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Background: Identifying COPD patients at high risk for mortality or healthcare utilization

remains a challenge. A robust system for identifying high-risk COPD patients using

Electronic Health Record (EHR) data would empower targeting interventions aimed at

ensuring guideline compliance and multimorbidity management. The purpose of this

study was to empirically derive, validate, and characterize subgroups of COPD patients

based on routinely collected clinical data widely available within the EHR.

Methods: Cluster analysis was used in 5,006 patients with COPD at Intermountain to

identify clusters based on a large collection of clinical variables. Recursive Partitioning

(RP) was then used to determine a preferred tree that assigned patients to clusters

based on a parsimonious variable subset. The mortality, COPD exacerbations, and

comorbidity profile of the identified groups were examined. The findings were validated

in an independent Intermountain cohort and in external cohorts from the United States

Veterans Affairs (VA) and University of Chicago Medicine systems.

Measurements and Main Results: The RP algorithm identified five LIVE Scores

based on laboratory values: albumin, creatinine, chloride, potassium, and hemoglobin.

The groups were characterized by increasing risk of mortality. The lowest risk, LIVE

Score 5 had 8% 4-year mortality vs. 56% in the highest risk LIVE Score 1 (p <

0.001). These findings were validated in the VA cohort (n = 83,134), an expanded

Intermountain cohort (n = 48,871) and in the University of Chicago system (n = 3,236).

Higher mortality groups also had higher COPD exacerbation rates and comorbidity rates.
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Conclusions: In large clinical datasets across different organizations, the LIVE Score

utilizes existing laboratory data for COPD patients, and may be used to stratify risk for

mortality and COPD exacerbations.

Keywords: COPD, cluster analysis, comorbidity, risk stratification, informatics, LIVE Score

INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is a disease of
increasing prevalence and mortality worldwide (1, 2). While
pulmonary function tests (PFT) are the cornerstone of diagnosis
and treatment of COPD, functional impairment, disability, and
overall mortality have been inadequately predicted by the forced
expiratory volume in 1 second (FEV1) alone (3–8). COPD
exacerbation frequency and mortality in COPD patients are
driven not only by the severity of COPD, but also by the
type, number, and severity of associated comorbidities (5, 9–
19). Several risk stratification tools have been developed, which
predict mortality in COPD patients (20–22). However, none of
the existing risk stratification tools allow for identification of
high-risk COPD patients on a system level.

Cluster analysis techniques have been used in empirically

identifying groups of patients diagnosed under a common disease

umbrella in other fields. For example, cluster analysis of patients

with severe asthma identified five subgroups of patients with

asthma who have unique characteristics and profiles (23). More

recently, cluster analysis has been used to identify subgroups of
patients with diabetes (24). While prior risk scores in COPD have

used PFT and dyspnea scores to identify subgroups of COPD
patients (20), those data are not routinely available to be queried
inmost current Electronic Health Records (EHRs), and thus have
limited utility when designing interventions to improve COPD
care within a healthcare system.

While PFT data and dyspnea scores are not routinely available
to be queried in an EHR, many other clinically collected
variables are accessible. For example, in cardiology, increased
red cell distribution width (RDW) is associated with increased
cardiovascular mortality (25–29). Although RDW is a marker for
disease, rather than a primary driver, the reliance on laboratory
values to derive a risk score allows for the identification of
high-risk patients in real time during a healthcare encounter
(27, 30). This ability to identify patients at risk for cardiovascular
mortality in real time, has facilitated the development of focused
interventions with increased resources and coordination of care
for high-risk patients. A similar approach has been shown
to be effective in improving outcomes for floor patients at
risk of developing sepsis (31). Thus, risk scores have been
most useful in improving care for patients when individual
patient risk can be assessed automatically and an alert surfaced
to clinicians for additional care only in those with high-
risk.

Despite the advances in risk scores, finding a COPD related
risk stratification score that allows system wide identification of
patients who may benefit from targeted interventions remains

elusive. Given the large number of variables routinely collected as
part of clinical care, we wanted to determine whether clustering
COPD patients would identify different subgroups that may have
differential mortality, exacerbation frequency, or comorbidity
rates.

METHODS

The Institutional Review Boards at Intermountain Healthcare,
the University of California San Francisco, the San Francisco
Veterans Affairs Medical Center Research and Development
Committee, and the University of Chicago Medicine approved
this retrospective data-only study and waived individual
informed consent.

Dataset
All adult patients (age 18 and older) who had a healthcare
encounter at Intermountain and a COPD diagnosis: ICD9 code
(491.2, 492) in any sequence or a Diagnosis Related Group
(DRG) (190–192) at any inpatient, Emergency Department,
or ambulatory face-to-face encounter in 2013 or prior were
identified (Supplementary Figure 1 and Supplementary
Methods).

Outcome Variables
Mortality among derivation patients was assessed based on the
known date of death in the Intermountain EHR for in-hospital
deaths and was supplemented by Utah death certificate data and
Social Security death master file records. Exacerbations requiring
hospitalization and comorbidity rates were collected from the
EHR.

Clinical Predictor Variables
A complete list of variables is listed in Supplementary Table 1.
We included a large number of variables in the dataset including
PFTs. Due to the frequent cardiovascular comorbidities in
COPD patients, and the likely contribution of fluid status in
respiratory symptoms, we included a number of variables from
Transthoracic Echocardiograms (TTE). We attempted to add
6-min walk distance and dyspnea scores, but these were not
available in an encoded format in our data system.

Statistical Analysis
Cluster Analysis
Hierarchical cluster analysis of the clinical variables was carried
out in the R statistical program. Cluster analysis (23, 32) was
run with the “cluster” package, using the “daisy” function,
which calculates the Gower’s distance for mixed variables (i.e.,
continuous and nominal variables). All of the vast arrays
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of clinical variables were included in the cluster analysis to
determine the optimal clusters for a derivation subset of
Intermountain patients with available data for most of the
variables. Some variables were only available only for a minority
of patients but cluster analysis is robust to missing data and can
proceed with these variables included. We visually analyzed the
cluster tree (dendrogram) and evaluated 4, 5, 6, 7, 8, and 9 cluster
solutions using the “cutree” function in R (33). A seven-cluster
solution was identified based on variable break points, cluster
sizes, and the initial goal of identifying four to eight clusters
(Supplementary Figure 2). This method provided segmentation
of the population using clinically similar groupings that were
derived independently of study outcome variables.

Recursive Partitioning
After the cluster analysis, we used Recursive Partitioning (RP)
(21, 34, 35) to identify a parsimonious subset of variables that
best predict the cluster assignments and are more likely to be
available for use in other populations. RP is a nonparametric
regression approach for modeling relationships among variables,
which allows for evaluation of a large number of mixed predictor
variables (i.e., continuous, ordinal, and categorical) with missing
values, as is often the case with EHR clinical measures. We
categorized continuous laboratory variables based on laboratory
determined clinical cutoffs (e.g., low, normal, high), because it
created more stable decision trees, then ran RP in the R statistical
platform using the “rpart” package.

We attempted alternative statistical methods, such as stepwise
regression analysis techniques, however due to the frequency of
missing data in the dataset too many cases were eliminated in
the modeling process. For example, given the large number of
variables in the data set, almost no cases had all data elements
(pulmonary function test data, medication, labs, healthcare
utilization, echocardiograms, etc.).

We evaluated the concordance between our clusters and the
RP tree assigned groups for all patients with complete data that
allowed RP assignment. Then, we evaluated the concordance
between clusters and RP assigned groups for patients with
missing data where we imputed normal values. The RP assigned
groups were named the LIVE Scores for those patients.

Validation
We validated the LIVE Score and our findings internally within
the Intermountain Healthcare system in an expanded cohort of
48,871 patients. External validation was done at two independent
sites: 83,134 patients in the United States Veterans Affairs
(VA) nationwide healthcare system EHR data (VA Informatics
and Computing Infrastructure, VINCI) (36) and 3,236 the
University of Chicago Medicine system (Supplementary Table 2
and Supplementary Figures 4–6). To validate the COPD clusters,
we used the RP tree derived above to empirically assign LIVE
Scores based on the limited number of variables needed for the
tree. This approach allowed us to validate the tree in external
sites based on amuch smaller number of variables. Kaplan–Meier
survival curves were calculated to evaluate time to event results
for mortality and exacerbation outcomes.

RESULTS

Subject Demographics
From the initial 11,048 patients identified with a COPD diagnosis
in the Intermountain Healthcare system on or before 2013,
the presence of a transthoracic echocardiogram (TTE), not
its findings, was the initial most important variable for risk
stratification. This observation suggested selection bias and
pattern of care: patients who were more likely to come to the
hospital often were more likely to get a TTE. Thus, we decided
to focus on the higher risk patients (those with a prior TTE) for
our cluster analysis.

Cluster Analysis
Cluster analysis of the 5,006 patients with a COPD diagnosis
and a TTE by 2013 was performed using all clinical variables.
A seven-cluster solution was identified based on variable break
points, cluster sizes, and the initial goal of identifying four to eight
clusters (Supplementary Figure 2). The seven clusters differed in
number of patients, overall mortality, and healthcare utilization
data (Supplementary Cluster Descriptions, Supplementary Tables
3, 4). We had encoded PFT data available for only 11% (535)
of patients in our cohort, and the vast majority had obstruction
(Supplementary Figure 6).

Recursive Partitioning and Tree Diagram
We used Recursive Partitioning to derive an empiric decision
tree assigning each patient into a specific LIVE Score (Figure 1).

FIGURE 1 | Decision tree. The empiric decision tree assigning five LIVE

Scores of the seven cluster types is shown. Six laboratory variables categorize

all patients into one of five LIVE Scores (approximately corresponding to the

clusters). LIVE 5 (cluster 2), the “healthiest” is characterized by normal

hemoglobin and normal chloride. LIVE 1 and 2 (clusters 1 and 6) the “sickest”

are characterized by multiple laboratory abnormalities—most notably

hemoglobin, albumin, and potassium. The presence of history of renal failure

(Max Creat is high) distinguishes the higher risk LIVE 3 (cluster 5) from the

relatively lower risk LIVE 4 (cluster 3). Max, maximum; Min, minimum; hgb,

hemoglobin; creat, creatinine; Cl, Chloride, Alb, albumin; K, potassium; nl,

normal; “ever” −4/1/2004 to 12/31 of current year. Final date for the datasets

is 12/31/2014; when time not indicated—it means for the current year—in this

case for 1/1/2013 to 12/31/2013.
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The decision tree had six nodes: albumin, creatinine, chloride,
potassium, and hemoglobin (two variables: the minimum
hemoglobin value over all years in the dataset, and the maximum
hemoglobin value for the year). Using these six variables, the
decision tree assigned each subject to one of five LIVE Scores. The
decision tree did not assign two original cluster types (Cluster
4, n = 251, 5% and Cluster 7, n = 79, 1.6%). The agreement
between the RP decision tree assigned LIVE Scores and the
original Clusters is shown in Supplementary Figures 7–9.

Validation
Intermountain Validation
We identified all Intermountain Healthcare patients with a
billing code for COPD based on an expanded list of COPD
diagnosis codes to create a dataset of 48,871 patients alive in 2009
(Supplementary Table 2 and Supplementary Figure 3). Thirty
thousand five hundred and thirty-three patients had laboratory
data allowing LIVE Score calculation without imputing: basic
demographics, healthcare utilization, and comorbidity rates for
the 9,221 patients with a TTE in 2009 or prior (Tables 1, 2) and
for the 21,312 patients without a TTE (Supplementary Tables 5,
6) are summarized.

Overall mortality was assessed for each of those cohorts
based on the calculated LIVE Score in 2009. The mortality
for patients with a TTE was higher than the mortality
for patients without a TTE (46 vs. 23%, respectively, p <

0.001), and the LIVE Scores stratified mortality within both
cohorts. Figure 2 shows the Kaplan–Meier survival curve
for patients with (Figure 2A) and without a prior TTE
(Figure 2B). In both cohorts, LIVE Score 5 had the lowest
mortality (23 and 15%, respectively, p < 0.001) and LIVE
Score 1 (77–57%, p < 0.001) had the highest mortality
(Figure 2).

The time to first COPD exacerbation requiring a COPD-
related Emergency Department visit and/or hospitalization was

also statistically significantly different in both cohorts (Figure 3).
Patients with LIVE Score 5 with a prior TTE had the lowest
rate of COPD exacerbations (0.20 COPD related visits/year vs.
0.67 visits/year overall, p < 0.001). Patients with LIVE Scores 1
and 2 had the highest COPD related healthcare utilization rate
(1.57 and 1.46 visits/year, respectively). The difference between
COPD exacerbations with LIVE Score 1 and LIVE Score 2 was
not significant, but both were statistically significantly higher
compared with the overall rate of 0.20 visits/year, p < 0.001
(Table 1 and Figure 3).

The LIVE Scores with higher overall mortality were
statistically significantly associated with higher comorbidity rates
(Tables 1, 2, and Supplementary Tables 5, 6).

Veterans Affairs National Health System Validation
External Validation was performed in a retrospective data-
only cohort of 83,134 VA patients with COPD alive in 2009
from all VA hospitals throughout the United States who had
a LIVE Score calculation in 2009 (Supplemental Table 7 and
Supplementary Figure 4). We performed the analysis on the
6,034 patients who had TTE in 2009 or prior and examined
7-year mortality and risk of severe COPD exacerbation. We
repeated the analysis on the 77,100 patients without a TTE
in 2009 or prior. Patients with a prior TTE had a statistically
significantly higher overall mortality than those without a prior
TTE (Supplementary Figure 12). However, within each cohort
the LIVE Score separated patients into statistically significantly
different overall mortality rates (Figure 4). LIVE Score 1 patients
with a prior TTE had an 81% mortality compared with 23%
mortality for LIVE Score 5 patients (p < 0.001 Figure 4A).
Similarly, LIVE Score 1 patients without a prior TTE had a 72%
mortality compared with 17% mortality for LIVE Score 5 (p
< 0.001, Figure 4B). Furthermore, in both cohorts, the LIVE
Scores were associated with statistically significantly different
rates of COPD exacerbation. The highest rates were in patients

TABLE 1 | Demographics and clinical characteristics for patients with a prior transthoracic echocardiogram (TTE) and laboratory variables allowing LIVE Score

assignment in 2009 (N = 9221).

Variable name Total LIVE Score 5 LIVE Score 4 LIVE Score 3 LIVE Score 2 LIVE Score 1 P-value

Number of patients, N (%) 9,221 1,971 (18) 2,964 (28) 2,839 (26) 1,125 (11) 322 (3) <0.001

Age, mean (SD) 67 (13) 64 (14) 66 (13) 71 (12) 67 (14) 70 (12) <0.001

Female, N (%) 4,539 (49) 1,023 (52) 1,528 (52) 1,232 (43) 670 (60) 86 (27) <0.001

White, N (%) 8,187 (89) 1,797 (91) 2,664 (90) 2,505 (88) 958 (85) 263 (82) <0.001

8-yr mortality N (%) 4,283 (46) 457 (23) 1,185 (40) 1,696 (60) 697 (62) 248 (77) <0.001

Healthcare Utilization

ED & Inpatient COPD visits/year, mean (SD) 0.67 (1.2) 0.20 (0.6) 0.45 (0.9) 0.82 (1.3) 1.46 (1.6) 1.57 (2.0) <0.001

ED COPD visits/year, mean (SD) 0.18 (0.6) 0.10 (0.4) 0.18 (0.6) 0.21 (0.7) 0.26 (0.7) 0.28 (0.9) <0.001

Inpatient COPD visits/year, mean (SD) 0.49 (0.9) 0.10 (0.3) 0.27 (0.6) 0.62 (0.9) 1.20 (1.2) 1.30 (1.4) <0.001

Outpatient COPD visits/year, mean (SD) 0.52 (1.3) 0.41 (1.1) 0.56 (1.3) 0.56 (1.5) 0.52 (1.6) 0.41 (1.1) 0.001

ED & Inpatient Any Cause Visits/year, mean (SD) 1.80 (2.5) 0.76 (1.4) 1.40 (2.3) 2.09 (2.4) 3.54 (3.0) 3.12 (3.1) <0.001

ED any cause visits/year, mean (SD) 0.88 (1.9) 0.54 (1.3) 0.88 (2.0) 0.95 (1.9) 1.25 (2.1) 0.98 (2.0) <0.001

Inpatient any cause visits/year, mean (SD) 0.92 (1.3) 0.22 (0.5) 0.52 (0.8) 1.14 (1.2) 2.3 (1.7) 2.14 (1.7) <0.001

Outpatient any cause visits/year, mean (SD) 5.24 (6.2) 3.97 (4.5) 5.28 (5.7) 6.00 (7.1) 5.63 (7.3) 4.65 (6.7) <0.001

N, Number; % (percent); ED, Emergency Department; yr, year; SD, standard deviation; COPD, chronic obstructive pulmonary disease; &, and.
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TABLE 2 | Comorbidities and laboratory results for patients with a prior transthoracic echocardiogram (TTE) and laboratory variables allowing LIVE Score assignment in

2009 (N = 9,221).

Variable name, N (%) Total LIVE Score 5 LIVE Score 4 LIVE Score 3 LIVE Score 2 LIVE Score 1 P-value

Number of patients 9,221 1,971 (18) 2,964 (28) 2,839 (26) 1,125 (11) 322 (3) <0.001

CHARLSON COMORBIDITY RATE

Malignancy 1,876 (20) 222 (11) 579 (20) 689 (24) 277 (25) 109 (34) <0.001

Diabetes 4,107 (45) 513 (26) 1,264 (43) 1,627 (57) 536 (48) 167 (52) <0.001

Liver disease 1,983 (22) 284 (14) 618 (21) 675 (24) 317 (28) 89 (28) <0.001

Chronic pulmonary disease 8,005 (87) 1,502 (76) 2,608 (88) 2,551 (90) 1,046 (93) 298 (93) <0.001

Rheumatologic disease 1,027 (11) 132 (7) 358 (12) 353 (12) 152 (14) 32 (10) <0.001

Myocardial infarction 2,724 (30) 323 (16) 779 (26) 1,127 (40) 369 (33) 126 (39) <0.001

Cerebrovascular disease 2,971 (32) 494 (25) 932 (31) 1,050 (37) 368 (33) 127 (39) <0.001

Chronic heart failure 5,254 (57) 612 (31) 1,637 (55) 2,041 (72) 741 (66) 223 (69) <0.001

Dementia 358 (4) 30 (2) 88 (3) 148 (5) 75 (7) 17 (5) <0.001

Peripheral vascular disease 3,195 (35) 397 (20) 1,012 (34) 1,238 (44) 422 (38) 126 (39) <0.001

Renal disease 2,533 (28) 122 (6) 317 (11) 1,517 (53) 412 (37) 165 (51) <0.001

Peptic ulcer disease 1,321 (14) 150 (8) 426 (14) 470 (17) 214 (19) 61 (19) <0.001

LABORATORY VALUE ABNORMALITIES

Max BNP ever high 4,846/6,303 (77) 415/823 (50) 1,405/2,002 (70) 1,956/2,287 (86) 823/920 (90) 247/271 (91) <0.001

Max HbA1C ever high 3,198/5,030 (64) 387/691 (56) 989/1,594 (62) 1,294/1,867 (69) 407/688 (59) 121/190 (64) <0.001

Max PCO2 ever high 3,555/4,938 (72) 200/433 (46) 1,093/1500 (73) 1,357/1831 (74) 694/914 (76) 211/260 (81) <0.001

Max CO2 ever high 5,066/9,220 (55) 448/1,970 (23) 1,719/2,964 (58) 1,796/2,839 (63) 861/1,125 (77) 242/322 (75) <0.001

Max eosinophil count ever high 2,297/9,085 (25) 216/1,891 (11) 661/2,938 (23) 910/2,819 (32) 386/1,118 (35) 124/319 (39) <0.001

Max albumin ever high 747/9,132 (8) 130/1,892 (7) 282/2,954 (10) 230/2,839 (8) 93/1,125 (8) 12/322 (4) <0.001

Max creatinine ever high 5,268/9221 (57) 511/1,971 (26) 1,148/2,964 (39) 2,539/2,839 (89) 828/1,125 (74) 242/322 (75) <0.001

Min Hgb ever low 6,592/9,221 (72) 0/1,971 (0) 2,306/2,964 (78) 2,839/2,839 (100) 1,125/1,125 (100) 322/322 (100) <0.001

N, Number; % (percent); ED, Emergency Department; yr, year; SD, standard deviation; max, maxiumum; min, minimum; BNP, B-type Natriuretic Peptide; HbA1c, hemoglobin A1C or

glycohemoglobin; PCO2, partial pressure of carbon dioxide in the arterial blood; Hgb, hemoglobin.

with LIVE Scores 1 and 2 where 80–84% of patients had
a COPD exacerbation by 8 years, respectively. Although the
difference between LIVE Score 1 and 2 was not significant,
both groups were statistically significantly higher compared
with the other LIVE Scores and only 25% of patients in LIVE
Score 5 had a COPD exacerbation (p < 0.001, Supplementary
Figures 13, 14).

University of Chicago Health System Validation
We repeated the LIVE Score validation in a second retrospective
data-only cohort of 3,236 patients from the University of
Chicago Medicine system where TTE data were not available
(Supplementary Tables 2, 8 and Supplementary Figure 5). The
University of Chicago Medicine system is relatively open and
comprises a unique urban population. Patient cohort enrollment
was normalized such that time zero for patient data was the date
that patients first met cohort criteria. Given the relatively small
number of patients in the cohort, as well as the Intermountain
work showing good predictions when imputing missing variables
as normal (Supplementary Figures 9, 10), we elected to impute
missing variables as “normal” in this cohort.

In this second external cohort with slightly different COPD
definitions and a unique patient population, the LIVE Score
showed the same pattern of separation of 6-year all-cause

mortality (Figure 5). Overall the separation was between two
low-risk LIVE Scores (LIVE Score 4 and 5) and three high-risk
LIVE Scores (LIVE Scores 1, 2, and 3). The difference between the
low risk and high-risk LIVE Scores was statistically significant,
but in this small cohort of patients the differences among the
individual LIVE Scores did not reach statistical significance
(Supplementary Table 9). Similarly, in this small cohort with a
large number of imputed variables in a relatively open health
system, differences among the LIVE Scores with regard to
severe COPD exacerbation were not found to be statistically
significant (Supplementary Table 10 and Supplementary
Figure 15).

DISCUSSION

Using a large dataset of routinely collected clinical variables from
the EHR and narrowing it down to an optimal parsimonious
set of common variables, we identified and externally validated
a novel Laboratory-based Intermountain Validated Exacerbation
(LIVE) Score in patients diagnosed with COPD. The LIVE
Score is calculated based on six routinely collected laboratory
values, which are reliable across institutions and care settings,
are obtained in real time, and do not rely on clinician judgment
or billing codes. The LIVE Scores stratify patients with differing
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FIGURE 2 | Kaplan-Meier survival analysis for intermountain validation cohort. Figure shows the Kaplan-Meier survival analysis for 8 year mortality by LIVE Score

assignment in 2009 for patients at Intermountain. (A) 8-year mortality for the 9,221 patients with Transthoracic echocardiogram (TTE) in 2009 with no missing data is

shown. The LIVE Score separates patients by mortality with the lowest mortality in LIVE Score 5, increasing with LIVE Score 4, 3, and 2, and LIVE Score 1with the

highest mortality (p < 0.001). (B) The same pattern of increasing mortality with decreasing LIVE Score in the 38135 patients without a TTE in 2009 or prior is shown.

FIGURE 3 | COPD exacerbation rate by LIVE Score. Figure shows increasing COPD exacerbation rates with decreasing LIVE Score in the Intermountain cohort.

(A) Increasing COPD exacerbation risk for the 9,221 patients with a TTE in 2009 or prior lab data in 2009 allowing LIVE Score assignment is shown. (B) The same

pattern of increasing risk of COPD exacerbation rates for the 38,135 patients without a prior TTE is shown.

overall mortality rates and severe COPD exacerbation rates
across different healthcare systems.

The LIVE Score is based on the hemoglobin, potassium,
albumin, creatinine, and chloride laboratory values obtained
through routine clinical care. Although our analysis does
inform why these specific variables most robustly separated
patients with a diagnosis of COPD into different groups,
we speculate that they may be markers of comorbidity and
disease. For example, patients who not had evidence of
renal failure (maximum creatinine is normal) would be at
lower risk for complications related to congestive heart failure
exacerbations and would be less likely to be hospitalized or
to die. Additionally, those with evidence of anemia (minimum
hemoglobin ever low), may be a marker for patients with
anemia of chronic disease, which in turn may be related
to their other morbidies and the patient’s overall health.

Similar speculations regarding the correlation of mortality and
laboratory abnormalities may be made regarding potassium
(e.g., diuretic use), albumin (malnutrition, general health), or
chloride.

The value of risk stratifying patients based on the LIVE
Score lies in the ability to identify high-risk patients across
a healthcare system for targeted interventions. Although the
bedside physician may recognize that their individual COPD
patient is at high risk for mortality and future healthcare
utilization, identifying high-risk patients on a system level allows
for resource allocation that would better support the patient and
their physicians. Indeed, while large gaps between recommended
care and actual care in COPD patients remain (37–40), this
type of risk stratification may help improve adherence to
guidelines in the high-risk patients who need better support.
Thus, the utility of risk stratification is that within a health
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FIGURE 4 | Kaplan-Meier survival analysis for National Veterans Affairs Health System Validation Cohort. Figure shows the Kaplan-Meier survival analysis for 8 year

mortality by LIVE Score assignment in 2009 for patients at the National Veterans Affairs Health System. (A) 8-year mortality for the 6,034 patients with Transthoracic

echocardiogram (TTE) in 2009 with lab data allowing RP assignment of LIVE Score in 2009 is shown. The LIVE Score separates patients by mortality with the lowest

mortality in LIVE Score 5, increasing with LIVE Score, 3, 2, and LIVE Score 1 with the highest mortality (p < 0.001). (B) The same pattern of increasing mortality with

decreasing LIVE Score in the 77,100 patients without a TTE in 2009 or prior is shown.

system identifying high-risk patients may help focus resources
around improving access to care and care coordination (41–43).
This approach of risk stratifying patients based on passively
collected and calculated risk scores with subsequent intensive
clinician attention to the highest risk patients has been shown
to be effective in improving heart failure and sepsis outcomes
(30, 31).

The LIVE Score risk stratifies complex real-world patients
who have been diagnosed with COPD and may have a
variety of competing comorbidities, which affect their overall
mortality and healthcare utilization. These comorbidities are
important determinants not only of overall mortality, but also
of hospitalizations and healthcare utilization. While healthcare
systems have increased their focus on reducing 30-day COPD
readmissions, nearly half of the patients readmitted after a COPD
related hospitalization are admitted for problems unrelated to
their COPD (43). Thus, interventions aimed at improving COPD
care must take into account the multimorbidity model of COPD
in identifying patients (19, 43, 44). Indeed, for many patients
with COPD, improving care may be achieved more effectively
by diagnosing and treating comorbidities rather than focusing on
COPD therapy alone (45).

The strength of our study is the empiric, reliable, risk
stratification of COPD patients using readily available EHR data.

The validation using clinical patient data from three different
healthcare systems with different definitions of COPD suggests
that these groups reflect underlying stable patient groups. This
risk stratification strategy may form a basis for identifying COPD
patients at high risk of mortality and complications on a system
level thus better targeting interventions. Although our study
advances the field by identifying novel laboratory based LIVE
Scores in COPD patients, it has some limitations. First and
foremost, unlike research cohorts with prospectively collected
PFT data, we cannot be certain that all patients have COPD.
This limitation in identifying and categorizing COPD patients
reflects the underlying structure of most EHR systems, which
do not have PFTs available, and system limitations whereby
patients with COPD do not regularly receive PFT testing.
Nevertheless, factors beyond PFTs are increasingly recognized
as driving outcomes in patients with COPD (4). The lack of
diagnostic certainty does not take away from the utility of our
LIVE Scores. Our cohorts represent patients in clinical care
with diagnostic uncertainty and competing comorbidities, which
may cause respiratory symptoms that are evaluated in routine
clinical care. Indeed, our risk stratification schema may facilitate
more accurate diagnosis of COPD by prioritizing diagnostic
accuracy in high-risk patients where additional resources may be
focused.
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FIGURE 5 | Kaplan-Meier survival analysis for University of Chicago Health

System Validation Cohort. Figure shows the Kaplan-Meier graph for 6 year

overall mortality for 3236 patients at the University of Chicago patients with

unknown TTE data. The lowest risk groups (LIVE Scores 4 and 5) and the

highest risk groups (LIVE Scores 1, 2, and 3) show significant spread in

mortality. In this small cohort in an open system without known TTE data, no

significant difference was found within the low-risk LIVE Scores (4 and 5) and

the high-risk LIVE Scores (3 vs. 2 vs. 1).

CONCLUSION

In large clinical datasets across different organizations, a
LIVE Score that utilizes existing laboratory data for COPD
patients may be used to stratify risk for mortality and COPD
exacerbations.

IMPACT

Despite advancements in interventions that improve clinical
outcomes of COPD patients, gaps between clinical guidelines and
care persist. While COPD patients in clinical research studies are
well-characterized and managed according to current guidelines,
in clinical care those hospitalized with respiratory symptomsmay
have diagnostic uncertainty and lack guideline recommended
care. Identifying the highest-risk groups of COPD patients in
order to prioritize enrollment in disease management programs
remains a challenge. Here we developed and validated the LIVE
Score, a system for population health management to identify
COPD patients at high risk for healthcare utilization, morbidity,

and mortality through existing data for real-world clinically
diagnosed COPD. The LIVE Score could be used to risk stratify
COPD patients within a healthcare system in order to prioritize
initiatives aimed at improving healthcare delivery for COPD,
saving clinician time and reducing health system costs.
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