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Graphical Abstract

Abstract
Agricultural  managed  aquifer  recharge  (Ag-MAR)  is  a  promising  approach  to  replenish

groundwater resources using flood water and cropland as spreading grounds. However, site selection,

particularly the layering of sediment deposits in the subsurface, can greatly influence Ag-MAR efficacy as

it controls water flow and solute transport in the vadose zone. In this study, we use the HYDRUS-1D
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software to simulate water flow and solute transport from the land surface to the groundwater table in

three vadose zone profiles (LS, MS, HS) characterized by differing fractions of sand (44%, 47%, and

64%).  For each profile,  the single-  and dual-porosity models (i.e.,  considering or not  nonequilibrium

water flow and solute transport) were calibrated using observed surface ponding, soil water content, and

KBr breakthrough data. Water flow and bromide transport in the profile with the lowest sand fraction (LS)

were best captured using the model that considered both  preferential flow and nonequilibrium bromide

transport. Water  flow and bromide transport in  the profile with the highest sand fraction (HS) was best

simulated with the model that considered preferential flow and equilibrium bromide transport. Uniform

water flow and nonequilibrium bromide transport provided the best fit for the third profile (MS). The

degree of preferential flow was highest in the profile with the largest sand fraction (HS), which also

showed the largest  flow velocities  compared to  the profiles  with lower  sand amounts  (LS and MS).

Preferential  flow  did  not  significantly  impact  the  overall  water  balance  (within  3%),  but  caused  a

significant decrease in vadose zone travel times (bromide) by up to 38%, relative to a single-porosity

model fit. Recharge efficiency varied between 88% and 90%, while the average travel times from the soil

surface to groundwater varied up to 119% (from 3.6 to 7.9 days) between the three sites. This study

demonstrates that similar recharge efficiency can be achieved at sites with differing soil texture profiles,

but  subsurface heterogeneity can substantially  affect  contaminant  transport  processes  and their  travel

times.

Keywords: HYDRUS-1D, dual porosity model, preferential flow, subsurface runoff, bromide transport,

travel time

1 Introduction
Groundwater contributes about 25% of irrigation water use, 50% of domestic water use,

and 40% of industrial water use  (Siebert et al., 2010; WWDR, 2022). In semi (arid) regions,

groundwater  withdrawal  rates  may exceed aquifer  recharge  rates,  which causes  groundwater

depletion  and  associated  environmental  issues  (Scanlon  et  al.,  2012;  Siebert  et  al.,  2010)

(Marwaha et al., 2021). Increasing groundwater recharge through managed aquifer management

(MAR)  is  a  promising  approach  for  the  sustainable  development  of  groundwater  resources

(Sprenger et al., 2017; Wendt et al., 2021).

Agricultural managed aquifer recharge (Ag-MAR) is a fairly new practice that recharges

groundwater  by transferring excess surface water onto agricultural  lands  (Kocis  and Dahlke,

2017). This practice can play a dual role in increasing agricultural water supply by replenishing
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groundwater  and  improving  groundwater  quality  by  diluting  pollutant  concentrations  in

groundwater  (Bali  et  al.,  2023).  Ag-MAR is  also  less  costly  because  it  utilizes  the  existing

irrigation infrastructure and farm fields as spreading sites without the additional construction of

recharge  basins  or  wells  (Kourakos  et  al.,  2019).  Because  of  these  advantages  and  vast

agricultural  lands  available  in  many  groundwater-dependent  regions,  a  boom  in  Ag-MAR

implementation has been witnessed in recent years, especially in the USA and Europe (Levintal

et al., 2023b). However, there is uncertainty about how to identify suitable Ag-MAR locations

that allow recharge of large water volumes but do not create additional environmental issues

(Alam  et  al.,  2021).  One  of  the  most  problematic  issues  is the  leaching  of  nitrate,  salts,

pesticides, and microbes from surface water or farmlands to groundwater (Bachand et al., 2014;

Guo et al., 2023; Levintal et al., 2023a; Murphy et al., 2021; Waterhouse et al., 2020).

The prerequisite for addressing the above issues is an accurate understanding of water

flow and solute transport processes in the vadose zone during Ag-MAR and their influencing

factors.  The  influencing  factors  can  be,  in  general,  divided  into  three  groups:  a)

hydrometeorological  conditions,  such  as  the  intensity,  amount,  duration,  and  quality  of

precipitation  or  the  applied  water  and  the  evaporation  rate;  b)  hydrogeological  conditions,

including the vadose zone thickness, soil texture, and structure, soil chemical composition, and

c) the type of land use and its management (Dahlke et al., 2018; Perzan et al., 2023; Siebert et

al., 2010). Field experiments cannot always observe solute transport processes and groundwater

contamination risks at the spatial-temporal scales at which they occur or might introduce the

contaminant (Sasidharan et al., 2021; Wang et al., 2022; Wang et al., 2020). Numerical modeling

can  provide  hydrologic  information  at  a  high  spatial-temporal  resolution,  but  the  model

calibration  is  often  highly  dependent  on experimental  data  and is  subject  to  the  equifinality

problem  (Zhou et al.,  2023). In contrast,  field experiments combined with numerical models,

such  as  HYDRUS,  are  more  popular  tools  to  investigate  the  impacts  of  different

hydrometeorological and hydrogeological factors on groundwater recharge quantity and quality

and associated  crop root  zone status.  For  example,  Bali  et  al.  (2023)  used  HYDRUS-2D to

simulate  the water  balance of an alfalfa  field in  the San Joaquin Valley comparing different

irrigation  treatments  in  the  summer  (full  and  deficit  irrigation)  and  winter  flooding  for

groundwater recharge. Their results show that the fully irrigated alfalfa stand that was flooded in
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winter for groundwater recharge showed recharge efficiencies of 85%, 89% and 84% in 2020,

2021 and 2022,  while  those  values  were  only  78%,  79% and 76% for  the  deficit  irrigation

treatment. Similarly,  Ganot  and Dahlke  (2021)  used  HYDRUS-1D to  validate  an  analytical

solution-based root zone residence time model to develop guidance on the safe flooding duration

for Ag-MAR for different soil textures (Ganot and Dahlke, 2021). Both studies estimated water

balance  components  for  different  treatments/scenarios  using  a  daily  time  step.  However,  to

understand the effects of Ag-MAR on the fate and transport of solutes such as nitrate or salts,

high-resolution (e.g., 10 minutes) data and numerical modeling are needed to fully quantify the

complete recharge cycle of water and associated solutes from the soil surface through the vadose

zone to the groundwater table.

In addition, preferential flow (a.k.a. nonequilibrium or nonuniform water flow in which

the moisture front can propagate quickly to significant depths while bypassing a large part of the

matrix pore-space) (Šimůnek et al., 2003) can lead to the earlier arrival of pathogens (Bradford et

al., 2017), bacteria such as Escherichia coli (Arnaud et al., 2015), and other contaminants at the

groundwater table.  These adverse effects may pose a higher risk under Ag-MAR because of

intensive applications of fertilizers and pesticides on agricultural lands. Preferential flow is often

poorly  characterized  in  field  studies  (Nimmo et  al.,  2021) and  rarely  considered  in  current

numerical modeling analyses of Ag-MAR  (Levintal et al.,  2023b). Quantifying the degree of

preferential flow and how it affects recharge and contaminants' transit times is one of the top

priorities for selecting appropriate Ag-MAR sites.

In this study, we simulate water flow and solute transport in the vadose zone of three Ag-

MAR  plots  in  California  at  a  temporal  resolution  of  10  minutes,  using  the  HYDRUS-1D

software, considering both single- and dual-porosity models. All three plots are located within

the same 15 ha agricultural field, thus allowing the assessment of how within-field subsurface

heterogeneity affects Ag-MAR vadose zone flow and transport processes. The specific objectives

are to (1) identify and quantify to what degree preferential flow controls water flow and solute

transport in the vadose zone under continuous ponded conditions, (2) quantify the flow of the

recharge  water,  (3) estimate  transit  times  of  recharge  water  and contaminants  from the land

surface to the groundwater table using multiple indicators (bromide tracer, water table dynamics,
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soil and groundwater salt dynamics, and soil aeration dynamics), and (4) integrate hydrological

and biogeochemical field and simulation data to assess Ag-MAR suitability.

2 Materials and Methods

2.1 Study Area

The Ag-MAR experiments were conducted in the source areas of three groundwater wells

(LS, MS, HS) at a fallowed almond orchard west of Modesto, California (37º37”N, 121º05’W,

Fig. 1). The area has a Mediterranean climate with mean annual precipitation of 330 mm, and

potential evaporation of about 1356 mm (https://cimis.water.ca.gov/). Sediments in the vadose

zone belong to the distal portions of the Tuolumne River alluvial fan, with channel sands as the

base and heterogeneous floodplain sediments at the top. Groundwater flows from northeast to

southwest  (Fig.  1a)  (Gurevich  et  al.,  2021).  The  day before  the  flooding for  Ag-MAR was

started, groundwater table depths in the three wells were 6.34, 6.41, and 6.06 m, respectively.

Therefore, we consider 7 m deep soil profiles in this study.  While dominated by silty clay and silty

clay loam, the profiles show progressively increasing fractions of sand from LS (44%), MS (47%) to HS

(64%) (Fig. 2). The detailed soil particle distributions are shown in Table S1. 
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Figure 1. Location of the study site in California, USA. Locations of the three recharge plots upgradient of the three
groundwater wells LS, MS and HS (a), of instrumentation and the potassium bromide (KBr) application site in each

recharge plot (b), of sensors or suction cups at each sensor profile (c). The blue arrow in (a) shows the regional
groundwater flow direction.

Figure. 2. Soil texture in the study profiles.

2.2 Field Monitoring and Data Collection

Recharge plots shown in Fig. 1a were bermed with native soil (0.5 m height, 1 m width).

The field monitoring lasted from April 20 to June 14, 2022. The plots were flooded with surface

water for 28 days, from May 3 (13:30) to May 31, 2022. Flooding was manually operated from

May 3-5, 2022 to determine an irrigation schedule that would maintain a constant head (ponded

water)  on  the  field.  During  this  period,  the  irrigation  rate  was  considered  continuous  and

constant. From 12:00 on May 6 to 8:00 on May 10, water was applied at all three sites for 2-hour

intervals: 12:00-14:00, 18:00-20:00, 00:00-02:00, and 6:00-8:00. From 12:00 on May 10 to 7:40

on May 31, water applications were reduced to 100-minute intervals: 12:00-13:40, 18:00-19:40,

00:00-01:40, and 6:00-7:40. The flooding stopped at 9:00 on May 31, 2022. Totals  of about

5,750 m3, 6,281 m3 and 5969 m3 of water were applied within a flooding area of 694 m2, 735 m2,

and 690 m2 (i.e., 829.7, 855.8, and 866.3 cm in water depth) at LS, MS, and HS, respectively.

Irrigation rates were calculated by dividing the total volume of applied water by the flooded
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surface  area  and  the  irrigation  duration  at  corresponding  stages  (Table  1).  As  can  be  seen,

between 5/6/2022 12:00 and 5/10/2022 11:43, water was applied at a higher rate. As a result,

plots  experienced a leak and some of the applied water spilled outside the berms overnight.

Because the amount of water that spilled is unknown, a scaling factor was introduced to reduce

the applied water amount on those days such that the simulated and observed ponding matched.

As a result, scaled water application amounts reduced from 0.0850 to 0.0572 cm/min at LS, from

0.0820 to 0.0608 cm/min at MS, and from 0.0858 to 0.0613 cm/min at HS.

The bromide application area was about 7 m from each site’s corresponding monitoring

well (Fig. 1b). Br- was applied up-gradient to ensure it would move to the well area once it

reached the groundwater. At each site, 4.833 kg of KBr (i.e., 3.245 kg of Br -) was dissolved in

approximately 100-110 gallons (380 L) of water and then applied over an area of 36.8 m2 (i.e.,

9.2 m* 4 m) for 20 minutes (starting at 14:00, 12:40, and 10:52 on May 2, 2022 in recharge plots

LS, MS, and HS, respectively, i.e., one day before flooding) using a custom made drip irrigation

system and a water tank. Br- was thus applied at a concentration of 8164.18 ppm at an irrigation

rate of 0.0540 cm/min.

Table 1. Irrigation schedule and rates.

LS

Flowmeter
reading

(m3)

Flooding
rate (cm/

min)
MS

Flowmeter
reading

(m3) 

Flooding
rate (cm/

min)
HS

Flowmeter
reading

(m3 )

Flooding
rate (cm/

min)

5/3/2022 13:30 0 0.0215 5/3/2022 13:30 0 0.0231 5/3/2022 13:30 0 0.0220
5/3/2022 17:06 117.8 0.0215 5/3/2022 17:01 99.0 0.0231 5/3/2022 16:58 108.0 0.0220
5/6/2022 12:00 708.5 0.0572 5/6/2022 12:00 805.2 0.0608 5/6/2022 12:00 683.1 0.0613
5/10/2022 11:43 1841.2 0.0675 5/10/2022 11:39 1962.9 0.0703 5/10/2022 11:52 1819.2 0.0716
5/26/2022 12:45 4839.3 0.0656 5/26/2022 12:36 5270.8 0.0687 5/26/2022 12:04 4981.1 0.0716
5/31/2022 7:40 5750.1 0 5/31/2022 7:40 6281.3 0 5/31/2022 7:40 5969.4 0

The meteorological data, including daily precipitation (P) and potential evaporation (Ep)

(Fig. S1) were obtained from the CIMIS website (https://cimis.water.ca.gov/) from station 71 –

Modesto,  located  7  km  west  of  the  study  site.  The  total  potential  evaporation  during  the

monitoring period was 35.1 cm (Fig. S1). 

The ponding level at the soil surface and the groundwater table depth were measured

using pressure  transducers  (CS451,  Campbell  Scientific,  UT,  USA).  Each recharge  plot  was

instrumented with sensors at depths of 20, 60, 100, 250, and 500 cm at profile LS, 20, 60, 100,

300, and 450 cm at MS, and 20, 60, 100, 275, and 430 cm at HS) measuring soil water content,
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electrical conductivity (EC), soil temperature (TEROS12, Meter, WA, USA), O2 (KE-25, Figaro,

Japan),  and  oxidation-reduction  potential  (ORP)  using  constructed  platinum  electrodes.

Hydrological  (ponding  level,  soil  moisture,  soil  temperature,  groundwater  table  depth)  and

biogeochemical  (O2,  ORP,  EC)  measurements  were  logged  (using  CR1000  and  CR800,

Campbell Scientific, UT, USA) at a 10-min time interval. Breakthrough curve data, monitoring

the transport of the KBr tracer, were collected at minimum 4 hours using suction cups (LT-DBL,

Irrometer, CA, USA) at the same depths as sensors. 

The sensors  or  suction cups were installed  along the long edge of  the recharge plot,

perpendicular to the groundwater flow direction (Fig. 1b). Each sensor or suction cup was about

0.5  m  apart  from  the  other  to  avoid  interference.  The  distance  between  sensors  and

corresponding suction cups was about 1.12 m (Fig. 1c). The temporal distributions of relevant

variables are shown in Figs. S1-S8.

2.3 HYDRUS-1D Model Setup

a. Initial and boundary conditions

Water  flow  and  KBr  transport  in  the  unsaturated  zone  were  simulated  using  the

HYDRUS-1D software  (Šimůnek et al., 2016).  The 700-cm-thick soil profile was divided into

five modeling layers, including 0-33 cm, 34-66 cm, 67-200 cm, 201-400 cm, and 401-700 cm, in

which the third through the fifth modeling layers represent multiple physical soil layers (Fig. 2).

The number of modeling layers was smaller than the number of physical layers because not all

physical layers had a sensor collecting data. The simulation period was 55 days long, from April

20 to June 14, 2022, which included pre-flooding, flooding, and post-flooding periods. Since field

water contents observations were limited to five depths, the simulation period was extended by

considering  a  "spin-up"  period  (three  months)  before  the  flooding  experiment.  The  spatial

discretization resolution was 1 cm throughout the soil profile, while the temporal discretization

resolution was variable, with a minimum time step of 0.01 minute.

The initial soil pressure head profile was first converted from measured water contents at

five  soil  depths  by  using  soil  water  retention  curves  of  typical  soil  textures  (Radcliffe  and

Šimůnek, 2018), and then linearly interpolated between any two measurement depths. The initial

Br- solute concentration was zero throughout the soil profile.
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For water flow, the upper boundary condition (BC) was set to an atmospheric BC (with a

maximum surface water layer of 50 cm, i.e., the height of the berms). In this BC, when the soil

surface  is  not  flooded,  the  potential  water  flux across  the  soil  surface  equals  the  difference

between daily values of potential evaporation,  E0, and precipitation (P) or irrigation (I). When

the soil surface is flooded, the boundary pressure head is equal to the water level at the surface,

and  the  model  calculates  the  infiltration  flux.  Depending  on  the  soil  moisture  status,  this

atmospheric  BC may appear  as a Neumann BC (when the surface pressure head is within a

critical range) or a Dirichlet BC (when the surface pressure head exceeds these critical values).

The  lower  BC was  set  to  a  variable  pressure  head  BC (i.e.,  Dirichlet  BC),  defined  by  the

measured position of the groundwater table. 

For solute transport, the upper BC was prescribed as a solute flux BC (i.e., a Cauchy BC),

with bromide concentrations and irrigation fluxes during the bromide application as inputs. The

model then automatically adjusts surface bromide concentrations depending on the thickness of

the surface water  level  and evaporation/precipitation/irrigation  fluxes and associated bromide

concentrations. The lower BC was prescribed as a zero concentration gradient (i.e., a Neumann

BC when only a convective solute flux occurs). 

b. Single-porosity model (SPM)

Vapor  flow  can  be  neglected  for  conditions  considered  in  this  example.  The  one-

dimensional  uniform soil  water  movement  in  HYDRUS-1D can then be described using the

Richards equation: 

∂θ(h)
∂ t =

∂
∂z [K (h )(

∂ h
∂ z +1)] (1)

where θ is the volumetric water content [L3L-3], t  is time [T], h is the water pressure head [L], z

is the spatial coordinate [L] (positive upward), and K  is the hydraulic conductivity [LT-1]. The

soil water retention and hydraulic conductivity functions are described using the van Genuchten-

Mualem (VGM) equations (Mualem, 1976; van Genuchten, 1980):

θ (h )={θr+
θ s−θr

[1+|α h|
n
]
m h<0

θ s h ≥0
(2)

K (h )=K s Se
l
¿ (3)
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Se
❑
=

θ−θ r

θ s−θ r
(4)

m=1−1 /n (n>1) (5)
where  θr and  θs are the residual  and saturated water contents [L3L-3],  respectively;  Ks is  the

saturated hydraulic conductivity [LT-1]; Se is the effective saturation [-]; l is the pore connectivity

parameter (about 0.5); n is an empirical parameter related to the pore-size distribution [-], and α

is an empirical parameter related to the inverse of the air-entry suction [L-1].

The governing equation for solute transport is the advection-dispersion equation:

∂ θ C
∂ t =

∂
∂ z (θD

∂ C
∂ z )−

∂ (qC )
∂ z (6)

where C  is the solute concentrations of soil water (ppm), q is the water flux [LT-1], and D is the

effective dispersion coefficient of solute in soil water [L2T-1] given by:

D= λv+
D0 τ

θ (7)

where  λ is  the soil  dispersivity [L],  v is  the pore-water velocity  [LT-1],  D0 is  the molecular

diffusion coefficient [L2T-1], which is about 1.584 cm2/d for Br- (Isch et al., 2019; Köhne et al.,

2004), and τ  is the tortuosity factor [-].

c. Dual-porosity model (DPM)

The dual-porosity model divides the soil pore space into mobile and immobile regions.

Water flow occurs only in the mobile region, described by the Richards equation, while water

can also be stored but does not flowin the immobile region. The governing equations for water

flow in the dual-porosity model are (Šimůnek et al., 2003):

∂θmo(h)

∂ t =
∂

∂ z [K (h )(
∂ h
∂ z +1)]−Γ w (8)

∂ θℑ(h)
∂ t =Γ w (9)

where  θmo and  θℑ are water contents in the mobile and immobile regions  [L3L-3], respectively.

and Γ w is the water transfer rate between the two regions [T-1], which can be described as (Gerke

and van Genuchten, 1993; Šimůnek et al., 2003):

Γ w=ωw(Se ,mo−Se ,ℑ) (10)
where ωw is the first-order rate coefficient for water transfer between the two regions [T-1], and

Se, mo and  Se, ℑ are effective saturations in the two regions [-], respectively. Compared with the

single-porosity  model,  the  dual-porosity  model  additionally  considers  three  parameters,
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including the residual (θℑ ,r) and saturated (θℑ , s) water contents in the immobile region, and ωw.

The other parameters are the same as in the single-porosity model and described by the VGM

equations, except that now they are referred to as θmo ,r , θmo , s, α, n, and K s. 

The dual-porosity model assumes that solute transport is limited to the mobile region, but

there is a solute transfer between mobile and immobile regions. The governing equations for

solute transport in the dual-porosity system are:

∂(θmo Cmo)

∂ t =
∂

∂ z [θmo Dmo

∂ Cmo

∂ z ]−
∂(qmo Cmo)

∂ z −Γ s (11)

∂(θℑC ℑ)
∂ t =Γ s (12)

Γ s=ωs (C mo−Cℑ )+Γ w c¿ (13)
where Dmo, Cmo, and qmo are the dispersion coefficient [L], solute concentration (ppm), and water

flux  [LT-1]  in  the  mobile  region  [L2T-1],  respectively,  Cℑ is  the  solute  concentration  in  the

immobile region, Γ s is the solute mass transfer between mobile and immobile regions [ML-3T-1],

and ωs is the solute mass transfer coefficient [T-1]. c¿ is the solute concentration that depends on

the direction of mass transfer and equals  Cmo for  Γ w>0 and  Cℑ for  Γ w<0.  In this  study, we

consider three cases of the dual-porosity model (Fig. 3b, c, d).

Figure 3. Conceptual schematics of different model setups (adapted from (Šimůnek and van
Genuchten, 2008)).

2.4 Parameter estimation and model performance evaluation

 The  Levenberg-Marquardt  algorithm  in  HYDRUS-1D  was  used  to  optimize  soil

hydraulic and solute transport parameters. This algorithm aims to minimize the sum of squared

weighted deviations (SSQtotal) between observed and simulated  surface ponding levels (SSQsp),

soil water contents (SSQwc), and bromide concentrations in soil water (SSQBr) (SSQtotal= SSQwc +

SSQsp +  SSQBr).  The square  of  the  correlation  coefficient  (R2),  normalized-root-mean-square

error  (NRMSE),  and  Kling-Gupta  efficiency  (KGE)  were  calculated  to  evaluate  the  model
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performance.  While  the NRMSE index represents  the average deviation  of  the residuals,  R2

measures  the  linear  relationship  between  simulated  and  measured  values,  and  KGE  is  a

comprehensive indicator combining correlation and bias. The lower the SSQ and NRMSE, and

the higher the R2 and KGE, the better the fit between the simulated and observed values.

In this study, the dispersivity λ was not optimized since preliminary model runs indicated

that  the  model  performance  was  not  sensitive  to  this  parameter  and  only  limited  solute

concentration data were available. The dispersivity was instead assumed to be equal to 70 cm,

i.e.,  1/10th  of  the  total  travel  distance,  representing  a  one-dimensional  effective

macrodispersivity (Gelhar et al., 1992).Soil hydraulic and other solute transport parameters were

optimized  using  measured  surface  ponding  levels,  soil  water  contents,  and  bromide

concentrations.  During  optimizations,  parameters  were  adjusted  layer  by  layer  from  top  to

bottom. 

In the single-porosity model, the residual water contents were not optimized. Instead, the

default values of corresponding soil textures were adopted first and then manually adjusted for

the model to fit the measured data better. Therefore, four soil hydraulic parameters (θs, α, n, K s)

had  to  be  optimized  for  each  layer.  The  initial  estimates  of  saturated  water  contents  were

manually set based on the steady water contents and common values for similar soil textures in

Tables S2 (https://structx.com), while initial values of other parameters were obtained from the

Rosetta module in HYDRUS-1D, based on measured average soil particle distribution data from

this orchard (Table S1). The initial parameters for the soil layer with multiple soil textures were

prescribed as those from the dominant soil texture. 

To reduce the number of optimized parameters in the dual-porosity model, θm , r was set to

zero, as done in many similar studies (Haws et al., 2005; Imig et al., 2023; Šimůnek et al., 2001).

Therefore, eight soil hydraulic and solute transport parameters (θmo , s, α, n, K s, θℑ ,r,θℑ , s, ωw, ωs)

were optimized for each layer of profile LS (40 parameters in total), two soil hydraulic and solute

transport parameters (θℑ,  ωs) were optimized for each layer of profile MS (10 parameters in

total),  and seven soil hydraulic parameters (θmo , s,  α, n,  K s,  θℑ ,r,  θℑ , s,  ωw) were optimized for

each layer of profile HS (35 parameters in total).  The previously optimized parameters of the

single-porosity model were used as the initial values of parameters in the mobile zone of the

dual-porosity model. For the immobile zone, the initial values θℑ ,r were set the same as those in
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the single porosity model, while initial values of θℑ , s were prescribed as 0.1. The initial values of

ωw, ωs were obtained from the literature (Imig et al., 2023; Isch et al., 2019; Köhne et al., 2004).

The  correlation  matrices  for  each  scenario  were  calculated  using  the  Jacobian

approximation of the Hessian matrices around the optima (Šimůnek and Hopmans, 2002). This

enabled us to detect and discuss parameters' interaction and test the appropriateness of applying

the single or dual-porosity models.

3 Results

3.1 Single-Porosity Model: Parameters and Performance 

The optimized parameters for the single-porosity model are shown in Table 2. The soil

retention  and hydraulic  conductivity  curves  for  optimized  parameters  are  shown in  Fig.  S9.

Overall, the optimized parameters were within typical values from literatures findings (Text S1).

The exceptions are that the saturated hydraulic conductivities (0.027-0.034 cm/min) for the silty

clay layers (0~66 cm) were far higher than the typical  values (0.0062 cm/min in  Table S4)

according to (Clapp and Hornberger, 1978; Li et al., 1976). The saturated water contents for the

silty clay loam and silt loam layers (67~200 cm) were 0.21-0.29 cm3/cm3, below typical values

of 0.29-0.52 cm3/cm3 for these textural classes, according to Table S2. 

The model performance is shown in Table 4 and Figs. 4-6. Overall, the simulated values

and trends of surface ponding levels, soil water contents, and bromide concentrations matched

the  observations  well  when  SPM  was  used.  The  observed  surface  ponding  levels  quickly

increased to their  maximum (about 13 cm, 17 cm, and 13 cm for profiles LS, MS, and HS,

respectively) because of intense and continuous irrigation at the beginning of the experiment.

After  that,  the  ponding  level  decreased  and  remained  relatively  stable  as  irrigation  became

intermittent (about every 4 hours) and potential evaporation increased (Fig. S1). 

The water contents at all depths exhibited increasing trends during the flooding period

and decreased during the post-flooding period. Simulated wetting fronts arrived later than those

observed as depth increased,  especially  at  LS. The bromide concentrations  at  all  depths first

increased  and  then  decreased  with  time.  Similarly  to  wetting  fronts,  simulated  early

breakthroughs at Profiles LS and HS arrived later than those observed as depth increased. 
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At LS, simulated breakthrough curves (BTCs) at the bottom (250 and 500 cm) showed a

slower response to flooding than those observed. In addition, the observed BTCs had much more

significant tailings than those simulated. Observed BTCs also displayed secondary peaks at 100

and 250 cm. At HS, simulated BTCs always occurred slightly later than those observed, except at

depths of 10, 20, and 275 cm. At MS, the arrival of the simulated BTCs matched well with those

observed. However, the model could not capture strong tailings at 300 and 450 cm depths.

3.2 Dual-Porosity Model: Parameters and Performance 

As discussed in Section 3.1, in profile MS, arrival times of the simulated wetting and

bromide fronts at depths of 300 and 450 cm matched very well those observed, but simulated

bromide leaching was faster than observed when SPM was used (i.e., strong tailing of observed

BTCs). Therefore, the special case of the dual-porosity model, i.e., the mobile-immobile model

(MIM), was used. This model assumes that water flow is uniform (i.e., no preferential flow), the

immobile water content is constant, water mass transfer between the two regions is zero, and

solute is transported between the mobile and immobile regions by diffusive exchange (Isch et al.,

2019; Köhne et al., 2004). In other words, the water transfer coefficient, ωw, was equal to zero,

while ωs was optimized (Fig. 3b).

In profile HS, no significant tailing was observed in the bromide BTCs, and arrival times

of bromide fronts simulated using SPM were retarded compared to those observed. Thus, it was

assumed that the earlier  arrival of observed bromide fronts compared to those simulated was

caused only by nonuniform (preferential) water flow (Haws et al., 2005). In this case, ωs was set

to zero while ωw was optimized (Fig. 3c).

In profile LS, significant tailing was observed in the bromide BTCs, and the arrival of

bromide fronts simulated using SPM was retarded compared to those observed. The observed

BTCs also displayed secondary peaks at 100 and 250 cm. In this case, bromide tailing was likely

caused by diffusive mass transfer between mobile and immobile regions and the fast bromide

front arrival by nonuniform (preferential) water flow (Isch et al., 2019; Köhne et al., 2004), and

therefore, both ωw and ωs were optimized (Fig. 3d).

The optimized parameters for the three dual-porosity models are shown in Table 3. The

model performance is shown in Table 4 and Figs. 4-6. DPM provided a slightly better fit to the
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observed  data  than  SPM.  Notably,  the  use  of  the  dual-porosity  model  (considering

nonequilibrium water flow and solute transport) resulted in a slight decrease in NRMSEs and

similar  correlation coefficients (R2) for simulated and observed BTCs at profiles LS and MS

(Table 4). Although using the dual-porosity model increased R2, it also increased NRMSEs for

BTCs at Profile HS. The cumulative water and bromide transfer from the mobile to immobile

zone (CumΓ w and  Cum Γ w,  a  higher  value  means higher  degree  of  nonequilibrium flow and

solute transport) are shown in Fig. S16. Therefore, Profile HS showed a higher propensity for

preferential flow than LS, while MS showed the least indication of preferential flow. 

The correlation matrices for parameters of different models are shown in Fig. S10-S15.

When considering  only the  strong correlations  (R>0.6),  only  α3-α4,  K s 1-K s 3 were negatively

correlated when using SPM at LS, while many more parameters were positively and negatively

correlated when using DPM. This suggests that DPM improved model performance due to over-

parameterization.  However,  both  SPM  and  DPM  structures  could  not  capture  the  observed

bromide  BTCs  well  (Table  4).  At  MS,  both  SPM and  DPM showed  a  positive  correlation

between K s 3-α1 and negative correlations between  K s 1-α1,  K s 1-α2,  K s 5-α2, K s 3-K s 1. Both SPM

and DPM performed well  and similarly.  This  indicates  that  SPM and DPM structures  were

equivalent and sufficient in describing the observations, and it was unnecessary to apply DPM at

MS. At HS, for SPM, n1-α3, K s 3-α3, K s 3-α4 were positively correlated, while α2-θ s , 4, α4-α2, K s 1-

α3, K s 3-K s 2, K s 1-n1, K s 2-α4 were negatively correlated. For DPM, only four parameter pairs were

correlated,  including  K s 1-α1 (positive),  and  n1-θ s , 1,  K s 3-K s 2,  ωw3-θℑ ,r 5 (negative),  and model

performance improved a little compared to SPM. This emphasizes the necessity of employing

DPM at HS. 

Table 2. Optimized parameters of the single-porosity model.

Site Depth (cm) θr (cm3/cm3)
θs

(cm3/cm3)
α (cm-1) n (-)

K s

(cm/min)

 LS

0-33 0.105 0.374 0.016 1.747 0.031 
34-66 0.115 0.301 0.012 1.305 0.029 
67-200 0.125 0.291 0.007 1.215 0.015 
201-400 0.045 0.230 0.013 3.800 9.000 
401-700 0.151 0.528 0.061 2.000 0.200 

 M
S

0-33 0.105 0.374 0.009 1.831 0.028 
34-66 0.080 0.284 0.010 1.468 0.027 
67-200 0.095 0.210 0.006 1.598 0.015 
201-400 0.085 0.329 0.003 1.084 0.417 
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401-700 0.091 0.428 0.088 3.235 0.030 

HS

0-33 0.050 0.305 0.011 1.232 0.034 
34-66 0.105 0.284 0.009 1.276 0.017 
67-200 0.080 0.241 0.006 1.300 0.017 
201-400 0.025 0.210 0.013 2.943 6.000 
401-700 0.040 0.210 0.061 3.099 2.000 

Table 3. Optimized parameters of the dual-porosity model.
Site Depth

(cm)
θmo,r

(cm3/cm3)
θmo , s (cm3/

cm3)
α

(cm-1)
n (-) K s

(cm/min)
θℑ ,r

(cm3/cm3)
θℑ , s

(cm3/cm3)
ωw (min-1) θℑ

(cm3/cm3)
ωs (min-1)

0~33 0 0.254 0.012 1.487 0.033 0.077 0.100 4.100E-08 1.052E-03
34~66 0 0.181 0.012 1.303 0.029 0.115 0.130 3.270E-07 6.458E-03

LS 67~200 0 0.176 0.007 1.231 0.015 0.112 0.130 5.870E-07 1.276E-05
201~400 0 0.103 0.014 3.096 16.033 0.048 0.110 5.870E-07 2.890E-04
401~700 0 0.228 0.061 2.100 0.050 0.150 0.450 2.670E-08 4.614E-06

0~33 0.105 0.374 0.009 1.831 0.028 6.116E-02 7.000E-03
34~66 0.080 0.284 0.010 1.468 0.027 5.359E-02 7.000E-03

MS 67~200 0.095 0.210 0.006 1.598 0.015 2.710E-03 4.616E-03
201~400 0.085 0.329 0.003 1.084 0.417 5.271E-02 1.318E-03
401~700 0.091 0.428 0.088 3.235 0.030 8.007E-02 3.528E-03

0~33 0 0.205 0.011 1.207 0.035 0.031 0.100 6.082E-04
34~66 0 0.134 0.008 1.324 0.017 0.100 0.150 2.978E-04

HS 67~200 0 0.134 0.006 1.473 0.016 0.091 0.100 5.291E-03
201~400 0 0.160 0.014 2.956 6.515 0.030 0.050 3.633E-03
401~700 0 0.110 0.067 2.849 2.077 0.036 0.100 6.877E-03

Table 4. The performance of the single-porosity model [SPM] and dual-porosity model [DPM] to
simulate surface ponding levels, soil water contents, and bromide concentrations for the three

soil profiles (LS, MS, HS).
Simulated variable Indicator LS MS HS

SPM DPM SPM DPM SPM DPM

Surface ponding
level

R2 0.435 0.460 0.624 0.624 0.632 0.634
NRMSE 0.276 0.263 0.287 0.287 0.279 0.248

KGE 0.545 0.544 0.656 0.656 0.334 0.337

Water content
R2 0.852 0.873 0.764 0.764 0.908 0.907

NRMSE 0.201 0.190 0.220 0.220 0.181 0.185
KGE 0.913 0.903 0.849 0.849 0.939 0.935

Bromide
concentration

R2 0.238 0.237 0.569 0.569 0.646 0.791
NRMSE 1.150 1.139 1.406 1.393 1.856 1.933

KGE -0.046 0.047 0.446 0.458 0.412 0.592

Figure 4. Observed and simulated (using the single-porosity model [SPM] and dual-porosity
model [DPM]) surface ponding water levels for the three soil profiles. The blue shaded area

indicates the flooding period. 
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Figure 5. Observed and simulated (using the single-porosity model [SPM] and dual-porosity
model [DPM]) soil water contents at different depths for the three soil profiles (LS, MS, HS).

Figure 6. Observed and simulated (using the single-porosity model [SPM] and dual-porosity
model [DPM]) bromide concentrations at different depths for the three soil profiles (LS, MS,

HS).

3.3 Water Mass Balance

The water balance calculation results obtained using the single- and dual-porosity models

were very similar (differences were within 2%), as shown in Table 5 and Fig. 7b. Regarding the

amount of groundwater recharge as a fraction of the total surface water applied (a.k.a. recharge
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efficiency,  calculated  as  (D+∆ S DVZ)/(P+I)),  profile  HS  yielded  the  largest  recharge,  LS  the

smallest,  while MS ranked between the two. All three profiles showed a similar groundwater

recharge efficiency (88%-90%). Overall  differences in mass balance components between the

three profiles were not very large (within 3%).

This is because the top three layers (0~200 cm) of all three soil profiles quickly reached

saturation during intensive Ag-MAR (Fig. 5, Table 2). In such a case, evaporation from the soil

surface was close to potential evaporation and thus was similar between different sites. Water

movement from the soil surface to the bottom of the third layer was only driven by the ponding

and gravity gradients. According to Darcy's law, soil drainage rates below 200 cm (equivalent to

groundwater  recharge  since  we  included  soil  water  storage  in  the  deep  vadose  zone  into

groundwater recharge as well) can be calculated as:

GR=
−K sTop ,eff∗(LTop+SP)

LTop
(14)

where LTop is the total thickness of the top three soil layers (200 cm), SP is the surface ponding

depth, K sTop ,eff  is the effective saturated hydraulic conductivity of the top three layers as follows:

K sTop ,eff =

∑
j=1

3

L j

∑
j=1

3 L j

K s , j

(15)

where  L j and  K s , j are  the  thickness  and  the  saturated  hydraulic  conductivity  of  each  layer

(Tables 2~3), respectively.

At  LS,  MS,  and  HS,  the  K sTop ,eff  values  were  calculated  as  0.018,  0.018,  and 0.019

cm/min  for  SPM,  and  0.018  cm/min  for  DPM.  The  corresponding  mean  ponding  depths

measured during Ag-MAR were 6.29, 7.72, and 7.14 cm. The groundwater recharge rates were

thus estimated to be 0.019, 0.019, and 0.020 cm/min for SPM and 0.019 cm/min for DPM. In

other words, groundwater recharge was determined by (and close to)  K s Top,eff, because gravity

gradients prevailed over the ponding gradients. These values were also consistent with water

fluxes at 200 cm (0.018, 0.019, and 0.020 cm/min at LS, MS, and HS, respectively for both SPM

and DPM) simulated by HYDRUS-1D (Fig. S17), validating their accuracy. Therefore, the soil

water balance was similar between the three soil profiles.

Table 5. Water balance components for different soil profiles.
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Term LS MS HS

SPM DPM Relative
difference SPM DPM Relative

difference SPM DPM Relative
difference

cm % cm % % cm % cm % % cm % cm % %
P+F 829.7 829.7 855.8 855.8 866.3 866.3

L 63.9 7.7 63.9 7.7 0 51.5 6.0 51.5 6.0 0 53.0 6.1 53.0 6.1 0
R 0 0 0 0 0 0 0 0 0 0 0.0 0 0 0 0
E 23.9 2.9 24.9 3.0 0.1 24.7 2.9 24.7 2.9 0 24.4 2.8 24.3 2.8 0
D 687.1 82.8 693.2 83.5 0.7 729.5 85.2 729.5 85.2 0 738.2 85.2 739.3 85.3 0.1

∆ S RZ 10.7 1.3 11.8 1.4 0.0 20.3 2.4 9.1 1.1 -1.3 10.0 1.2 10.1 1.2 0

∆ S DVZ43.8 5.3 35.7 4.3 -1.0 28.7 3.4 39.9 4.7 1.3 42.6 4.9 42.2 4.9 0
GR 730.9 88.1 728.9 87.9 -0.2 758.2 88.6 769.4 89.9 1.3 780.8 90.1 781.5 90.2 0.1

P: precipitation, F: flood irrigation, L: water loss outside the berms, R: runoff, E: evaporation, D: drainage,  ∆ S :
storage change in the root zone 0~150  cm (∆ S RZ) and deep vadose zone (∆ S DVZ¿, GR: groundwater recharge
including D and ∆ S DVZ because water flow is considered to be one-dimensional and thus deep drainage below the
root zone will eventually recharge groundwater with a delay (de Vries and Simmers, 2002).

3.4 Bromide Travel Time

The peak displacement method estimates travel times from the time lag between peaks in

the measured input (irrigation water) and output (soil water at different depths) bromide BTCs

(Zhou et al., 2021). The travel times and average velocities of bromide front from the soil surface

to different soil depths calculated with the peak displacement method are shown in Table 6. In

general, the mean velocities of bromide front increased as depth increased for both the single-

and dual-porosity models. Due to preferential flow, the travel times of bromide front from the

soil surface to different depths of the soil profiles decreased by up to 38%, while the transport

velocities increased by up to 61%, compared to the single-porosity model. Overall, travel times

(flow velocities) were longest (slowest) at MS, followed by LS, and shortest (fastest) at HS. The

travel times from land surface to groundwater table varied from 3.6 to 7.9 days, resulting in an

overall average transport velocity difference between the three sites of up to 119%. Travel times

and  transport  velocities  inferred  from  water  table  dynamics,  soil  aeration,  and  soil  and

groundwater salt leaching were also analyzed (Texts S2~S4), which were overall comparable to

those in Table 6.

Darcy's law calculates water fluxes through the entire cross-sectional area, but water flow

occurs only in soil pores. Therefore, the pore water velocity v (or bromide front velocity when

considering only convective bromide transport) is related to Darcy flux J w by soil water content

θ (Radcliffe and Šimůnek, 2018):

v=J w /θ (16)
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During Ag-MAR, the thickness-weighted water contents at the top three layers θTop were

0.303, 0.248, and 0.261 cm3/cm3 at LS, MS, and HS, respectively. The bromide front velocities

at 200 cm v200 cm were 78.43, 81.30, and 85.84 cm/day for SPM, and 105.26, 81.97, and 105.26

cm/day for DPM at LS, MS, and HS, respectively (Table 6). The corresponding Darcy fluxes for

groundwater recharge GR calculated using Eq. 16 were therefore 0.017, 0.014, and 0.016 cm/min

for SPM, and 0.022, 0.014, and 0.019 cm/min for DPM at LS, MS, and HS, respectively. These

values were overall consistent with those in Section 3.3, despite some differences probably due

to dispersive or diffusive bromide transport in this study.  

Table 6. Travel times and average velocities of bromide front from the soil surface to different
soil depths.

Term Depth (cm) LS MS HS

SPM DPM
Relative
differenc

e %
SPM DPM

Relative
differenc

e %
SPM DPM

Relative
difference

%

Travel time (day)

20 1.09 1.08 -0.9 1.12 1.12 0.0 1.19 1.17 -1.7
60 1.38 1.38 0.0 1.42 1.42 0.0 1.37 1.33 -2.9
100 1.69 1.51 -10.7 1.61 1.62 0.6 1.57 1.47 -6.4
200 2.55 1.90 -25.5 2.46 2.44 -0.8 2.33 1.90 -18.5

250 (300, 275) 2.71 2.33 -14.0 3.46 3.46 0.0 2.52 1.97 -21.8
500 (450, 430) 4.97 3.09 -37.8 5.10 5.08 -0.4 3.23 2.50 -22.6

700 7.86 5.17 -34.2 7.91 7.90 -0.1 4.43 3.60 -18.7

Bromide front
velocity (cm/day)

20 18.35 18.52 0.9 17.86 17.86 0.0 16.81 17.09 1.7
60 43.48 43.48 0.0 42.25 42.25 0.0 43.80 45.11 3.0
100 59.17 66.23 11.9 62.11 61.73 -0.6 63.69 68.03 6.8
200 78.43 105.26 34.2 81.30 81.97 0.8 85.84 105.26 22.6

250 (300, 275) 92.25 107.30 16.3 86.71 86.71 0.0 109.13 139.59 27.9
500 (450, 430) 100.60 161.81 60.8 88.24 88.58 0.4 133.13 172.00 29.2

700 89.06 135.40 52.0 88.50 88.61 0.1 158.01 194.44 23.1

4 Discussion

4.1 Impact of preferential flow on model performance

The lag between observed and simulated wetting and/or bromide fronts in the deeper

profiles of LS and HS when using the single porosity model (Figs. 5-6) clearly indicates the

existence of preferential flow. Preferential flow likely occurred due to the combined effects of

intense  infiltration,  dry  climate  (initially  dry  soil),  soil  texture  heterogeneity,  presence  of

macrofauna (e.g., earthworms), and active and decaying crop roots. Continuous water ponding at

the soil surface resulting from the application of about 8-9 m of water in a month (Table 1) is

more likely to produce preferential  flow than intermittent  flooding from natural  precipitation

(Chen et al., 2002; Mitchell and van Genuchten, 1993; Selker et al., 1995). The semi-arid climate
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and particularly the rain-free summer likely promoted the formation of macropores, especially in

the  top  soil,  which  had  a  higher  clay  content  and  is  therefore  more  prone  to  shrink-swell

dynamics that can create desiccation cracks (Jiang et al., 2010). In addition, the almond orchard

was just fallowed, with almond wood chips incorporated into the soil to about 50 cm resulting in

higher hydraulic conductivities during the experimental period (Fig. 7a(1)). Research has shown

that  the  infiltration  rate  may increase  in  soils  with  decaying  plant  roots  or  with  wormholes

serving as preferential flow paths (Fig. 7a(3) and 7a(4))  (Mitchell et al., 1995). Such features

could explain preferential flow in the top 0-66 cm of LS and HS (Fig. 2). The presence of a

coarser-textured soil layer (near the bottom of the profiles) overlain by a fine-textured soil layer

may produce funnel or fingered flow (Fig. 7a(5) and 7a(6)) (Council, 2001; Wang et al., 2018),

resulting in preferential flow in the deep layers of profile LS and HS (Figs. 5-6).

There were only small differences between the single- and dual-porosity models in the

simulated surface ponding levels and soil water contents (see the model performances in Table

4). However, the dual-porosity model (considering preferential flow) produced much better fits

for the bromide BTC values and trends observed at LS (Fig. 6). However, both SPM and DPM

could not capture the observed bromide BTCs very well (Table 4). This may be associated with

observation errors since the bromide samples were not taken at the exact same locations as the

soil  sensors  (at  a  horizontal  distance  of  1.12  m).  It  might  also  indicate  that  some  other

hydrological processes may be occurring that cannot be described by SPM and DPM (discussed

in Section 4.2). At HS, the dual-porosity model captured overall trends better (increased R2), but

it did not capture observed values (increased NRMSEs) as well as the single porosity model. The

dual-porosity  model  simulated  much  higher  peak  values  of  the  bromide  BTCs  than  were

observed at  HS. This may be related to the fact that the temporal  resolution of the bromide

samples taken in the field was at minimum 4 hours and hence may not have accurately captured

the  real  peak  values  that  the  dual-porosity  model  suggested.  Finer  spatial  and  temporal

resolutions of field measurements would better constrain model parameters and improve model

performance. 

21

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503



4.2 Impacts of flow dimensionality on model performance

Measured soil water contents showed abrupt decreases (before May 16) and/or increases

(after May 16) in all three profiles at depths of 60 and 100 cm that cannot be captured by the

model (Fig. 5). There was also strong tailing in measured BTCs at shallow depths of LS (Fig. 6),

indicating  significant  initial  tracer  storage  and  slow  re-release  at  these  shallow  depths.  In

addition, measured steady water contents at layers below 200 cm were very low, e.g., about 0.1

cm3/cm3 at 250 cm of LS, and about 0.1 cm3/cm3 at 275 and 430 cm of HS, far smaller than their

saturated water contents (Table 2). The O2 concentrations at these depths were still high during

flooding (Fig. S5a, S6a, S7a), indicating the soil was mostly unsaturated at those depths. 

As shown in Tables 2-3, all three profiles had a low conductivity layer (silty clay or silty

clay loam, as shown in Fig. 2) at 67-200 cm depth (Ks=0.015-0.017 cm/min) followed by a

higher conductivity layer (Ks=0.4-16 cm/min in LS, HS) at 201-400 cm depth. This lithological

combination may form the capillary barrier, where water flux to the deeper profiles was limited

and likely only occurred as finger flow, while lateral flow within the low-conductivity layers (i.e.,

interflow H2 in Fig. 7) likely dominated  (Ho and Webb, 1998). As a result, water and solutes

could have been perched at these less permeable layers, allowing less water and solutes to move

downwards  to  deeper  layers  until  a  critical  soil  water  potential  is  reached  (Si  et  al.,  2011),

explaining the low, unsaturated water contents at soil depths below 200 cm. This phenomenon

was also studied and discussed in previous studies. For example, (Botros et al., 2012; Harter and

Yeh, 1996) demonstrated the lateral spreading of solutes due to the heterogeneous unsaturated

zone leads to extensive tailing in the observed breakthrough curves.

The three profiles had almond wood chips incorporated into the top soil layer, following

removal  of  a  20-year-old  orchard,  creating  flow pathways  with  much  higher  soil  hydraulic

conductivities within the top 30 cm  (Fig. 7a(1)). This is likely the reason that estimated soil

hydraulic conductivities for the silty clay layers were higher than their  typical representative

values (Tables 2-3 and Text S1). This much higher saturated hydraulic conductivity of the top

soil  layer,  compared  to  the  underlying  clay  soils,  likely  promoted  lateral  water  flow  (i.e.,

interflow H1 in  Fig.  7a).  The relatively  lower-than-expected  saturated  water  content  of  third

layer, which may be the outcome of compaction from agricultural operations, further contributes

to increased lateral flow within the top soil layers.
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Owing to the occurrence of lateral flow, the wetted unsaturated zone is likely broader

than the size of the ponding basins. In the 1D effective parameter model representation of this

system, the effective,  fitted saturated  water  content  for  the silty  clay loam/silt  loam layer  at

67~200 cm (discussed in Text S1) is therefore lower than their typical values (Text S1).  The

fitted, high effective saturated hydraulic conductivities (about 0.4-16 cm/min) at 201~400 cm

(Tables 2-3) allow for the speed up of this excess downward water flow, which resulted in a

better fit in water contents at these depths, but it also promoted bromide leaching and thus caused

lower simulated bromide concentrations than observed at the deeper depths (e.g., 250 and 500

cm of LS; 300 and 450 cm of MS, Fig. 6). Based on the analysis above, the conceptual models of

water flow and bromide transport in the three profiles can be deduced (Fig. 7a).

Figure 7. Conceptual models of water flow and bromide transport (a), water and bromide mass
balance (b), and bromide travel times (c) during Ag-MAR in the study profiles. Blue polygons

and orange circles represent water and bromide molecules, respectively. Blue and orange arrows
represent water flow and bromide transport directions, respectively. I: Bromide application; F:
Flooding; L: Water loss outside the berms; Ea: Evaporation; H1: Horizontal flow through wood
chips; H2: horizontal flow caused by capillary barrier; D: Deep drainage; C: Capillary rise; G:

Groundwater flow. (1)~(6) are possible preferential flow mechanisms caused by (1) wood chips,
(2) soil repellency, (3) wormhole, (4) decayed roots, (5) impeding layers, and (6) layer
boundaries. Γ w and Γ s represent the water and solute transfer terms in Eqs. 10 and 13,

respectively. In this study, Γ w ≠ 0, and Γ s≠0 at LS (preferential flow and nonequilibrium
bromide transport); Γ w ≠ 0, and Γ s=0 at HS (preferential flow and equilibrium bromide

transport); Γ w = 0, and Γ s≠0 at MS (uniform water flow and nonequilibrium bromide transport).
SPM and DPM represent single and dual-porosity model in HYDRUS, respectively.
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4.3 Other possible reasons behind model deficiencies

First, as discussed in Section 4.2, there were abrupt decreases in water contents at 60 and

100 cm at LS, at 100 cm at MS, and at 60 and 100 cm at HS at the beginning of the flooding

(before May 17) that could not be captured by the model (Fig. 5). This could be due to some

subsurface heterogeneities (discussed in Section 4.2) or measurement errors such as overshoot

during saturation increase (Xiong, 2014). Water repellency, which may develop in long-term dry

soils and reduce the soil infiltration capacity (and take some time to overcome), may be another

explanation for these differences (Fig. 7a(2))  (Doerr et  al.,  2000). HYDRUS cannot simulate

flow in repellent soils, which may result in simulation errors.

Second,  detailed  measurements  of  soil  particle  distributions  and  saturated  hydraulic

conductivities  were also unavailable.  Therefore,  parameter  optimization runs started with the

average soil hydraulic parameters of different soil textures in this region (Table S1), which may

significantly differ from the site-specific real values. On the other hand, the simultaneous fitting

of 4 (single-porosity model) or up to 8 parameters (dual-porosity model) for each soil layer is

likely to result in non-unique and local optimal parameter sets  (Hopmans and Šimůnek, 1999).

Global  parameter  optimization algorithms may help improve this  aspect  (Zhou et al.,  2022).

However, since  a single HYDRUS model execution requires up to 50 seconds in this study,

global  optimization may face a very high computational  cost.  Alternatively,  we can identify

highly correlated parameters by correlation matrices (Figs. S10-S15) and fix some of them in

future parameter optimization, thus alleviating the computational burden.

4.4 Suitability of implementing Ag-MAR

Because  of  their  close  proximity,  the  three  profiles  had  the  same  land  use  and

hydroclimatological conditions but differed in subsurface hydrogeology. This study can therefore

provide some insights into the field-scale variability that one can expect when implementing Ag-

MAR at the field scale.

While HS provided the largest recharge efficiency compared to MS and LS, recharge

efficiency  between  sites  varied  only  between  88%  and  90%,  because  of  similar  effective

saturated hydraulic conductivities at layers above 200 cm as discussed in Sections 3.3 and 3.4.
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However, the degree of preferential flow varied distinctly between the three profiles, with HS

showing the largest degree of preferential flow, and MS the least indication of preferential flow,

and LS being in between the two (Fig. S11). Similarly, travel times (flow velocities) were longest

(slowest) at MS, followed by LS, and were shortest (fastest) at HS (Table 6, Fig. 7c). Bromide

transport  velocities  differed  by as  much  as  119% between  the  three  sites.  This  can  also be

verified by the dynamics in groundwater table depth and EC (Fig. S8). For example, there were

abrupt decreases in groundwater depth and increases in EC after the beginning of flooding at LS

and HS, which reached steady rates after a few days. In addition, the peaks in groundwater EC

(about 2000 µS/cm at LS and 3500 µS/cm at HS) were much higher than pore water ECs in the

bottom part (about 300~500 cm) of the soil profiles before flooding (about 1450~1650 µS/cm at

LS, and 1050 µS/cm at HS (Fig. S5d, Fig. S7d). This suggests that preferential flow transported

salts  from the  soil  surface  layers  (with  much  higher  pore-water  ECs)  to  groundwater  while

bypassing the soil matrix in the upper parts of the soil profiles. In contrast, the groundwater table

rise and EC dynamics were always more subtle at MS, representing a slower flow rate in the

form of piston flow. The occurrence of preferential flow helps accelerate the timing of soil salt

leaching  at  HS  and  LS,  but  also  poses  a  greater  risk  for  microbes  or  contaminants  to  be

transported  to  groundwater  since  it  reduces  the  time  available  for  chemical  or  pathogen

immobilization or degradation (Willkommen et al., 2021). However, evaluating the amount of a

non-conservative pollutant transported to groundwater because of preferential flow needs further

modeling studies.

Overall, all three profiles were able to achieve similar groundwater recharge efficiencies

under the tested flooding regime for Ag-MAR (Table 1) considering their varying soil textures

(Fig. 2). However, the water flow and solute transport processes might be very distinct.  The

suitability of implementing Ag-MAR depends on specific needs.  In practical applications, the

vadose zone with higher sand contents (such as HS) may imply more preferential flow (Sendros

et al., 2020), which promotes more focused soil salt leaching, while a vadose zone with more silt

contents (such as MS) would likely have a more muted contaminant transport response.

5 Conclusions
Our modeling results show that the dual-porosity models (considering preferential flow)

can better fit the arrival times of bromide fronts but cannot significantly improve the overall
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model performance. Preferential flow occurred due to the combined effects of dry antecedent soil

moisture followed by flooding, dry climate, soil texture, and the incorporation of almond wood

chips into the topsoil, etc.

Preferential flow did not significantly impact the water balance calculations (within 2%),

but it decreased the travel times of bromide from the soil surface to different depths of the soil

profiles by up to 38%, compared to the predictions provided by the single-porosity model.

In terms of groundwater recharge potential, HS showed a higher efficiency than MS or

LS, but the differences were relatively minor (within 2%). LS showed the highest degree of

preferential flow, followed by HS and MS, and the overall average bromide transport velocities

differed  by  up  to  119%.  In  brief,  similar  recharge  efficiency  can  be  achieved  at  sites  with

differing soil texture profiles but subsurface heterogeneity can have substantial effects on salt and

contaminant transport dynamics, which should be considered when implementing Ag-MAR.

The potential occurrence of lateral interflow is another important reason behind the model

deficiency  and  may  lead  to  errors  in  the  water  balance  calculation  in  our  relatively  small

experimental plots. In addition, we focused mainly on the effects of soil textural differences (i.e.,

between-lithofacies or large-scale heterogeneity) on Ag-MAR recharge and neglected the impact

of horizontal heterogeneities within lithofacies (small-scale heterogeneity). Future work should

extend the current 1D modeling analysis to 2D/3D to get full insight into soil heterogeneity’s

impacts (especially within-lithofacies or small-scale heterogeneity) on Ag-MAR recharge.
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