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Abstract 

In order to successfully guide generalization of knowledge, 
category representation needs to be both: flexible enough to 
account for new evidence and stable enough to resist harmful 
change. Here we present a set of experiments designed to test 
how items that violate our expectations (i.e., category 
exceptions) affect category representation. Specifically, we 
wanted to know whether learning a category exception can 
change category boundaries. Does learning about penguins 
changes the way we think about birds? Do features of penguins 
contribute to making decisions as to whether a novel item is a 
bird? Across two experiments we found evidence that 
exceptions can change category boundaries and thus 
significantly affect future generalization. We discuss 
implications these findings have for the extent models of 
category learning and memory. 

Keywords: category learning; generalization; exceptions; 
category boundaries 

Introduction 

One of the key hallmarks of human intelligence is the ability 

to extend our knowledge from familiar to novel. Based on our 

experience with fruit, we can infer that quince is edible even 

if have never encountered this fruit before (Gelman, 2009; 

Gelman & Meyer, 2011; Sloutsky, 2010). Therefore, our 

ability to generalize knowledge allows us to use what we 

have learned in the past, to predict future. As such, this ability 

represents a key tool humans need in order to successfully 

deal with the uncertainty of the everyday experience. 

Although it is typically performed in a fast and effortless 

way, even the simplest forms of generalization may be prone 

to error (Heit, 2000; Rips, 2001; Rehder, 2006). Most 

importantly, to make a generalization our cognitive system 

needs to decide which aspects of the previous experience are 

useful for making predictions about the novel item. For 

example, how useful is our experience with penguins in 

making predictions about the other birds?  

The current study aims to broaden our understanding of the 

principles that guide generalization by examining the effects 

that deviant items, such as flightless birds, have on category 

based generalization in adult human learners. 

Category based generalization: Challenges  

If it has a beak, wings and feathers, it lays eggs and flies, it 

is a bird. This understanding of what makes a bird is likely 

based on our experience of pigeons, crows, robins, cranes, 

and other flying birds. It is useful and accurate. However, it 

does not account for all members of this category. For 

example, penguins are birds although they do not fly.   

Our everyday experience is filled with examples such as 

this one, where a new experience violates the expectations we 

formed based on the salient regularities in the environment. 

There are different solutions our cognitive system may use to 

solve this problem. One possibility is that the exception and 

regularity-following items are represented independently. In 

this case, no change in the previously formed representation 

of the category is required. In language this is needed in order 

to avoid overgeneralizations (e.g., Yang, 2016). For example, 

when learning English one must learn when to generalize a 

property from familiar to novel verbs (e.g., add “–ed” to form 

past tense), and when properties apply only to specific verbs 

(e.g., eat – ate). Similar idea, the need for independent 

representation of exceptions, was suggested in categorization 

literature in order to explain advantage in memory for 

exceptions over regular category items (e.g., Palmeri & 

Nosofsky, 1995; Sakamoto & Love, 2004).   

On the other hand, our cognitive system may try to 

integrate the information about exception with knowledge 

about the regularity-following items. Based on this view, 

learning about penguins could change the representation of 

birds, so that it includes not only features of typical and 

common birds, but also the features characteristic of 

penguins. While both of these solutions could result in 

equally successful classification of penguins, they would 

support different category decision about novel birds we may 

encounter, such as emus or kiwis. If we follow the first 

solution, emus and kiwis would not be classified as birds 

since they lack the key property - flying. On the other hand, 

if penguins expand category boundaries, kiwis and emus 

would be classified as birds, without a need to learn this 

information anew. 

Importantly, both of the described solutions come at a cost. 

If we keep the representation of birds as flying creatures, we 

risk to misclassify rare members of the category. 

Alternatively, if we update the representation of birds to 

include features of penguins, we risk to include irrelevant 

features in category representation. Category representation 

that includes both relevant and irrelevant features results in 

erroneous generalizations driven by irrelevant features 

(Sloutsky, 2010; Deng & Sloutsky, 2016; Castro, Savic, 
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Navarro, Sloutsky & Wasserman, 2020). How does human 

cognitive system resolve this challenge?  

Although category-based generalization was extensively 

tested in categorization literature (e.g., Johansen & Palmeri, 

2002; Erickson & Kruschke, 2002; Lacroix, Giguere & 

Larochelle, 2005), we know little about the effects of 

exceptions on generalization. However, work on category 

exceptions provides important insights about how exception 

items may be represented. As hinted in the previous section, 

one of the dominant views in the literature, and the one that 

inspires this work, has been that exception and regular items 

need to be stored independently. It is important to understand 

that this solution was suggested by some influential models 

of category learning (e.g., RULEX, Nosofsky, Palmeri, & 

McKinley, 1994; SUSTAIN, Love, Medin & Gureckis, 2004) 

in response to resolving discrepancy in learning and memory 

for rule-violating exceptions – while regular items tend to be 

learned more successfully, exceptions tend to be remembered 

better. Importantly, these models have not been used to 

predict the effects of exceptions on generalization. Therefore, 

we will only discuss the importance of the theoretical 

assumption proposed by these models which shaped the 

dominant view in the literature - the view that exceptions 

need to be represented separately from regular items. One of 

the key implications of this assumption is that the 

generalization based on the categories with exceptions will 

be mainly shaped by the regularities that define the regular 

category members. Therefore, features of exceptions (i.e., 

penguins) will have small (or no) contribution in making 

category decisions compared to the features of the regular 

items.  

Combining insight from empirical studies and modeling, 

Erickson and Kruschke (2002) demonstrated that participants 

tend to classify novel stimuli according to the rule followed 

by the majority of the category members (regular items), even 

when the new item is most similar to the exception. This work 

seems to suggest that the regularity that defines majority of 

the category members may not only play an important role in 

generalization, but may also override the contribution of the 

features of the exception items.  

Therefore, in addition to being an interesting empirical 

question, understanding what effect category exceptions have 

on generalization has important theoretical implications. 

Present Study 

The present study was designed to test the effect of 

category exceptions on generalization. Specifically, we 

examined whether and how categorization of novel items 

changes after participants learn exceptions.  

Experiment had two parts. Each part had a training and a 

testing phase. In the first part, participants were trained to 

assign regular items to two categories. In the second part of 

the experiment, they learned that one of these categories has 

an exception. To examine the effects of exceptions on 

generalization, participants were tested on the same set of 

novel items both in the first and the second part of the 

experiment. Generalization items were built by combining 

features of the regular items and ones of the exception. 

Critically, these features were in conflict – while the feature 

of the regulars signaled membership in category A, the 

feature of the exception signaled membership in category B. 

Thus, category decisions on these items uncovered whether 

during generalization participants relied on the features of the 

exception item, or only features of the regulars. 

If exceptions do not influence generalization, classification 

of Generalization items should not change after participants 

learn about the exception. In other words, participants are 

expected to rely on the features of the regular items 

throughout the experiment. However, if exceptions do affect 

categorization, we expect to observe a change in 

generalization patterns after exception has been introduced.  

We should emphasize that the category structures typically 

used in the prior work do not allow for a direct test of whether 

the features of exceptions are used in generalization. This 

stems from the fact that exceptions are typically considered 

as items that have the same features as the regular items (i.e., 

the regular items of the contrasting category). For example, 

for categories of pink circles and yellow triangles, an 

exception to the category of pink circles would be a yellow 

triangle. While this type of exceptions is useful for testing 

effects of exceptions on memory, it is clearly not well suited 

for evaluating the unique contributions of features of 

exceptions to generalization of new items. Therefore, in the 

current study we designed the exceptions as items that violate 

salient regularities, but have unique features.  

Experiment 1 

Methods 

Participants We recruited 29 undergraduate students from a 

large Midwestern university. They received course credit for 

their participation.  

Stimuli Stimuli were two-dimensional items that varied in 

shape and color (see Figure 1).  

Category structure As illustrated in Table 1, category items 

had one rule feature that perfectly defined category 

membership of the regular items and one feature that was 

highly predictive (3 out of 4 regular items had this feature).  

There were three types of stimuli items: Regular items, 

Exception and Generalization items.  

Regular items belonged to two categories: A or B. Each 

category had four items: 3 Prototypes and 1 High Match item. 

Category A was a category of pink items, 3 pink circles and 

one pink triangle. Category B was a category of yellow items, 

three yellow triangles and one yellow circle (see Figure 1). 

Therefore, category membership was fully predictive based 

on the color, the rule dimension. The other dimension, shape, 

was probabilistic. One out of four training items in each 

category had the contrasting category value on this dimension 

(see Table 1). Items did not vary on other dimensions but 

color and shape. Therefore, although each category had 4 

items, 3 of these items (i.e., Prototypes) were identical.      

Exception item was different from members of category A 

and category B on both of the dimensions, color and shape. 
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For the above described regular items, Exception was a 

turquoise square (Figure 1). Please note that Exception was 

an individual. Therefore, both of its features were fully 

predictive. However, we will refer to the dimensions of the 

Exception having in mind the overall category structure 

which differentiates between the rule and the probabilistic 

feature. 

Generalization items were hybrid items that combined the 

features of Regular items and the Exception. There were two 

types of these items. The first had the rule feature of the 

Regulars and the probabilistic feature of the Exception. The 

second had the opposite combination: the rule of the 

Exception and the probabilistic feature of the Regulars. 

Critically, the two features of Generalization items were in 

conflict, signaling different category membership. Figure 1 

illustrates examples of generalization items when Exception 

(turquoise square) was a member of the category A (pink 

items). In this example, yellow square has the Rule of the 

category B Regulars (yellow items) and the probabilistic 

feature of category A Exception (square shape). On the other 

hand, turquoise triangle has the Rule of the category A 

Exception (turquoise color), and the probabilistic feature of 

category B Regular items (triangle shape). 

 

Table 1: Category structure used in Experiments 1-2. The rule 

dimension is in bold font. 

Training items 

 Category A Category B 

Regular (Prototype) 0 0 1 1 

Regular (Prototype) 0 0 1 1 

Regular (Prototype) 0 0 1 1 

Regular (High Match) 0 1 1 0 

Exception 2 2   

Test Items 

T1 1 2   

T2 2 1   
 

Design All participants were trained and tested in both 

Baseline and Exceptions condition (Condition; within-

subjects; levels: Baseline, Exception). However, for one half 

of the participants Exception was assigned to the category A 

(N=14) and for the other half (N=15) to the category B 

(Exception Assignment Condition; between-subjects; levels: 

Category A, Category B). All participants were tested on the 

same types of generalization items. 

Procedure The experiment had four parts: Baseline Training, 

Baseline Test, Exception Training and Exception Test.  

The task was the same at Training and at Test. Participants 

were presented with an item (e.g. a pink circle) and asked to 

classify it in one of the two categories (see Figure 2). The 

only difference between Training and Test was that at 

Training participants received corrective feedback after they 

gave a response (e.g. “That’s right! It is for Sony.”), while at 

Test there was no feedback.  

 

 
Figure 1: Illustration of experimental design and category 

structures used in Experiments 1 and 2. The figure gives 

illustration of version of the experiment in which Exception 

is a member of the Category A. 

 

In Baseline Training participants saw all of the Regular 

Training items twice (16 trials in total). In Exception 

Training, in addition to 16 Regular Training items, 

participants saw the Exception 4 times (20 trials in total). 

Baseline Test and Exception Test had identical set of items: 

two types of test items (Table 1) and Regular training items. 

Each type was presented 8 times (24 trials in total). The 

decision to present each test item type 8 times was made 

based on the previous categorization literature (Deng & 

Sloutsky, 2016; Savic & Sloutsky, 2019).  

 

 
 

Figure 2: Illustration of the task design in Experiments 1 

and 2.  

Results 

Training Learning was tested based on the accuracy 

participants achieved in the phase of the experiment in which 

they were first presented with an item type: Baseline phase 

for Regular items, and Exception phase for Exceptions.  

Participants performed with an average accuracy of .92 

(SD = .11) on Regular items and .78 (SD = .21) on 

Exceptions, which was well above the chance performance of 

.50 (ts > 7.35, ps < .001). There were no differences in 

learning of Regulars or Exceptions between the two 

Exception Assignment Condition groups (both ps > .10)   

Test Generalization was tested based on the performance on 

two Generalization items (see Figure 1). To test the change 

in performance between the conditions, we looked at how 

likely participants were to classify Generalization items as 

members of category A (i.e., Proportion of category A 
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responses), both before they learned to categorize the 

Exception item (Baseline) and after (Exception).  

As it can be seen in Figure 3 (panel A), learning about the 

Exception did not change classification of the Generalization 

item that followed the rule of the Regulars and had the 

probabilistic feature of the Exception. On the other hand, 

introducing the Exception significantly changed 

classification of the Generalization item that followed the 

rule of the Exception and had the probabilistic feature of 

Regulars (Figure 3, panel B).  

The pattern seen in Figure 3 was confirmed by two two-

way mixed ANOVAs with Condition (within subjects: 

Baseline vs. Exception) and Exception Assignment 

Condition (between subjects: Category A vs. Category B) as 

factors and proportion of category A responses as a 

dependent measure.  

The analyses revealed that performance on items that had 

the rule of the Regular item and the probabilistic of the 

Exception was not different before and after they learned 

Exception. Assignment Condition was significant (F(1, 27) = 

958.4, p < .001, η2
G = .957), but Condition and their 

interaction were not significant (ps > .10).  

On the other hand, we found a significant interaction of the 

two factors (F(1, 27) = 12.1, p < .01, η2
G = .191), as well as 

significant effect of the Assignment Condition (F(1, 27) = 

56.67, p < .001, η2
G = .498) in performance on items that had 

the rule feature of the Exception and the probabilistic feature 

of the Regulars item (turquoise circle).  

 
 T1. Rule = Regular  

Probabilistic = Exception 

T2. Rule = Exception 

Probabilistic = Regular 

                                 

  
Figure 3: Performance on Generalization items in 

Experiment 1. Figure shows how likely participants were to 

classify Generalization items as members of category A, 

before (Condition: Baseline) and after (Condition: 

Exception) they learned the Exception. The performance is 

presented for two Exception Assignment Conditions 

(Category A vs. Category B). Error bars represent standard 

errors of mean. Pink dots represent individual participants. 

The dotted line marks chance performance of .50.  

Experiment 2 

The aim of Experiment 2 was to test whether exceptions 

have the same effect on generalization when participants are 

not forced to classify novel item in one of the two defined 

categories (i.e., “things can be either A or B”). We wanted to 

test whether the pattern reported in Experiment 1 generalizes 

to situations of more flexible classification where participants 

can also classify novel items as members of an open category 

(e.g., “something else”). In other words, participants’ may 

classify an emu as a bird when they are asked to choose 

between a bird and a fish, but not when they can choose 

between “a bird” and “not a bird”.    

Experiment 2 used the same stimuli, task and procedure as 

Experiment 1, with one important difference. While in 

Experiment 1 we used a standard design in which items can 

be classified in one of the two defined categories (i.e. item 

either belongs to the category A or the category B), in 

Experiment 2, participants were instructed to classify items 

as either belonging to the category A, or not belonging to the 

category A. In other words, instead of using two defined 

categories (the design of Experiment 1), here we used one 

defined category (e.g., category A) and one open category 

(e.g., non A).  

In Experiment 2, participants were 44 undergraduate 

students from a large Midwestern university who received 

course credit for their participation. Twenty-four of these 

participants took part in version A of this experiment, and 20 

took part in version B. 

Results 

The logic and the steps in data analyses were the same as in 

the Experiment 1. 

 
T1. Rule = Regular  

Probabilistic = Exception 

T2. Rule = Exception 

Probabilistic = Regular 

                                 

  
Figure 4: Performance on Generalization items in 

Experiment 2. Figure shows the proportion of Category A 

responses across two Conditions (Baseline vs. Exception) 

and two Exception Assignment Conditions (Category A vs. 

Category B). Error bars represent standard errors of mean. 

Pink dots represent individual participants. The dotted line 

marks chance performance of .50. 

 

Training Accuracy was high on both types of training items. 

Participants performed with an average accuracy of .91 (SD 

= .11) on Regular items and .85 (SD = .21) on Exceptions, 

which was well above the chance performance of .50 (ts > 
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11.46, ps < .001). There were no differences in learning of 

Regulars between the two Exception Assignment groups (p > 

.10), but Exception was learned better in group in which 

Exception was assigned to category B, t(35) = 2.34, p =.02. 

However, in both groups average accuracy on Exceptions 

was high (.89 and .76). 

Test The analyses revealed that performance on the 

generalization item that had the rule feature of the regular 

items and the probabilistic of the Exception was affected only 

by the Assignment Condition (F(1, 42) = 808.5, p < .001, η2
G 

= .911), while Condition and their interaction were not 

significant (ps > .10).  

On the other hand, we found a significant interaction of the 

two factors (F(1, 42) = 21.5, p < .001, η2
G = .197), as well as 

a significant effect of Exception Assignment group (F(1, 42) 

= 45.6, p < .001, η2
G = .361) and Condition (F(1, 42) = 5.97, 

p < .05, η2
G = .064) on performance on the generalization 

items that had the rule feature of the Exception and the 

probabilistic feature of the Regular items.  

The pattern of results in Experiment 2 thus completely 

replicates the pattern reported in Experiment 1.      

Discussion 

Across two experiments reported here, we have 

demonstrated that category exceptions affect generalization. 

This was true even though (a) participants were introduced to 

exception only after they formed a robust representation of 

regular items, (b) exceptions were rare – regular items were 

8 times more frequent, (c) exceptions were not confusable 

with regulars and there was no overlap in features, and (d) 

participants were not forced to rely on the feature of 

exception – each test item could also be classified based on 

the feature of regular items (Experiment 2).  

As explained in the introduction, finding that category 

exceptions affect category decisions is surprising having in 

mind the dominant view in the literature that exceptions are 

represented separately from regular items. It is worth noting 

that this view is shaped by assumptions of models of category 

learning designed to predict learning and memory of one 

specific, different type of exceptions – exceptions that are 

highly confusable with the contrasting category members 

(Nosofsky, Palmeri, & McKinley, 1994; Love, Medin & 

Gureckis, 2004). Therefore, while this assumption may be 

useful in simulating the exceptions confusable with 

contrasting category items, there is no evidence that it 

generalizes more broadly to other types of exceptions. In 

contrast, our findings suggest that features of exceptions may 

be represented together with the features of regular items, and 

they may jointly affect generalization.   

In addition to finding a robust evidence that category 

exceptions can expand category boundaries, we also report 

an interesting pattern that demonstrates the limits of this 

effect. When participants were asked to classify items that 

had probabilistic feature of Regular items (i.e. shape) and the 

rule of the Exception (i.e. color), they made category decision 

in accordance with the feature of the Exception. However, 

items that had probabilistic feature of Exception item and the 

rule of Regulars were classified based on the feature of the 

Regulars, both before and after Exception was introduced. 

Therefore, not any feature of Exception can expand category 

boundaries. This effect is specific to the dimension that is the 

most predictive of category membership based on the overall 

category structure. 

Finding that exceptions stretch category boundaries only 

on the rule dimension is important. It suggests that not only 

that exceptions are not stored separately, but their 

representation is affected by the representation of regular 

items. Note that for exceptions in our experiments both 

features were equally, fully predictive. Therefore, the only 

reason to weigh these features differently could lie in the 

effect the category structure of regular items had on 

exceptions. This finding is in accordance with previously 

reported spill-over effect in memory representation of 

exception items (Savic & Sloutsky, 2019). Specifically, it 

was found that participants who tend to form rule-based 

representations of regular items also tend to form rule-based 

representations of exceptions of the same category. On the 

other hand, participants who form similarity-based 

representations of regulars, tend to form similarity-based 

representations of exceptions. Both of these findings run 

counter the view of regular and exception items being 

represented separately.  

 
Rule = Exception 

Probabilistic = Regular 

                  

 
Figure 5: Generalization performance of participants with 

good memory for probabilistic features, collapsed across 

Experiments 1-2. 

 

It is worth discussing potential alternative explanations of 

the current pattern of results. For example, one could wonder 

whether the reported pattern of generalization could be 

simply explained by participants learning only one dimension 

- the color of the stimuli. If participants did not learn the 

shape, then test items did not raise any conflict - participants 

simply always responded in accordance with the only 

dimension they’ve learned. Although this explanation would 

not speak against our main interpretation that features of 

exceptions are used in generalization, it would require 

modification of further interpretation – that the rule feature of 

the exception is preferable cue in categorization over the 

probabilistic feature of the regular items. Therefore, this is a 

potentially important concern. Therefore, we run a follow-up 
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analyses on a subsample of participants from Experiment 1 

and 2 and used as inclusion criteria memory data we did not 

report in our main analyses. To be selected participants had 

to have good memory (i.e. above chance level of .60) for 

shape of all of the training items. As shown in Figure 5, the 

pattern of generalization in this subsample is the same as the 

reported pattern for the whole sample. Therefore, it seems 

justified to conclude that participants did choose to rely on 

the rule of the exception over the probabilistic of the regular. 

Conclusion 

Across two experiments we found evidence that category 

exceptions change category boundaries and affect 

generalization of novel items. In addition, our findings 

suggest that the overall category structure also affects the 

representation of the exception items. Therefore, the current 

work suggests that when encountering information that 

violates one’s expectations, adult human learners form a 

representation that is flexible enough to account for new 

evidence, but at the same time tends to be stable and 

preserves the previously learned structure of the category.  

Building on this initial strong evidence, further research is 

needed in order to demonstrate whether the pattern we have 

found for learning simplified, artificial category structures 

holds for more complex category structures which may 

include other types of category exceptions.   
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