees. If the input file contains a posterior distribution

of trees, PrioriTree allows users to specify how to marginalize over the the distribution to

accommodate phylogenetic uncertainty in the discrete-geographic inference.

Users can also set up other BEAST discrete-geographic inferences (e.g., inferring the number

of dispersal events between each pair of geographic areas) in PrioriTree. Apart from visual-

izing the prior distributions, PrioriTree also displays the BEAST XML script and the methods

description text in separate panels, which also change dynamically according to the input and

specification. Finally, users can download the BEAST analysis script, the figures summarizing

the analysis, and the associated text description—that can serve as a template for the methods

section of their study—produced by PrioriTree.
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AVAILABILITY AND IMPLEMENTATION

PrioriTree is open-source and freely available both as a web utility (https://jsigao.

shinyapps.io/prioritree/) and as an R package. The source code for PrioriTree is avail-

able at https://github.com/jsigao/prioritree. A comprehensive user manual is presented

as the supplementary material of this chapter, and actively maintained at https://bookdown.

org/jsigao/prioritree_manual/.
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SUPPLEMENTARY MATERIAL: PrioriTree MANUAL

Overview

PrioriTree is an interactive web utility designed to help researchers specify input files for—

and process output files from—analyses of biogeographic history performed using the BEAST

software package (Drummond et al. 2012; Suchard et al. 2018). The discrete-geographic models

implemented in BEAST (Lemey et al. 2009; Edwards et al. 2011) contain many parameters that

must be inferred from minimal information (the single geographic area in which each pathogen

occurs); inferences under this approach are therefore inherently sensitive to the assumed pri-

ors on the model parameters. We recently demonstrated that the priors implemented as the

defaults in BEAST—and used in the vast majority of published studies—are strongly informa-

tive and extremely unrealistic; these misinformative priors distort inferences of biogeographic

history (see Chapter 1 for details).

These considerations motivated our development of PrioriTree to help researchers: (1) in-

teractively set up BEAST discrete-geographic phylodynamic analyses with visualized priors (see

this section); (2) specify BEAST analyses and summarize the results for assessing the sensitivity

of biogeographic inference to the specified priors (see this section), and; (3) specify BEAST anal-

yses and summarize the results for assessing the adequacy of the specified geographic (prior)

model in describing the dispersal process and comparing competing models (see this section).

In each section below, we start with a theoretical-background subsection to explain the func-

tionalities provided by PrioriTree and the related theory, and then provide details regarding

specific operations needed in PrioriTree to set up or summarize the corresponding BEAST

analysis. Example input files can be found in this downloadable folder. More example files

with real (larger) datasets can be found in the supplementary repository for Chapter 1.
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Interactively Configuration of BEAST Discrete-Geographic Phylodynamic Analyses Using

Visualized Priors

When we have no prior knowledge about the parameter, we may want to specify a generic

prior distribution that is flexible enough to be updated by the data. PrioriTree provides mul-

tiple such distributions to serve as the candidate choice, where the default choice of each prior

has been identified to perform well in many empirical analyses (Chapter 1). PrioriTree will

display the distribution of the selected prior, with the associated prior mean and 95% credible

interval listed alongside.

Alternatively, we may have some intuitions (e.g., knowledge learned from previous analy-

ses) about the parameters that we want to express in our priors. PrioriTree allows users to

specify these biologically motivated priors in an interactive manner; it provides the flexibility

to specify a range of (hyper)priors and dynamically renders the resulting prior distribution

according to the specification in real time.

You can also configure other settings (e.g., inferring number of dispersal events between

each pair of geographic areas) of the BEAST analysis in PrioriTree as well. According to the

input, the changes to the BEAST XML script and methods description are viewable on the fly. At

the end, PrioriTree generates a readily runnable BEAST XML script (as well as the associated

methods template) to perform the analysis that you conceive.

Below we first provide an in-depth introduction to discrete-geographic phylodynamic in-

ferences, including the discrete-geographic model (see this subsection), the prior-sensitivity

nature of biogeographic inference and the prior choices provided by PrioriTree (see this sub-

section), dispersal-history inference (see this subsection), the tree model (see this subsection),

and MCMC (see this subsection). Go directly to the quickstart section for a short tutorial focus-

ing on how to set up a BEAST discrete-geographic phylodynamic analysis in PrioriTree.

Theoretical Background and PrioriTree Introduction: Discrete-geographic model

The process of geographic dispersal over the tree, Ψ, is described as a continuous-time Markov

chain (CTMC). For a biogeographic history with k discrete-geographic areas, this stochastic pro-

cess is fully specified by a k× k instantaneous-rate matrix, Q, where an element of the matrix,

qij, specifies the instantaneous rate of change between state i and state j, i.e., the instantaneous

rate of dispersal from area i to area j. By convention, we rescale the Q matrix such that the
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expected (average) number of dispersal events in one time unit is equal to the parameter µ:

this is the average rate of dispersal among all k discrete geographic areas.

Bayesian stochastic search variable selection (BSSVS)

For most inference problems, the number of discrete geographic areas, k, is large, such that

the discrete-geographic model includes many parameters, while the data are limited to a single

observation (the geographic area occupied by each tip in the tree). Accordingly, inference under

these discrete-geographic models raises concerns about our ability to estimate each parameter

in the matrix. (For details, see the prior-sensitivity subsection below.) This concern motivated

Lemey and colleagues (Lemey et al. 2009) to develop an approach to reduce the complexity of

the discrete-geographic model called Bayesian stochastic search variable selection (BSSVS).

This approach involves specifying each element, qij, of the instantaneous-rate matrix, Q, as:

qij = rijδij,

where rij is the relative rate of dispersal between areas i and j, and δij is an indicator variable

that takes one of two states (0 or 1). When δij = 1, the instantaneous dispersal rate for the

corresponding element, qij, is simply qij = rij.

Conversely, when δij = 0, the instantaneous dispersal rate for the corresponding element,

qij, is zero, effectively removing that parameter from the discrete-geographic model. The idea

here is to exclude superfluous elements of the Q matrix in order to reduce the number of pa-

rameters that must be inferred from the (inherently minimal amount of) data.

A given Q matrix therefore entails a vector of δij (i.e., δ) and a vector of rij (i.e., r). Each

unique δ vector—a string of zeros and ones for each of the possible pairwise dispersal routes

between the k geographic areas—corresponds to a unique discrete-geographic model.

By default, BEAST uses BSSVS to average over discrete-geographic models with different

degrees of complexity. If BSSVS is not toggled in PrioriTree, the dispersal-route indicator

vector, δ, will be removed from the model and thus the rate matrix is simply r.

Form of the instantaneous-rate matrix

Alternative discrete-geographic models may be specified based on the symmetry of the

instantaneous-rate matrix. The discrete-geographic model described by Lemey et al. (2009)

assumes that the rate matrix, Q, is symmetric, where qij = qji (i.e., rij = rji and δij = δji). Ac-

cordingly, this model assumes that the instantaneous rate of dispersal from area i to area j is
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equal to the dispersal rate from area j to area i. For a dataset with k areas, the symmetric model

has (k
2) dispersal-route indicators and up to (k

2) relative-rate parameters.

A subsequent extension (Edwards et al. 2011) allows the Q matrix to be asymmetric, where

qij and qji are not constrained to be equal. Accordingly, this model allows the rate of disper-

sal from area i to area j to be different from the rate of dispersal from area j to area i. For a

dataset with k areas, the asymmetric model has k× (k− 1) dispersal-route indicators and up

to k× (k− 1) relative-rate parameters.

Inherent Prior Sensitivity of Biogeographic Inference

We estimate the parameters of our discrete-geographic models—including the vector of instan-

taneous dispersal rates between each pair of areas, Q, and the average dispersal rate across all

geographic areas, µ—from our observations (including the geographic data, G, and the previ-

ously inferred phylogeny, Ψ). Specifically, we estimate the joint posterior probability distribu-

tion of our discrete-geographic model parameters conditional on the data using Bayes theorem:

posterior distribution︷ ︸︸ ︷
P(Q, µ | G, Ψ) =

likelihood︷ ︸︸ ︷
P(G | Q, µ, Ψ)

prior distribution︷ ︸︸ ︷
P(Q)P(µ)

P(G | Ψ)︸ ︷︷ ︸
marginal likelihood

.

The joint posterior probability distribution, P(Q, µ | G, Ψ), reflects our beliefs about the

parameter values after evaluating our data. The posterior is an updated version of our joint

prior probability distribution, P(Q)P(µ), which reflects our beliefs about the parameter values

before evaluating our data. Our prior is updated by the information in our data via the likeli-

hood function, P(G | Q, µ, Ψ), which is the probability of observing our geographic data under

the discrete-geographic model.

In many cases, Bayesian inference is robust to the choice of prior: posterior estimates

are dominated by the information in the data, allowing us to safely ignore the issue of prior

choice. In other cases, however, posterior estimates will be strongly influenced by our choice

of prior: specifically, when our data contain limited information about a parameter in our in-

ference model, the posterior probability distribution inferred for that parameter will closely

resemble the assumed prior probability distribution. This phenomenon—referred to as prior

sensitivity—is an inherent feature of inference under discrete-geographic models.

To illustrate this issue, contrast typical inferences under discrete-geographic models and
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substitution models. Both models describe the evolution of discrete states (geographic areas

or nucleotide bases) from the root, along the branches, to the tips of our study phylogeny as

a continuous-time Markov chain (CTMC). For a process with k discrete states, the process is

completely described by a k× k matrix of instantaneous rates, Q. Each element of this matrix,

qij, describes the instantaneous rate of change between two states, i and j. The most com-

plex time-reversible substitution model, the GTR model, has k = 4 states ({A, C, G, T}), and

six instantaneous-rate parameters that are typically inferred from a sequence alignment with

hundreds or thousands of sites.

By contrast, discrete-geographic models typically have many more parameters and much

less data. For example, an inference problem with k = 10 discrete geographic areas, the sym-

metric discrete-geographic model has (k
2) = 45 instantaneous-rate parameters, and the asym-

metric discrete-geographic model has k× (k− 1) = 90 instantaneous-rate parameters. More-

over, the parameters of these discrete-geographic models must be estimated from an ‘align-

ment’ with a single ‘site’; i.e., the geographic dataset includes a single observation (the area

occupied by each tip in the tree).

There are several strategies to deal with prior sensitivity:

• specify biologically-motivated/informed priors (i.e., where the prior probability is fo-

cussed on ‘reasonable’ values);

• specify diffuse/uninformative priors (i.e., where the prior probability is spread evenly

over a wide range of ‘plausible’ values), or;

• assess prior sensitivity (e.g., perform replicate inferences under a range of candidate pri-

ors, and/or assess the relative or absolute fit of alternative prior models to our data).

Unfortunately, the priors on discrete-geographic model parameters implemented as the de-

faults in BEAST are highly (mis)informative: i.e., the default priors reflect extremely strong and

biologically unrealistic assumptions about the underlying dispersal process (Chapter 1). Worse

still, these default priors have been used in the vast majority (∼ 93%) of published studies that

have used BEAST to infer biogeographic history, and these default priors have been shown to

strongly (and adversely) distort central conclusions of biogeographic studies (Chapter 1).
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Prior on the number of dispersal routes

Recall that—when using BSSVS in BEAST—each element of the instantaneous-rate matrix, Q, is

specified as:

qij = rijδij,

where rij is the relative rate of dispersal between areas i and j, and δij is an indicator vari-

able that takes one of two states (0 or 1). Each vector, δ, specifies a unique configura-

tion of dispersal routes, which corresponds to a unique discrete-geographic model. The to-

tal number of dispersal routes for a given discrete-geographic model is denoted ∆. For a

given value of ∆, there may be multiple distinct discrete-geographic models. For example,

a dataset with k = 3 geographic areas has the vector of relative rates r = {r12, r13, r23},
such the space of symmetric discrete-geographic models includes: three models with ∆ = 1

dispersal route, δ = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}; three models with ∆ = 2 dispersal routes,

δ = {(1, 1, 0), (0, 1, 1), (1, 0, 1)}, and; a single model with ∆ = 3 dispersal routes, δ = {(1, 1, 1)}.
Lemey and colleagues (Lemey et al. 2009) impose a prior on the space of discrete-geographic

models by:

1. placing a prior on the total number of dispersal routes, ∆, and;

2. assuming that all discrete-geographic models with a given value of ∆ are equiprobable.

Together, these assumptions induce a prior probability that a given dispersal route between

areas i and j exists, i.e., the probability that δij = 1.

PrioriTree allows you to specify three alternative prior probability distributions on the

number of dispersal routes, ∆.

Poisson prior

The default prior on ∆ implemented in BEAST is a Poisson probability distribution. The specific

parameterization of the Poisson prior depends on the a/symmetry of the discrete-geographic

model. For symmetric discrete-geographic models, the default prior on ∆ is an offset Poisson

distribution. Specifically, for a dataset with k discrete geographic areas, the Poisson prior on

∆ is offset by (k− 1), where all discrete-geographic models for which ∆ < (k− 1) have zero

prior probability (i.e., such models are disallowed a priori). The motivation for this offset is

mathematical: a dataset with k geographic areas cannot be realized under a CTMC with fewer

than (k− 1) non-zero qij values (i.e., dispersal routes). [The real constraint on the geographic
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model is that it must be irreducible; i.e., it must be possible to reach each area from every other

area either directly or indirectly. A model with fewer than (k − 1) dispersal routes cannot be

irreducible; however, a model with at least (k − 1) dispersal routes is not guaranteed to be

irreducible.] The prior probability of models for which ∆ ≥ (k− 1) is Poisson with rate param-

eter, λ = ln(2). As specified, this Poisson prior places approximately 50 percent of the prior

probability on discrete-geographic models with the absolute minimum number of dispersal

routes.

For asymmetric discrete-geographic models, BEAST specifies a default prior on ∆ with rate

parameter λ = (k− 1). (Note that this prior does not enforce a minimum number of dispersal

routes, i.e., the Poisson prior distribution under the asymmetric discrete-geographic model is

not offset.)

The default Poisson prior on ∆ in BEAST reflects a very strong preference (i.e., a very in-

formative prior) for discrete-geographic models with the minimal number of dispersal routes.

When the default Poisson prior on ∆ is specified using BEAUti, it is not possible for users to

adjust the parameterization (i.e., to make the prior less informative by changing the value of

the Poisson-rate parameter, λ). By contrast, when the Poisson prior on ∆ is specified using

PrioriTree, users are able to adjust the parameterization. By default, PrioriTree specifies a

more diffuse Poisson prior on ∆, where the expected number of dispersal routes is about half

the maximum number. [As in BEAST, the Poisson prior for symmetric discrete-geographic mod-

els is also offset by (k− 1).] PrioriTree allows users to adjust the Poisson-rate parameter, λ,

to specify the desired shape for the Poisson prior on ∆. Both the mean and the variance of the

Poisson prior distribution scale linearly with λ.

Beta-Binomial prior

We can specify an alternative prior on the number of dispersal routes, ∆, by treating each

dispersal-route indicator, δij, as a Bernoulli random variable, such that the total number of

dispersal routes follows a Binomial distribution. The Binomial probability distribution has two

parameters: n is the number of trials (equal to the maximum number of dispersal routes for a

dataset with k areas), and p is the success probability (equal to the probability that each dis-

persal route exists; i.e., that δij = 1). We treat p as a random variable to be estimated from the

data. Specifically, we specify a Beta prior probability distribution on p. The Beta prior has two

hyperparamters—the shape parameters α and β—that can be interactively modified by the user
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so that the resulting Beta-Binomial prior on ∆ has the desired mean and 95% prior interval. The

expected (mean) number of dispersal routes increases as α/β increases.

Uniform prior

Finally, we can specify an alternative prior on the number of dispersal routes, ∆, by assuming

that all possible values (i.e., between zero and the maximum number of dispersal routes) are

equiprobable. This uniform prior on ∆ is a special case of the Beta-Binomial distribution de-

scribed above, which is specified when the values of both shape parameters of the Beta prior—α

and β—are set to one. Under the uniform prior on ∆, the prior probability that each dispersal

route exists is uniformly distributed between 0 and 1.

Prior on the average dispersal rate

Recall that the rate matrix, Q, is rescaled such that the average rate of dispersal between all

areas is µ. For a tree of length T (i.e., the sum of all branch durations in the dated phylogeny),

the expected number of dispersal events is µ× T. Therefore, the prior on the average dispersal

rate, µ, represents our prior belief about the number of dispersal events over the tree.

PrioriTree allows you to specify three alternative prior probability distributions on the

average dispersal rate, µ.

CTMC-rate reference prior

The default prior on µ implemented in BEAST is a Gamma probability distribution with shape

parameter α = 0.5 and rate parameter β = T. (Note that this Gamma prior is labelled as a

‘CTMC-rate reference prior’ in the BEAST utility, BEAUTi.) The Gamma distribution has a mean

of α/β; therefore, this prior expresses the belief that the average rate of dispersal is 0.5/T.

The default Gamma prior on µ in BEAST reflects a very strong preference (i.e., a very in-

formative prior) for biogeographic histories with an implausibly small number of dispersal

events. A dataset with k geographic areas requires a biogeographic history with at least (k− 1)

dispersal events. The expected number of dispersal events is µ× T. Accordingly, the number

of dispersal events expected a priori under the default Gamma prior on µ is 0.5, independent

of the duration of the entire biogeographic history (i.e., the tree length, T), or the number of

areas, k, involved in the geographic history. Similarly, the prior distribution on the number

of dispersal events is independent of T and k: the 95% prior interval is [0, 3] dispersal events,

which implies that we would be very surprised if a biogeographic history of any duration with
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any number of areas involved more than three dispersal events.

Hierarchical-exponential prior

PrioriTree allows users to specify an exponential prior on the average dispersal rate, µ; this

exponential prior has a single hyperparameter, the exponential-rate parameter, λ. The mean

of this exponential prior is 1/λ, which we treat as a random variable to be estimated from the

data. Specifically, we specify a Gamma hyperprior on λ. The Gamma distribution has two

parameters—α (shape) and β (rate)—where the mean of the Gamma hyperprior is α/β and the

variance is α/β2. This Gamma hyperprior on the exponential-rate parameter, λ, is constrained

such that α = β: this constraint ensures that the resulting hierarchical-exponential prior is

proper (i.e., that it integrates to one, and so obeys the law of total probability). This hierarchical

prior distribution is known as the K distribution (Jakeman and Pusey 1978).

Under this prior on the average dispersal rate, the prior distribution on the number of dis-

persal events (sensibly) scales with T; i.e., the expected number of dispersal events increases

with the duration of the biogeographic history. PrioriTree allows users to simultaneously

modify the shape/rate parameter. Note that the mean of this hierarchical prior is always

one (i.e., independent of the shape/rate parameter), but its variance scales inversely with the

shape/rate parameter.

Empirical-exponential prior

Finally, we can specify an alternative exponential prior on the average dispersal rate, µ, that

adopts an ‘empirical-Bayesian’ approach for specifying the exponential-rate parameter, λ. In

Bayesian inference, we specify a prior distribution for a given parameter that reflects our beliefs

about its parameter values before we evaluate our study data. Empirical-Bayesian inference,

by contrast, effectively entails some ‘double dipping’ of the study data; that is, we first esti-

mate the (hyper)parameters of our inference model from our study data, and then use those

(hyper)parameter estimates to specify one or more of the corresponding (hyper)priors of our

inference model.

Our empirical-Bayesian approach for specifying the prior on the average dispersal rate, µ,

involves computing the parsimony score (the minimum number of dispersal events) required

to explain our observed geographic data (i.e., the distribution of areas across the tips of our

study tree). This parsimony score represents a minimum bound on the true number of dis-
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persal events in the biogeographic history that gave rise to our observations. We can therefore

leverage these parsimony scores to inform our prior on µ. Specifically, we specify a value for

the exponential-rate parameter, λ, such that the resulting prior on the number of dispersal

events is focused on values greater than the parsimony score.

By default, PrioriTree sets the parsimony score at the lower quartile (i.e., 25% quantile)

of the prior distribution on the number of dispersal events. You can adjust the mean of this

resulting prior distribution (while using the parsimony score as a reference) according to their

biological beliefs about the dispersal intensity.

Theoretical Background and PrioriTree Introduction: Inferring Biogeographic History

Empirical biogeographic studies often report summaries that are based on the conditional prob-

ability distribution of biogeographic histories over the tree. The distribution of histories de-

pends on—i.e., is conditioned on—the instantaneous-rate matrix, Q, the biogeographic data,

G, and the phylogeny, Ψ. Conceptually, for a given tree and rate matrix, we imagine simulat-

ing a geographic history over the tree from the root to its tips, where the rate matrix specifies

the waiting times between dispersal events. We can construct the conditional distribution of

biogeographic histories by simulating a large number of individual histories, and retaining

only those histories that realize the observed geographic areas at the tips, G. This conditional

distribution contains all of the information required to compute two commonly reported sum-

maries: the ancestral areas at internal nodes of the tree, and the number of dispersal events

between geographic areas.

We can infer the total number of dispersal events among all k discrete geographic areas,

and/or we can infer the number of dispersal events between each pair of geographic areas.

BEAST implements two algorithms for computing the number of dispersal events: the first

option—referred to as “fast stochastic mapping” in PrioriTree—relies on analytical integra-

tion (Minin and Suchard 2008a,b; O’Brien et al. 2009). As the name suggests, this is a more

computationally efficient option for inferring biogeographic histories; however, this method

only computes the expected (average) number of dispersal events on each branch, but does

not allow us to infer all the details of the biogeographic history (such as the exact timing of

dispersal events over the tree).

The second option for inferring biogeographic histories—referred to as “stochastic map-
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Figure S.2.1: Options for inferring biogeographic history. You can specify either the integration-based
or simulation-based methods for stochastic mapping of biogeographic histories, and for either method,
you can choose to estimate the total and/or pairwise number of dispersal events.

ping” in PrioriTree—relies on a simulation-based algorithm (Nielsen 2002; Rodrigue et al.

2007; Hobolth and Stone 2009). This method for mapping biogeographic histories is more com-

putationally intensive, but also allows us to infer additional details (such as the exact timing of

dispersal events over the tree).

When inferring biogeographic histories with either stochastic-mapping option, PrioriTree

allows you to specify the type of dispersal events—i.e., the total number of dispersal events

among all areas and/or the pairwise number of dispersal events between each pair of areas—

in your BEAST analysis (Fig. S.2.1). If you do not specify either type of dispersal event (total or

pairwise number) and you are using the “fast stochastic mapping” algorithm (the first option),

PrioriTree will not infer biogeographic histories (i.e., it will not write the part of XML script

that instructs BEAST to perform computations for the expected number of dispersal events).

Conversely, if you do not specify either type of dispersal event (total or pairwise number) and

you are using the “stochastic mapping” algorithm (the second option), PrioriTree will still

write the part of the XML script that instructs BEAST to infer the full biogeographic history (i.e.,

the number of dispersal events will not be written to the parameter log file, but they can still

be retrieved from the tree log file).
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Theoretical Background and PrioriTree Introduction: Accommodating Phylogenetic Un-

certainty

The discrete-geographic model describes the process of dispersal over the phylogeny of our

study group. Typically, the phylogeny and biogeographic history are inferred sequentially. Un-

der this sequential-inference scenario, for example, we might first estimate the phylogeny for

our study group from an alignment of sequence data using BEAST. The resulting phylogenetic

estimate is then used to infer the biogeographic history of our study group.

PrioriTree requires that you provide an input file containing a previously inferred study

tree. If the input file includes a single tree (e.g., an MCC summary tree in a .tre file), the

discrete-geographic inference will treat the phylogeny as a fixed variable (i.e., this effectively

assumes that the phylogeny is ‘known’). Alternatively, if the input file contains multiple trees

(e.g., a posterior distribution of trees in a .trees file), the discrete-geographic inference will be

marginalized (i.e., ‘averaged’) over those trees to accommodate phylogenetic uncertainty.

BEAST provides two options for accommodating phylogenetic uncertainty in sequential

analyses. The first option—evoked with the argument MetropolisHastings = "true"—treats

the posterior sample of trees as a prior distribution while inferring the joint posterior distribu-

tion of the discrete-geographic model parameters. Under this option, trees are proposed and

accepted/rejected using the standard Metropolis–Hastings MCMC algorithm. Specifically, the

MCMC proposes a move to a new tree at a frequency specified by the corresponding proposal

weight, and when a new tree is being proposed, it is randomly drawn from the posterior sample

of trees, and the proposed tree is then accepted or rejected according to the computed accep-

Figure S.2.2: Specify the tree model.
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tance probability. Accordingly, sequential inference under this option is (theoretically) equiv-

alent to performing joint inference of the phylogeny and biogeographic history (i.e., where

the phylogeny and biogeographic history are simultaneously inferred from a single, combined

dataset that includes both the sequence and geographic data).

The second option for accommodating phylogenetic uncertainty—evoked with the argu-

ment MetropolisHastings = "false"—averages over the posterior sample of trees using an

ad hoc MCMC algorithm. Similar to the previous option, the MCMC proposes a move to a new

tree randomly drawn from the posterior sample of trees. In contrast to the correct Metropolis–

Hastings algorithm, however, proposed trees are always accepted (i.e., disregarding the ac-

ceptance probability of the proposed tree). This procedure therefore ignores the fact that our

geographic data (i.e., the geographic area for each tip in the tree) will have different probabil-

ities of being observed for different trees. Accordingly, sequential inference under this option

effectively assumes that the probability of observing the geographic data is independent of

the underlying phylogeny. We caution that this approach for averaging biogeographic infer-

ences over a posterior sample of trees—which is the default option implemented in BEAST—will

not correctly sample the joint posterior probability distribution of the phylogeny and biogeo-

graphic history.

Theoretical Background and PrioriTree Introduction: MCMC

The Metropolis–Hastings algorithm

Recall that Bayesian inference is focused on the joint posterior probability distribution of model

parameters. The posterior probability cannot be solved analytically, so we must resort to

numerical methods to approximate the joint posterior probability. Here we briefly describe

the numerical method used to estimate the joint posterior probability distribution of discrete-

geographic model parameters in BEAST: the Metropolis–Hastings Markov chain Monte Carlo

(MCMC) algorithm.

The Metropolis–Hastings algorithm (Metropolis et al. 1953; Hastings 1970) entails simu-

lating a Markov chain that has a stationary distribution that is the joint posterior probability

distribution of the discrete-geographic model parameters. The ‘state’ of the chain, θ, is a fully

specified model, i.e., a specific phylogeny with divergence times, Ψ, and a specific set of val-

ues for each parameter of the discrete-geographic model, {r, δ, µ}. The Metropolis–Hastings
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MCMC algorithm involves six main steps:

1. Initialize the chain with specific values for all parameters, θ = {Ψ, r, δ, µ}. The initial pa-

rameter values might be specified arbitrarily, or might be drawn from the corresponding

prior probability distribution for each parameter.

2. Select a single parameter according to its proposal weight. For example, if we assigned

a proposal weight of 10 to the average dispersal rate parameter, µ, and assigned a total

proposal weight of 100 to all parameters, then the probability of selecting µ is 10÷ 100 =

0.1.

3. Propose a new value for the selected parameter. Each parameter in the model will have

one or more stochastic proposal mechanisms: in general, a proposal mechanism is simply

a probability distribution that is centered on the current parameter value, from which we

randomly draw a new parameter value. By changing one of the parameter values, we

have proposed a new possible state of the chain, θ′.

4. Calculate the probability of accepting the proposed change, R:

R = min


1,

f (G | θ′)
f (G | θ)︸ ︷︷ ︸

likelihood ratio

· f (θ′)
f (θ)︸ ︷︷ ︸

prior ratio

· f (θ | θ′)
f (θ′ | θ)︸ ︷︷ ︸

proposal ratio




The acceptance probability, R, is the lesser of two values: i.e., it is either equal to one or

the product of three ratios:

• Likelihood ratio: the likelihood ratio is simply the probability of our observed data

given the proposed state of the chain, θ′, divided by the probability of our observed

data given the current state of the chain, θ. We calculate the likelihood for any

given parameterization of the discrete-geographic model (i.e., either θ′ or θ) using

the Felsenstein pruning algorithm.

• Prior ratio: is simply the prior probability of the proposed state, θ′, divided by the

prior probability of the current state, θ. In Bayesian inference, each parameter is a

random variable, and so is described by a prior probability density. Accordingly, we

can simply ‘look up’ the prior probability of any specific parameter value.

• Proposal ratio: the proposal (aka Hastings) ratio ensures that Markov chain is

ergodic—i.e., that the probability of proposing a move from state θ to θ′ is equal
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to the probability of proposing a move from state θ′ to θ—which ensures that the

samples provide a valid approximation of the target (joint posterior probability) dis-

tribution.

5. Generate a uniform random number between zero and one, U[0, 1]. If U < R, accept the

proposed change as the next state of the chain (i.e., θ′ → θ); otherwise, the current state

of the chain becomes the next state of the chain (i.e., θ → θ).

6. Repeat steps 2–5 an ‘adequate’ number of times.

A chain following the simple rules outlined above will sample parameter values with a

frequency that is proportional to their posterior probability. That is, the proportion of time that

the chain spends in any particular state is a valid approximation of the posterior probability of

that state. To help understand why this is true, let’s have a closer look at how we compute the

acceptance probability, R. To this end, we will ignore the third term, the proposal ratio (as it

only ensures that acceptance probabilities are based on the product of the first two terms); the

simplified equation

R ∝


 f (G | θ′) · f (θ′)

f (G | θ) · f (θ)


 =

f (θ′ | G)

f (θ | G)︸ ︷︷ ︸
posterior ratio

makes it clear that the MCMC simulation will visit states (parameter values) proportional to

their relative posterior probability. [Recall that the posterior probability, P(θ | G), is propor-

tional to the product of the likelihood function, P(G | θ), and the prior probability, P(θ).]

At specified intervals, the state of the chain is written to a log file (the .trees or .log files

that are output by BEAST). Each row of parameter values in these log files represents a sample

of the joint posterior probability distribution. We can query the joint posterior sample to make

inferences on any parameter of interest: e.g., we might infer the marginal posterior probability

density for the average dispersal rate parameter, µ, by constructing a histogram (frequency

distribution) of sampled values from the corresponding column in our log file.

PrioriTree allows you to specify a number of settings to control the MCMC simulation,

which are grouped under two panels: MCMC Sampling and Proposal Weights.
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MCMC sampling

MCMC simulation length

Given that we are numerically approximating the joint posterior probability distribution by

collecting MCMC samples, a key issue is how long we need to run the MCMC simulation to

adequately approximate the posterior probability. The length of the MCMC simulation refers

to the total number of MCMC cycles or generations, where a cycle in BEAST entails a single

proposal to a single parameter (i.e., one iteration through steps 2–5 in the M–H algorithm,

described above). A number of factors will impact the length of the simulation required to ad-

equately approximate the joint posterior probability distribution, including dataset size, model

complexity (including the number of parameters and the degree/nature of interactions among

parameters), the specified (hyper)priors, and the efficiency of the MCMC simulation (including

the choice of proposal mechanisms, the tuning parameters of those proposals, the weights as-

signed to each proposal mechanism, and the specified sampling frequency). Accordingly, it is

impossible to know the required length of the MCMC simulation a priori; instead we must de-

termine the minimal simulation length experimentally by iteratively running an MCMC simu-

lation, diagnosing MCMC performance, adjusting MCMC settings, and re-running the MCMC

simulation.

MCMC sampling frequency

The samples collected during an MCMC simulation are highly autocorrelated. That is, two suc-

cessive states of the MCMC simulation differ at most by a single parameter value (if the pro-

posed state was accepted) or will be identical (if the proposed state was rejected). Accordingly,

we commonly ‘thin’ the samples collected by the MCMC simulation by writing the parameters

to a log file at a specified frequency; this is referred to as the MCMC sampling frequency. This

convention is largely practical, as it reduces the size of the log files. The number of MCMC

samples written to our log files is therefore equal to the chain length divided by the sampling

frequency. In setting the sampling frequency, we are trying to strike a balance between collect-

ing as many samples as possible for a given chain length (sample at a high frequency), while

simultaneously reducing both the file size and the degree of autocorrelation among sampled

parameter values (sample at a low frequency). Again, determining the optimal sampling fre-

quency entails a trial-and-error approach, which is typically facilitated by computing MCMC

diagnostics, such as the effective sample size (ESS), described below.
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Figure S.2.3: MCMC settings. You can specify the simulation length, sampling frequency, and number
of replicate simulations.

Number of replicate MCMC simulations

Because we are using numerical methods to approximate the joint posterior probability distri-

bution, it is critical to assess the performance of our MCMC simulations. Many diagnostics

have been developed to assess MCMC performance, but the most powerful rely on compar-

ing aspects of replicate MCMC simulations. Two or more replicate MCMC simulations are

identical—with identical data, model, and priors—except for the random-number seed. Our

ability to detect MCMC pathologies increases with the number of replicate simulations that

we perform: as a rule of thumb, we recommend performing (at least) four replicate MCMC

simulations. However, as with most aspects of MCMC simulation, the actual number of repli-

cate simulations required to rigorously diagnose MCMC performance for a given inference

problem (model and dataset) is determined by trial and error. Note replicate MCMC simula-

tions are useful beyond helping us diagnose MCMC performance; that is, we can combine the

post-burnin samples from our replicate MCMC simulations to construct a ‘composite’ posterior

sample (i.e., a composite log file), and we can use this composite posterior sample as the basis

for our parameter estimates.
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Proposal weights

Before discussing proposal weights, it may be helpful to first describe the goal that we are

trying to achieve by adjusting proposal weights, and the diagnostics we use to assess our prox-

imity to that goal. As described above, the MCMC simulation length is the total number of

MCMC cycles (or generations), the sampling frequency is interval (in number of cycles) at

which we write the state of the chain to our log files, such that the number of samples in our

log file is the chain length divided by the sampling frequency. Imagine, for example, that we

run an MCMC simulation for a length of 1,000,000 cycles with a sampling frequency of 100.

We will have sampled 10,000 parameter values, however, the autocorrelation of MCMC states

means that we have fewer than 10,000 independent samples.

To estimate the number of effectively independent samples in our log file, we need to com-

pute the effective sample size (ESS) diagnostic. This summary statistic, in turn, relies on a

second MCMC summary statistic, the autocorrelation time (ACT) diagnostic. The ACT statistic

indicates the number of successive MCMC samples over which the values for a given param-

eter are correlated. Accordingly, the ESS for a given parameter is simply the total number of

MCMC samples divided by the ACT for that parameter. For example, imagine that the average

dispersal rate parameter, µ, in our hypothetical MCMC scenario has an autocorrelation time of

100, then the ESS for this parameter is 10, 000÷ 100 = 100.

The objective is to achieve a sufficiently large ESS value for every (hyper)parameter in our

model. The threshold for the minimal ESS value is somewhat arbitrary; by convention, an ESS

≥ 200 is considered adequate. [As an aside, it may be useful to augment this arbitrary ESS

threshold by visually inspecting the distribution of sampled parameter values. Our objective is

to collect an adequate number of samples for a given parameter in order to estimate its marginal

posterior probability distribution. Accordingly, if we have collected an adequate number of

samples for a given parameter, a histogram of those samples (e.g., plotted in Tracer) should

resemble a probability distribution.]

We might be tempted to focus largely/exclusively on the ESS values of the ‘focal’ parame-

ters of our model (while ignoring those for the ‘nuisance’ parameters in our model). However,

this would be unwise. Our assignment of a parameter to focal or nuisance status is entirely

subjective: we are free to make inferences about (focus on) any parameter in our model by

summarizing the samples in the corresponding column of our log file. Nevertheless, the re-
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Figure S.2.4: Specify proposal weights.

liability of these marginal posterior probability distributions (based on a column of our log

file) depends on an adequate approximation of the corresponding joint posterior probability

distribution (all of the columns of our log file). In other words, all of the parameters of our

model collectively (jointly) describe the process that gave rise to our observations, so a reliable

estimate of any parameter requires that we adequately approximate all model parameters.

Virtually any MCMC simulation—if run long enough—will eventually achieve adequate

ESS values for all identifiable parameters. It is common for ESS values to vary substantially

across parameters; i.e., where the ESS values for most parameters are extremely large by the

time we achieve a minimal ESS value for one or two ‘straggler’ parameters. The objective is to

achieve adequate ESS values for all parameters from the shortest possible MCMC simulation;

this requires that the ESS values for all parameters are approximately equal (i.e., such that all

parameters reach adequate ESS values at the same point in the MCMC simulation). We can

control the uniformity of the ESS values—and thereby optimize the efficiency of our MCMC

simulation—by adjusting the proposal weights.

The proposal weights in BEAST are relative. For example, an MCMC simulation with two
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proposal mechanisms—α with proposal weight 1, and β with proposal weight 2—is identical to

the setting with proposal weights α = 10 and β = 20 (i.e., under both settings, the probability

that we propose a change to parameter α is 1÷ (1 + 2) = 0.33 ≡ 10÷ (10 + 20) = 0.33). It

is common for the ESS values of some parameters to increase more slowly than others. These

difficult parameters have longer autocorrelation times (ACT), owing to low acceptance rates

for proposed changes to these parameters and/or because of correlations involving these pa-

rameters. The general idea is to increase the proposal weight for these difficult parameters so

that their ESS values increase at approximately the same rate as those of other parameters.

Our experience with a given model and proposal mechanisms may inform our choice of ini-

tial proposal weights. (In fact, our experience with discrete-geographic models and proposals

informed our choice of default proposal weights specified in PrioriTree, Fig. S.2.4) However,

the optimal proposal weights will vary from analysis to analysis; therefore identifying the op-

timal set of proposal weights is yet again a trial-and-error process.

We suggest the following iterative procedure for optimizing proposal weights (and MCMC

efficiency). First, perform a relatively short, preliminary (‘shakedown’) MCMC simulation us-

ing the default PrioriTree proposal weights. Next, examine the resulting ESS values for all of

the parameters. If the ESS values are strongly uneven—i.e., where most parameter values have

similar ESS values, but one or a few have very low ESS values—increase the proposal weights

for the parameters with relatively low ESS values (and/or decrease the proposal weights for

the parameters with relatively high ESS values). Iterate this process—run a shakedown MCMC

simulation, assess ESS values, and adjust proposal weights—until the ESS values for all pa-

rameters are approximately uniform. Then set up your final MCMC simulations using the

optimized proposal weights, running each replicate MCMC simulation until the ESS value for

each parameter is ≥ 200.

A final note about the size of log files. If the length of the MCMC simulation required

to achieve adequate ESS values for all parameters results in MCMC log files becoming pro-

hibitively large, you may wish to decrease the sampling frequency.
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Quickstart: Set up a BEAST Discrete-Geographic Phylodynamic Analysis

Here, we walk through how to use PrioriTree to set up a basic BEAST discrete-geographic phy-

lodynamic analysis with a focus on prior specification. This basic analysis infers the discrete-

geographic model parameters and the ancestral areas at internal nodes of the phylogeny. The

functionality described in this section can be found in the Analysis Setup main panel of the

program. See the theoretical-background subsections above for more detailed explanations of

how to specify alternative models and priors, and how to set up further analyses (e.g., inferring

the number of pathogen dispersal events between epidemic areas).

Step 1: Prepare input

The first step is to prepare your data for input into PrioriTree. PrioriTree requires two input

files: one that contains the discrete-geographic data, and another that contains the phylogeny

(either a single summary tree or distribution of trees inferred from a previous analysis). Note

that other panels (including the Methods Template Viewer panel and the BEAST XML Viewer

panel) will be enabled once both of the input files are uploaded (and pass the validity checks).

Discrete-geographic data File

The geographic data file needs to be either a .csv or .tsv file which contains two (or more)

columns. The header (first row) of the file contains the names of the columns. By default,

PrioriTree assumes that the first column contains the taxon names, and the second column

contains the geographic area that each taxon was sampled from. If the columns in your data file

Figure S.2.5: Import data panel (discrete-geographic data file).
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Figure S.2.6: Import data panel (tree file).

are in a different order, you can select the columns containing the taxon name and geographic

data from the drop-down menu after uploading the geographic-data file (other columns will

then be ignored).

To help you get a quick sense of the program, an example geographic-data file is available

with the program; load it by checking the Load example discrete-geography file box. The

example geographic data file is also available here in the supplementary repository for Chapter

1).

Tree file

The second input file contains the phylogeny to condition on (for a single tree) or marginalize

over (a distribution of trees) in the discrete-geographic phylodynamic analysis. This phylogeny

is supposed to be inferred by previous analyses without using the geographic data. If the tree

file contains more than one tree, then PrioriTree will specify your BEAST analysis to average

over this distribution of trees during the MCMC.

See this for an example file that contains a single summary phylogeny, and this for an ex-

ample file that contains a distribution of phylogenies. Check the Load example tree(s) file

box to load one of these example tree files to PrioriTree.
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Figure S.2.7: Model and prior specification panels.

Step 2: Specify model and configure basic analysis

Now that input files have been read in, it is time to specify the discrete-geographic model.

Click the tab labelled Step 2: Specify Model (which won’t be clickable until both data files

are uploaded). Given that model and prior specification can have a large impact on discrete-

geographic phylodynamic inferences, we strongly recommend going through this panel care-

fully to take advantage of the interactive and visual feature of PrioriTree for specifying model

and priors.

Specify model and prior

Model and prior specification is the core of PrioriTree. Below we briefly describe the basic

steps for specifying the discrete-geographic model and priors; for more details, see the corre-

sponding theoretical-background subsections above and Chapter 1.

Specify model.—Specify the discrete-geographic model in the left panel and choose the associ-

ated priors in the right panel (Fig. S.2.7). Two tabs in this model-specification panel correspond

to the geographic model and tree model, respectively.

In general, the tree-model part is not something to worry about, as PrioriTree assumes

that your focus is on the discrete-geographic inference. If the imported tree file contains only a

single summary tree, it will be treated as a fixed variable in the inference; while if the imported

tree file contains a distribution of phylogenies, the default tree-model configuration should be

appropriate.

Now let’s focus on the discrete-geographic model. In this panel, there are two input fields:
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1. Rate-Matrix Symmetry: whether the forward and backward dispersal rates between a

given pair of geographic areas are assumed to be identical (symmetric) or allowed to be

different (asymmetric).

2. BSSVS: whether to use Bayesian Stochastic Search Variable Selection (BSSVS) to estimate

the number of dispersal routes (see Lemey et al. 2009 and Chapter 1) for detailed expla-

nations).

Specify prior.—Priors may qualitatively affect the main biological conclusions drawn from

discrete-geographic phylodynamic inferences (see Chapter 1). In particular, the priors on the

average dispersal rate and the number of dispersal routes can be strongly impactful. In the

Prior Specification panel, we provide a tool for specifying priors based on your biological

knowledge before performing the current analysis. The left subpanel allows you to choose the

prior distribution on each model parameter, as well as adjust the parameters of the prior distri-

bution, the middle subpanel displays a brief summary of the currently selected prior, and the

right subpanel renders the distribution of the currently selected prior.

You can switch between the two parameters using the tabs in the left subpanel. For the

prior on the average dispersal rate, PrioriTree plots both the average dispersal rate itself (top

figure, right subpanel), as well as the resulting prior distribution on the number of dispersal

events across the entire dispersal history (bottom figure, right subpanel). The vertical dashed

Figure S.2.8: Specify prior on average dispersal rate.
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Figure S.2.9: Prior specification panel when not using BSSVS.

line in the bottom figure indicates the parsimony score; you may use it as a reference to assess

how biologically realistic the prior is.

The dispersal-route indicators and their sum, the number of dispersal routes, will be part of

the model when you choose to average over geographic models using BSSVS; otherwise (when

they are not part of the model) the prior on the number of dispersal routes naturally disappear

(Fig. S.2.9).

Click the Proceed to next step button once you are done with the model and prior spec-

ification step. If none of the default settings has been changed, a warning message will pop up

as a reminder (Fig. S.2.10). Click the Yes button to proceed if you do intend to stay with the

default settings. This behavior applies to all the remaining major steps in PrioriTree.

Step 3: Configure basic analysis settings

After specifying the model and priors, configure the MCMC settings of the BEAST analysis. The

default settings of PrioriTree are likely to be appropriate for most discrete-geographic analy-

ses. If the MCMC fails, you may want to increase the total number of generations (MCMC chain

length) and/or adjust the proposal weights; see the MCMC theoretical-background subsection

above for detailed instructions.

Figure S.2.10: Warning message when no default settings has been changed.
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Figure S.2.11: Basic analysis-setting configuration panel.

Brief explanation of the input fields:

• MCMC chain length: the total number of generations for the analysis to run;

• MCMC sampling frequency: how frequent (every how many generations) an MCMC

sample will be written to the log files, and;

• Proposal weight: the frequency of performing each proposal.

In addition, you may also choose the number of replicate XML scripts to produce using

the third field of this panel. As MCMC is a numerical algorithm approximating the posterior

distribution, it is necessary to run multiple MCMCs targeting the same distribution to ensure

the results converge; the default number of replicates is thus set to 2 (although 4–8 replicates

are generally preferable provided sufficient computational resources).

Figure S.2.12: Download the BEAST XML script.
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Figure S.2.13: Download the methods-description text file.

Step 4: Save output

At the end, when all the settings are complete, download the readily runnable BEAST XML

script produced by PrioriTree. The default name of the XML script is generated by

PrioriTree to indicate the type of analysis specified. If the inference involves averaging over

a distribution of phylogenies (i.e., the imported tree file contains a distribution of trees), the

tree file needs to be put in the same directory as the XML script for it to run. An example

XML-script zipped folder generated by PrioriTree can be found here.

You may also download a text document that describes the model and prior specification,

as well as the analysis configuration. An example methods-description text file generated by

PrioriTree is available here.
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Set up and Summarize BEAST Analysis for Assessing Prior Sensitivity in Biogeographic

Inference

Recall that inference under discrete-geographic models—where many parameters must be in-

ferred from minimal information—is inherently prior sensitive; i.e., the posterior probability

distributions of the discrete-geographic model parameters that we infer from our geographic

data are apt to be influenced by the prior probability distributions that we assume for those pa-

rameters. In this section, we describe some of the features implemented in PrioriTree that are

intended to help you identify prior sensitivity in your biogeographic analyses, including joint

prior distribution estimation (see this subsection), robust Bayesian inference (see this subsec-

tion), and data cloning (see this subsection). In each subsection below, we start with the related

theoretical background and then go into details to show the specific operations you need to do

in PrioriTree to set up and summarize the corresponding BEAST analysis.

Estimating the Prior

Theoretical background

A simple but effective way to identify prior sensitivity is to compare the (specified) prior to the

(inferred) posterior probability distributions for each parameter: if a parameter is prior sensi-

tive, its inferred posterior probability distribution will be (virtually) identical to whatever prior

probability distribution we specified for that parameter. PrioriTree allows users to visualize

the prior distributions for the geographic model parameters—including the number of disper-

sal routes, ∆, the average dispersal rate, µ, and the resulting prior distribution on the expected

number of dispersal events—which we can then compare to their corresponding posterior dis-

tributions to assess prior sensitivity.

However, a possible limitation of this approach is related to the induced priors caused by

parameter interactions. Imagine, for example, that we specify (and visualize) a uniform prior

for a hypothetical parameter, θ, in PrioriTree, but (unforeseen) parameter interactions induce

an exponential prior for θ. That is, the independent uniform prior that we initially specified for

θ—when marginalized over the joint prior probability distribution of all model parameters—is

marginally exponential. After performing our MCMC simulation, we observe that the inferred

marginal posterior for θ resembles an exponential distribution, which departs strongly from

the uniform prior distribution that we specified for θ, leading us to incorrectly conclude that
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this parameter is unlikely to be prior sensitive. Accordingly, it may be safer to estimate the

joint prior probability distribution of our model parameters using MCMC, and then compare

the inferred marginal prior probability distribution for each parameter to its corresponding

inferred marginal posterior probability distribution.

To understand how we estimate the joint prior probability distribution using MCMC, first

recall how the M–H algorithm estimates the joint posterior probability distribution. Central

to the M–H algorithm is the acceptance probability, R—the probability that we accept a move

to a proposed state (set of parameter values)—which is essentially based on the ratio of the

posterior probabilities of the proposed (θ′) and current (θ) states:

R ∝


 f (G | θ′) · f (θ′)

f (G | θ) · f (θ)


 =

f (θ′ | G)

f (θ | G)︸ ︷︷ ︸
posterior ratio

.

Because we have replaced all of our geographic data, G, with "?", the likelihood of any

parameter value will be identical, such that the first term of the acceptance probability (the

likelihood ratio of the proposed and current states) cancels out:

R ∝




��
���f (G | θ′)

f (G | θ)︸ ︷︷ ︸
likelihood ratio

· f (θ′)
f (θ)︸ ︷︷ ︸

prior ratio


 =

f (θ′)
f (θ)︸ ︷︷ ︸

prior ratio

,

which makes it clear that the MCMC simulation will visit states (parameter values) propor-

tional to their relative prior probability. We can then query the joint prior sample from the

Figure S.2.14: Set up an MCMC simulation to target the joint prior probability distribution.
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MCMC simulation to summarize the marginal prior probability distribution for any parame-

ter: e.g., we might infer the marginal prior probability density for the average dispersal rate

parameter, µ, by constructing a histogram (frequency distribution) of sampled values from the

corresponding column in our log file. These inferred marginal prior probability distributions

can then be compared to their corresponding marginal posterior probability distributions to

assess prior sensitivity.

Quickstart

To use PrioriTree to setup a BEAST MCMC simulation targeting the joint prior distribu-

tion, select the Under prior option in the dropdown menu in the Model Exploration panel

(Fig. S.2.14). When this option is selected, PrioriTree will replace the observed data (i.e., the

geographic area where each species was sampled) with "?" in the XML script.
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Robust Bayesian Inference

Theoretical background

We can assess the prior sensitivity of our biogeographic inferences using an approach called

robust Bayesian inference. The fancy name belies the simplicity of this approach; we perform a

series of MCMC analyses—of the same dataset under the same inference model—where we it-

eratively change one (or more) (hyper)priors of our inference model for each separate analysis.

We then compare the resulting series of marginal posterior probability distributions for a given

parameter to assess whether (or how much) our estimates change under different priors. We

usually make this comparison visually, by plotting distributions for a given parameter under

the range of candidate priors that we explored.

If the inferred marginal posterior probability distributions are (more or less) identical under

a range of corresponding priors, we can safely conclude that our estimates of this parameter

are robust to the choice of prior. Conversely, if the marginal posterior probability distributions

vary substantially (and resemble their corresponding marginal prior probability distributions),

then we would conclude that this parameter exhibits prior sensitivity (i.e., that there is little

information in our study data to estimate this parameter). The latter scenario indicates that we

need to take further steps; for example, by removing this parameter from our inference model

(if possible), or (if not) by making an effort to objectively choose among alternative priors (e.g.,

by assessing the relative and/or absolute fit of the data to alternative priors).

Quickstart

We have implemented functions in PrioriTree to help you perform robust Bayesian inference

by generating graphical summaries of parameter estimates under different priors. PrioriTree

assumes that you have performed BEAST analyses under identical model but with different

priors. To examine if the posterior estimates are robust to these alternative priors, PrioriTree

take BEAST output files to generate plots that show the inferred posterior distributions under

different priors.

Step 1: Import BEAST log files

You can upload one or multiple (analysis replicates) BEAST log files (that contain parameter es-

timates under the a given model and prior combination) to an input field; different input fields

correspond to different priors (Fig. S.2.15). These parameter log files can include samples from
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Figure S.2.15: Initial panel: uploading log files.

the joint posterior distribution (i.e., estimates with data) and/or samples from the joint prior

distribution (i.e., estimates without data; see the the subsection above for details about how to

set up this type of BEAST analyses using PrioriTree). PrioriTree assumes that the uploaded

log files are produced using the BEAST XML scripts generated by itself; i.e., for summarizing

robust Bayesian analysis, only the log files with underprior or posterior as part of their

name strings will be included (other uploaded files are ignored). Check the Load example log

files box to load example log files to PrioriTree.

Figure S.2.16: Select the parameter to examine.
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Select the parameter to examine.—Once the log files are successfully uploaded, PrioriTree finds

the intersection of parameters (column names), and then displays them in the way shown in

Fig. S.2.16: the focal parameters (i.e., the parameters commonly focused by empirical studies), if

exist, will be listed as radio buttons, while all the remaining parameters will only be presented

(as a dropdown menu) when the show others option is chosen. Simultaneously, when the

parameter selection panel appears, the start-processing button will also be enabled; clicking

this button triggers the computationally demanding log-parsing action. Note here only a single

parameter can be selected (either one of the radio buttons or one item from the drop-down

menu); if later you select another parameter to examine, the start-processing button will be

enabled again and the log-parsing step needs to be re-executed.

Step 2: Configure post-processing settings

Once PrioriTree finishes parsing the log files, two main panels will be enabled: the

processing-setting panel (on the left) and the result-visualization panel (on the right; see

Fig. S.2.17). All the operations you may perform under this section should be computation-

ally inexpensive so that the changes to the figure and/or table should be seen immediately.

Output processing settings.—Within the processing-setting panel, a separate scrollable collapsi-

ble subpanel is displayed under each prior model; each repeated chunk within that subpanel

corresponds to the settings you can adjust for each log file (led by the log file name). With

Figure S.2.17: Configure post-processing settings.
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Figure S.2.18: Exclude some log files.

the first item (as radio buttons), you may adjust (if it has not been guessed incorrectly by

PrioriTree) whether the given parameter log file was sampled from the joint posterior dis-

tribution or the joint prior distribution.

The second item allows you to exclude some log files without having to re-execute the

log-parsing step. For instance, you may desire to compare the estimated posterior and prior

distributions under each prior model in the first place, which may indicate the sensitivity of

Figure S.2.19: Combine analysis replicates.
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Figure S.2.20: Edit figure.

posterior estimates to the specified prior model. Then if you only want to present the com-

parison between the estimated posterior distribution, you can uncheck the log files for the

estimated prior distribution.

Thirdly, you can adjust the burnin proportion of each log file independently using the slider

object. Also, you may choose to combine all the replicate log files (i.e., estimates under identical

model and prior specification but sampled from independent MCMC chains) using the check

box on the top of the post-processing panel, once confirming that the replicate MCMCs have

converged.

Figure S.2.21: Distribution-summary table.
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Figure S.2.22: Download figure and/or table.

Figure edits.—You may perform further cosmetic edits to the figure and/or table before saving

them. The fields under the figure-edit panel provide flexibility in modifying the appearance of

the figure. You can view the exact values of the mean and 95% credible interval of each log file

under the table tab.

Step 3: Save output

At the end, when all the settings are complete, you can download the figure and/or the table

under the desired format. The default figure/table name generated by PrioriTree indicates

the type of analysis and the examined parameter.
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Data Cloning

Theoretical background

We can also assess the prior sensitivity of our biogeographic inferences using an approach

called data cloning (Robert 1993; Lele et al. 2007; Ponciano et al. 2009, 2012). Under this ap-

proach, we perform a series of MCMC analyses—under the same inference model with iden-

tical priors—where we iteratively increment the number of copies (“clones”) of our original

dataset used in each separate analysis. We then explore the resulting series of marginal poste-

rior probability distributions for a given parameter to assess how our estimates change as the

level of information in the data increases (i.e., as we increment the number of data clones).

We might think of data cloning as the inverse of robust Bayesian inference; as described

above, robust Bayesian inference involves a series of analyses where we hold the inference

model and data constant, but iteratively change the prior probability distribution for a param-

eter to explore how the choice of prior impacts the corresponding marginal posterior proba-

bility distribution. By contrast, data cloning involves a series of analyses where we hold the

inference model and prior constant, but iteratively change the number of copies of the original

data to explore how the level of information in the data impacts the inferred marginal posterior

probability distribution.

A particular MCMC in a sequence of data clones is defined by the number of replicate

copies of our original data, βi ≥ 1, with the resulting posterior distribution being:

P(θ | X)βi ∝ P(X | θ)βi P(θ).

If we were to set βi = 0, we would be targeting the joint prior probability distribution (i.e., we

would be running the MCMC without data), when βi = 1, we are targeting the joint poste-

rior probability distribution (i.e., we would be running the MCMC using our original dataset).

As βi → ∞, the marginal posterior distribution for the parameter under consideration will

converge to a point value that is identical to the maximum-likelihood estimate (MLE) for that

parameter (if the parameter is identifiable).

Of interest here is the relative rate at which the marginal posterior probability distribution

for the parameter under scrutiny—given the prior specified for that parameter—converges to

the MLE as we increase the clone number. If the prior is very informative (i.e., focused on a

narrow range of parameter values) and the prior mean is far from the MLE value, the rate of
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convergence will be slow. Conversely, if a prior is more diffuse (i.e., spread over a relatively

wide range of parameter values) and the prior mean is rather close to the MLE value, the rate

of convergence will be relatively fast. When the information in the data is limited, we would

generally prefer a prior that has a faster convergence rate. We usually assess the convergence

rate visually, by plotting posterior distributions for a given parameter under the range of βi

values that we explored.

Quickstart

PrioriTree provides functions that allow you to generate XML files with a series of clone

numbers (that you can subsequently analyze using BEAST), and also includes functions to allow

you to visualize the results of your data-cloning experiments.

Set up BEAST data-cloning analysis

You can generate XML files using PrioriTree that specify the number of data clones

(Fig. S.2.15). Effectively, PrioriTree duplicates your original geographic data (i.e., the area

in which each tip was sampled). So, specifying k clones will generate an alignment with k

copies of the original “site”; e.g., setting k = 5 will generate an alignment with 5 sites that are

identical copies of the original, single site (i.e., with an identical distribution of areas across

tips).

After generating XML files that specify a series of data-cloning analyses (e.g., with 5, 10, 20

copies of the original data), you would then analyze each XML file in BEAST. You may set up a

series of data clones for a single choice of prior (e.g., to assess the proximity of the mean of that

prior to the MLE for the parameter under scrutiny), or you might set up a series of data clones

Figure S.2.23: Set up data-cloning analysis.
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for two or more candidate priors (e.g., to assess the relative rate of convergence to the MLE

under different priors for the parameter under scrutiny). PrioriTree provides features to help

you explore the results of your data-cloning experiments—by generating plots of the marginal

posterior probability distributions under different clone numbers and/or priors—which we

describe below.

Note that posterior probability density will converge to the MLE as we increase the amount

of information in the data if: (1) our inference model is identifiable (i.e., that each unique set of

parameter values has a corresponding unique likelihood value), and; (2) that we specify priors

with soft bounds for all of our model parameters (i.e., that one or more of our priors does

not assign zero prior probability [does not “box out”] the corresponding maximum-likelihood

estimate for that parameter.)

Summarize data-cloning analysis

PrioriTree assumes that you have performed a sequence of BEAST analyses with increasing

number of copies of the data using identical model (under one or multiple priors). PrioriTree

take the resulting BEAST output files as input to generate plots that show the inferred distribu-

tions under various numbers of data clones (as well as under different priors if they exist).

Step 1: Import log files.—You can upload multiple (from analysis replicates and/or under dif-

ferent number of clones) BEAST log files (that contain parameter estimates under the a given

model and prior combination) to a input field; different input fields correspond to different

Figure S.2.24: Combine analysis replicates.
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Figure S.2.25: Edit figure.

priors (Fig. S.2.15). These log files may include the estimates sampled from data-cloned distri-

butions (with various numbers of copies of the data), the joint posterior distribution (one copy

of the data), or the joint prior distribution (zero copy of the data). PrioriTree assumes that the

uploaded log files are produced using BEAST XML scripts generated by itself; i.e., for summa-

rizing data-cloning analysis, upload log files with datacloning, posterior, or underprior

as part of their name strings.

Steps 2–5.—The following workflow of summarizing data-cloning analysis is effectively iden-

tical to the robust Bayesian analysis (see the robust Bayesian quickstart subsection), so we only

present Figs. S.2.24–S.2.26 to show the different output figures.

Figure S.2.26: Distribution-summary table.
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Set up and Summarize BEAST Analysis for Assessing Relative or Absolute Model Fit

For a given phylodynamic study, we typically wish (or need) to consider several candidate

discrete-geographic models (where alternative models might specify a/symmetric rate matri-

ces, different priors on the average dispersal rate and/or number of dispersal routes, etc.).

Comparing the fit of competing phylodynamic models to our study data offers two impor-

tant benefits. First, model-based inference—including phylodynamic inference—assumes that

our inference model provides a reasonable description of the process that generated our study

data; otherwise, our inferences—including estimates of relative and/or average dispersal rates

and any summaries based on those parameter estimates (ancestral areas, dispersal histories,

number of dispersal events, etc.)—are apt to be unreliable. Additionally, comparing alterna-

tive discrete-geographic models provides a means to objectively test hypotheses regarding the

history of dispersal (i.e., by assessing the relative fit of our data to competing models that are

specified to include/exclude a parameter relevant to the hypothesis under consideration).

To this end, PrioriTree implements functions to help you assess both the relative (see

this subsection) and absolute fit of discrete-geographic models to an empirical dataset (see this

subsection). In each subsection below, we start with the related theoretical background and

then go into details to show the specific operations you need to do in PrioriTree to set up and

summarize the corresponding BEAST analysis.

Compare the Relative Fit of Competing Models

Theoretical background

We assess the relative fit of two or more candidate discrete-geographic models to a given

dataset by computing Bayes factors, which is based on comparing the average fit (i.e., the

‘marginal likelihood’) of competing models to that dataset. The apparent simplicity of Bayes

factors belies some rather challenging conceptual and computational issues. Here, we begin

by describing a relevant probability concept (marginal likelihood), then detail the numerical

methods that we use to estimate marginal likelihoods (stepping-stone simulation), and then

describe how to compute (and interpret the results of) Bayes factors. Finally, we describe how

to assess (and improve) the reliability of our marginal-likelihood estimates using PrioriTree

and BEAST.
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Marginal likelihood

Marginal likelihoods can be a challenging concept. In the simplest terms, it is the average fit of

a model to a dataset. More precisely, the marginal likelihood is the probability of observing the

data (i.e., the likelihood) averaged over all values for every parameter in the model, weighted

by the prior probability of those parameter values (i.e., it is the likelihood averaged over the

joint prior probability distribution of the model parameters).

Recall that we’ve previously encountered this probability term (lurking in the denominator

of Bayes theorem):

posterior distribution︷ ︸︸ ︷
P(Q, µ | G, Ψ) =

likelihood︷ ︸︸ ︷
P(G | Q, µ, Ψ)

prior distribution︷ ︸︸ ︷
P(Q)P(µ)

P(G | Ψ)︸ ︷︷ ︸
marginal likelihood

.

[Note that the marginal likelihood for model Mi is conditional on the model, i.e., P(G | Mi).

By convention, however, this dependence is often suppressed or ignored, as in the equation

above.]

You may also recall that the MCMC algorithms that we use to approximate the joint pos-

terior probability density, P(Q, µ | G, Ψ), involves simulating a Markov chain that samples

states—where each state, θ, is a fully specified model θ = {Ψ, Q, µ}—based on their relative

posterior probabilities:

R ∝


 f (G | θ′)

f (G | θ)︸ ︷︷ ︸
likelihood ratio

· f (θ′)
f (θ)︸ ︷︷ ︸

prior ratio

· f (θ | θ′)
f (θ′ | θ)︸ ︷︷ ︸

proposal ratio


 =

f (θ′ | G)

f (θ | G)︸ ︷︷ ︸
posterior ratio

.

In other words, the MCMC algorithms that we use to estimate posterior probabilities of

discrete-geographic model parameters from our data completely (and deliberately) avoid cal-

culating the denominator of Bayes theorem; i.e., the marginal likelihood that we need to com-

pute Bayes factors!

Estimating marginal likelihoods

In order to estimate marginal likelihoods, we must resort to alternative numerical methods.

These methods are variously referred to as “stepping-stone” or “power-posterior” sampling

algorithms. These algorithms essentially involve running a series of MCMC simulations over

a sequence of “stones” that allow us to step from the joint posterior probability distribution to
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the joint prior probability distribution. For each stone, i, we raise the likelihood by a power, βi,

such that MCMC for this stone is estimating the distribution:

P(θ | G, βi) =
P(G | θ)βi P(θ)

P(G)
.

When β = 1 the MCMC samples from the joint posterior probability distribution, and when

β = 0 the MCMC samples from the joint prior probability probability distribution. For interme-

diate values of β in 1→ 0, the MCMC samples from increasingly distorted (“heated”) versions

of the posterior distribution.

To perform a stepping-stone simulation, we first need to specify the number of stones, k,

that we will use to span the posterior and prior distributions (we usually specify a relatively

large number, e.g., k ≥ 32). Next, we need to decide how to space our k stones. The most

common approach spaces the stones as k quantiles of a Beta probability distribution (where the

quantiles divide the distribution into k− 1 intervals with equal probability). The Beta distribu-

tion has two shape parameters, where the second one is set to one by convention (as we only

need one degree of freedom for this distribution). We might, for example, set the first shape

parameters α also to one, which specifies a uniform probability distribution (as a special case

of the Beta), such that the k quantiles in this case would be uniformly distributed between the

posterior and prior. However, as we move from the posterior to the prior, while the difference

between βi+1 and βi stays constant, the overlap between consecutive power-posterior distribu-

tions (P(θ | G, βi) and P(θ | G, βi+1)) becomes increasingly small. The approximation works

poorly when the overlap becomes too small. Following the BEAST default, PrioriTree specifies

the sequence of β values following evenly-spaced quantiles of a Beta(0.3, 1.0) distribution (i.e.,

alpha = 0.3), so that more values of β are put near 0 than near 1 (originally recommended by

Xie et al. 2011).

Computing Bayes factors

Often, we compare two competing models—models M0 and M1, for example—by computing

the Bayes factor:

BF01 =
P(G | M0)

P(G | M1)

Bayes factors greater than 1 reflect positive support for the model in the numerator, whereas

Bayes factors less than 1 reflect positive support for the model in the denominator. Bayes factors
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near 1 indicates that both models perform relatively the same. When comparing more than two

models, we simply compute the Bayes factor between each pair of models and rank the models

accordingly. Since we compute log-marginal-likelihoods, it’s convenient to express the Bayes

factors as:

2 ln BF01 = 2
(
ln P(G | M0)− ln P(G | M1)

)
,

where the factor of two is simply conventional.

Interpreting Bayes factors

Kass and Raftery (1995) provide rough guidelines for interpreting the strength of support indi-

cated by Bayes factors:

BF01 2 ln BF01 Support for model M0

1 to 3 0 to 2 Equivocal

3 to 20 2 to 6 Positive

20 to 150 6 to 10 Strong

> 150 > 10 Decisive

Figure S.2.27: Marginal likelihood estimation analyses.
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Quickstart

PrioriTree sets up the marginal-likelihood BEAST analysis by appending a

marginalLikelihoodEstimator section in the XML, after the analysis configuration sec-

tion of the MCMC that approximates the joint posterior distribution. This will allow us to

estimate marginal likelihood through both thermodynamic integration (Lartillot and Philippe

2006) and stepping-stone sampling (Xie et al. 2011; Baele et al. 2012).

The number of powers and how many MCMC generations under each power may also

strongly impact the accuracy of the estimates; default values are likely to be sufficient for most

empirical datasets and models. However, the most straightforward way to check the conver-

gence of marginal likelihood estimates is to run multiple replicates of the analyses to see if we

get stable estimates across replicates. If the estimates differ significantly among replicates (say

greater than a few log-likelihood units, especially if it is on the same scale as the difference

between the log marginal-likelihood estimates under competing models), consider increasing

the number of powers and/or the MCMC chain length under each power.
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Posterior-Predictive Checking

Theoretical background

We may wish to assess how close our inferred process (i.e., the assumed the model and the

posterior parameter estimates under the model) is to the true process that gave rise to the

observed data. One way to achieve this is to simulate datasets under the assumed model and

posterior estimates, and then compare them with the observed data. When the simulated data

resemble the observed data closely, we consider that the assumed model provides an adequate

fit to the data in an absolute sense (i.e., not comparing to any other competing models). This

model-adequacy assessment approach is referred to as posterior-predictive checking (Gelman

et al. 1996; Bollback 2002).

Each individual posterior-predictive simulation is performed by drawing a vector of pa-

rameters, θi = {Ψi, ri, δi, µi}, at random from the MCMC samples approximating the joint pos-

terior distribution, and then simulating a predictive dataset, Gsim
i , conditional on those param-

eters. Repeating this simulation procedure m times, we obtain m predictive datasets.

A difference statistic can then be calculated for the ith simulated dataset as:

Di = T(Gsim
i | θi)− T(Gobs | θi),

where Gobs is the observed biogeographic dataset, and T(· | θi) is a summary statistic (detailed

below).

For the m predictive datasets, the posterior-predictive p-value is calculated as:

P =
1
m

m

∑
i=1

Di ≥ 0,

with values between 0.025 and 0.975 indicating that the model is adequate and cannot be re-

jected (i.e., the observed statistic is within the 95% posterior-predictive interval).

Two summary statistics can be used to assess model adequacy: (1) the parsimony statistic,

and; (2) the tip-wise multinomial statistic. For the parsimony statistic, we simply calculated

the parsimony score for the given simulated or observed dataset, conditional on the sampled

tree, Ψi (achieved in PrioriTree by calling the parsimony() function in R package phangorn

Schliep 2010).

The tip-wise multinomial statistic treats the states at the tips of the tree for the single ge-

ographic character (i.e., site) as the outcomes of the multinomial trial. [This is similar to the
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multinomial statistic introduced by Goldman (1993) and used in posterior-predictive simula-

tion by Bollback (2002), which treats the sites (columns) in a molecular alignment as outcomes

of a multinomial trial.] For the tip-wise multinomial statistic, we calculated:

T(G | θi) =
k

∑
i=1

ni ln(ni/n),

where n is the number of tips, and ni is the number of tips in state i.

Quickstart

To perform posterior-predictive checking, PrioriTree requires you to provide the observed

data as well as the estimates (as log and tree files produced by BEAST) inferred from the data,

assuming these inference outputs are generated by BEAST using the XML scripts produced by

PrioriTree (only when this is the case, PrioriTree can reliably parse the log file and figure

out the exact discrete-geographic model used in the inference, so that it can simulate data un-

der that model). Once all the required input files are provided, you can start the simulation in

PrioriTree, and then PrioriTree will generate plots to show the posterior-predictive distri-

butions for each replicate analysis (as well as under different priors if they exist).

Step 1: import files

Figure S.2.28: Import discrete-geographic data.
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Figure S.2.29: Upload BEAST output files.

Discrete-geographic data file.—The discrete-geographic data file needs to be either a .csv or .tsv

file which contains two (or more) columns. The header (first row) of the file contains the names

of the columns. By default, PrioriTree assumes that the first column contains the taxon names,

and the second column contains the geographic area for that taxon. If the columns in your data

file are in a different order, you can select the columns containing the taxon name and geo-

graphic data from the drop-down menu after uploading the discrete-geographic data file into

PrioriTree (the other columns are ignored). Check the Load example discrete-geography

file box to read in an example discrete-geographic data file.

BEAST analysis output log and tree files.—You can upload one or multiple (analysis replicates)

BEAST log/tree files (that contain parameter estimates under the a given model and prior com-

bination) to an input field; different input fields correspond to different priors (Fig. S.2.30).

Note here, not only the log file(s), you also need to upload the associated tree file(s). We need

to know the tree sampled simultaneously with each parameter-estimate sample to simulate the

dataset, as well as to compute the parsimony statistic.

PrioriTree assumes each sample in the log file and in its associated tree file match each

other; i.e., they should have been sampled from the same iteration of a BEAST analysis (the

default behavior when the XML scripts generated by PrioriTree were used). If you have

combined replicate analyses or have thinned their estimates files, identical operations need to
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Figure S.2.30: Start posterior-predictive simulations.

be applied to both the log file and the associated tree file. Check the Load example log and

tree files box to read in an example sets of log and tree files.

Perform posterior-predictive simulations.—Once all the input files (including the geographic-data

file, parameter-estimates log file(s) and the associated tree file(s)) are uploaded and they

are valid (both in terms of their own format and the match between them), the Perform

Simulations tab will be enabled. In the Perform Simulations panel, you can either choose

to simulate a dataset using each sample in the uploaded distribution by checking the Perform

one simulation for each sample box, or specify the desired number of simulated datasets

by unchecking the box first and then editing the simulation-number field. Finally, once the

simulation configuration is done, click the Start posterior-predictive simulation button

to initiate the computationally demanding log-parsing and forward-simulation actions. This

simulation step may take a noticeable amount of time to complete, which scales with the num-

ber of sequences and number of geographic areas of the dataset, as well as the number of

simulations specified. If later you change any of the uploaded files or the number of simula-

tions to perform, click the Start posterior-predictive simulation button to re-execute the

simulation step.

Step 2: Configure post-processing settings

Once PrioriTree finishes the posterior-predictive simulations, two panels will be enabled au-

tomatically: the processing-setting panel (on the left) and the result-visualization panel (on the

right; Fig. S.2.31). All the operations you may perform under this section should be computa-

tionally inexpensive so that the changes to the figure and/or table should be seen immediately.
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Figure S.2.31: Configure post-processing settings.

Output processing settings.—First, you can choose to visualize the posterior-predictive distribu-

tions under one of the two available statistics: 1) parsimony statistic and 2) tip-wise multino-

mial statistic (see the theoretical-background subsection above for details), and switch between

them using the radio buttons on the top of the post-processing settings panel.

Below it, there is a checkbox that you can click to combine all the replicate analysis (i.e.,

estimates under identical model and prior specification), once confirming that the replicate

Figure S.2.32: Posterior-predictive distributions of the tip-wise multinomial likelihood statistic.
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Figure S.2.33: Combine replicates.

MCMCs have converged.

Below the checkbox, a separate scrollable collapsible subpanel is displayed under each prior

model; each repeated chunk within that subpanel contains the settings you can adjust for each

log file (led by the log file name). The first item allows you to exclude some log files without

having to re-execute the log parsing step. With the second item, you can adjust the burnin

proportion of each analysis independently using the slider object.

Figure S.2.34: Exclude some log files.
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Figure S.2.35: Edit figure.

Figure edits.—Users may perform further cosmetic edits to the figure and/or table before they

go to next step to save the output. The fields under the figure-edit panel should give you

flexibility in modifying the appearance of the figure. Users can also view the exact posterior-

predictive p-values of each analysis for both statistics together under the table tab.

Step 3: save output

Save figure or table output.—At the end, when all the settings are complete, download the fig-

ure and/or the table under the desired format. The default figure/table name generated by

PrioriTree indicates the type analysis and the selected posterior-predictive statistic (only for

the figure as the table contains both statistics).

Figure S.2.36: Posterior-predictive p-values table.
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Figure S.2.37: Download figure and/or table.

Save the simulated datasets

You can also download the posterior-predictive simulated datasets and summarize them

in other ways (e.g., using alternative summary statistics other than the two provided by

PrioriTree). For each analysis, PrioriTree simulates datasets (each of which contains state

of every tip in the tree) and then writes them out as a single .tsv file, where each column indi-

cates a tip (first row contains tip names as column names) while each row contains a simulated

dataset (so the number of rows, after the first header row, is identical to the number of post-

Figure S.2.38: Download the simulated datasets.
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burnin samples of the corresponding analysis). When there are multiple analyses (replicates

and/or under different prior models), PrioriTree will produce a zipped folder that contains

all the .tsv files (where each .tsv file contains the simulated datasets for the corresponding

analysis). The name of each .tsv file contains the prior model name as well as the replicate

id as part of its string, so that you can match them to the uploaded analysis files. An example

zipped folder that contains the simulated datasets is available here.
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Chapter 3

New Phylogenetic Models Incorporating
Interval-Specific Dispersal Dynamics Improve
Inference of Disease Spread

Abstract.—Phylodynamic methods reveal the spatial and temporal dynamics of viral ge-

ographic spread, and have featured prominently in studies of the COVID-19 pandemic.

Virtually all such studies are based on phylodynamic models that assume—despite direct

and compelling evidence to the contrary—that rates of viral geographic dispersal are con-

stant through time. Here, we: (1) extend phylodynamic models to allow both the average

and relative rates of viral dispersal to vary independently between pre-specified time in-

tervals; (2) implement methods to infer the number and timing of viral dispersal events

between areas; and (3) develop statistics to assess the absolute fit of phylodynamic mod-

els to empirical datasets. We first validate our new methods using simulations, and then

apply them to a SARS-CoV-2 dataset from the early phase of the COVID-19 pandemic. We

show that: (1) under simulation, failure to accommodate interval-specific variation in the

study data will severely bias parameter estimates; (2) in practice, our interval-specific phy-

lodynamic models can significantly improve the relative and absolute fit to empirical data;

and (3) the increased realism of our interval-specific phylodynamic models provides qual-

itatively different inferences regarding key aspects of the COVID-19 pandemic—revealing

significant temporal variation in global viral dispersal rates, viral dispersal routes, and the

number of viral dispersal events between areas—and alters interpretations regarding the

efficacy of intervention measures to mitigate the pandemic.
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INTRODUCTION

Phylodynamic methods encompass a suite of models for inferring various aspects of pathogen

biology, including: (1) patterns of variation in demography through time (Drummond et al.

2005; Minin et al. 2008; Gill et al. 2013, 2016); (2) the history of geographic spread either over

continuous space (Lemey et al. 2010; Pybus et al. 2012; Gill et al. 2017) or among a set of discrete-

geographic areas Edwards et al. (2011); Lemey et al. (2009), and; (3) the interaction between

demography and geographic history (Kühnert et al. 2016; De Maio et al. 2015; Müller et al.

2017, 2019). Our focus here is on discrete-geographic phylodynamic models. These phylody-

namic methods have been used extensively to understand the spatial and temporal spread of

disease outbreaks and have played a central role for inferring key aspects of the COVID-19

pandemic, such as the geographic location and time of origin of the disease, the rates and ge-

ographic routes by which it spread, and the efficacy of various mitigation measures to limit its

geographic expansion (Worobey et al. 2020; Candido et al. 2020; Dellicour et al. 2021; Douglas

et al. 2021; Lemey et al. 2021; Kraemer et al. 2021; Alpert et al. 2021; Nadeau et al. 2021; Wash-

ington et al. 2021; Müller et al. 2021; Bedford et al. 2020; Wilkinson et al. 2021; Davies et al. 2021;

Tegally et al. 2021; Fauver et al. 2020; du Plessis et al. 2021).

These phylodynamic methods adopt an explicitly probabilistic approach that model the

process of viral dispersal among a set of discrete-geographic areas (Baele et al. 2017). The

observations include the times and locations of viral sampling, and the genomic sequences of

the sampled viruses. These data are used to estimate the parameters of phylodynamic models,

which include a dated phylogeny of the viral samples, the global dispersal rate (the average

rate of dispersal among all geographic areas), and the relative dispersal rates (the dispersal

rate between each pair of geographic areas).

The vast majority (651 of 666, 97.7%; Fig. S.3.1) of discrete-geographic phylodynamic stud-

ies are based on the earliest models (Lemey et al. 2009; Edwards et al. 2011), which assume that

viral dispersal dynamics—including the average and relative rates of viral dispersal—remain

constant over time. However, real-world observations indicate that the average and/or relative

rates of viral dispersal inevitably vary during disease outbreaks. For example, relative rates of

viral dispersal typically change as a disease is introduced to (and becomes prevalent in) new

areas, and begins dispersing from those areas to other areas. Dispersal dynamics are also gen-

erally impacted by the initiation (or alteration or cessation) of area-specific mitigation measures
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(e.g., domestic shelter-in-place policies) that change the rate of viral transmission within an area

and the relative rate of dispersal to other areas. Similarly, average rates of viral dispersal may

change in response to the initiation (or alteration or cessation) of more widespread intervention

efforts—e.g., multiple area-specific mitigation measures, international-travel bans—that collec-

tively impact the overall viral dispersal rate.

In this paper, we: (1) extend discrete-geographic phylodynamic models to allow both the

average and relative dispersal rates to vary independently across pre-specified time intervals;

(2) enable stochastic mapping under these interval-specific phylodynamic models to estimate

the number and timing of viral dispersal events between areas, and; (3) develop statistics to

assess the absolute fit of phylodynamic models to empirical datasets. We first validate the

theory and implementation of our new phylodynamic methods using analyses of simulated

data, and then provide an empirical demonstration of these methods with analyses of a SARS-

CoV-2 dataset from the early phase of the COVID-19 pandemic.

EXTENDING PHYLODYNAMIC MODELS

Anatomy of interval-specific phylodynamic models

Phylodynamic models of dispersal include two main components (Fig. 3.1): a phylogenetic model

that allows us to estimate a dated phylogeny for the sampled viruses, Ψ, and a biogeographic

model that describes the history of viral dispersal over the tree as a continuous-time Markov

chain. For a geographic history with k discrete areas, this stochastic process is fully specified

by a k× k instantaneous-rate matrix, Q, where an element of the matrix, qij, is the instantaneous

rate of change between state i and state j (i.e., the instantaneous rate of dispersal from area i to

area j). We rescale the Q matrix such that the average rate of dispersal between all areas is µ;

this represents the average rate of viral dispersal among all areas (Yang 2014).

We could specify alternative biogeographic models based on the assumed constancy of the

dispersal process. For example, the simplest possible model assumes that the average disper-

sal rate, µ, and the relative dispersal rates, Q, remain constant over the entire history of the

viral outbreak. Typically, viral outbreaks are punctuated by events that are likely to impact the

average rate of viral dispersal (e.g., the onset of an international-travel ban) and/or the relative

rates of viral dispersal between pairs of areas (e.g., the initiation of localized mitigation mea-

sures). We can incorporate information on such events into our phylodynamic inference by
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Figure 3.1: Interval-specific phylodynamic models accommodate variation in the process of viral dispersal. Phy-
lodynamic models include two main components: a phylogenetic model that specifies the relationships and diver-
gence times of the sampled viruses, Ψ (top panel), and a biogeographic model that describes the history of viral
dispersal among a set of discrete-geographic areas—here, areas 1 (orange), 2 (blue), and 3 (green)—from the root
to the tips of the dated viral tree. Parameters of the biogeographic model include an instantaneous-rate matrix, Q,
that specifies relative rates of viral dispersal between each pair of areas (here, each element of the matrix, qij, is
represented as an arrow that indicates the direction and relative dispersal rate from area i to area j; middle panel),
and a parameter that specifies the average rate of viral dispersal between all areas, µ (lower panel). Although most
phylodynamic studies assume that the process of viral dispersal is constant through time, disease outbreaks are typ-
ically punctuated by events that impact the average and/or relative rates of viral dispersal among areas. Here, for
example, the history involves two events (e.g., mitigation measures) that define three intervals, where both Q and µ
are impacted by each of these events, such that the interval-specific parameters are (Q1,Q2,Q3) and (µ1,µ2,µ3). Our
framework allows investigators to specify phylodynamic models with two or more intervals, where each interval
has independent relative and/or average dispersal rates, which are then estimated from the data.

specifying interval-specific models. That is, the investigator specifies the number of intervals,

the boundaries between each interval, and the parameters that are specific to each interval

according to the presumed changes in the history of viral dispersal. For example, we might

specify an interval-specific model (Membrebe et al. 2019) that assumes that the average rate of

viral dispersal varies among two or more intervals (while assuming that the relative rates of

viral dispersal remain constant across intervals). Conversely, an interval-specific model (Biele-

jec et al. 2014) might allow the relative rates of viral dispersal to vary among two or more time

intervals (while assuming that the average rate of viral dispersal remains constant across inter-

vals). Alternatively, a more complex interval-specific model might allow both the average rate
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of viral dispersal and the relative rates of viral dispersal to vary among two or more intervals.

We extend interval-specific phylodynamic models to allow both the relative and average dis-

persal rates to vary independently across two or more pre-defined intervals. Here, we describe

how to compute transition probabilities, perform inference, simulate histories, and assess the

absolute fit of interval-specific phylodynamic models.

Computing Transition Probabilities

The transition-probability matrix, P, describes the probability of transitioning from state i to

state j (i.e., dispersing from area i to area j) along a branch with a finite duration; importantly, a

branch may span two or more intervals with different relative and/or absolute dispersal rates.

Allowing average dispersal rates to vary across intervals.

Under a constant phylodynamic model, the transition-probability matrix for a branch is

P = exp(Qv), where v = µt represents the expected number of dispersal events on a branch

of duration t with an average dispersal rate µ. However, under a phylodynamic model with

interval-specific average dispersal rates (Membrebe et al. 2019)—which allows the average

dispersal rate to vary among intervals, but assumes that relative dispersal rates are constant

across all intervals—a given branch in a phylogeny may span two or more intervals with dif-

ferent average dispersal rates (“average-rate intervals”). The transition-probability matrix for

the branch is then computed as the matrix exponential:

P = exp(Q
n

∑
l=1

vl), (3.1)

where Q is the instantaneous-rate matrix, n is the number of average-rate intervals spanned

by the branch, and vl is the expected number of dispersal events on the branch in average-rate

interval l. Recall that vl = µltl , where µl is the average dispersal rate during interval l and tl is

the time spent in interval l.

Allowing relative dispersal rates to vary across intervals

Under a phylodynamic model with interval-specific relative dispersal rates (Bielejec et al.

2014)—which allows the instantaneous-rate of dispersal between each pair of areas to vary

among intervals, but assumes that the average dispersal rate is constant across all intervals—

a given branch may span two or more intervals with different Q matrices (“relative-rate in-

tervals”). In this case, the transition-probability matrix for each relative-rate interval l, Pl , is
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computed as:

Pl = exp(Qlvl), (3.2)

where Ql is the instantaneous-rate matrix in relative-rate interval l, and vl = µtl is the aver-

age dispersal rate multiplied by the time spent in interval l. The transition-probability matrix

for the entire branch is then computed as the matrix product of interval-specific transition-

probability matrices:

P =
m

∏
l=1

Pl , (3.3)

where m is the number of relative-rate intervals spanned by the branch.

Allowing average and relative dispersal rates to vary across intervals

We combine the two approaches described above to compute transition-probability matrices

under an interval-specific model that allows both the average dispersal rate and the relative

dispersal rates to vary independently among intervals. Let a given branch span m relative-rate

intervals. The expected number of dispersal events in each such interval l, vl , is computed as:

vl =
n

∑
p=1

µptp, (3.4)

where n is the number of average-rate intervals spanned by interval l, µp is the dispersal rate in

average-rate interval p, and tp is the time spent in average-rate interval p. We then substitute

equation (3.4) into equation (3.2), and apply equation (3.3) as normal to compute the transition-

probability matrix for the entire branch. An example computation is illustrated in Fig. 3.2

for a scenario in which a branch spans two different relative-rate intervals and three different

average-rate intervals.

We modified BEAST source code to implement the above equation for computing P under

our interval-specific phylodynamic models that allow both µ and Q to vary independently

among two or more pre-specified intervals.

Inference under interval-specific phylodynamic models

We estimate parameters of the interval-specific phylodynamic models within a Bayesian sta-

tistical framework. Specifically, we use numerical algorithms—Markov chain Monte Carlo

(MCMC) simulation—to approximate the joint posterior probability distribution of the phy-

lodynamic model parameters—the dated phylogeny, Ψ, the set of relative dispersal rates, Q,
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Figure 3.2: Computing the transition-probability matrix for a branch spanning intervals where both the aver-
age and relative dispersal rates vary. An example illustrating the transition-probability matrix computation for a
branch spanning two relative-rate intervals (Q1 and Q2) and three average-rate intervals (µ1, µ2, µ3).

and the average dispersal rates, µ—from the study data (i.e., the location and times of viral

sampling, and the genomic sequences of the sampled viruses).

Simulating dispersal histories under interval-specific phylodynamic models

We have also implemented numerical algorithms—stochastic mapping—to simulate histories

of viral dispersal under interval-specific phylodynamic models; these methods allow us to es-

timate the number of dispersal events between a specific pair of areas, the number of dispersal

events from one area to a set of two or more areas, and the total number dispersal events among

all areas. Stochastic mapping—initially proposed by Nielsen (2002; see also Huelsenbeck et al.

2003; Bollback 2006; Minin and Suchard 2008b; Rodrigue et al. 2007; Hobolth and Stone 2009)—

is commonly used to sample dispersal histories over branches of a phylogeny. Here, we extend

this approach to sample dispersal histories under our interval-specific models.

Let a given branch start at time T0 with state i and end at time Tm with state k. Further, let

the dispersal process change (either by changing the average or relative dispersal rates) m− 1

times on the branch at times {T1, . . . , Tm−1}, resulting in m intervals. For interval l, denote the

average dispersal rate as µl , the instantaneous-rate matrix as Ql , and the duration as tl . We

simulate a dispersal history along this branch using a two-step procedure: (1) we first sample

the state at each of the m− 1 time points, and; (2) we then simulate the history between each

time point, conditional on the states sampled in the first step.

To simulate the states at each time point, we first compute a transition-probability matrix

for each interval:

Pl = exp (Qlµltl).

We then calculate the probability of state j at the first time point, T1, given that the branch
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begins in state i and ends in state k, as:

P(j | i, k) ∝ Pij,1 ×
[

m

∏
l=2

Pl

]

jk

,

where the first term is the probability of transitioning from state i (the state at the beginning of

the branch) to state j at the first time point, and the second term is the probability of transition-

ing from state j to state k (the state at the end of the branch) over the remaining time intervals.

We compute this for each state j, and sample the state in proportion to these probabilities. We

then repeat this process for each remaining time point, recursively conditioning on the state

sampled at the previous time point and the state at the end of the branch.

Second, we simulate histories within each interval. For a given time interval, we simu-

late histories conditional on the start and end states generated in the first step using the uni-

formization algorithm described by Rodrigue et al. (2007; see also Fearnhead and Sherlock

2006; Hobolth and Stone 2009).

Assessing the absolute fit of interval-specific phylodynamic models

For a given phylodynamic study, we might wish to consider several candidate interval-specific

models (where each candidate model specifies a unique number of intervals, set of interval

boundaries, and/or interval-specific parameters). Comparing the fit of these competing phy-

lodynamic models to the data offers two benefits: (1) confirming that our inference model

adequately describes the process that gave rise to data will improve the accuracy of the cor-

responding inferences (i.e., estimates of relative and/or average dispersal-rate parameters and

viral dispersal histories), and; (2) comparing alternative models provides a means to objectively

test hypotheses regarding the impact of events on the history of viral dispersal (i.e., by assess-

ing the relative fit of data to competing models that include/exclude the impact of a putative

event on the average and/or relative viral dispersal rates). We can assess the relative fit of two

or more candidate phylodynamic models to a given dataset using Bayes factors; this requires

that we first estimate the marginal likelihood for each model (which represents the average fit

of a model to a dataset), and then compute the Bayes factor as twice the difference in the log

marginal likelihoods of the competing models (Kass and Raftery 1995).

However, even the best candidate model may fail to provide an adequate description of

the process that gave rise to our study data. We can leverage our ability to simulate histories

under interval-specific phylodynamic models to develop new methods to assess the absolute

158



fit of a candidate phylodynamic model using posterior-predictive assessment (Gelman et al.

1996). This Bayesian approach for assessing model adequacy is based on the following premise:

if our inference model provides an adequate description of the process that gave rise to our

observed data, then we should be able to use that model to simulate datasets that resemble

our original data. The resemblance between the observed and simulated datasets is quantified

using a summary statistic. Accordingly, posterior-predictive simulation requires: (1) the ability

to simulate geographic datasets under interval-specific phylodynamic models for a given set of

parameter values, and; (2) summary statistics that allow us to compare the resulting simulated

datasets to the observed dataset. We describe each of these components below.

Simulating under interval-specific phylodynamic models.

We draw m random samples from the joint posterior distribution of the model; each sample i

consists of a fully specified phylodynamic model, θi = {Ψi, Qi, µi}. For each sample, we sim-

ulate a new geographic dataset on the sampled tree, Ψi, given the sampled parameters of the

geographic model, {Qi, µi}; we label the newly simulated dataset Gsim
i . Under a constant phy-

lodynamic model, we simulate full dispersal histories forward in time over a tree using the

sim.history() function in the R package phytools (Revell 2012). We implemented an ex-

tension of the sim.history() function to simulate dispersal histories under interval-specific

phylodynamic models. These functions allow us to perform posterior-predictive simulation to

assess the adequacy of both the constant and the interval-specific phylodynamic models.

Summary statistics.

We define a summary statistic, which we generically denote T(G | θi), where G is either the

simulated or observed dataset. For each simulated dataset, we compute a discrepancy statistic,

Di = T(Gsim
i | θi)− T(Gobs | θi),

where Gobs is the observed geographic dataset and Gsim is a simulated dataset. We devel-

oped two summary statistics to assess the adequacy of interval-specific phylodynamic models:

(1) the parsimony statistic, and; (2) the tipwise-multinomial statistic. The parsimony statistic is

calculated as the difference in the parsimony score for the observed areas and the simulated

areas across the tips of the tree (where the parsimony score is the minimum number of disper-

sal events required to explain the distribution of areas across the tips of a tree). We compute
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parsimony scores using the parsimony() function in the R package, phangorn (Schliep 2010).

The tipwise-multinomial statistic is inspired by the multinomial statistic that was proposed by

Goldman (1993) and later used by Bollback (2002) to assess the adequacy (absolute fit) of substi-

tution models to sequence alignments. Our tipwise statistic treats the set of states (areas) across

the tips of the tree as an outcome of a multinomial trial. Specifically, we calculate the tipwise-

multinomial statistic as the difference in the multinomial probabilities for the observed set of

areas versus the simulated set of areas across the tips of the tree. We calculate each multinomial

probability as:

T(G | θi) =
k

∑
i=1

ni ln(ni/n),

where n is the number of tips in the tree, and ni is the number of tips that occur area i.

Time-slice summary statistics.

To assess the ability of phylodynamic models to describe the temporal distribution of dispersal

events, we extend the parsimony and tipwise-multinomial summary statistics to assess time

slices of the geographic history1. We calculate these summary statistics for k pre-specified time

slices, resulting in k parsimony statistics and k tipwise-multinomial statistics for each simulated

dataset. We compute the time-slice variant of the parsimony summary statistic as follows: (1)

we first infer the most-parsimonious dispersal history (i.e., the minimum number of dispersal

events) for a given simulated dataset and the observed dataset using the ancestral.pars()

function in the R package, phangorn (Schliep 2010); (2) we then assign each inferred dispersal

event to one of the k time slices based on the time span of the branch along which the dispersal

event was inferred (when a dispersal event is inferred to occur along a branch that spans two

or more time slices, we locate the event uniformly along the branch, and then assign it to the

corresponding slice), and finally; (3) we compute the difference in the number of dispersal

events between the simulated and observed dataset for each time slice. We compute the time-

slice variant of the tipwise-multinomial summary statistic in a similar manner; i.e., we first find

the set of tips in each time slice, and then compute the tipwise-multinomial statistic for that

time slice (as described above) for the corresponding set of tips. Further details regarding the

1Note that the time slices that we define for summary statistics are distinct from the intervals specified in an
interval-specific phylodynamic model. The time slices are motivated to better assess the adequacy of a phylody-
namic model, whereas the intervals are motivated to accommodate variation in dispersal dynamics in the empirical
data. Accordingly, we might use time-slice summary statistics to assess the adequacy of both constant or interval-
specific phylodynamic models.
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Figure 3.3: Simulation demonstrates that reliable inference of viral dispersal history requires a correctly speci-
fied phylodynamic model. We simulated 200 geographic datasets under each of two models: one that assumed
a constant µ and Q (1µ1Q), and one that allowed µ and Q to vary over two intervals (2µ2Q). For each sim-
ulated dataset, we separately inferred the total number of dispersal events under each model, resulting in four
true:inference model combinations (1µ1Q:1µ1Q, 2µ2Q:2µ2Q, 1µ1Q:2µ2Q, and 2µ2Q:1µ1Q). Left) For each com-
bination of true and inference model, we computed the coverage probability (the frequency with which the true
number of dispersal events was contained in the corresponding X% credible interval; y-axis) as a function of the
size of the credible interval (x-axis). When the model is true, we expect the coverage probability to be equal to the
size of the credible interval (Cook et al. 2006). As expected, coverage probabilities fall along the one-to-one line
when the model is correctly specified (green and blue). Moreover, coverage probabilities are also appropriate when
the inference model is overspecified (i.e., the inference model includes interval-specific parameters not included in
the true model; purple). However, coverage probabilities are extremely unreliable when the inference model is un-
derspecified (i.e., the inference model excludes interval-specific parameters of the true model; orange). Right) For
each true:inference model combination, we summarized the absolute error (estimated minus true number of dis-
persal events) as boxplots (median [horizontal bar], 50% probability interval [boxes], and 95% probability interval
[whiskers]). Again, when the model is underspecified (orange) inferences are strongly biased compared to those
under the correctly specified (green and blue) and overspecified (purple) models.

computation of these summary statistics are available in an R script provided in our GitHub

and Dryad repositories.

SIMULATION STUDY

We performed a simulation study to explore the statistical behavior of the interval-specific phy-

lodynamic models. Specifically, the goals of this simulation study are to assess: (1) our ability to

perform reliable inference under interval-specific models; (2) the impact of model misspecifica-

tion, and; (3) our ability to identify the correct model. To this end, we simulated 200 geographic

datasets under each of two models: the first assumes a constant µ and Q (1µ1Q), and the second

allows µ and Q to vary over two intervals (2µ2Q). For each simulated dataset, we separately
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Figure 3.4: Simulation demonstrates our ability to accurately identify a correctly specified phylodynamic model.
We assessed the relative and absolute fit of alternative models to the simulated datasets described in Fig. 3.3. Left)
For each simulated dataset, we compared the relative fit of the true and alternative models using Bayes factors.
The boxplots summarize Bayes factors for datasets simulated under the constant (1µ1Q, left) and interval-specific
(2µ2Q, right) models, which demonstrate that we are able to decisively identify the true phylodynamic model.
Right) For each combination of true:inference model, we assessed absolute model fit using posterior-predictive
simulation with a set of 20 summary statistics. Each dot represents the fraction of those 20 summary statistics
for which the corresponding inference model provides an inadequate fit to a single simulated dataset. The violin
plots summarize the distribution of these values for all datasets under each true:inference model combination.
As expected, the true model is overwhelmingly inferred to be adequate (green and blue). Encouragingly, model
overspecification appears to have a negligible impact on model adequacy (purple). By contrast, an underspecified
model severely impacts model adequacy (orange).

inferred the history of viral dispersal under each model, resulting in four true:inference model

combinations: 1µ1Q:1µ1Q, 2µ2Q:2µ2Q, 1µ1Q:2µ2Q, and 2µ2Q:1µ1Q. We provide detailed

descriptions of the simulation analyses and results in Section 2 of the Supplementary Material.

Ability to reliably estimate parameters of interval-specific phylodynamic models

Interval-specific phylodynamic models are inherently more complex than their constant coun-

terparts, and therefore contain many more parameters that must be inferred from geographic

datasets that contain minimal information; these datasets only include a single observation (i.e.,

the area in which each virus was sampled). These considerations raise concerns about our abil-

ity to reliably estimate parameters of interval-specific phylodynamic models. Encouragingly,

when the inference model is correctly specified (i.e., where both the true and inference models

include [or exclude] interval-specific parameters, 2µ2Q:2µ2Q and 1µ1Q:1µ1Q), our simula-

tion study demonstrates that estimates under interval-specific models are as reliable as those

under constant models (Fig. 3.3, green, blue). Moreover, when the inference model is overspec-
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ified (i.e., it includes interval-specific parameters not included in the true model) inferences are

comparable to those under correctly specified models (Fig. 3.3, purple). However, when the in-

ference model is underspecified (i.e., it excludes interval-specific parameters of the true model)

inferences are severely biased estimates (Fig. 3.3, orange).

Ability to accurately identify an appropriately specified phylodynamic model

Our simulation study demonstrates the importance of identifying scenarios where an inference

model is underspecified; failure to accommodate interval-specific variation in the study data

can severely bias parameter estimates. Fortunately, our simulation study demonstrates that we

can reliably identify when a given model is correctly specified, overspecified, or underspecified

using a combination of Bayes factors (to assess the relative fit of competing models to the data;

Fig. 3.4, left) and posterior-predictive simulation (to assess the absolute fit of each candidate

model to the data; Fig. 3.4, right). Using a combination of Bayes factors and posterior-predictive

simulation allows us to not only identify the best of the candidate models, but also to ensure

that the best model provides an adequate description of the true process that gave rise to our

study data.

EMPIRICAL APPLICATION

We illustrate our new phylodynamic methods with analyses of all publicly available SARS-

CoV-2 genomes sampled during the early phase of the COVID-19 pandemic (with 2598 viral

genomes collected from 23 geographic areas between Dec. 24, 2019–Mar. 8, 2020 [downloaded

from GISAID, Shu and McCauley 2017]). We used our study dataset to estimate the parameters

of—and assess the relative and absolute fit to—nine candidate phylodynamic models. These

models assign interval-specific parameters—for the average rate of viral dispersal, µ, and/or

relative rates of viral dispersal, Q—to one, two, four, or five pre-specified time intervals; i.e.,

1µ1Q, 2µ1Q, 1µ2Q, 2µ2Q, 4µ1Q, 1µ4Q, 4µ4Q, 5µ5Q, and 5µ5Q∗. We specified interval bound-

aries based on external information regarding events within the study period that might plau-

sibly impact viral dispersal dynamics, including: (A) start of the Spring Festival travel season

in China (the highest annual period of domestic travel, Jan. 12); (B) onset of mitigation mea-

sures in Hubei province, China (Jan. 26); (C) onset of international air-travel restrictions against

China (Feb. 2), and; (D) relaxation of domestic travel restrictions in China (Feb. 16). Phylody-

namic models with two intervals include event C, models with four intervals include events
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A, C, and D, and the 5µ5Q model includes all four events. The final candidate model, 5µ5Q∗,

includes five arbitrary and uniform (bi-weekly) intervals. We provide detailed descriptions of

our empirical data collection, analyses, and results in Section 3 of the SI Appendix.

An interval-specific model best describes viral dispersal in the early phase of the pandemic

Our phylodynamic analyses of the SARS-CoV-2 dataset reveal that the early phase of the

COVID-19 pandemic exhibits significant variation in both the average and relative rates of

viral dispersal over four time intervals. Bayes factor comparisons (Fig. 3.5, left) demonstrate

that the 4µ4Q interval-specific model is decisively preferred both over all less complex candi-

date models—including models that allow either the average dispersal rate or relative dispersal

rates to vary over the same four intervals (4µ1Q and 1µ4Q, respectively)—and also over more

complex candidate models (5µ5Q, and 5µ5Q∗). Posterior-predictive analyses (Fig. 3.5, right)

demonstrate that the preferred model, 4µ4Q, also provides an adequate description of the pro-

cess that gave rise to our SARS-CoV-2 dataset. Below, we will use the preferred (4µ4Q) interval-
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Figure 3.5: An interval-specific model provides the best relative and absolute fit to our SARS-CoV-2 dataset. We
assessed the relative and absolute fit of nine candidate phylodynamic models to our study dataset (comprised of
all publicly available SARS-CoV-2 genomes from the early phase of the COVID-19 pandemic). Left) We compared
the relative fit of each candidate model to the constant (1µ1Q) phylodynamic model using Bayes factors, which
indicate that the 4µ4Q interval-specific model outcompetes both less complex and more complex models. Right)
We performed posterior-predictive simulation for each candidate model using 20 summary statistics, plotting the
fraction of those summary statistics indicating that a given candidate model was inadequate. Our results indicate
that three candidate models (4µ4Q, 5µ5Q, and 5µ5Q∗) provide an adequate fit to our SARS-CoV-2 dataset. The
simplest of these adequate models (4µ4Q) also provides the best relative fit. Collectively, these results identify the
4µ4Q model as the clear choice for phylodynamic analyses of our study dataset.
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specific phylodynamic model to explore various aspects of viral dispersal during the early

phase of the COVID-19 pandemic and—for the purposes of comparison—we also present cor-

responding results inferred using the (underspecified) constant (1µ1Q) phylodynamic model.

Variation in global viral dispersal rates

Between late 2019 and early March, 2020, COVID-19 emerged (in Wuhan, China) and estab-

lished a global distribution—with reported cases in 83% of the study areas by this date (WHO

2020)—despite the implementation of numerous intervention efforts to slow the spread of the

causative SARS-CoV-2 virus (Hsiang et al. 2020). This crucial early phase of the pandemic

provides a unique opportunity to explore the dispersal dynamics that led to the worldwide

establishment of the virus and to assess the efficacy of key public-health measures to mitigate

the spread of COVID-19. The constant (1µ1Q) model infers a static rate of global viral disper-

sal throughout the study period (Fig. 3.6, orange). By contrast, inferences under the preferred

(4µ4Q) model reveal significant variation in global viral dispersal rates over four intervals, ex-

hibiting both increases and decreases over the early phase of the pandemic (Fig. 3.6, dark blue).

The significant decrease in the global viral dispersal rate between the second and third interval
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Figure 3.6: Patterns and correlates of variation in global viral dispersal rate early in the COVID-19 pandemic.
The COVID-19 pandemic emerged in Wuhan, China, in late 2019, and established a global distribution by Mar. 8,
2020. Our phylodynamic analyses of this critical early phase of the pandemic provide estimates of the average rate
of viral dispersal across all 23 study areas, µ (posterior mean [solid lines], 95% credible interval [shaded areas]).
By assumption, the constant (1µ1Q) model infers a static rate of global viral dispersal (orange). By contrast, the
preferred interval-specific (4µ4Q) model reveals significant variation in the global viral dispersal rate (dark blue).
Notably, the global viral dispersal rate decreases sharply on Feb. 2, which coincides with the onset of international
air-travel bans with China. The efficacy of these air-travel restrictions is further corroborated by estimates of daily
global viral dispersal rates (light blue)—inferred under a more granular, interval-specific (71µ4Q) model—that are
significantly correlated with independent information on daily global air-travel volume (dashed line, obtained from
FlightAware).
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(with a boundary at Feb. 2) coincides with the initiation of international air-travel bans with

China (imposed by 34 countries and nation states by this date). To further explore the possible

impact of the air-travel ban on the global spread of COVID-19, we inferred daily rates of global

viral dispersal under a more granular interval-specific model (71µ4Q; Fig. 3.6, light blue). Our

estimates of daily rates of global viral dispersal are significantly correlated with independent

information on daily global air-travel volume (Fig. 3.6, dashed) over the interval from Jan. 31

(when the virus first achieved a cosmopolitan distribution; WHO 2020) to the end of our study

period (see the supplementary material for detailed descriptions of the correlation test and

results).
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Figure 3.7: Variation in viral dispersal routes involving China during the early phase of the pandemic. Arrows
indicate routes inferred to play a significant role in viral dispersal to/from China during the early phase of the
COVID-19 pandemic; colors indicate the level of evidential support for each dispersal route (as 2 ln Bayes factors).
We focus on dispersal routes involving China both because it was the point of origin, and because it was the area
against which travel bans were imposed. The number, duration, and significance of dispersal routes inferred under
the constant (1µ1Q) model differ strongly from those inferred under the preferred (4µ4Q) interval-specific model.
By assumption, the constant (1µ1Q) model implies an invariant set of dispersal routes. By contrast, the preferred
(4µ4Q) interval-specific model reveals that the number and intensity of dispersal routes varied over the four in-
tervals. The first interval (Nov. 17–Jan. 12) is dominated by dispersal from Hubei to other areas in China, and the
second interval (Jan. 12–Feb. 2) exhibits more widespread international dispersal originating from China. The third
interval (Feb. 2–Feb. 16)—immediately following the onset of international air-travel bans with China—exhibits a
sustained reduction in the number of dispersal routes. Note that the constant model infers a spurious dispersal
route from East China to West Europe. Conversely, the preferred interval-specific model reveals six significant dis-
persal routes (not detected under the constant model) that imply a more significant role for Hubei as a source of
viral spread in the first and second intervals, and also reveals additional dispersal routes emanating from China (to
the Middle East in the third interval and to Spain/Portugal in the fourth interval).
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Variation in viral dispersal routes

In addition to revealing differences in the global viral dispersal rate, our interval-specific phy-

lodynamic models allow us to explore how relative dispersal rates vary through time. Specif-

ically, our analyses allow us to identify the dispersal routes by which the SARS-CoV-2 virus

achieved a global distribution during the early phase of the COVID-19 pandemic. We focus on

dispersal routes involving China both because it was the point of origin, and because it was

the area against which travel bans were imposed. Inferences under the constant (1µ1Q) and

preferred (4µ4Q) phylodynamic models imply strongly contrasting viral dispersal dynamics

(Fig. 3.7). In contrast to the invariant set of dispersal routes identified by the constant model,

the preferred interval-specific model reveals that the number and intensity of dispersal routes

varied significantly over the four intervals, with a sharp decrease in the number of dispersal

routes following the onset of air-travel bans on Feb. 2. Moreover, the constant model infers one

spurious dispersal route, while failing to identify six significant dispersal routes; the preferred

model implies a more significant role for Hubei as a source of viral spread in the first and sec-

ond intervals and reveals additional viral dispersal routes originating from China in the third

and fourth intervals. The patterns of variation in dispersal routes among all 23 study areas are

similar to—but more pronounced than—those involving China; e.g., where the constant model

infers a total of nine spurious dispersal routes, and the interval-specific model reveals a total

of ten significant dispersal routes that were not detected by the constant model (Figs. S.3.16

and S.3.17).

Variation in the number of viral dispersal events

Our phylodynamic analyses also allow us to infer the number of SARS-CoV-2 dispersal events

between areas during the early phase of the COVID-19 pandemic. Here, we focus on the num-

ber of viral dispersal events originating from China because it was the point of origin and pri-

mary source of SARS-CoV-2 spread early in the pandemic. The constant (1µ1Q) and preferred

(4µ4Q) phylodynamic models infer distinct trends in—and support different conclusions re-

garding the impact of mitigation measures on—the number of viral dispersal events out of

China. The constant model infers a gradual decrease in the number of dispersal events from

late Jan. through mid-Feb. (Fig. 3.8, orange). By contrast, the preferred interval-specific model

reveals a sharp decrease in the number of dispersal events on Feb. 2, which coincides with the
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Figure 3.8: Variation in the number of viral dispersal events out of China early in the COVID-19 pandemic.
Our phylogenetic analyses of SARS-CoV-2 genomes sampled during the early phase of the COVID-19 pandemic
allow us to estimate the number of viral dispersal events from China to all other study areas (posterior mean [solid
lines], 95% credible interval [shaded areas]). The constant (1µ1Q) model implies that the number of viral dispersal
events emanating from China remained relatively high following the onset of international air-travel bans on Feb. 2
(orange). By contrast, the preferred interval-specific (4µ4Q) model reveals that the number of viral dispersal events
emanating from China decreased sharply on Feb. 2 (blue), which supports the efficacy of these international air-
travel restrictions. The preferred model also infers an uptick in the number of viral dispersal events on Feb. 17 (not
detected by the constant model), which coincides with the relaxation of domestic travel restrictions in China. Note
that sampling lag causes the number of dispersal events near the end of the sampling period to be underestimated.

onset of air-travel bans imposed against China (Fig. 3.8, blue). Moreover, the preferred phylo-

dynamic model infers an uptick in the number of viral dispersal events on Feb. 17 (not detected

by the constant model), which coincides with the lifting of domestic travel restrictions within

China (except for Hubei, where the travel restrictions were enforced through late Mar.).

DISCUSSION

Phylodynamic methods increasingly inform our understanding of the spatial and temporal

dynamics of viral spread. The vast majority of discrete-geographic phylodynamic studies

assume—despite direct (and compelling) evidence to the contrary—that disease outbreaks are

intrinsically constant: ≈98% of all such studies are based on constant phylodynamic models.

These considerations have motivated previous extensions of phylodynamic models that allow

either the average (Membrebe et al. 2019) or relative (Bielejec et al. 2014) dispersal rates to vary,

and our development of more complex phylodynamic models that allow both the average and

relative dispersal rates to vary independently over two or more pre-specified intervals. By

accommodating ubiquitous temporal variation in the dynamics of disease outbreaks—and by

allowing us to incorporate independent information regarding events that may impact viral
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dispersal—our new interval-specific phylodynamic models are more realistic (providing a bet-

ter description of the processes that gives rise to empirical datasets), thereby enhancing the

accuracy of our epidemiological inferences based on these models.

Our simulation study demonstrates that (in principle): (1) we are able to accurately identify

when phylodynamic models are correctly specified, overspecified, or underspecified (Fig. 3.4);

(2) when the phylodynamic model is correctly specified, we are able to reliably estimate param-

eters of these more complex interval-specific phylodynamic models (Fig. 3.3), and; (3) when the

phylodynamic model is underspecified, failure to accommodate interval-specific variation in

the study data can bias parameter estimates and mislead inferences about viral dispersal his-

tory based on those biased estimates (Fig. 3.3).

Our empirical study of SARS-CoV-2 data from the early phase of the COVID-19 pandemic

demonstrates that (in practice): (1) our interval-specific phylodynamic model (where both the

global rate of viral dispersal and the relative rates of viral dispersal vary over four distinct in-

tervals) significantly improves the relative and absolute fit to our study dataset compared to

constant phylodynamic models (Lemey et al. 2009; Edwards et al. 2011) and to phylodynamic

models that allow either the average dispersal rate (Membrebe et al. 2019) or the relative dis-

persal rates (Bielejec et al. 2014) to vary over the same four intervals; (2) the preferred interval-

specific phylodynamic model provides qualitatively different insights on key aspects of viral

dynamics during the early phase of the pandemic—on global rates of viral dispersal (Fig. 3.6),

viral dispersal routes (Fig. 3.7), and the number of viral dispersal events (Fig. 3.8)—compared

to conventional estimates based on constant (and underspecified) phylodynamic models, and;

(3) inferences under the preferred interval-specific phylodynamic model support qualitatively

different conclusions regarding the impact of mitigation measures to limit the spread of the

COVID-19 pandemic; e.g., the variation in global viral dispersal rate, viral dispersal routes,

and number of viral dispersal events revealed by the interval-specific model (but masked by

the constant model) collectively support the efficacy of the international air-travel bans in slow-

ing the progression of the COVID-19 pandemic.

Our interval-specific models promise to enhance the accuracy of phylodynamic inferences

not only by virtue of their increased realism, but also by allowing us to incorporate additional

information (related to events in the history of disease outbreaks) in our phylodynamic infer-

ences. The ability to incorporate independent/external information is particularly valuable
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for phylodynamic inference—where many parameters must be estimated from datasets with

limited information—which has also motivated the development of other innovative phylody-

namic approaches for incorporating external information (Lemey et al. 2014; Bielejec et al. 2016).

The potential benefit of harnessing external information is evident in our empirical study: our

inference model—4µ4Q, with four intervals that we specified based on external evidence re-

garding events that might plausibly impact viral dispersal dynamics—is decisively preferred

(2 ln BF = 27.3) over a substantially more complex model, 5µ5Q∗, with five arbitrarily specified

(14-day) intervals.

Importantly, comparison of alternative interval-specific phylodynamic models provides a

powerful framework for testing hypotheses about the impact of various events (i.e., assessing

the efficacy of mitigation measures) on viral dispersal dynamics. Our empirical study allows

us, for example, to assess the impact of domestic mitigation measures imposed in the Hubei

province of China. This simply involves comparing the relative fit of our data to two candidate

phylodynamic models; 4µ4Q and 5µ5Q. The 5µ5Q model adds an interval (corresponding to

the onset of the Hubei lockdown on Jan. 26) to the otherwise identical 4µ4Q model. In contrast

to the international air-travel ban, this domestic mitigation measure does not appear to have

significantly impacted global SARS-CoV-2 dispersal dynamics: the 5µ5Q model is decisively

rejected when compared to the 4µ4Q model (2 ln BF = −15.9).

We have focused on interval-specific models where each interval involves a change in both

the average and relative dispersal rates. For example, the scenario depicted in Fig. 3.1 involves

two events that define three intervals, where both Q and µ are impacted by each event, such

that the interval-specific parameters are (Q1, Q2, Q3) and (µ1, µ2, µ3). However, our interval-

specific models also allow the average and relative dispersal rates to vary independently across

intervals. For example, under an alternative scenario for Fig. 3.1, the first event may have

impacted both the relative and average dispersal rates, Q and µ, whereas the second event may

have only changed the relative dispersal rates, Q; in this case, the interval-specific parameters

would be (Q1, Q2, Q3) and (µ1, µ2, µ2). Allowing dispersal rates to vary independently enables

these models to accommodate more complex patterns of variation in empirical datasets (and

thereby improve estimates from these more realistic models), and also provides tremendous

flexibility for testing hypotheses about the impact of various mitigation measures on either the

relative and/or average rates of viral dispersal.
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Nevertheless, this flexibility comes at a cost: interval-specific models are inherently more

complex than their constant counterparts, with many parameters that must be estimated from

minimal data (i.e., the geographic location of each virus). Accordingly, careful model se-

lection and validation is necessary to avoid specification of an over-parameterized model.

Moreover, the space of phylodynamic models expands rapidly as we increase the number

of intervals. For a model with three intervals, for example, we can specify five allocations

for the average dispersal rate parameter, µ—(µ1, µ1, µ1), (µ1, µ1, µ2), (µ1, µ2, µ1), (µ1, µ2, µ2),

and (µ1, µ2, µ3)—and, similarly, five allocations for the relative dispersal rate parameter, Q:

(Q1, Q1, Q1), (Q1, Q1, Q2), (Q1, Q2, Q1), (Q1, Q2, Q2), and (Q1, Q2, Q3). We can therefore spec-

ify 25 unique three-interval phylodynamic models (representing all combinations of the two

parameter-allocation vectors), 225 unique four-interval models, 2704 unique five-interval mod-

els, 41209 unique six-interval models, etc. Accordingly, the effort required to identify the best

interval-specific phylodynamic model quickly becomes prohibitive, particularly because this

search requires that we estimate the marginal likelihood for each candidate model using com-

putationally intensive methods (Xie et al. 2011; Baele et al. 2012). Nevertheless, our interval-

specific models establish a foundation for developing more computationally efficient methods;

e.g., we could pursue a finite-mixture approach (Kazmi and Rodrigue 2019) that averages in-

ferences of dispersal dynamics over the space of all possible interval-specific phylodynamic

models with a given number of intervals.

We are optimistic that—by increasing (and providing a means to assess) model realism,

incorporating additional information, and providing a powerful and flexible means to test al-

ternative models/hypotheses—our phylodynamic methods will greatly enhance our ability to

understand the dynamics of viral spread, and thereby inform policies to mitigate the impact of

disease outbreaks.

DATA AND CODE AVAILABILITY

GISAID accession IDs of the SARS-CoV-2 sequences used in this study, as well as the flight-

volume data (obtained from FlightAware, LLC) and intervention-measure data, are maintained

in the GitHub repository (https://github.com/jsigao/interval_specific_phylodynamic_

models_supparchive) and archived in the Dryad repository (https://doi.org/10.25338/

B89P9K). Our repositories also contain BEAST XML scripts used to perform the phylodynamic
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analyses, R scripts used to perform simulations and post processing, and a modified version of

the BEAST program used for some of the analyses in this study.
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SUPPLEMENTARY MATERIAL
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Figure S.3.1: Cited-reference search of empirical discrete-geographic phylodynamic studies. The bar
plot summarizes the number of published discrete-geographic studies (obtained from Google Scholar on
June 30, 2021) that have inferred biogeographic history using the constant phylodynamic model (blue;
Lemey et al. 2009), an interval-specific model that allows only relative dispersal rates to vary (orange;
Bielejec et al. 2014), or an interval-specific model that allows only the average dispersal rate to vary
(green; Membrebe et al. 2019). The vast majority of these studies (651 of 666, 97.7%) are based on the
constant model, whereas only ∼2% of the studies used either of the interval-specific models.

Extending Phylodynamic Methods

We presented the theoretical base of the interval-specific phylodynamic models in the main

text; here we focus on the implementation extensions of BEAST that enable the inference and

simulation under the model. Specifically, our implementation allows the transition-probability

matrix, P, to be computed and the dispersal history to be simulated correctly along a branch

when it spans multiple time intervals with different relative and/or absolute dispersal rates.

We provide an executable BEAST program with our extensions in our GitHub and Dryad repos-

itories.

Computing the transition-probability matrix when both average and relative dispersal rates

vary across intervals

Prior to our extension, BEAST computed the P matrix correctly (except for a couple of program-

ming issues that we will describe below) along a branch spanning multiple relative-rate inter-

vals or multiple average-rate intervals, but not both. Let a given branch of length t time units
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span m relative-rate intervals and n average-rate intervals. The mean of the average dispersal

rate over this branch is thus computed as:

µ̄ =
∑n

p=1 µptp

t
, (S.3.1)

where µp and tp are the average dispersal rate and the time that the branch spent in average-

rate interval p, respectively. BEAST previously computed the transition-probability matrix for

each relative-rate interval l, Pl , as:

Pl = exp(Ql µ̄tl), (S.3.2)

where Ql is the instantaneous-rate matrix in relative-rate interval l and tl represents the time

that the branch spent in relative-rate interval l. In other words, this way of computing Pl effec-

tively assumed that the average dispersal rate in each relative-rate interval was identical across

all relative-rate intervals, which is not correct when the branch spans both multiple relative-rate

intervals and multiple average-rate intervals.

To correctly compute the P matrix, we modified BEAST source code to set tp to the time that

relative-rate interval l (instead of the branch) spent in average-rate interval p, rather than the time

that the branch spent in average-rate interval p. Implementation details and source-code edits

are available in this pull request to the source-code repository of BEAST. Putting all the steps

together, the transition-probability matrix is now computed as:

P =
m

∏
l=1

exp[Ql(
nl

∑
p=1

µptp)], (S.3.3)

where nl is the number of average-rate intervals spanned by interval l, µp is the dispersal rate

in average-rate interval p, and tp is the time that relative-rate interval l spent in average-rate

interval p.

Other relevant programming limitations that prohibited inferences under the interval-specific model

In addition, we identified and fixed two programming bugs that hinder correct inferences un-

der interval-specific phylodynamic models: the first one matters when the relative dispersal

rates vary across intervals, while the second one can be problematic even when the phylody-

namic model is constant, but may be exacerbated when both average and relative dispersal

rates vary across intervals.
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Programming bug 1: P-matrix ordering along a branch

The transition-probability matrix for the entire branch is computed as the matrix product of

interval-specific transition-probability matrices:

P =
m

∏
l=1

Pl , (S.3.4)

Since matrix multiplication is not commutative, these P matrices should be ordered from

the parent node to the child node of the branch, i.e., forward in time, as shown in Eq.

7 of Bielejec et al. (2014). However, the vector of Q-matrix indices along a branch re-

turned by the getBranchModelMapping function of the interval-specific relative dispersal rates

(EpochalBranchModel) class was ordered from the child node to the parent node; there was no

reversal of the order prior to or during the computation of P matrices, resulting in an incorrect

transition-probability matrix computed for the entire branch. We fixed this issue by reversing

the order of Q matrices that will be returned by the getBranchModelMapping function. Im-

plementation details and source-code edits of this fix are available in this pull request to the

source-code repository of BEAST.

Programming bug 2: rescaling an asymmetric Q matrix

By convention, we rescale the Q matrix such that the average rate of dispersal between all areas

is µ, which is computed as:

µ = −
k

∑
i=1

πiqii, (S.3.5)

where k is the number of discrete areas, πi is the stationary frequency of area i, and qii—the

diagonal element of row i of Q—is the negative of the total rate of leaving area i (i.e., qii =

−∑j 6=i qij). (Note that the implicit assumption here is that the Q matrix is irreducible, which

guarantees the existence and uniqueness of the stationary distribution, π.) After rescaling, Q

becomes an instantaneous-rate matrix of relative dispersal rates whose average rate of dispersal

is one; thus µ represents the average dispersal rate (among areas) in units of expected number

of dispersal events per unit time. As the Q matrix is now constrained, µ is a free parameter of

the model.

Therefore, to rescale Q, we need to know π. π can be determined from Q by solving:

πQ = 0. (S.3.6)
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This way of determining π is unnecessary when Q is symmetric (where the rate of dispersal

from area i to area j is identical to the rate of dispersal from area j to area i) or time reversible

(e.g., under the GTR substitution model; Tavaré 1986). Depending on the specified model,

BEAST thus treats π either as a constant uniform vector (when Q is symmetric) or a model

parameter that will be used to construct Q and directly sampled in the MCMC (when Q is not

symmetric but time reversible).

Conversely, when Q is asymmetric (Edwards et al. 2011)—where the rate of dispersal from

area i to area j is different from the rate of dispersal from area j to area i (i.e., qij is different

from qji)—π is necessarily nonuniform nor an explicit model parameter, so it needs to be com-

puted using (S.3.6). However, previously BEAST did not allow this option; π had to be explicitly

specified as either a constant vector or model parameter in the XML file, and this specified π

would be used to rescale Q. As a result, the average rate of disperal for the Q-matrix would

depart from 1, which risks conflating relative-rate matrix variation from overall dispersal-rate

variation. We modified BEAST source code to allow π to be provided optionally, and to rescale

an asymmetric Q using a stationary distribution computed from (S.3.6) through LU decompo-

sition by adding a computeStationaryDistribution function to the asymmetric substitution

model (ComplexSubstitutionModel) class. Implementation details and source-code edits of

this fix are available in this pull request to the source-code repository of BEAST.

Stochastic mapping when both average and relative dispersal rates vary across intervals

Stochastic mapping, initially proposed by Nielsen (2002; see also Huelsenbeck et al. 2003; Boll-

back 2006), is commonly used to sample dispersal histories over branches of a phylogeny con-

ditioned on the observed tip geographic areas. BEAST implements the endpoint-conditioned

uniformization stochastic-mapping algorithm (Rodrigue et al. 2007; Fearnhead and Sherlock

2006; Hobolth and Stone 2009) to simulate full dispersal histories over the phylogeny, and a

simulation-free algorithm (Minin and Suchard 2008a,b) to compute the expected number of dis-

persal events (‘Markov jumps’) and the expected time spent in each geographic area (‘Markov

rewards’). Here we focus on inferring the full dispersal history using the simulation-based

stochastic-mapping algorithm.

A full dispersal history is sampled every certain number of generations (specified in the

XML file) during an MCMC. At a sampling generation, the geographic state at each inter-
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nal node of the phylogeny is first simulated using the ancestral-state-reconstruction algorithm

(Yang et al. 1995; Huelsenbeck and Bollback 2001; Pagel et al. 2004) based on parameter values

sampled at that generation. (Note that the implementation extensions and programming issues

described above in this section that underlie the computation of transition-probability matrix

under the interval-specific model also affect the ancestral-state reconstruction as the probability

of transitioning from the start state to the end state of a branch is used to sample the end state

conditioning on the start state, propagating the sampled root state to the tips of the phylogeny.)

The stochastic-mapping algorithm is then responsible for simulating the dispersal history over

each branch of the phylogeny, conditioning on the start and end states of each branch.

Let a given branch of length t time units start at time T0 with state i and end at time Tm with

state k. Further, let the dispersal process change (either by changing the average or relative

dispersal rates) m− 1 times on the branch at times {T1, . . . , Tm−1}, resulting in m intervals. For

interval l, denote the average dispersal rate as µl , the instantaneous-rate matrix as Ql , and the

duration as tl . Prior to our extension, BEAST performed stochastic mapping along the branch

using the same routine regardless whether the model was constant or interval-specific; i.e., it

used a single µ and a single Q to perform the simulation. Specifically, the single µ was assumed

to be the average of the average dispersal rates spanned by the branch, computed as:

µ̄ =
∑m

l=1 µltl

t
, (S.3.7)

and the single Q was assumed to be Qm, the instantaneous-rate matrix of the last interval

spanned by the branch.

We resolved this issue by adding a new routine to the MarkovJumpsBeagleTreeLikelihood

class of BEAST, which simulates a dispersal history along the branch following a two-step pro-

cedure: (1) first, we sample the state (area) at each of the m− 1 time points along the branch,

and; (2) then we simulate the history between each time point, conditional on the states sam-

pled in the first step; the second step is based on the fact that both the average and relative

dispersal rates spanned by interval l are constant. To sample states at each time point, we first

compute a transition-probability matrix for each interval:

Pl = exp (Qlµltl). (S.3.8)

We then calculate the probability of state j at the first time point, T1, given that the branch
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begins in state i and ends in state k, as:

conditional probability of j =
joint probability of i, j, k

marginal probability of i to k transition

P(j | i, k) ∝ Pij,1 ×
[

m

∏
l=2

Pl

]

jk

, (S.3.9)

where the first term is the probability of transitioning from state i (the state at the beginning of

the branch) to state j at the first time point, and the second term is the probability of transition-

ing from state j to state k (the state at the end of the branch) over the remaining time intervals.

We compute this for each state j, and sample the state in proportion to these probabilities. We

then repeat this process for each remaining time point, recursively conditioning on the state

sampled at the previous time point and the state at the end of the branch.

Once the state at each time point is sampled, we invoke the existing endpoint-conditioned

uniformization stochastic-mapping routine (Rodrigue et al. 2007; Fearnhead and Sherlock 2006;

Hobolth and Stone 2009) to simulate the history in each interval conditional on its start and

end states. The resulting simulated histories across intervals along the branch are then pasted

together so that the history output format leaves unchanged.

(Note that in principle the simulation-free stochastic-mapping algorithm implemented in

BEAST could be modified very similarly to work under the interval-specific model, but we did

not make such changes as it was unclear to us in the first place what would be the issues with

the current implementation of the algorithm when µ and/or Q vary across intervals.)

Implementation details and source-code edits of this fix are available in this pull request to

the source-code repository of BEAST. We also implemented this stochastic-mapping function in

R, which uses the model parameters and ancestral state of each internal node sampled during

BEAST MCMC as the input. These two independent implementations provide a means to val-

idate our methods (we include both implementations in our GitHub and Dryad repositories).

These two independent implementations produce effectively identical estimates of the number

of viral dispersal events (Fig. S.3.2).

Assessing adequacy of interval-specific phylodynamic models

We use posterior-predictive simulation (Gelman et al. 1996; Bollback 2002) to assess the ad-

equacy of our interval-specific phylodynamic models. Posterior-predictive simulation re-

quires: (1) the ability to simulate geographic datasets under interval-specific phylodynamic
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models for a given set of parameter values, and; (2) summary statistics that allow us to compare

the resulting simulated datasets to the observed dataset. We describe each of these components

below.

Simulating under interval-specific phylodynamic models

We draw m random samples from the joint posterior distribution of the model; each sample i

consists of a fully specified phylodynamic model, θi = {Ψi, Qi, µi}. For each sample, we sim-

ulate a new geographic dataset on the sampled tree, Ψi, given the sampled parameters of the

geographic model, {Qi, µi}; we label the newly simulated dataset Gsim
i .

Under a constant phylodynamic model, we simulate full dispersal histories forward in

time over a tree using the sim.history() function in the R package phytools (Revell 2012).

We implemented an extension of the sim.history() function to simulate dispersal histories

under interval-specific phylodynamic models. These functions allow us to perform posterior-

predictive simulation to assess the adequacy of both the constant and the interval-specific phy-

lodynamic models. We provide these R scripts in our GitHub and Dryad repositories.
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Figure S.3.2: Comparison of the estimated number of pairwise dispersal events in two independent
implementations. Each dot represents the mean estimate of the number of dispersal events in a given
time interval between a given pair of areas. Independent implementations in BEAST and R produce
effectively identical estimates.
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Summary statistics

We define a summary statistic, which we generically denote T(G | θi), where G is either the

simulated or observed dataset. (We note that the dependence of the statistic on θi—while often

suppressed or ignored in phylogenetic applications of posterior-predictive simulation—is con-

sistent with posterior-predictive discrepancy analysis, as described by Gelman et al. 1996.) For

each simulated dataset, we compute a discrepancy statistic,

Di = T(Gsim
i | θi)− T(Gobs | θi),

where Gobs is the observed geographic dataset and Gsim is a simulated dataset.

If the inference model provides an adequate description of the true data-generating process,

the posterior-predictive distribution of D should contain zero with high probability. Accord-

ingly, for the m predictive datasets for a given model and dataset combination, we calculate the

posterior-predictive p value as:

P =
1
m

m

∑
i=1

Di ≥ 0.

Values between 0.025 and 0.975 indicate that the model is adequate and cannot be rejected (i.e.,

zero falls within the 95% posterior-predictive interval).

We developed two summary statistics to assess the adequacy of interval-specific phylody-

namic models: (1) the parsimony statistic, and; (2) the tipwise-multinomial statistic. The parsi-

mony statistic is calculated as the difference in the parsimony score for the observed areas and

the simulated areas across the tips of the tree (where the parsimony score is the minimum num-

ber of dispersal events required to explain the distribution of areas across the tips of a tree). We

compute parsimony scores using the parsimony() function in the R package, phangorn (Schliep

2010). The tipwise-multinomial statistic is inspired by the multinomial statistic that was first

proposed by Goldman (1993) and later used by Bollback (2002) to assess the adequacy (abso-

lute fit) of substitution models to sequence alignments. Our tipwise statistic treats the set of

states (areas) across the tips of the tree as an outcome of a multinomial trial. Specifically, we

calculate the tipwise-multinomial statistic as the difference in the multinomial probabilities for

the observed the set of areas and the simulated the set of areas across the tips of the tree. We

calculate each multinomial probability as:

T(G | θi) =
k

∑
i=1

ni ln(ni/n),
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where n is the number of tips in the tree, and ni is the number of tips that occur area i. (Note

that this statistic is also similar to the entropy statistic used to assess genetic variability along

sequences; Shannon 1948; Schneider et al. 1986.)

Time-slice summary statistics

We could use our summary statistics to assess the ability of a phylodynamic model to describe

the entire history of dispersal; i.e., to assess whether the model adequately describes the pro-

cess that generated the data over the entire phylogeny. Of potential concern, however, is the

sufficiency of the summary statistics to detect variation in the data-generating process over

time. For example, it is conceivable that a phylodynamic model may be capable of simulat-

ing datasets with parsimony scores that are very similar to those for the observed dataset—

implying that the model provides an adequate description of the process that generated the

entire geographic history—but the underlying dispersal events simulated under this model

may nevertheless occur at inappropriate times.

To assess the ability of phylodynamic models to describe the temporal distribution of dis-

persal events, we extend the parsimony and tipwise-multinomial summary statistics to as-

sess time slices of the geographic history2. We calculate these summary statistics for k pre-

specified time slices, resulting in k parsimony statistics and k tipwise-multinomial statistics

for each simulated dataset. We compute the time-slice variant of the parsimony statistic as

follows: (1) we first infer the most-parsimonious dispersal history (i.e., the minimum num-

ber of dispersal events) for a given simulated dataset and the observed dataset using the

ancestral.pars() function in the R package, phangorn (Schliep 2010); (2) we then assign

each inferred dispersal event to one of the k time slices based on the time span of the branch

along which the dispersal event was inferred (when a dispersal event is inferred to occur

along a branch that spans two or more time slices, we locate the event uniformly along the

branch, and then assign it to the corresponding slice), and finally; (3) we compute the dif-

ference in the number of dispersal events between the simulated and observed dataset for

each time slice. We compute the time-slice variant of the tipwise-multinomial statistic in a

similar manner; i.e., we first find the set of tips in each time slice, and then compute the

2Note that the time slices that we define for summary statistics are distinct from the intervals specified in an
interval-specific phylodynamic model. The former are motivated to better assess the adequacy of a phylodynamic
model, the latter are motivated to accommodate variation in dispersal dynamics in the empirical data. Accordingly,
we might use time-slice summary statistics to assess the adequacy of both constant or interval-specific phylody-
namic models.
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tipwise-multinomial statistic for that time slice (as described above) for the corresponding set

of tips. Further details regarding the computation of these summary statistics are available

in an R script, posterior predictive teststatistics functions.R, included in our GitHub

and Dryad repositories.

Running BEAST analyses under interval-specific phylodynamic models

To aid the application of our newly developed interval-specific phylodynamic models with

BEAST, we provide a hands-on tutorial—that describes how to specify the model in an XML

file—in our GitHub and Dryad repositories.

182

https://github.com/jsigao/interval_specific_phylodynamic_models_supparchive
https://datadryad.org/stash/share/vTbeDwLq2uSL9rL4NCe_Cocp2bY7BgWTI2tUgoNrLDA
https://github.com/jsigao/interval_specific_phylodynamic_models_supparchive
https://datadryad.org/stash/share/vTbeDwLq2uSL9rL4NCe_Cocp2bY7BgWTI2tUgoNrLDA


Simulation Study

Simulation design

We performed a simulation study to explore the statistical behavior of our interval-specific

phylodynamic models. Specifically, we sought to assess: (1) our ability to perform reliable in-

ference under interval-specific models; (2) the impact of model misspecification, and; (3) our

ability to identify the correct model. To provide a meaningful evaluation of the statistical be-

havior of a method, it is critical for a simulation study to explore realistic parameter space (i.e.,

to subject the method to simulated datasets that are similar to those it will actually encounter in

empirical analyses). Accordingly, we focused our simulation study on simulated datasets that

resemble our empirical SARS-CoV-2 reduced dataset. That is, our simulation study explored

a region of parameter space that is centered on the joint posterior probability distribution of

phylodynamic model parameters estimated from our empirical analyses. To that end, we first

analyzed our empirical dataset under each of two models, 1µ1Q and 2µ2Q, and then centered

the parameter values of our simulation on the resulting posterior median estimates of the cor-

responding parameters (µ and Q). Specifically, we used these empirically based parameter

values to simulate 200 geographic datasets under each of two models, 1µ1Q and 2µ2Q. Finally,

we performed separate analyses of each simulated dataset under each of the two models, re-

sulting in four true:inference model combinations (1µ1Q:1µ1Q, 2µ2Q:2µ2Q, 1µ1Q:2µ2Q, and

2µ2Q:1µ1Q). Below, we provide additional details of how we generated simulated datasets,

analyzed these simulated datasets, and summarized results from our analyses of the simulated

datasets.

Generating simulated datasets

Model specification for empirical analyses

We performed analyses of our reduced SARS-CoV-2 dataset under a constant (1µ1Q) model

and an interval-specific phylodynamic (2µ2Q) model. Our reduced SARS-CoV-2 dataset has

1271 sequences. To reduce the computational burden of our simulation study we: (1) aggre-

gated our 23 study areas into three more coarsely defined areas: China, North America, and

the rest of the world, and; (2) conditioned our analyses on the MCC summary phylogeny in-

ferred from our reduced SARS-CoV-2 dataset (described in this section). We specified the single

boundary for the 2µ2Q model at February 2 (corresponding to the onset of international air-
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travel bans against China). For both the constant (1µ1Q) and interval-specific (2µ2Q) models,

we used an asymmetric Q matrix (Edwards et al. 2011) that allows the relative rate of disper-

sal from area i to area j to be different from the relative rate of dispersal from area j to area i.

We specified diffuse priors on the parameters (for the average dispersal rate, µ, and relative

dispersal rates, Q) for each phylodynamic model (Table S.3.1).

We also specified a root-frequency vector, ω, which represents the prior probability that the

tree begins in each of the geographic areas. For models with a single Q, it is possible to use the

stationary frequency implied by the Q as this root-frequency vector. However, interval-specific

models do not have a global stationary frequency (i.e., each interval has a separate stationary

frequency); in this case, it is conventional to treat ω as a free parameter and estimate it from

the data. To be as consistent as possible between the constant and interval-specific models, we

specified ω as a free parameter for both models.

Table S.3.1: Priors used in analyses of the reduced SARS-CoV-2 dataset.

Parameter Description Prior

µl Average dispersal rate in interval l Exp(1/λ); λ ∼ Γ(0.5, 0.5)

rij,l Relative dispersal rate from i to j in interval l Γ(1, 1)

ω Root frequencies Dir(1, 1, 1)

Parameter estimation

For each of model (1µ1Q and 2µ2Q), we inferred the joint posterior distribution of parame-

ters from our empirical dataset by running four independent MCMC simulations using our

modified version of BEAST (see this section) with the BEAGLE library (compiled from the ‘hmc-

clock‘ branch, commit ‘dd36bf5‘; Ayres et al. 2019). We ran each replicate MCMC simulation

for 700000–800000 generations, sampling every 500–1000 generations. We discarded the ini-

tial 100000–250000 generations (as burn-in) from each replicate MCMC simulation, and then

combined the remaining posterior samples from all replicate simulations using LogCombiner

version 1.10.5. (The number of generations, sampling frequency, and the length of the burn-in

are presented as ranges here and below because we deliberately ran the analyses under more

complex models longer and sampled less frequently.) We then assessed MCMC performance

for the resulting composite posterior sample by inspecting the log files using Tracer (Rambaut

et al. 2018) version 1.7.1, and using the coda package (Plummer et al. 2006) in R (R Core Team

2020). Specifically, we ensured that the computed ESS values for all continuous parameters
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were�2000. Details of these analyses are available in the XML scripts included in our GitHub

and Dryad repositories.

Simulating geographic datasets using the inferred parameter values

We simulated a total of 200 geographic datasets under each of two models: the constant (1µ1Q)

and interval-specific (2µ2Q) phylodynamic models, using our forward-in-time simulator (the

simulator R script is included in our GitHub and Dryad repositories). We simulated these geo-

graphic datasets over the MCC summary tree inferred from our reduced SARS-CoV-2 dataset

(see this section), with parameter values (for µ and Q) of the simulating models (1µ1Q and

2µ2Q) set to the corresponding posterior median estimates from our empirical analyses (de-

scribed in this section). Specifically, we used the following parameter values for constant

(1µ1Q) model:

µ=0.0320, Q=




− 1.4018 0.1740

0.0190 − 0.7366

0.1104 1.2983 −




,

and the following parameter values for the interval-specific (2µ2Q) model:

µ1=0.0242, Q1=




− 1.4214 1.2043

0.0107 − 0.7309

0.0654 1.3779 −




; µ2=0.0602, Q2=




− 0.6974 0.0814

1.0008 − 0.2428

0.8077 0.5744 −




.

Values of the diagonal elements are specified in the usual manner (i.e., set equal to the negative

sum of the off-diagonal elements in the corresponding row).

Analyzing simulated datasets

Model specification

For each simulated dataset, we inferred the joint posterior distribution under each of the two

models, 1µ1Q and 2µ2Q, using the same priors (listed in Table S.3.1) specified in the empirical

analyses that generated parameter values used to simulate the datasets.

Parameter estimation

For each inference model, 1µ1Q and 2µ2Q, we estimated the joint posterior distribution for

each simulated dataset by running two to four independent MCMC simulations using our
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modified version BEAST (see this section) with the BEAGLE library (compiled from the ‘hmc-

clock‘ branch, commit ‘dd36bf5‘; Ayres et al. 2019). We ran each replicate MCMC simulation for

300000–800000 generations, sampling every 500–1000 generations. When a sample was drawn,

we performed stochastic mapping using the endpoint-conditioned uniformization algorithm

(Rodrigue et al. 2007; Fearnhead and Sherlock 2006; Hobolth and Stone 2009) and our modified

algorithm for interval-specific phylodynamic models (see this section) implemented in BEAST

to simulate a dispersal history over the MCC phylogeny. We discarded the initial 50000–100000

generations (as burn-in) from each replicate MCMC simulation, and then combined the remain-

ing posterior samples from all replicate simulations using LogCombiner version 1.10.5. We then

assessed MCMC performance for the resulting composite posterior sample by inspecting the

log files using Tracer (Rambaut et al. 2018) version 1.7.1, and using the coda package (Plum-

mer et al. 2006) in R (R Core Team 2020). Specifically, we ensured that the computed ESS values

for all continuous parameters were �500. Details of these analyses are available in the XML

scripts included in our GitHub and Dryad repositories.

Summarizing results of the simulation analyses

For each of the four true:inference model combinations, we first computed the coverage prob-

ability (the frequency with which the true value was contained in the X% posterior credible

interval) as a function of the size (X) of the credible interval for all model parameters (µ and Q)

and for the pairwise and total number of dispersal events. For each true:inference model com-

bination, we also summarized the absolute error (estimated minus true values) for the model

parameters (µ and Q) and the pairwise and total number of dispersal events.

When the inference model is correctly specified (i.e., scenarios 1µ1Q:1µ1Q, and

2µ2Q:2µ2Q), there is a one-to-one correspondence between the true:inference model parame-

ters, which allows us to simply compare the true:estimated values for each parameter. By con-

trast, when the inference model is misspecified (i.e., scenarios 1µ1Q:2µ2Q, and 2µ2Q:1µ1Q),

there is a lack of direct correspondence between the true:inference model parameters. When the

inference model is overspecified (i.e., where 2µ2Q:1µ1Q), we compared the inferred parameter

value for each interval to the true, time-constant value (e.g., we compared interval-specific es-

timates of µ1 and µ2 to the time-constant true value, µ). Conversely, when the inference model

is underspecified (i.e., where 2µ2Q:1µ1Q), we compared estimates of the time-constant param-
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eter values to each true, interval-specific parameter values (e.g., we compared time-constant

estimates of µ to both interval-specific true values, µ1 and µ2).

Results

When the inference model is correctly specified (i.e., where both the true and inference models

include [or exclude] interval-specific parameters, 2µ2Q:2µ2Q and 1µ1Q:1µ1Q), our simulation

study demonstrates that estimates under interval-specific models are as reliable as those under

constant models (Figs. 3.3–S.3.7, green and blue). Moreover, when the inference model is over-

specified (i.e., it includes interval-specific parameters not included in the true model) inferences

are comparable to those under correctly specified models (Figs. 3.3–S.3.7, purple). However,

when the inference model is underspecified (i.e., it excludes interval-specific parameters of the

true model) inferences are severely biased (Figs. 3.3–S.3.7, orange).
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Figure S.3.3: Coverage probabilities for the number of dispersal events between each pair of areas.
For each true:inference model combination, we computed the coverage probability (the frequency with
which the true number of dispersal events was contained in the X% credible interval; y-axis) as a func-
tion of the size (X) of the credible interval (x-axis). Each panel summarizes the estimated coverage
probabilities for the number of dispersal events, η, between areas i and j, ηij. The panels are arranged
to mirror the six pairwise, off-diagonal dispersal routes of the Q matrix; e.g., the cell in the first row and
second column depicts the estimated coverage probability for the number of dispersal events from area
1 to area 2, etc. When the model is true, we expect the coverage probability to be equal to the size of
the credible interval (Cook et al. 2006). As expected, coverage probabilities fall along the one-to-one line
when the model is correctly specified (green and blue). Moreover, coverage probabilities are also ap-
propriate when the inference model is overspecified (i.e., the inference model includes interval-specific
parameters not included in the true model; purple). However, coverage probabilities are extremely un-
reliable when the inference model is underspecified (i.e., the inference model excludes interval-specific
parameters of the true model; orange).
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Figure S.3.4: Absolute error (estimated−true values) for the number of dispersal events between
pairs of areas. For each true:inference model combination, we summarized the absolute error for the
number of dispersal events as boxplots (median [horizontal bar], 50% probability interval [boxes], and
95% probability interval [whiskers]). Each panel summarizes the absolute error for the number of dis-
persal events, η, between areas i and j, ηij. The six panels are arranged to mirror the corresponding
six off-diagonal elements of the Q matrix (c.f., Figure S.3.3). Again, when the model is underspecified
(orange) inferences are strongly biased compared to those under the correctly specified (green and blue)
and overspecified (purple) models.
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Figure S.3.5: Reliable inference of average dispersal rate requires a correctly specified phylodynamic model. We
simulated 200 geographic datasets under each of two models, 1µ1Q) 2µ2Q. For each simulated dataset, we sep-
arately inferred the average dispersal rate under each model, resulting in four true:inference model combinations
(1µ1Q:1µ1Q, 2µ2Q:2µ2Q, 1µ1Q:2µ2Q, and 2µ2Q:1µ1Q). For 1µ1Q:2µ2Q, we compared interval-specific param-
eter estimates to the true, time-constant parameter value (i.e., we compared estimates of µ1 and µ2 to the true,
time-constant value, µ). Conversely, for 2µ2Q:1µ1Q, we compared the time-constant parameter estimates to each
of the true, interval-specific values (i.e., we compared estimates of µ to each of the true values, µ1 and µ2). Left)
For each true:inference model combination, we plotted the coverage probability (y-axis) as a function of the size of
the credible interval (x-axis). When the true or inference model is interval-specific, we plot separate true:inference
comparisons for the first (circles) and second (triangles) time intervals. As expected (Cook et al. 2006), coverage
probabilities fall along the one-to-one line when the model is correctly specified (green and blue); additionally,
coverage probabilities are also appropriate when the inference model is overspecified (purple). However, cover-
age probabilities are extremely unreliable when the inference model is underspecified (orange). Right) For each
true:inference model combination, we summarized the absolute error (estimated−true values) for the average dis-
persal rate as boxplots (median [horizontal bar], 50% probability interval [boxes], and 95% probability interval
[whiskers]). When the true or inference model is interval-specific, we separately plot absolute error for the first
(left) and second (right) intervals. Again, when the model is underspecified (orange) inferences are strongly biased
compared to those under the correctly specified (green and blue) and overspecified (purple) models.
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Figure S.3.6: Coverage probabilities for the relative dispersal rates between each pair of areas. For
each of the four true:inference model combinations, we plotted estimates of the coverage probability
(y-axis) as a function of the size of the credible interval (x-axis). Each panel summarizes the estimated
coverage probabilities for the relative dispersal rate between areas i and j, qij. The panels are arranged
to mirror the corresponding off-diagonal elements of the Q matrix (c.f., Figure S.3.3). For 1µ1Q:2µ2Q,
we compared interval-specific parameter estimates to the true, time-constant parameter value (i.e., we
compared estimates of qij,1 and qij,2 to the true, time-constant value, qij). Conversely, for 2µ2Q:1µ1Q,
we compared the time-constant parameter estimates to each of the true, interval-specific values (i.e.,
we compared estimates of qij to each of the true values, qij,1 and qij,2). When the true or inference
model is interval-specific, we separately plot true:inference comparisons for the first (circles) and second
(triangles) intervals. As expected (Cook et al. 2006), coverage probabilities fall along the one-to-one line
when the model is correctly specified (green and blue); additionally, coverage probabilities are also
appropriate when the inference model is overspecified (purple). However, coverage probabilities are
extremely unreliable when the inference model is underspecified (orange).
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Figure S.3.7: Absolute error (estimated minus true values) for the relative dispersal rates between
pairs of areas. For each combination of true:inference models, we summarized the absolute error for the
relative dispersal rates as boxplots (median [horizontal bar], 50% probability interval [boxes], and 95%
probability interval [whiskers]). Each panel summarizes the absolute error for the relative dispersal rates
between areas i and j, qij. The panels are arranged to mirror the six off-diagonal relative dispersal rates
of the Q matrix (c.f., Figure S.3.3). For 1µ1Q:2µ2Q, we compared interval-specific parameter estimates
to the true, time-constant parameter value (i.e., we compared estimates of qij,1 and qij,2 to the true, time-
constant value, qij). Conversely, for 2µ2Q:1µ1Q, we compared the time-constant parameter estimates to
each of the true, interval-specific values (i.e., we compared estimates of qij to each of the true, interval-
specific values, qij,1 and qij,2). When the true or inference model is interval-specific, we separately plot
absolute error for the first (left) and second (right) intervals. Again, when the model is underspecified
(orange) inferences are strongly biased compared to those under the correctly specified (green and blue)
and overspecified (purple) models.
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Assessing model fit to simulated datasets

Assessing relative fit of the true and alternative models using Bayes factors

We used Bayes factors to assess the relative fit of the true and alternative models to each sim-

ulated dataset. Specifically, for each dataset, we first estimated the marginal likelihood un-

der each of two models (1µ1Q and 2µ2Q), and then computed the Bayes factor as twice the

difference in the resulting log marginal likelihoods (Kass and Raftery 1995). We estimated

marginal likelihoods for each inference model using both thermodynamic-integration (Lartillot

and Philippe 2006) and stepping-stone (Xie et al. 2011; Baele et al. 2012) estimators. Our anal-

yses to estimate marginal likelihoods conditioned on the MCC summary phylogeny (see this

section).

For each simulated dataset, we ran two replicate power-posterior MCMC simulations for

both models (1µ1Q and 2µ2Q) using our modified version of BEAST (see this section) with the

BEAGLE library (compiled from the ‘hmc-clock‘ branch, commit ‘dd36bf5‘; Ayres et al. 2019). For

each replicate power-posterior MCMC simulation, we used 24 powers placed at evenly-spaced

quantiles of a Beta(0.3, 1.0) distribution. For each power, we discarded the initial 70000–80000

generations as burn-in and then sampled every 100 generations during the remaining 160000–

180000 generations. (The number of generations and the length of the burn-in of each power

are presented as ranges here and below because we deliberately ran the MCMC longer at each

power for the power-posterior analyses under more complex models, and also set up repli-

cate MCMCs with increasing length as one way of assessing the reliability of our marginal-

likelihood estimates.) We assessed the reliability of our marginal-likelihood estimates by com-

paring values from all the replicate power-posterior MCMCs. Details of these analyses (e.g.,

proposal weights) are available in the XML scripts included in our GitHub and Dryad reposi-

tories.

Assessing absolute fit of each model using posterior-predictive simulation

For each true:inference model combination, we assessed absolute model fit to each simulated

dataset using posterior-predictive simulation (Gelman et al. 1996) with a set of 20 time-slice

summary statistics. For each simulated dataset, we simulated m = 800−1000 predictive datasets

using the parameter values that were randomly sampled from the inferred joint posterior dis-

tribution of the corresponding simulated dataset under each of the two models. We then gener-
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ated posterior-predictive distributions from each set of m predictive datasets under 20 separate

time-slice summary statistics, i.e., for all combinations of the two types of summary statistics

(parsimony and tipwise-multinomial statistics) and 10 time slices spanning the entire dispersal

history of the early phase of COVID-19 (including week 0 that covers the duration from the

origin of SARS-CoV-2 to January 5, 2020, and weeks 1–9 corresponding to the nine weeks be-

tween January 6 and March 8, 2020). For each posterior-predictive distribution, we computed

the posterior-predictive p value (see this section) to assess the adequacy of (i.e., absolute fit) the

corresponding inference model.

Results

Our simulation study demonstrates the importance of identifying scenarios where an inference

model is underspecified; failure to accommodate interval-specific variation in the study data

will severely bias parameter estimates. Fortunately, our simulation study demonstrates that we

can reliably identify when a given model is correctly specified, overspecified, or underspecified

using a combination of Bayes factors (to assess the relative fit of competing models to the data;

Fig. 3.4, left) and posterior-predictive simulation (to assess the absolute fit of each candidate

model to the data; Fig. 3.4, right, Fig. S.3.8 and table S.3.2). Using a combination of Bayes factors

and posterior-predictive simulation allows us to not only identify the best of the candidate

models, but also to ensure that the best model provides an adequate description of the true

process that gave rise to our study data.
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Figure S.3.8: Assessing the absolute fit of true and alternative phylodynamic models to simulated
datasets. We assessed the absolute fit of alternative models to the simulated datasets. For each combi-
nation of true:inference model, we assessed absolute model fit (i.e., model adequacy) using posterior-
predictive simulation with a set of 20 time-slice summary statistics. We group results based on the
parsimony (left column) and tipwise-multinomial (right column) summary statistics; the rows in each
column corresponds to one of the 10 (weekly) time slices, and each cell plots the posterior-predictive
distributions of the corresponding statistic for each of the four true:inference model combinations. Each
dot represents the posterior-predictive p value for a single dataset, and the violin plots summarize the
distribution of these p values for all datasets under the corresponding true:inference model combina-
tion. Dashed lines indicate critical posterior-predictive p values (of 0.025 and 0.975); a dot above the top
dashed line or below the bottom dashed line indicates that the corresponding inference model provides
an inadequate description of the true process that gave rise to that dataset. As expected, the true model
is overwhelmingly inferred to be adequate (green and blue). Encouragingly, model overspecification
appears to have a negligible impact on model adequacy (purple). By contrast, an underspecified model
severely impacts model adequacy (orange).
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Table S.3.2: Percent of simulated datasets that were inadequately modeled. The organization of the table mirrors
that of Fig. S.3.8. Each cell of the table indicates the percent of simulated datasets for which the inferene model
was inferred to provide an inadequate description of the true process that generated the simulated datasets. That
is, each cell indicates the percent of the posterior-predictive p values that fall outside the critical (0.025 and 0.975)
thresholds (i.e., the corresponding percent of dots above the top dashed line or below the bottom dashed line in
Fig. S.3.8). Values indicating significant model inadequacy (i.e., ≥5%) are indicated in red text.

parsimony statistic tipwise-multinomial statistic

1µ1Q:1µ1Q2µ2Q:2µ2Q1µ1Q:2µ2Q2µ2Q:1µ1Q 1µ1Q:1µ1Q2µ2Q:2µ2Q1µ1Q:2µ2Q2µ2Q:1µ1Q

week 0 4.5 3.5 3.0 6.0 4.5 4.0 5.0 11.5

week 1 0.0 0.5 0.0 0.5 3.0 6.5 4.0 3.0

week 2 0.5 0.0 0.0 3.5 4.0 3.5 2.5 16.0

week 3 0.0 0.0 0.0 6.0 4.0 1.0 4.0 74.5

week 4 0.0 0.0 0.5 7.5 2.5 4.0 3.0 37.5

week 5 0.0 0.0 0.5 4.0 3.0 3.5 3.0 31.5

week 6 0.0 0.5 0.0 1.0 3.5 5.0 2.5 7.5

week 7 0.0 0.0 0.0 0.0 5.0 2.5 5.0 6.5

week 8 0.0 0.0 0.0 0.0 1.0 1.0 1.5 36.0

week 9 0.0 0.0 0.0 0.0 2.0 2.5 2.0 45.5

average 0.5 0.45 0.4 2.85 3.25 3.35 3.25 26.95
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Empirical Application

Overview

The results of our empirical study are based on a complex and comprehensive series of compu-

tationally intensive analyses. In this section, we provide a high-level overview of our data col-

lection and data analyses to clarify the rationale of our empirical study, while directing readers

to the corresponding subsections below that provide additional details on the various analyses

that we performed.

Data Acquisition and Curation

Epidemiological data

We used two types of epidemiological information in this study: (1) the number of confirmed

COVID-19 cases, and; (2) the intervention measures involving China that were enacted during

the early phase of the pandemic. We compiled a dataset of the number of confirmed COVID-19

cases recorded on each day for each country/province/state based on various sources (WHO

2020; DXY 2020; NHCPRC 2020; ECDC 2020; USCDC 2020) via two intermediate portals (Wu

et al. 2020b; Dong et al. 2020; see this section). We used these case-number data to assess the

fraction of total cases represented by our genomic sequences, and to estimate the approximate

date by which SARS-CoV-2 had spread to most geographic areas. We collected information

on international travel bans with China and domestic mitigation measures within China from

multiple sources (Wikipedia 2020a,b; Kraemer et al. 2020; Tian et al. 2020; Hsiang et al. 2020;

Lai et al. 2020; see this section).

Travel data

We used the daily number of commercial passenger flights obtained from FlightAware as a

proxy for the global air-travel volume (see this section).

Delineation of time intervals and geographic areas

To explore the dynamics of viral geographic dispersal in the early phase of the COVID-19 pan-

demic, we partitioned the study period into five time intervals: (1) interval 1 from late 2019

(origin time) to Jan. 12, 2020; (2) interval 2 from Jan. 1 3, 2020 to Jan. 25, 2020; (3) interval 3

from Jan. 26, 2020 to Feb. 2, 2020; (4) interval 4 from Feb. 3, 2020 to Feb. 16, 2020, and; (5) inter-

val 5 from Feb. 16, 2020 to Mar. 8, 2020. Boundaries between these intervals coincide with the

initiation of containment measures (e.g., international travel bans with China) or other events
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associated with changes in the level of population movement (e.g., start of the Spring Festi-

val travel season); see this section. For our phylodynamic analyses, we discretized the globe

into geographic areas to study the early spread of SARS-CoV-2. We grouped geographically

adjacent countries/territories (for non-focal regions) or states/provinces (for focal regions) to

specify a total of 23 geographic areas (Fig. S.3.10).

SARS-CoV-2 genomic sequence data

We curated two genomic sequence datasets for this study, one with 1271 sequences (the “re-

duced dataset”) and the other with 2598 sequences (the “entire dataset”). The reduced dataset

was produced on Apr. 19, 2020, based on all available SARS-CoV-2 genomic sequences from the

Global Initiative on Sharing All Influenza Data (GISAID, Shu and McCauley 2017) as of that

date. The entire dataset was produced by adding sequences that were available on GISAID

as of Sept. 22, 2020. See this section for details on the sequence curation and alignment, and

differences between the reduced and entire datasets.

Phylodynamic Analyses

Our objective is to infer the joint posterior probability distribution of the viral phylogeny, di-

vergence times, and biogeographic history under a composite phylodynamic model that is ap-

propriate for the entire SARS-CoV-2 dataset. The composite phylodynamic model is comprised

of four main components: (1) a substitution model that describes the evolution of nucleotide
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Figure S.3.9: Workflow of the empirical analyses in our study.
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sequences over the tree; (2) a branch-rate prior model that characterizes how rates of substi-

tution vary across branches of the tree; (3) a branching-process model that specifies the prior

distribution of the tree topologies and divergence times, and; (4) a biogeographic model that

describes how viruses disperse between geographic areas.

For each of these components, there are numerous candidate models; the vast space of

composite phylodynamic models makes it computationally prohibitive to evaluate the fit of

each candidate model to the entire dataset. Accordingly, we adopt a three-step model-selection

procedure: (1) we first estimate the dated phylogeny for the reduced dataset under a relaxed-

clock model with biologically motivated specification of the substitution model, branch-rate

prior model, and branching-process prior model; (2) we then condition on the resulting dated

phylogeny to select among candidate biogeographic models using the reduced dataset, and;

(3) finally, we perform joint inference of the dated phylogeny and biogeographic history for the

entire dataset using the preferred composite phylodynamic model.

Step 1: Estimating the dated phylogeny of the reduced dataset

We inferred a dated phylogeny by performing Bayesian analyses of the reduced SARS-CoV-2

sequence dataset under a relaxed-clock model, which includes the first three of the four model

components of the composite phylodynamic model: (1) a substitution model; (2) a branch-rate

prior model, and; (3) a branching-process prior model.

Specifically, we specified a partitioned substitution model to accommodate possible varia-

tion in the evolutionary process across genomic regions. The SARS-CoV-2 genome is comprised

of 11 gene regions (we list these gene regions and their corresponding coordinates in the ref-

erence genome in Table S.3.3). We partitioned the SARS-CoV-2 genomes into six data subsets,

with three subsets for the ORF1ab gene region (one for each codon position), and three subsets

for the remaining ten combined gene regions (one for each codon position). For each of these

data subsets, we specified an independent TN93 substitution model (Tamura and Nei 1993).

We used partition-specific rate multipliers to capture differences in the substitution rate across

the six data subsets. We specified a discrete-gamma model to accommodate substitution-rate

variation across sites within each data subset. Our preliminary analyses specified an indepen-

dent discrete-gamma model for each of the six data subsets, which revealed a similar degree

of among-site rate variation within each data subset (i.e., with similar posterior estimates of

the six α-shape parameters). Accordingly, to decrease model complexity, we specified a shared,
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discrete-gamma model (Yang 1994) to accommodate substitution-rate variation across sites of

the entire alignment. We specified an uncorrelated lognormal (UCLN) branch-rate prior model

(Drummond et al. 2006; Li and Drummond 2012; Rannala and Yang 2007) by drawing i.i.d.

rate multipliers for each branch from a shared underlying lognormal distribution, where the

parameters of this distribution (mean and standard deviation) are estimated from the data. For

the branching-process prior model, we used a coalescent model with exponential population

growth.

We performed MCMC simulations to approximate the joint posterior distribution of the

relaxed-clock model parameters and the dated phylogeny using BEAST (Suchard et al. 2018).

We then used TreeAnnotator to generate a summary phylogeny from the combined posterior

sample of dated phylogenies as a maximum clade credibility (MCC) tree. We provide a more

detailed description of these analyses in this section. The phylogeny inferred from these anal-

yses was used both for our simulation study and also in the next step to evaluate candidate

biogeographic models.

Step 2: Evaluating candidate biogeographic models using the reduced dataset

We explored a pool of nine candidate biogeographic models. These models assign interval-

specific parameters—for the average rate of viral dispersal, µ, and/or relative rates of viral

dispersal, Q—to one, two, four, or five pre-specified time intervals; i.e., 1µ1Q, 1µ2Q, 2µ1Q,

2µ2Q, 1µ4Q, 4µ1Q, 4µ4Q, 5µ5Q, and 5µ5Q∗. We specified interval boundaries based on ex-

ternal information regarding events within the study period that might plausibly impact viral

dispersal dynamics, including: (A) start of the Spring Festival travel season in China (the high-

est annual period of domestic travel, January 12); (B) onset of mitigation measures in Hubei

province, China (January 26); (C) onset of international air-travel restrictions against China

(February 2), and; (D) relaxation of domestic travel restrictions in China (February 16). Phylo-

dynamic models with two intervals include event C, models with four intervals include events

A, C, and D, and the 5µ5Q model includes all four events. The final candidate model, 5µ5Q∗,

includes five arbitrary and uniform (bi-weekly) intervals.

We assessed both the relative and absolute fit of these candidate biogeographic models to

our reduced SARS-CoV-2 dataset. We assessed the relative fit of competing biogeographic mod-

els by computing Bayes factors based on their marginal-likelihood estimates. We performed

power-posterior MCMC simulations using BEAST (Suchard et al. 2018) to estimate marginal
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likelihoods using both thermodynamic-integration (Lartillot and Philippe 2006) and stepping-

stone (Xie et al. 2011; Baele et al. 2012) estimators. We also assessed the absolute fit of each

model using posterior-predictive simulation (Gelman et al. 1996). For each model, we first in-

ferred the joint posterior distribution from the observed biogeographic data (i.e., the geographic

location of each sampled sequence) by performing MCMC simulations using BEAST (Suchard

et al. 2018). We then simulated predictive datasets by repeatedly sampling at random from the

corresponding joint posterior probability distribution for a given the model. Finally we gen-

erated posterior-predictive distributions from each predictive dataset under various summary

statistics (as described in this section), which measure the discrepancy between the observed

dataset and the simulated dataset. We provide a more detailed description of these analyses in

this section. The preferred biogeographic model identified by these analyses was then used in

our subsequent joint phylodynamic analyses, described below.

Step 3: Joint phylodynamic inference of the entire dataset

We performed joint inference of the phylogeny, divergence times, and biogeographic history

using the entire SARS-CoV-2 dataset based on a phylodynamic model that includes (1) a

relaxed-clock model, and (2) a biogeographic model. The relaxed-clock model specified in

these joint analyses is identical to that specified in Step 1 (with minor changes in the prior spec-

ification to reflect differences in viral sampling). The biogeographic model specified in these

joint analyses is identical to the biogeographic model selected in Step 2: the 4-interval (4µ4Q)

model.

We performed MCMC simulations to approximate the joint posterior distribution of the

phylodynamic-model parameters using BEAST (Suchard et al. 2018). We also performed

posterior-predictive simulation to confirm that the preferred biogeographic model provides

an adequate fit to the entire SARS-CoV-2 dataset under the joint inference. We provide a more

detailed description of these analyses in this section.

Ancillary analyses: Estimating daily global viral dispersal rates for the entire dataset

We performed additional analyses to explore the correlation between daily global air-travel

volume and daily average global SARS-CoV-2 dispersal rate during the early phase of the

COVID-19 pandemic. We first estimated the daily global dispersal rate using the entire SARS-

CoV-2 dataset under a more granular interval-specific phylodynamic model that allows daily
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variation in the average viral dispersal rate. We then computed the correlation between these

estimates and independent information on the daily volume of global air travel during this

period. The phylodynamic model we specified for these analyses was identical to that used

in Step 3, except that we further discretized the time intervals for the average global dispersal

rate to vary daily. In these analyses, we accommodated phylogenetic uncertainty by averaging

over the marginal posterior probability distribution of dated phylogenies inferred in Step 3. We

performed MCMC simulations to approximate the joint posterior distribution of the daily-rate

model parameters using BEAST (Suchard et al. 2018). We then performed a standard correlation

test between the daily global air-travel volume and the estimated mean daily global SARS-

CoV-2 dispersal rates by computing Pearson’s r and the corresponding p value, focussing on

the period spanning from Jan. 31 (by which date the virus achieved a global distribution) to

Mar. 8, 2020. We provide a more detailed description of these analyses in this section.

Data and Code Availability

GISAID accession IDs of the SARS-CoV-2 sequences used in this study, as well as the flight-

volume data (obtained from FlightAware, LLC) and intervention-measure data, are maintained

in the GitHub repository (https://github.com/jsigao/interval_specific_phylodynamic_

models_supparchive) and archived in the Dryad repository (https://datadryad.org/stash/

share/vTbeDwLq2uSL9rL4NCe_Cocp2bY7BgWTI2tUgoNrLDA). Our repositories also contain

BEAST XML scripts used to perform the phylodynamic analyses, R scripts used to perform sim-

ulations and post processing, and a modified version of the BEAST program used for some of

the analyses in this study.
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Detailed Description of Data Acquisition and Curation

Epidemiological Data

COVID-19 case numbers

We obtained the number of confirmed COVID-19 cases from five major sources: (1) the WHO

COVID-19 situation reports (WHO 2020), (2) the COVID-19 dashboard published on a Chinese

medical website, Ding Xiang Yuan (DXY), that integrates data from local governmental reports

(DXY 2020), (3) the National Health Commission of the People’s Republic of China (NHCPRC)

COVID-19 situation reports (NHCPRC 2020), (4) the European Centre for Disease Prevention

and Control (ECDC) COVID-19 situation update (ECDC 2020), and (5) the US Centers for Dis-

ease Control and Prevention (USCDC) COVID-19 data tracker (USCDC 2020). Rather than

directly collecting data from these sources, we accessed them via two intermediate portals: the

R (R Core Team 2020) package nCov2019 (Wu et al. 2020b), and the COVID-19 Data Repository

by the Center for Systems Science and Engineering at Johns Hopkins University (Dong et al.

2020).

Intervention measures

We focused on two types of intervention measures enacted during the early phase of the

COVID-19 pandemic that involved China: targeted-containment measures involving China

(i.e., international air-travel bans), and domestic-mitigation measures within China. We com-

piled information on these containment measures from various news reports, Wikipedia

pages (Wikipedia 2020a,b), and peer-reviewed publications (Kraemer et al. 2020; Tian et al.

2020; Hsiang et al. 2020; Lai et al. 2020). For domestic measures within China, we fo-

cused on measures that were likely to interrupt travel among regions, including lockdowns

at city or province levels, inter-city travel restrictions, and home or neighborhood isolation.

See international airtravelban withchina.csv for a collection of countries or territories

that enacted international travel bans with China (and the associated initiation date), and

china domestic.csv for a collection of provinces or cities that enacted mitigation measures

in China (including the associated implementation period and type of measure); these spread-

sheets are included in our GitHub and Dryad repositories.
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Travel Data

We acquired global air-travel-volume data from FlightAware, detailing the number of all com-

mercial passenger flights (subdivided by each aircraft type) per day between Dec. 30, 2019

and Mar. 8, 2020. We transformed these daily aircraft-volume data to provide an estimate

of the daily air-travel passenger volume (Fig. 5, dashed line) by multiplying the number of

flights for each type of aircraft by the capacity (seat number) for the corresponding type of air-

craft. The original air-travel-volume data are contained in nflights daily byaircraft.csv,

and the number of seats for each aircraft type is provided in aircraft nseats.csv (included

in our GitHub and Dryad repositories).

Definition of Time Intervals

We partitioned the early phase of the COVID-19 pandemic into five time intervals: (1) interval

1 from late 2019 (origin time) to Jan. 12, 2020; (2) interval 2 from Jan. 13 to Jan. 25; (3) interval

3 from Jan. 26 to Feb. 2; (4) interval 4 from Feb. 3 to Feb. 16, and; (5) interval 5 from Feb. 17 to

Mar. 8, 2020.

The Jan. 12 boundary coincides with the start of the Spring Festival travel season in China

(the highest annual period of domestic travel). The Jan. 26 boundary coincides with onset of

widespread mitigation measures in China to restrict domestic travel: these measures began

with the city-wide lockdown of Wuhan on Jan. 23 (that were extended to the entire Hubei

province in the following days), followed by the declaration of level-1 emergency in all main-

land provinces between Jan. 24–29, the extension of the Spring Festival national holiday (ef-

fectively school and workplace closure) announced on Jan. 27, and the enactment of stringent

home- or neighborhood-isolation orders in various cities outside Hubei beginning Feb. 2. The

Feb. 2 boundary coincides with the initiation of international air-travel bans with China (im-

posed by 34 countries by this date) and the cancellation (or significant reduction) of interna-

tional air services involving China (by over 130 airlines; International Civil Aviation Organi-

zation 2020; Wikipedia 2020b), following the declaration of Public Health Emergency of Inter-

national Concern (PHEIC) by the World Health Organization (WHO) on Jan. 31. The Feb. 17

boundary coincides with the lifting of travel restrictions in China (except in Hubei, where the

travel restrictions were not lifted until late Mar.).
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SARS-CoV-2 Genomic Sequence Data

We curated two SARS-CoV-2 genomic sequence datasets for our study, one with 1271 sequences

(the “reduced dataset”) and the other with 2598 sequences (the “entire dataset”).

number of samples
[1, 10)
[10, 50)
[50, 100)
 >= 100

geographic areas
Hubei China
South China
East China
North and West China
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New York
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reduced dataset

entire dataset

Figure S.3.10: SARS-CoV-2 genomes sampled from each discretized geographic area. Our study
includes two SARS-CoV-2 datasets—the reduced (1271 sequences, top) and entire (2598 sequences,
bottom)—that comprise viral genomes collected between Dec. 24, 2019–Mar. 8, 2020 from 23 discrete
geographic areas (colored regions); circles indicate the number and location of samples in our study.

Assembling the reduced dataset

The reduced dataset consists of all available SARS-CoV-2 genomic sequences available as of

Apr. 19, 2020 from GISAID (https://www.gisaid.org/; Shu and McCauley 2017). As our

focus is on the crucial early phase of the COVID-19 pandemic, we excluded sequences that

were collected after Mar. 8, leaving 2003 sequences in the dataset. We first filtered the dataset
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by excluding sequences that fit any of the following conditions: (1) fewer than 29000 sites

(not counting missing or gap sites); (2) lacking associated metadata (e.g., sampling time or

location); (3) lacking the precise sampling date or geographic location (state/province for

sequences from China, Canada, or U.S.A. and country for the others); (4) sampled from a

non-human host; (5) multiple sequences from the same individual (in which case we ran-

domly selected one of sequence and discarded the others), or; (6) duplicates of other se-

quences in the dataset [for this purpose, we used the “exclude list” used by Nextstrain (https:

//github.com/nextstrain/ncov/blob/master/defaults/exclude.txt) as a reference]. Ap-

plication of these filters resulted in a genomic dataset consisting of 1620 sequences.

We then inferred an alignment of these nucleotide sequences using MUSCLE version 3.8

(Edgar 2004). We performed a second round of filtration of the resulting alignment. First,

we excluded sequences that appeared to be anomalously divergent; this was achieved by com-

paring each sequence to the reference genome while assuming that the rate of mutation accu-

reduced dataset entire dataset
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Figure S.3.11: Submission and collection dates for SARS-CoV-2 genomic sequences. (A) Cumulative
number of SARS-CoV-2 sequences submitted to GISAID that were collected during the early phase of
the COVID-19 pandemic. The color of each segment in the stacked bar plot indicates the number of
sequences submitted from the corresponding geographic area on that day. (B) Submission and collection
dates for each SARS-CoV-2 sequence included in our study. The deposition rate of sequences collected
prior to Mar. 8 drastically decreased in Sept. 2020.
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Figure S.3.12: Number of SARS-CoV-2 genome sequences versus number of confirmed COVID-19
cases. (A) Number of sequences versus number of confirmed cases across the early phase of the pan-
demic. + and x indicate the reduced and entire datasets, respectively; they are connected by dashed line
for each geographic area to show the increase of the number of sequences (and thus the sequence/case
ratio) in the entire dataset. (B) Geographic distribution of confirmed case numbers (excluding Hubei).
(C) Geographic distribution of sequence number (excluding Hubei; reduced dataset). (D) Geographic
distribution of sequence number (excluding Hubei; entire dataset). (E–H) Number of sequences versus
number of confirmed cases for each interval of the early phase, respectively.

mulation should not exceed 10 mutations per genome per month. We also excluded sequences

with many ambiguous sites (i.e., sites for which the nucleotide could not be unambiguously

identified); specifically, we discarded sequences with more than 15 ambiguous sites, and se-

quences with at least 10 ambiguous sites and fewer than 10 sites differing from the reference

genome. Next, we excluded sequences with nonsense mutations; to this end, we translated

the nucleotide alignment into an amino-acid alignment using the seqinr package (Charif and

Lobry 2007) in R (R Core Team 2020) to identify sequences with premature stop codons. We

assumed that the rate of amino-acid substitution accumulation should not exceed 4 substitu-

tions per genome per month; we therefore discarded sequences with more than 6 ambiguous

amino-acid sites, and sequences with at least 3 ambiguous amino-acid sites but fewer than 3

sites differing from the reference genome. After filtering, our reduced dataset included 1271

sequences.
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Assembling the entire dataset

We also compiled a more comprehensive dataset by curating all sequences available from GI-

SAID as of Sept. 22, 2020. Specifically, we downloaded an alignment from GISAID, which was

inferred using MAFFT (Katoh and Standley 2013). After excluding sequences that were collected

after Mar. 8, 2020, the alignment included 4012 sequences. We then performed the same two-

step filtration procedure that we applied to the reduced dataset, culminating in an alignment

(“entire dataset”) with 2598 sequences.

The entire dataset is more comprehensive than the reduced dataset: it contains more than

twice the number of sequences (Fig. S.3.11), and is also more evenly sampled, as the sequence-

to-case ratios of many undersampled geographic areas are significantly higher, especially for

the third and fourth intervals of our study (Fig. S.3.12). Moreover, the entire dataset contains

SARS-CoV-2 genomic sequences that are likely to represent the vast majority of such data that

will ever be available; the deposition rate of sequences collected from the early phase of the

pandemic drastically decreased in Sept., 2020 (Fig. S.3.11).

Trimming and partitioning the curated alignment

For each curated dataset, we trimmed the 5’UTR and 3’UTR as well as the other non-coding

regions, retaining only coding regions in the alignment. Table S.3.3 lists the coding regions and

Table S.3.3: Genomic coordinates of the SARS-CoV-2 coding regions.

Region Starting coordinate Ending coordinate

ORF1ab* 266 21555

S 21563 25384

ORF3a 25393 26220

E 26245 26472

M 26523 27191

ORF6 27202 27387

ORF7a 27394 27759

ORF7b 27756 27887

ORF8 27894 28259

N 28274 29533

ORF10 29558 29674

*During translation, ORF1ab experiences a −1 ribosomal frameshift at site 13468, so the range is (266–13468,

13468–21555).
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their corresponding coordinates in the reference genome (Wuhan-Hu-1, Wu et al. 2020a). After

removing the stop codon for each coding region, both the reduced and entire alignments for

the complete coding region included 29,232 nucleotide sites.
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Detailed Description of Phylodynamic Analyses

Estimating a Dated Phylogeny for the Reduced SARS-CoV-2 Dataset

Overview

In this section, we describe the analyses that we performed to infer a dated phylogeny for

the reduced sample of COVID-19 viruses. We use the phylogeny inferred from these analyses

both in our simulation study (see this section) and also in our subsequent analyses to evaluate

candidate biogeographic models (see Evaluating Candidate Biogeographic Models).

Model specification

We inferred a dated phylogeny by performing Bayesian analyses of the reduced SARS-CoV-2

sequence dataset under a relaxed-clock model, which includes three main components: (1) a

substitution model; (2) a branch-rate prior model; and (3) a branching-process prior model. Be-

low, we describe each of these model components and the corresponding priors for the param-

eters of those models (note that we used an empirical Bayesian approach to specify non-default

priors for several parameters; i.e., where the results of preliminary analyses and/or published

results were used to specify the parameters of priors. Details of the priors are described in

Table S.3.4.

Substitution model.—The substitution model collectively describes the process of molecular evo-

lution of the SARS-CoV-2 genomes over the branches of the phylogeny. The process of molec-

Table S.3.4: Priors used to estimate a dated phylogeny of the sampled SARS-CoV-2 sequences.

Parameter Description Prior

κ1 Ratio of the A→ G rate to the transversion rate Lognormal(µ = 1.0, σ = 0.8)*

κ2 Ratio of the C→ T rate to the transversion rate Lognormal(µ = 1.0, σ = 0.8)

π Nucleotide stationary frequencies Dir(1, 1, 1, 1)

m Partition-specific rate multipliers Dir(1, 1, 1, 1, 1, 1)

α Shape and scale parameter of the Γ4 distribution Lognormal(µ = −2.1, σ = 0.5874)

E[r] Mean of the UCLN Lognormal(µ = −12.7, σ = 0.5874)

SD(r) Standard deviation of the UCLN Exp(λ = 1/(2.0e−6))

NT Effective number of infected individuals at sampling time, T Lognormal(µ = 7.5, σ = 1.0)

r Exponential growth rate of the coalescent model Laplace(0.07, 0.01)

*µ and σ in this table are the mean and standard deviation of the normal distribution.
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ular evolution is apt to vary among regions of these viral genomes. For example, the ORF1ab

gene of SARS-CoV-2 encodes nonstructural proteins and is therefore likely to have been sub-

jected to strong purifying selection (Li et al. 2020b), whereas other genes, such as the spike (S)

gene, encode structural proteins that determine antigenicity and other immune properties of

SARS-CoV-2, and are therefore likely to have been subjected to strong positive selection (Kor-

ber et al. 2020; Plante et al. 2020; Hou et al. 2020; Volz et al. 2021). Accordingly, we specified a

partitioned substitution model to accommodate possible variation in the evolutionary process

across genomic regions. Specifically, we partitioned the SARS-CoV-2 genomes into six data

subsets, with three subsets for the ORF1ab gene region (one for each codon position), and three

subsets for the remaining ten combined gene regions (one for each codon position). (For a com-

plete list of the gene regions and their corresponding coordinates in the reference genome, see

Table S.3.3).

For each of these data subsets, we specified an independent TN93 substitution model

(Tamura and Nei 1993), with transition-transversion rate-ratio parameters κ1 and κ2 (the instan-

taneous rates of A to G and C to T substitutions, respectively, relative to the transversion rate)

and π (the stationary frequency of each nucleotide). For each transition-transversion rate-ratio

parameter, we specified lognormal priors with a prior mean of 3.74 and a 95% prior interval of

[0.56, 13.04].

To accommodate possible variation in the overall rate of substitution between gene regions,

we specified independent rate multipliers for each of the six data subsets. To accommodate

variation in substitution rates across sites within each data subset, we specified a discrete-

gamma model (Yang 1994). Our preliminary analyses specified an independent discrete-

gamma model for each of the six data subsets, which revealed a similar degree of among-

site rate variation within each data subset (i.e., with similar posterior estimates for the six α-

shape parameters). Accordingly, to decrease model complexity, we specified a shared, discrete-

gamma model for the entire alignment. We specified a lognormal hyperprior on the α-shape

parameter, with a prior mean of 0.15 and a 95% prior interval spanning one order of mag-

nitude around the mean, [0.039, 0.39]. This prior reflects our expectation of a high degree of

substitution-rate variation across sites, motivated by our observation that most sites in our

SARS-CoV-2 alignment are invariant, while a small number of sites appear to be highly vari-

able.
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Branch-rate model.—The branch-rate model describes how the overall substitution rate varies

across branches of the tree. Our composite relaxed-clock model specifies the uncorrelated log-

normal (UCLN) branch-rate prior model (Drummond et al. 2006; Li and Drummond 2012; Ran-

nala and Yang 2007), which accommodates variation in the overall substitution rate across

branches by drawing i.i.d. rate multipliers for each branch from a shared underlying log-

normal distribution, where the parameters of this distribution (mean and standard devia-

tion) are estimated from the data. For the mean of the UCLN, we specified a lognormal

hyperprior with an expectation of 3.63e−6 substitutions/site/day and 95% prior interval of

[0.96e−6, 9.64e−6], motivated by published substitution-rate estimates of approximately 30

substitutions/genome/year (cf. Duchene et al. 2020). We specified an exponential hyperprior

on the standard deviation of the UCLN such that the branch-specific substitution rates are ex-

pected to vary over approximately one order of magnitude.

Branching-process model.—The branching-process model describes the prior distribution of tree

topologies and divergence times. We used a coalescent model with exponential population

growth as our branching-process model. This model assumes that the viral population size

grows as a deterministic exponential function (Beaumont 1999; Drummond et al. 2002), which

is motivated by the fact that our SARS-CoV-2 dataset was sampled from the early, explosive

stage of the COVID-19 pandemic. This model is completely described by two free parameters:

NT, the effective number of infected individuals in the population at the sampling time, T (i.e.,

the last sampling date in our dataset, Mar. 8, 2020), and r, the exponential growth rate. We

specified empirically informed and biologically realistic priors on these parameters.

Prior on the exponential growth rate, r.—We specified a prior on r using external information

about the R0, the basic reproductive number, and τ, the duration of the infectious period; these

quantities are related through the equation r = (R0 − 1)/τ. We specified a Laplace prior on

r, with location and scale parameter values specified according to published estimates of R0

and τ for COVID-19 (Chinazzi et al. 2020; Li et al. 2020a; Hao et al. 2020; Vaughan et al. 2020;

Nadeau et al. 2021; Wölfel et al. 2020; van Kampen et al. 2021; Byrne et al. 2020). This prior on

r directly translates to an expected population doubling time, t = ln(2)/r, of 10.6 days (with

95% prior interval ranging from 6.9 to 17.2 days).
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Prior on the effective population size, NT.—Given a population doubling time of t, the expected

number of individuals at time T is NT = N02(T−T0)/t, where N0 is the number of individuals at

the beginning of the process, and T0 is the origin time of the process. (This equation follows

from the fact that there are (T − T0)/t doubling cycles in a period of duration T − T0.) We

therefore specified a prior on NT informed by our previously determined prior on t, as well

as several realistic values for N0 (1 or 2) and T0 (some time in late Nov., 2019). Based on these

values, we chose a lognormal prior on NT such that the mean was 2981 and 95% prior interval

spanned [254, 12840]. Given that there were at least 3940 reported cases on Mar. 8, 2020 alone,

it may seem unreasonable to specify a prior such that the expected number of individuals is as

low as 2981. However, we note that NT represents the effective number of infected individuals

in the population, which is typically substantially smaller than the total number of infected

individuals in the population. Additionally, we note that: (1) the posterior-mean estimate of

NT under this prior is ≈801, indicating that, if anything, this prior mean is too high, and;

(2) sensitivity analyses suggested that posterior estimates of NT were not very sensitive to this

prior (results not shown).

Parameter estimation

We performed six independent MCMC simulations to approximate the joint posterior distri-

bution of the relaxed-clock model parameters using BEAST version 1.10.5 (Suchard et al. 2018)

with the BEAGLE library (compiled from the ‘hmc-clock‘ branch, commit ‘dd36bf5‘; Ayres et al.

2019) to accelerate computation. We ran each replicate MCMC simulation for 50 million gen-

erations, sampling continuous parameters every 1000 generations and trees every 10,000 gen-

erations. Details of these analyses (e.g., proposal weights) are available in the XML scripts

included in our GitHub and Dryad repositories. After discarding the first 20% as the burn-in

from each replicate simulation, we combined the remaining posterior samples of trees from

all the replicates and then down-sampled every 50,000 generations using LogCombiner version

1.10.5. Following initial inspection of the log files using Tracer (Rambaut et al. 2018) version

1.7.1, we further evaluated MCMC performance using the coda package (Plummer et al. 2006)

in R (R Core Team 2020). We assessed convergence of replicate MCMC simulations by calculat-

ing the ESS for each continuous parameter for the combined posterior samples; ensuring that

values for the substitution-model parameters were all �10000 and those for the branch-rate

and branching-process models were all�200. We then used TreeAnnotator version 1.10.5 to
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generate a summary phylogeny from the combined posterior sample of trees—as a maximum

clade credibility (MCC) tree—where the age of each internal node is computed by marginal-

izing over the age of that node across all samples. Note that as the age of each node is sum-

marized independently across the posterior distribution of trees, it is possible for the MCC

summary tree to have negative branch lengths (i.e., where an ancestral node is younger than its

descendant node). To avoid potential issues caused by this phenomenon in downstream anal-

yses, we assigned a small positive value (0.001 days) as the duration of these “time-traveling”

branches.
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Evaluating Candidate Biogeographic Models

Overview

In this section, we describe our analyses to explore candidate biogeographic models that de-

scribe the geographic progression of the SARS-CoV-2 virus during the early phase of the

COVID-19 pandemic. We begin by defining the space of candidate models that we will evalu-

ate, and then describe the analyses that we performed to assess both the relative fit (by comput-

ing Bayes factors to compare competing models) and the absolute fit (using posterior-predictive

simulation) of these candidate biogeographic models to our reduced SARS-CoV-2 dataset. In

evaluating candidate biogeographic models, we condition on the MCC summary phylogeny

inferred using the reduced dataset described above (see this section: Estimating a Dated Phy-

logeny for the Reduced SARS-CoV-2 Dataset).

Candidate biogeographic models

Specifying priors for biogeographic models.—For a biogeographic history with k discrete areas, the

stochastic process of geographic dispersal over the branches of the tree is fully specified by a

k× k instantaneous-rate matrix, Q, where an element of the matrix, qij, is the instantaneous

rate of change between state i and state j (i.e., the instantaneous rate of dispersal from area i to

area j). Each element, qij, of the instantaneous-rate matrix, Q, is specified as:

qij = rijδij,

where rij is the rate of dispersal between areas i and j, and δij is an indicator variable that takes

one of two states (1 or 0); when δij = 1, a dispersal route from area i to area j exists, when

δij = 0 it does not. The total number of dispersal routes, ∑ δij, for a given biogeographic model

is denoted ∆. We used an asymmetric Q matrix (Edwards et al. 2011) that allows the rate of

dispersal from area i to area j to be different from the rate of dispersal from area j to area i (i.e.,

rij can be different from rji, and δij can also be different from δji). By convention, we rescale

the Q matrix such that the expected number of dispersal events in one time unit is equal to

the parameter µ (Yang 2014). We specified the root frequency ω—the prior probability of the

geographic area at the root—as a stochastic random variable to be estimated from the data.

Prior on the number of dispersal routes..—We specified a Poisson prior on the number of dispersal

routes, ∆, with the rate parameter of the Poisson distribution, λ = (k
2), representing a prior

belief that half of all possible dispersal routes are included in the biogeographic model; this
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results in a relatively flat prior probability that any given dispersal route exists for all values of

k.

Prior on the average dispersal rate..—Recall that the rate matrix, Q, is rescaled so that the average

rate of dispersal between all areas is µ. For a tree of length T (i.e., the sum of the durations of all

branches in the tree), the expected number of dispersal events is µ× T. Therefore, the prior on

µ represents our prior belief about the number of dispersal events over the tree. We specified

an exponential prior on µ with rate parameter θ, and a mean of 1/θ. Rather than assuming

a fixed value for the mean of the exponential prior, we treat it as a random variable to be

estimated from the data. Specifically, we specified a gamma hyperprior on 1/θ; this gamma

hyperprior has shape parameter α = 0.5 and rate parameter β = 0.5 (enforcing the shape and

rate parameters to be equal ensures that the resulting prior on µ is proper). The resulting

prior—known as the K-distribution (Jakeman and Pusey 1978)—is a rather diffuse prior on µ,

as is the resulting prior distribution on the number of dispersal events.

Space of candidate biogeographic models.—We explored a pool of nine candidate biogeographic

models. These models assign interval-specific parameters—for the average rate of viral disper-

sal, µ, and/or relative rates of viral dispersal, Q—to one, two, four, or five pre-specified time

intervals; i.e., 1µ1Q, 2µ1Q, 1µ2Q, 2µ2Q, 4µ1Q, 1µ4Q, 4µ4Q, 5µ5Q, and 5µ5Q∗. For example,

4µ1Q is an interval-specific biogeographic model that allows the average dispersal rate to vary

among the four time intervals (but assumes that the relative dispersal rates are constant among

intervals). Conversely, 1µ4Q assumes interval-specific relative dispersal rates (but assumes a

constant average dispersal rate across the four time intervals). The 4µ4Q model may be viewed

as a composite of former two models, as it allows both the average and relative dispersal rates

to vary independently among the four intervals.

We specified interval boundaries based on external information regarding events within the

study period that might plausibly impact viral dispersal dynamics, including: (A) start of the

Table S.3.5: Priors used in evaluating candidate biogeographic models.

Parameter Description Prior

∆l Number of dispersal routes in interval l Pois(253)

µl Average dispersal rate in interval l Exp(1/λ); λ ∼ Γ(0.5, 0.5)

rij,l Relative dispersal rate from i to j in interval l Γ(1, 1)

ω Root frequencies Dir(1, 1, . . . , 1)
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Spring Festival travel season in China (the highest annual period of domestic travel, Jan. 12); (B)

onset of mitigation measures in Hubei province, China (Jan. 26); (C) onset of international air-

travel bans against China (Feb. 2), and; (D) relaxation of domestic travel restrictions in China

(Feb. 16). Biogeographic models with two intervals include event C, models with four intervals

include events A, C, and D, and the 5µ5Q model includes all four events. The final candidate

model, 5µ5Q∗, includes five arbitrary and uniform (bi-weekly) intervals. (See this section for

additional details on these time intervals.)

Evaluating the models

Assessing relative fit of candidate biogeographic models using Bayes factors.—We evaluated the rela-

tive fit of each candidate biogeographic model to our SARS-CoV-2 dataset using Bayes factors.

This Bayesian model-comparison approach requires that we first estimate the marginal likeli-

hood for each candidate biogeographic model, and then compute the Bayes factor for each pair

of competing models as twice the difference in their log marginal likelihoods (Kass and Raftery

1995). We estimated marginal likelihoods for each candidate biogeographic model using both

thermodynamic-integration (Lartillot and Philippe 2006) and stepping-stone (Xie et al. 2011;

Baele et al. 2012) estimators. These marginal-likelihood estimators tend to be unstable when

inferring the phylogeny and biogeographic history jointly, owing to the diffuse (hyper)priors

on node-age and branch-rate model parameters, as well as the vast tree space (see Baele et al.

2015). Accordingly, we estimated marginal likelihoods for our candidate biogeographic models

by conditioning on the summary phylogeny (the MCC tree) that we inferred using sequence

data alone (see this section).

For each candidate biogeographic model, we first ran eight replicate power-posterior

MCMC simulations in BEAST (Suchard et al. 2018) with the BEAGLE library (version 3.2.0; Ayres

et al. 2019). For constant phylodynamic models, we used BEAST version 1.10.5.; for interval-

specific phylodynamic models, we used our extended version of BEAST (see this section). The

accuracy of marginal-likelihood estimates using power posteriors depends on the number of

powers as well as the number of generations per power (Xie et al. 2011). Therefore, to assess

the reliability of our marginal-likelihood estimates, we used an increasing number of powers

and an increasing number of generation per power (so the specific values are represented as

ranges below) across replicates and checked the variation of estimates among replicates. Specif-

ically, for each replicate power-posterior MCMC simulation, we used 36–64 powers placed at
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evenly-spaced quantiles of a Beta(0.3, 1.0) distribution. For each power, we discarded the initial

65000–160000 generations as burn-in and then sampled every 100 generations over the remain-

ing 210000–480000 generations.

To assess the stability of the marginal-likelihood estimates, we also set up a “golden run”

for the power-posterior analysis under each model with a large number of powers (128, placed

at evenly-spaced quantiles of a Beta(0.3, 1.0) distribution) and a large number of generations

(three million) per power. In the interest of time, here we ran the BEAST analyses under each

power in parallel by specifying a single XML script per power and running them indepen-

dently; for each analysis we ran four replicate MCMCs, each of length one million generations

with the first 25% discarded as burnin. We combined the output of each independent run

to produce the output of the golden run. We then subsampled the golden-run output un-

der each model either by the number of powers or by the number of generations per power

to produce a sequence of shorter runs with either fewer powers (8, 16, 32, 64) while holding

the number of generations per power same as the golden run, or fewer generations per power

(10000, 25000, . . . , 2000000) while holding the number of powers same as the golden run. We ex-

amined the sequence of the estimated marginal likelihood under each candidate biogeographic

model as a function of the number of powers and as a function of the number of generations

per power to check the convergence behavior.

After confirming the marginal-likelihood estimate under each model converged, we com-

bined the output from all the power-posterior analyses (including the initial eight replicates as

well as the golden run) to compute a single marginal likelihood for each model. Details of these

analyses (e.g., proposal weights) are available in the XML scripts included in our GitHub and

Dryad repositories.

Assessing absolute fit of candidate biogeographic models using posterior-predictive simulation.—We

assessed the absolute fit of each candidate biogeographic model to our reduced SARS-CoV-2

dataset using posterior-predictive simulation (Gelman et al. 1996). We first estimated the joint

posterior probability distribution of parameters for the candidate model from the observed

biogeographic dataset, and then we performed simulations using the parameter estimates ran-

domly drawn from the inferred joint posterior distribution. We used the time-slice parsimony

and tipwise-multinomial statistics (as described in this section) to assess the adequacy (i.e.,

absolute fit) of each candidate model.
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Estimating the joint posterior probability distribution for each candidate biogeographic

model.—For each of the candidate biogeographic models, we first inferred the joint posterior

distribution from the observed biogeographic data (i.e., the geographic location of each of the

sequences in our reduced SARS-CoV-2 dataset) by performing four independent MCMC sim-

ulations using BEAST (Suchard et al. 2018) with the BEAGLE library (version 3.2.0; Ayres et al.

2019). Specifically, the analyses under the constant (1µ1Q) biogeographic models were per-

formed using BEAST version 1.10.5, whereas those under the interval-specific biogeographic

models were performed using our modified version of BEAST (see this section). For each repli-

cate MCMC simulation, we ran 10 million generations, sampling every 2000 generations. We

discarded the initial 10% of samples (as burn-in) from each replicate MCMC, and then com-

bined the remaining posterior samples from all the replicates using LogCombiner version 1.10.5.

We then assessed MCMC performance for the resulting composite posterior sample by inspect-

ing the log files using Tracer (Rambaut et al. 2018) version 1.7.1 and the coda package (Plum-

mer et al. 2006) in R (R Core Team 2020). We ensured that the computed ESS values for all

continuous parameters were�100. Details of these analyses are available in the XML scripts

included in our GitHub and Dryad repositories.

Posterior-predictive simulations.—For each candidate biogeographic model, we simulated

m = 2500 predictive datasets by repeatedly sampling at random from the corresponding joint

posterior probability distribution. We then generated posterior-predictive distributions from

each set of m predictive datasets for 20 separate summary statistics. These 20 statistics in-

clude time-slice variants (with 10 time slices) of the two (parsimony and tip-wise multinomial)

summary statistics. We specified 10 (weekly) time slices spanning the early phase of COVID-

19 (where the first slice covers the period from the origin of SARS-CoV-2 to Jan. 5, 2020, and

the remaining nine weekly slices spanning the period between Jan. 6 and Mar. 8). For each

posterior-predictive distribution, we computed the posterior-predictive p value (see this sec-

tion) to assess the adequacy (i.e., absolute fit) of the corresponding biogeographic model.

Results

Our golden-run experiments demonstrate that our marginal-likelihood estimates converged to

stable values (Fig. S.3.13). Bayes-factor comparisons of all candidate models decisively support

(i.e., 2 ln BF � 10; Table S.3.6) the 4-interval (4µ4Q) biogeographic model. The preference for

this model is corroborated by the results of our posterior-predictive simulations: 4µ4Q was
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inferred to provide an adequate absolute fit to our reduced SARS-CoV-2 dataset for every sum-

mary statistic, whereas all less complex models (i.e., with fewer interval-specific parameters for

the average dispersal rates, µ, and/or the relative dispersal rates Q (i.e., were all inferred to

be inadequate by at least two of the 20 time-slice summary statistics (Fig. S.3.14). Accordingly,

we use the 4µ4Q model for our joint phylodynamic analyses of the entire SARS-CoV-2 dataset

described below (see this section).

The relative fit of competing biogeographic models to the reduced SARS-CoV-2 dataset
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Figure S.3.13: Convergence of marginal-likelihood estimates of the candidate biogeographic models.
Convergence of the marginal-likelihood estimate under each candidate biogeographic model as a func-
tion of the number of powers (left panel) and the number of generations per power (right panel). To
assess the convergence of the marginal-likelihood estimate, we set up a ‘golden run’ under each model
where a large number of powers (128, placed at evenly-spaced quantiles of a Beta(0.3, 1.0) distribution)
and a large number of generations (three million) per power are used. We then subsampled each golden
run either by the number of powers or by the number of generations per power to produce a sequence of
shorter runs with either fewer powers (8, 16, 32, 64; while holding the number of generations per power
same as the golden run) or fewer generations (10000, 25000, 50000, . . . , 2000000; while holding the num-
ber of powers same as the golden run) per power. Each colored line shows the sequence of the estimated
log marginal likelihood under a given model plateauing as the number of powers increases (left) or the
number of generations per power increases (right). The settings (including number of powers and the
number of generations per power) of the golden run appear to be sufficient to obtain stable marginal-
likelihood estimates. The 4-interval (4µ4Q) model appears to be consistently preferred over all the other
models across all settings.
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Table S.3.6: Marginal-likelihood estimates of (and Bayes factor comparisons among) the candidate
biogeographic models. Column 1 lists the candidate biogeographic models. Column 2 lists the compos-
ite marginal-likelihood estimates (computed by combining the samples from replicate power-posterior
MCMC simulations). The last column lists the inferred support (2 ln BF) of the alternative interval-
specific models compared to the constant model (1µ1Q). The preferred biogeographic model (4µ4Q) is
indicated in bold text.

model ln marginal likelihood
2 ln BF compared

to 1µ1Q

1µ1Q −2159.57 —

2µ1Q −2162.03 −4.92

1µ2Q −2152.87 13.40

2µ2Q −2155.77 7.60

4µ1Q −2141.03 37.08

1µ4Q −2152.01 15.13

4µ4Q −2136.58 45.99

5µ5Q −2144.60 29.94

5µ5Q∗ −2149.60 19.94
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Absolute fit of competing biogeographic models to the reduced SARS-CoV-2 dataset
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Figure S.3.14: Posterior-predictive distributions under the candidate biogeographic models. Each
column of panels corresponds to one of the two types of summary statistics (parsimony and tip-wise
multinomial); each row of panels corresponds to one of the 10 (weekly) time slices. Each panel includes
a set of nine violin plots (one for each of the candidate biogeographic models listed in Table S.3.6). Each
violin plot depicts the posterior-predictive distribution of the 2500 replicate simulations for the corre-
sponding summary statistic under the corresponding candidate model. Each dot represents the value
of the corresponding summary statistic for a single replicate posterior-predictive simulations, where the
value is the discrepancy between the summary statistic for the observed dataset and the single simulated
dataset. The horizontal dashed line indicates the value of the summary statistic under identical fit of the
simulated and observed datasets. The violin plots in red indicate that the corresponding model pro-
vides an inadequate fit to the SARS-CoV-2 dataset (i.e., it is incapable of generating geographic datasets
that are similar to the observed data) under the corresponding time-slice summary statistic, as its 95%
posterior-predictive interval does not overlap with the dashed line.
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Joint Analyses of the Entire SARS-CoV-2 Dataset

Overview

In this section, we describe the analyses we performed to infer the joint posterior probability

distribution of the phylodynamic model—comprising all parameters of the component relaxed-

clock and biogeographic models—from the entire SARS-CoV-2 dataset (which includes the vi-

ral genome sequences, and the geographic areas and dates of viral sampling). For these anal-

yses, we specified a relaxed-clock model that was similar to that used to estimate the dated

phylogeny for the reduced SARS-CoV-2 dataset (see this section), and specified the biogeo-

graphic model that was selected based on analyses of the reduced dataset (this section). Below,

we provide details on: (1) the specified phylodynamic model; (2) the MCMC simulations we

performed to estimate the joint posterior under this model, and; (3) the posterior-predictive

simulations we performed to assess the absolute fit of the biogeographic model to the entire

SARS-CoV-2 dataset.

Model specification

Our joint analyses of the entire SARS-CoV-2 dataset are based on a phylodynamic model that

includes (1) a relaxed-clock model, and (2) a biogeographic model. The relaxed-clock model

that we specified for our joint analyses of the entire SARS-CoV-2 sequence dataset is identical

to that specified previously in our analyses of the reduced SARS-CoV-2 sequence dataset (see

this section) with minor changes to the priors to accommodate differences in viral sampling

(see Table S.3.7). The biogeographic model that we specified for our joint analyses of the entire

SARS-CoV-2 geographic dataset is identical to the biogeographic model that we selected previ-

ously based on analyses of the reduced SARS-CoV-2 dataset (see this section); specifically, the

4-interval (4µ4Q) model.

Data analysis

Estimating the joint posterior of phylodynamic model parameters using MCMC simulation.—We per-

formed 20–30 independent MCMC simulations to approximate the joint posterior distribu-

tion of the phylodynamic-model parameters—including the phylogeny, divergence times, and

biogeographic history—from the entire SARS-CoV-2 dataset using our modified version of

BEAST (see this section) with the BEAGLE library (compiled from the ‘hmc-clock‘ branch, commit

‘dd36bf5‘; Ayres et al. 2019) to accelerate computation. We ran each replicate MCMC simulation
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Table S.3.7: Priors used to jointly infer SARS-CoV-2 phylogeny and biogeographic history for the
entire dataset.

Parameter Description Prior

κ1 Ratio of the A→ G rate to the transversion rate Lognormal(µ = 1.0, σ = 0.8)*

κ2 Ratio of the C→ T rate to the transversion rate Lognormal(µ = 1.0, σ = 0.8)

π Nucleotide stationary frequencies Dir(1, 1, 1, 1)

m Partition-specific rate multipliers Dir(1, 1, 1, 1, 1, 1)

α Shape and scale parameter of the Γ4 distribution Lognormal(µ = −2.1, σ = 0.5874)

E[r] Mean of the UCLN Lognormal(µ = −12.5, σ = 0.5)

SD(r) Standard deviation of the UCLN Exp(λ = 1/(4.0e−6))

NT Effective number of infected individuals at sampling time, T Lognormal(µ = 7.0, σ = 1.0)

r Exponential growth rate of the coalescent model Laplace(0.07, 0.01)

∆l Number of dispersal routes in interval l Pois(253)

µl Average dispersal rate in interval l Exp(1/λ); λ ∼ Γ(0.5, 0.5)

rij,l Relative dispersal rate from i to j in interval l Γ(1, 1)

ω Root frequencies Dir(1, 1, . . . , 1)

*µ and σ in this table are the mean and standard deviation of the normal distribution.

for 10–20 million generations, sampling continuous parameters every 1000 generations and the

dated phylogeny every 10,000 generations. When a phylogeny was sampled, we performed

stochastic mapping using the endpoint-conditioned uniformization algorithm (Rodrigue et al.

2007; Fearnhead and Sherlock 2006; Hobolth and Stone 2009) and our modified algorithm to

perform stochastic mapping under interval-specific models (see this section) to simulate disper-

sal histories over the sampled tree. Details of these analyses are available in the XML scripts

included in our GitHub and Dryad repositories.

After discarding the first 10–75% of samples from each replicate MCMC simulation (as

burn-in), we combined the remaining posterior samples of trees from all replicates and then

down-sampled every 50,000 generations using LogCombiner version 1.10.5. Following initial

inspection of the log files using Tracer (Rambaut et al. 2018) version 1.7.1, we further eval-

uated MCMC performance using the coda package (Plummer et al. 2006) in R (R Core Team

2020). We assessed convergence of replicate MCMC simulations by calculating the ESS for

each continuous parameter for the combined posterior samples; ensuring that values for the

substitution-model parameters were all �4000, those for the geographic model parameters

were all �200, and that the ESS values for all parameters of the branch-rate and branching-
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process models were all�100.

(Re)assessing adequacy of the biogeographic model using posterior-predictive simulation.—We previ-

ously established that the preferred biogeographic model provides an adequate description of

the process of geographic dispersal during the early phase of the COVID-19 pandemic (see

this section). However, those analyses were based on the reduced (rather than entire) SARS-

CoV-2 dataset, and also conditioned on a single dated phylogeny—the MCC tree inferred in

this section—rather than integrating over the posterior probability distribution of dated phylo-

genies. Accordingly, we performed additional posterior-predictive simulation to confirm that

the preferred biogeographic model provides an adequate fit to the entire SARS-CoV-2 dataset

under an inference scenario where geographic history is jointly integrated over the posterior

distribution of dated phylogenies.

We performed a series of posterior-predictive simulations to assess the adequacy of the pre-

ferred biogeographic model (4µ4Q). As a point of reference, we also assessed the absolute fit of

the constant (1µ1Q) biogeographic model (c.f., Table S.3.6). For both biogeographic models, we

simulated m = 2500 posterior-predictive datasets by repeatedly sampling at random from the

corresponding joint posterior distribution of phylodynamic model parameters inferred from

the entire SARS-CoV-2 dataset. We then generated posterior-predictive distributions from each

set of m predictive datasets under 20 separate statistics include the two (parsimony and tip-

wise multinomial) summary statistics, each computed over 10 time slices. We specified 10

(weekly) time slices spanning the early phase of COVID-19 (where the time first slice covers

the period from the origin of SARS-CoV-2 to Jan. 5, 2020, and the remaining nine weekly time

slices spanning the period between Jan. 6 and Mar. 8). For each posterior-predictive distribu-

tion, we computed the posterior-predictive p value (see this section) to assess the adequacy

(i.e., absolute fit) of the corresponding biogeographic model.

Quantifying differences between prior and posterior distributions.—The discrete-geographic phylo-

dynamic model has many parameters, which raises questions about our ability to infer the

parameters from a single set of biogeographic observations. If there is insufficient informa-

tion in the biogeographic data to estimate the parameters, we expect the posterior distribution

of each model parameter to resemble its prior distribution. To quantify the degree to which

the posterior distribution of the interval-specific model is updated by the data, we computed

Kullback–Leibler (KL) divergence between the marginal posterior and the prior distributions
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of each pairwise relative dispersal rate under each of the constant and preferred models. We

represent the KL divergence as DKL(P ||Q), where P indicates the posterior distribution and Q

indicates the prior distribution.

We also used a symmetric version of the KL divergence—DKL(P ||Q) + DKL(Q || P)—to

quantify the difference in the inferred posterior distributions of the pairwise relative dispersal

rates between candidate biogeographic models. In this case, P represents the posterior dis-

tribution of one model, and Q represents the posterior distribution of the other model. We

focused on three pairs of models (4µ4Q versus 1µ1Q, 4µ4Q versus 4µ1Q, and 1µ4Q versus

1µ1Q) with different relative-rate intervals to assess the impact of allowing relative rates of

dispersal to vary across intervals; we also examined such difference using two pairs of models

(4µ1Q versus 1µ1Q, and 4µ4Q versus 1µ4Q) with identical relative-rate intervals to assess the

impact of allowing average dispersal rate to vary across intervals on the relative-rate estimates.

As we used BSSVS in our inferences, each pairwise relative dispersal rate, qij, is drawn

from a mixture of discrete (when δij = 0) and continuous (when δij = 1) distributions. The

probability density function is:

P(qij) = P(δij = 0) + P(δij = 1)P(rij). (S.3.10)

The KL divergence of distribution P from distribution Q for parameter qij is then computed as:

D
qij
KL(P ||Q) =

∫
P(qij) log

P(qij)

Q(qij)
dqij

= P(δij = 0) log
P(δij = 0)
Q(δij = 0)

+
∫

P(δij = 1)P(rij) log
P(δij = 1)P(rij)

Q(δij = 1)Q(rij)
drij

= P(δij = 0) log
P(δij = 0)
Q(δij = 0)

+ P(δij = 1) log
P(δij = 1)
Q(δij = 1)

+ P(δij = 1)
∫

P(rij) log
P(rij)

Q(rij)
drij. (S.3.11)

We computed each component of (S.3.11) from the sampled distribution. The last component is

the KL divergence between two continuous distributions; we computed it using a conventional

approach based on the empirical cumulative distribution function (Pérez-Cruz 2008).

Parameter summary.—We summarized the number of viral dispersal events between a given

pair of geographic areas by counting the number of dispersal events from the source region

(e.g., China) to the destination region (e.g., North America) that occurred on that day for a given
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simulated history, and then looped over all of the histories to obtain the posterior distribution of

the number of pairwise dispersal events. Mean and 95% credible intervals for the daily number

of viral dispersal events were then computed from the corresponding posterior distribution.

Results

Posterior-predictive simulations confirm that the preferred interval-specific biogeographic

model (4µ4Q) provides an adequate fit to the entire SARS-CoV-2 dataset, whereas the con-

stant biogeographic model is inferred to be inadequate (Fig. S.3.15). The results of these joint

analyses of the entire SARS-CoV-2 dataset are presented in the main text (Figs. 3.6–3.8) and

Figs. S.3.16–S.3.18.

The computed KL divergence between the posterior and prior distributions shows that, un-

der the interval-specific (4µ4Q) model, the most recent interval—the interval with much longer

total branch length and more dispersal events than the previous three intervals—appears to

contain the most information in inferring the relative dispersal rates, and be comparable to the

counterpart under the constant model. The average amount of information gain in the first

three intervals appear to be much more limited than the last interval, with noticeable excep-

tions (e.g., Hubei to East China in interval 2, Japan and Korea to West USA and Canada in

interval 3) which also show less information gain under the constant model (Fig. S.3.19).

The inferred posterior distributions of the relative rates of dispersal appear to be much more

similar between the pair of comparing models who share the relative-rate intervals (Fig. S.3.23)

than between the pair of models with different relative-rate intervals (Figs. S.3.20–S.3.22), in-

dicating that the observed differences in the relative-rate estimates between preferred interval-

specific (4µ4Q) and the constant (1µ1Q) models result from allowing the relative dispersal

rates, instead of the average dispersal rate, to vary across intervals.
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Absolute fit of the constant (1µ1Q) and preferred (4µ4Q) models to the SARS-CoV-2 dataset
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Figure S.3.15: Posterior-predictive distributions of biogeographic models under joint inference of
the entire SARS-CoV-2 dataset. Each column of panels corresponds to one of the two types of sum-
mary statistics (parsimony and tip-wise multinomial); each row of panels corresponds to one of the 10
(weekly) time slices. Each panel includes a two violin plots for the preferred (4µ4Q, right) and con-
stant (1µ1Q, left) biogeographic models. Each violin plot depicts the posterior-predictive distribution of
the 2500 replicate simulations for the corresponding summary statistic under the corresponding candi-
date model. Each dot represents the value of the corresponding summary statistic for a single replicate
posterior-predictive simulations, where the value is the discrepancy between the summary statistic for
the observed dataset and the single simulated dataset. The horizontal dashed line indicates the value
of the summary statistic under identical fit of the simulated and observed datasets. The violin plots in
red indicate that the corresponding model provides an inadequate fit to the SARS-CoV-2 dataset (i.e.,
it is incapable of generating geographic datasets that are similar to the observed data) under the corre-
sponding time-slice summary statistic, as its 95% posterior-predictive interval does not overlap with the
dashed line.
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Inferred support for dispersal routes under the constant (1µ1Q) and preferred (4µ4Q) models
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Figure S.3.16: Variation in viral dispersal routes during the early phase of the COVID-19 pandemic.
Arrows indicate routes inferred to play a significant role in viral dispersal during the early phase of
the COVID-19 pandemic; colors indicate the level of evidential support for each dispersal route (as 2ln
Bayes factors). The number, duration, and significance of dispersal routes inferred under the constant
(1µ1Q) model differ strongly from those inferred under the preferred (4µ4Q) interval-specific model. By
assumption, the constant (1µ1Q) model implies an invariant set of dispersal routes. By contrast, the pre-
ferred (4µ4Q) interval-specific model reveals that the number and intensity of dispersal routes varied
over the four intervals. The first interval (Nov. 17–Jan. 12) is dominated by dispersal from Hubei to other
areas in China, and the second interval (Jan. 12–Feb. 2) exhibits more widespread international dispersal
originating from China. The third interval (Feb. 2–Feb. 16)—immediately following the onset of interna-
tional air-travel bans with China—exhibits a sustained reduction in the number of dispersal routes. Note
that the constant model infers nine spurious dispersal routes (not detected under the interval-specific
model). Conversely, the preferred interval-specific model reveals ten significant dispersal routes (not
detected under the constant model) that imply a more significant role for Hubei as a source of viral
spread in the first and second intervals, and also reveals additional dispersal routes emanating from
China (to the Middle East in the third interval and to Spain/Portugal in the fourth interval).
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Figure S.3.17: Variation in viral dispersal routes during the early phase of the COVID-19 pandemic.
This is simply a heatmap representation of Fig. S.3.16 that may improve the clarity of the evidential sup-
port for dispersal routes among all 23 study areas during the rarely phase of the COVID-19 pandemic.
Each panel is a 23-by-23 matrix, where row i indicates the ‘source’ area and each j column indicates the
‘destination’ area, such that each δij element of the matrix indicates the evidential support (as 2ln BF, see
inset) for the dispersal route from area i to area j. The boxes within each matrix indicate groups of areas
within a region (e.g., the four geographic regions of mainland China).
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Inferred pairwise dispersal parameters under the preferred (4µ4Q) interval-specific model
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Figure S.3.18: Summary of dispersal parameters inferred under the preferred interval-specific (4µ4Q)
model. The four time intervals exhibit distinct dispersal dynamics. (A) Absolute viral dispersal rate
between each pair of discrete geographic areas. (B) Relative viral dispersal rates (i.e., the absolute rates
in panel A divided by the inferred global dispersal rate for the corresponding interval) between each
pair of discrete geographic areas. (C) The evidential support (Bayes factors, inset legend, panel C, right)
that a given dispersal route played a significant role in the spread of the virus. (D) Number of viral
dispersal events between each pair of discrete geographic areas. Boxes in each panel indicate groups
of areas (inset legend, left). The first interval is dominated by dispersal from Hubei to other areas in
China, the second interval by more widespread dispersal within Asia and by dispersal from China to
North America, culminating in cosmopolitan dispersal in the fourth interval. Note that interval three—
immediately following the onset of international air-travel bans with China—exhibits a large reduction
in the number of viral dispersal routes, including disruption of the dispersal routes from China to North
America.
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Information gain under the constant (1µ1Q) and preferred (4µ4Q) models
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Figure S.3.19: The information gain on the pairwise relative dispersal rates under the constant (1µ1Q)
and preferred (4µ4Q) models. We use Kullback–Leibler (KL) divergence to measure the information
gain in moving from the prior to posterior distribution of the pairwise relative dispersal rates. Each
panel is a 23-by-23 matrix, where row i indicates the ‘source’ area and column j indicates the ‘destination’
area, such that each element of the matrix indicates the KL divergence (colored according to the inset
legend bar) between the inferred posterior distribution and the specified prior distribution (which is
the same for all pairs) for the relative rate of dispersal from area i to area j. The top row shows the
information gain under the constant model, while the remaining two rows show such measure under
the preferred interval-specific (4µ4Q) model. Under the interval-specific (4µ4Q) model, the last interval
appears to contain the most information in inferring the relative dispersal rates, and be comparable to
the counterpart under the constant model. The average amount of information gain in the first three
intervals appear to be much more limited than the last interval, with noticeable exceptions (e.g., Hubei
to East China in interval 2, Japan and Korea to West USA and Canada in interval 3) which also show
less information gain under the constant model.
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Difference between inferred pairwise dispersal rates under biogeographic models
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Figure S.3.20: Difference between inferred pairwise relative dispersal rates under models with dif-
ferent relative-rate intervals. We use symmetric KL divergence to measure the difference in the inferred
posterior distribution of the pairwise relative dispersal rates between the preferred interval-specific
(4µ4Q) and constant (1µ1Q) models. Each panel is a 23-by-23 matrix, where row i indicates the ‘source’
area and column j indicates the ‘destination’ area, such that each element of the matrix indicates the KL
divergence (colored according to the inset legend bar; note that the heatmap color scale is shared among
Figs. S.3.20–S.3.23) between the inferred posterior distribution of the relative rate of dispersal from area
i to area j in the corresponding interval under the interval-specific model and the counterpart under the
constant model.
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Figure S.3.21: Difference between inferred pairwise relative dispersal rates under models with dif-
ferent relative-rate intervals. We use symmetric KL divergence to measure the difference in the inferred
posterior distribution of the pairwise relative dispersal rates between two interval-specific (4µ4Q and
4µ1Q) models. Each panel is a 23-by-23 matrix, where row i indicates the ‘source’ area and column j in-
dicates the ‘destination’ area, such that each element of the matrix indicates the KL divergence (colored
according to the inset legend bar; note that the heatmap color scale is shared among Figs. S.3.20–S.3.23)
between the inferred posterior distribution of the relative rate of dispersal from area i to area j in the
corresponding interval under the 4µ4Q model and the counterpart under the 4µ1Q model.
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Figure S.3.22: Difference between inferred pairwise relative dispersal rates under models with dif-
ferent relative-rate intervals. We use symmetric KL divergence to measure the difference in the inferred
posterior distribution of the pairwise relative dispersal rates between an interval-specific (1µ4Q) and the
constant (1µ1Q) models. Each panel is a 23-by-23 matrix, where row i indicates the ‘source’ area and
column j indicates the ‘destination’ area, such that each element of the matrix indicates the KL diver-
gence (colored according to the inset legend bar; note that the heatmap color scale is shared among
Figs. S.3.20–S.3.23) between the inferred posterior distribution of the relative rate of dispersal from area
i to area j in the corresponding interval under the interval-specific model and the counterpart under the
constant model.
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Figure S.3.23: Difference between inferred pairwise relative dispersal rates under models with the
same relative-rate intervals. We use symmetric KL divergence to measure the difference in the inferred
posterior distribution of the pairwise relative dispersal rates between the models with constant relative
dispersal rates (4µ1Q and 1µ1Q; top row), and between the models with interval-specific relative dis-
persal rates (4µ4Q and 1µ4Q; bottom two rows). Each panel is a 23-by-23 matrix, where row i indicates
the ‘source’ area and column j indicates the ‘destination’ area, such that each element of the matrix in-
dicates the KL divergence (colored according to the inset legend bar; note that the heatmap color scale
is shared among Figs. S.3.20–S.3.23) between the inferred posterior distribution of the relative rate of
dispersal from area i to area j under the comparing models. The posterior distributions appear to be
much more similar when the pair of comparing models share the relative-rate intervals than the pairs
with different relative-rate intervals (see Figs. S.3.20–S.3.22).
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Estimating Daily Global Viral Dispersal Rates

Overview

In this section, we describe our analyses to explore the correlation between daily global air-

travel volume and global SARS-CoV-2 dispersal rates during the early phase of the COVID-19

pandemic. Because we were able to obtain data on the daily volume of global air travel during

this period, we performed an analysis of the entire SARS-CoV-2 dataset under a more granular

phylodynamic model that allows the average dispersal rate to vary from day to day. We then

performed standard statistical tests to assess the degree of correlation between the inferred

daily global viral dispersal rates and daily global air-travel volume.

Model specification

Our estimates of daily variation in global viral dispersal rates are based on the phylodynamic

model (4µ4Q) that we previously used to infer the joint posterior of SARS-CoV-2 phylogeny

and biogeographic history (see this section), except that we further discretized the number of

time intervals in which the global average dispersal rate, µ, was free to vary. Specifically, rather

than allowing global average dispersal rate to vary between four time intervals, we specified

an independent µ for each of the 70 days between Dec. 30, 2019 and Mar. 8, 2020 (with an

additional independent µ for the time spanning the origin of SARS-CoV-2 to Dec. 29). The

prior on each µ is specified according to the posterior estimates inferred in this section. We

computed the posterior mean of the global viral dispersal rate across the entire history inferred

from the joint analyses and used it as the prior mean, and we specified standard deviation of

the prior distribution so that the 95% prior interval spans three orders of magnitude around the

mean. Details of the priors are described in Table S.3.8. Our inferences of geographic history

under this model were averaged over the marginal posterior probability distribution of dated

phylogenies inferred in this section. Details of these analyses are available in the XML scripts

Table S.3.8: Priors used to infer the daily global viral dispersal rates for the entire dataset.

Parameter Description Prior

∆l Number of dispersal routes in interval l Pois(253)

µp Global dispersal rate in day p Lognormal(µ = −4.76, σ = 1.7622)*

rij,l Relative dispersal rate from i to j in interval l Γ(1, 1)

ω Root frequencies Dir(1, 1, . . . , 1)

*µ and σ in this table are the mean and standard deviation of the normal distribution.
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included in our GitHub and Dryad repositories.

Data analysis

Parameter estimation.—We performed 15 independent MCMC simulations to approximate the

joint posterior distribution of the biogeographic-model parameters from the entire SARS-CoV-

2 dataset using our modified version of BEAST (see this section) and BEAGLE version 3.2.0

(Ayres et al. 2019). We ran each replicate MCMC simulation for 5 million generations, sam-

pling continuous parameters every 2000 generations and the dated phylogeny every 10000

generations. When a phylogeny was sampled, we performed stochastic mapping using the

endpoint-conditioned uniformization algorithm (Rodrigue et al. 2007; Fearnhead and Sherlock

2006; Hobolth and Stone 2009) and our modified algorithm to perform stochastic mapping un-

der interval-specific models (see this section) to simulate dispersal histories over the sampled

tree. Details of these analyses are available in the XML scripts included in our GitHub and

Dryad repositories.

For each replicate MCMC simulation, we discarded the first one million generations

(as burn-in), and then combined the remaining posterior samples from all replicates using

LogCombiner version 1.10.5. Following initial inspection of the log files using Tracer (Ram-

baut et al. 2018) version 1.7.1, we further evaluated MCMC performance using the coda pack-

age (Plummer et al. 2006) in R (R Core Team 2020). We assessed convergence of replicate MCMC

simulations by calculating the ESS for each continuous parameter for the combined posterior

samples, ensuring that values for all parameters were�700.

Correlation test.—We tested for correlation between the volume of daily global air travel,

V = {vi} (where i = {1, 2, . . . , m} and m represents the total number of days included in

our dataset), and the mean estimate of daily global SARS-CoV-2 dispersal rate, µ = {µi}. To

remove potential trend or seasonality in the time series of V and µ, we first transformed each of

the two time series by taking the difference between each value of the time series and the value

a week prior to it. Specifically, we computed v′ as {vj − vj−7} (where j = {8, . . . , m}) and µ′ as

{µj − µj−7}. We then generated various truncated dataset by including values from each of the

two differenced time series (v′ and µ′) with different start dates (ranging from Jan. 6 to Feb. 17,

2020; i.e., j ranges from 8 to 49) to the same end date (the end of our study period, Mar. 8, 2020;

j = 70). Finally, we assessed the correlation for each truncated dataset by computing Pearson’s

r and the corresponding p-value to determine the time that the correlation first established.
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Results

The daily global dispersal rate estimates are presented in the main text (Fig. 3.6, light blue).

Pearson’s r and the corresponding p-value between the volume of daily global air travel and

the estimated mean rate of daily global SARS-CoV-2 dispersal are presented in Fig. S.3.24. The

correlation appears to increase when we focus on the time series of February (i.e., discarding

the January values), possibly reflecting that the geographic distribution of SARS-CoV-2 was

still confined to specific regions (e.g., China and some other Asian countries) prior to this point.

The p-value increases quickly when we fewer than 25 time points are included in the correla-

tion test, presumably reflecting a decrease in power as the number of data points decreases.

Therefore, we report Pearson’s r and the corresponding p value between the two time series

over the interval from Jan. 31 (when the virus first achieved a cosmopolitan distribution; WHO

2020) to the end of our study period (Mar. 8, 2020) in the main text.
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Figure S.3.24: Correlation between daily global air travel volume and the estimated mean daily global
SARS-CoV-2 dispersal rate. We generated time-series datasets by including values with different start
dates (along the x axis) to the same end date (the end of our study period, Mar. 8, 2020). We then
computed Pearson’s r and the corresponding p value for each dataset, and plotted them as a function
of the corresponding start date. The virus first achieved a cosmopolitan distribution on Jan. 31 (dashed
line; WHO 2020).
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