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RESEARCH ARTICLE

A20 upregulation during treated HIV disease

is associated with intestinal epithelial cell

recovery and function

Avantika S. Chitre1, Michael G. Kattah2, Yenny Y. Rosli2, Montha Pao3, Monika Deswal3,

Steven G. Deeks3, Peter W. Hunt1, Mohamed Abdel-Mohsen4, Luis J. Montaner4, Charles

C. Kim1¤, Averil Ma2☯, Ma Somsouk2☯, Joseph M. McCune1☯*

1 Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, United

States of America, 2 Division of Gastroenterology, University of California, San Francisco, San Francisco,

CA, United States of America, 3 Division of HIV/AIDS, University of California, San Francisco, San Francisco,

CA, United States of America, 4 The Wistar Institute, Philadelphia, PA, United States of America

☯ These authors contributed equally to this work.

¤ Current address: Verily, South San Francisco, CA, United States of America

* Mike.McCune@ucsf.edu

Abstract

Untreated Human Immunodeficiency Virus (HIV) infection is characterized by intestinal epithe-

lial barrier dysfunction and chronic inflammation, related features that are attenuated to vari-

able degrees by suppressive antiretroviral therapy (ART). Specific mediators of intestinal

epithelial cell (IEC) dysfunction and restoration during HIV disease and treatment have yet to

be identified. We studied IECs isolated from intestinal biopsies by RNAseq and found that

mRNA levels for the ubiquitin-modifying enzyme, A20, are upregulated in ART-treated individ-

uals and are positively correlated with markers of epithelial function (e.g., CTNNB, CLDN4,

and TJP1). In a murine intestinal organoid model, A20 expression was suppressed by inter-

feron-alpha (IFNα), which is highly expressed during HIV viremia and induces IFN-mediated

signaling. Notably, A20 deletion rendered intestinal organoids more susceptible to cell death

and inhibition of barrier-related genes mediated by interferon-gamma (IFNγ), a cytokine also

present at elevated levels during untreated infection. Furthermore, A20 specifically restricted

expression of IL-17A-induced inflammatory genes in organoids. Finally, ART-suppressed

chronically infected individuals treated with pegylated IFNα2a for five weeks demonstrated

reduced expression of A20 in peripheral blood mononuclear cells. Our results are thus con-

sistent with a model in which enhanced type I interferons suppress A20 levels, leading to

IFNγ-mediated dysfunction. As such, variation in A20 expression during the course of HIV

infection could underlie both the development of epithelial dysfunction before the initiation of

ART and the recovery of intestinal epithelial integrity thereafter.
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Author summary

Though the advent of antiretroviral therapy (ART) has significantly improved the lives of

individuals infected with the Human Immunodeficiency Virus (HIV), those on therapy

still suffer from an enhanced risk of morbidities and mortalities that is caused, at least in

part by, overactivation of the immune system. Disruption in the intestinal epithelial bar-

rier, which when intact cordons off the immune system from components in the gut that

can drive an inflammatory response, is thought to contribute significantly to this process.

How HIV causes this disruption has not been identified. In this study, we analyzed the

expression profile of intestinal epithelial cells from HIV-infected individuals, on and off

therapy, compared to uninfected controls and observed an increase in expression of an

anti-inflammatory regulator, A20, in treated participants but not in those without treat-

ment. In a culture system that parallels features of the intact gut barrier, we saw that a

cytokine induced by HIV suppressed the expression of A20. In addition, treatment of

ART-suppressed HIV-infected individuals with this same cytokine led to reductions in

A20 expression. Furthermore, experimental deletion of A20 in our culture system and

treatment with HIV-associated cytokines led to changes consistent with a defective intesti-

nal barrier. As such, we suggest A20 is central to epithelial dynamics during HIV disease

and could protect the epithelium from damage associated with HIV-induced cytokine

changes.

Introduction

Infection with Human Immunodeficiency Virus (HIV) results in widespread inflammation

in infected individuals with key changes in the immune system that have important clinical

implications. Untreated HIV disease is characterized by high levels of systemic and tissue-

localized proinflammatory cytokines such as an increase in type I interferon activity and

interferon-gamma (IFNγ), each of which is thought to contribute to tissue damage [1,2].

Importantly, these hallmarks of infection result in immune dysfunction that can often per-

sist despite the initiation of antiretroviral therapy (ART). Immune dysfunction, as mea-

sured by type I IFN activity for example, is predictive of non-AIDS related morbidity and

mortality in ART-treated individuals [3–6] and residual immune activation may account

for the overall shorter life expectancy of HIV-infected subjects, particularly in those with

incomplete immunologic restoration after ART initiation [7–12].

HIV infection also causes significant disruption of the mucosal immune system, a site of

progressive CD4+ T cell loss and a tissue that harbors a substantial reservoir of latent HIV

[13,14]. In particular, progressive SIV/HIV disease is associated with the preferential depletion

of CD4+ T helper type 17 (Th17) cells producing the cytokine interleukin 17 (IL-17), a key epi-

thelial support cytokine whose depletion during viremia is proposed to be the mechanistic

basis for epithelial barrier dysfunction and pathogenesis [15–19].

Intestinal epithelial cells (IECs) play both physical and physiological roles in maintaining gut

homeostasis [20] by acting as a spatial separation between luminal contents and underlying im-

mune cells and by expressing and secreting various molecules that promote barrier integrity.

HIV-infected individuals exhibit a defect in the epithelial barrier, as characterized by increased

epithelial permeability, decreased expression of tight junction proteins [21–23], and elevated cell

death [24] during viremia. ART can reverse these changes, albeit to variable degrees [21,24,25],

and it is thought that residual immune alterations during ART may be due to continued perme-

ability of the epithelial barrier, driving a chronic inflammatory response against luminal microbial
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contents [26]. While epithelial dynamics have been studied at the intestinal level, specific investi-

gation of the epithelial compartment in HIV-infected patient cohorts has not been conducted in

a systematic manner. Furthermore, specific mediators of IEC dysfunction and restoration during

HIV disease and treatment have yet to be identified.

Given the lack of evidence for direct infection of IECs with HIV in vivo [27,28], we hypoth-

esized that the changes in epithelial dynamics during infection are effected indirectly by HIV

via virus-induced changes in cytokine secretion, resulting in barrier dysfunction and disease

progression. Reciprocally, we speculated that these pathways may also determine the extent of

disease resolution after the initiation of ART. To address these hypotheses, we analyzed intesti-

nal epithelial cell isolates and lymphocytes from primary human intestinal tissue obtained

from HIV-infected individuals at varying stages of disease and treatment. Here, we show that

the induction of the ubiquitin-modifying enzyme, A20, is associated with markers of epithelial

function after the initiation of ART. We also demonstrate that deletion of A20 in a mouse

intestinal organoid model is associated with hallmarks of epithelial dysfunction, particularly in

the presence of IFNγ. On the basis of these findings, we speculate that changes in the expres-

sion of A20 may play a pivotal role in the dynamics of the intestinal barrier during untreated

and treated HIV disease.

Results

Characteristics of the study participants

We studied 34 participants from the SCOPE cohort at Zuckerberg San Francisco General Hos-

pital, which included risk-matched uninfected controls (n = 9), untreated HIV viremic partici-

pants (n = 6), and those effectively suppressed on ART (n = 19) (Table 1). Intestinal biopsies

were obtained by flexible sigmoidoscopy and analyzed. Alterations in immunological measure-

ments were consistent with prior observations [11,15,23]. Compared to HIV-uninfected par-

ticipants, viremic individuals had a significantly lower proportion of gut CD4+ T cells and a

commensurately increased proportion of CD8+ T cells (S1A Fig). The frequencies of these

cell subpopulations were partially but incompletely restored towards normal in the ART-tre-

ated subgroup. The frequencies of gut-associated IL-17A- and IL-22-producing CD4+ T cells

were significantly lower in untreated subjects and largely restored to normal levels amongst

ART-suppressed participants (S1B–S1D Fig). Importantly, the production of IL-17A by all

lymphocytes (gated as all CD45+ cells) paralleled that found with CD4+ T cells, indicating

broad IL-17A depletion in the gut during viremic HIV (S1E Fig). Despite full restoration of

the percent of T cells expressing IL-17A and IL-22, signs of peripheral immune activation (as

reflected by CD8+ T cells co-expressing CD38 and HLA-DR) remained elevated in ART-tre-

ated patients relative to uninfected controls, suggesting persistent activation of the immune

system despite viral suppression (S1F Fig).

A20 (TNFAIP3) is upregulated in IECs from ART-treated individuals

To determine which IEC-specific pathways are involved in the observed defects in epithelial

function during HIV disease, we utilized a transcriptomics approach to discern gene expres-

sion patterns that might be correlated with HIV infection and/or treatment. Whole RNA was

obtained from EDTA-isolated IECs from all subgroups and interrogated using RNA sequenc-

ing (RNAseq). Pairwise comparisons between IECs from viremic and ART-treated subgroups

revealed an expression pattern consistent with upregulated A20 activity during ART (Fig 1A).

TNFAIP3, the gene encoding A20 (and herein referred to as A20), was upregulated in IECs

from ART-treated subjects relative to viremic individuals. This was not due to an increased

presence of epithelial cells in isolates from ART-treated individuals as the percent of epithelial
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cells (defined as CD45-EpCAM+) by flow cytometry was similar across subgroups and there

was no correlation between transcript levels of A20 and EPCAM (S2A and S2B Fig). A20 is a

known negative regulator of NFκB signaling and plays a key role in restricting inflammatory

responses via ubiquitin-editing mechanisms [29–31]. NFKBIA, the gene encoding the inhibitor

IκBα that directly binds and sequesters NFκB [32], was also upregulated in ART-treated partici-

pants relative to viremic individuals and was highly correlated to A20 (p = 0.00001) (Fig 1B).

Transcript levels of NFKBIA were positively associated with those for CTNNB1, the gene for

proliferation-associated β-catenin (p = 0.0009), suggesting a relationship with epithelial cell sur-

vival (Fig 1C). Importantly, β-catenin has also been shown to interact with and inhibit NFκB

signaling in a manner similar to IκBα [33]. A20 and IκBα (NFKBIA) expression also positively

correlated with the expression of the tight junction genes CLDN4 and TJP1 (p = 0.001 and

Table 1. Clinical characteristics of the cohort.

Subgroup Uninfected (n = 9) Viremic Untreated (n = 6) HIV+ ART+ (n = 19)

Age 50 (11) 48 (3) 55 (9)

Gender 100% male 100% male 95% male

CD4 T Cell Count (cells/ml) 656 (282) 486 (103) 573 (384)

Nadir CD4 Count (cells/ml) NA 410 (94) 150 (236)

Plasma Viral Load (copies/ml) NA 24,869 (23,465) NA

Measurements of indicated characteristics by clinical subgroup. For all parameters, the median is given, with the interquartile range following in parentheses.

https://doi.org/10.1371/journal.ppat.1006806.t001

Fig 1. IEC expression pattern from ART-treated participants is consistent with upregulated A20 (TNFAIP3) levels. (A) Pairwise comparison of IEC gene

expression between viremic and ART-treated participants by RNAseq as analyzed by DESeq2 workflow. Each dot represents a sequenced gene. The right side of

the plot indicates relative enrichment in ART-treated relative to viremic individuals, whereas the left side indicates the inverse, enrichment in viremics relative to

ART-treated participants. Purple signifies greater than two-fold change expression relative to the comparator in either direction. Red indicates a significant p-

value (<0.05) after false discovery rate correction. Green indicates fulfillment of both of these criteria. Genes of particular interest are highlighted in bold. (B)

Spearman correlation of A20 transcript levels and NFKBIA expression, as measured by RNAseq, in ART-treated participants (n = 19). Spearman correlation of

A20 mRNA or NFKBIA gene expression, as indicated on the x-axis, to transcript levels of (C) proliferation-associated β-catenin, CTNNB1, or the tight junction

genes (D) CLDN4 and (E) TJP1.

https://doi.org/10.1371/journal.ppat.1006806.g001
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p = 0.01, respectively) (Fig 1D and 1E), consistent with previous work implicating a role for

A20 in maintaining gut barrier integrity [34].

A20 transcript levels were also enriched in ART-treated relative to uninfected individuals

(S2C Fig). Concurrent to A20 upregulation, IL1R2, an antagonist of IL-1β signaling [35], was

downregulated in ART-treated subjects relative to uninfected individuals. Since IL-1β signal-

ing has been shown to drive A20 expression through NFκB [36], the finding of reduced IL1R2
is consistent both with previous studies showing elevated IL-1β signaling in SIV-infected mon-

keys [37] and with the observed upregulation of A20 in ART-treated subjects. RNAseq expres-

sion values were validated by targeted qPCR on epithelial isolates (S2D Fig). There was no

association between A20 levels in treated individuals and ART regimens that did or did not

contain the non-nucleoside reverse transcriptase inhibitor, efavirenz, the nucleotide analog

reverse transcriptase inhibitor, tenofovir, or the nucleoside reverse transcriptase inhibitor, aba-

cavir (S2E Fig), consistent with the hypothesis that the observed changes in A20 expression

are due to mechanisms distinct from drug effect alone.

Viremia-associated type I IFN suppresses A20 levels in intestinal organoids

Despite the fact that A20 expression was upregulated in ART-treated versus viremic individu-

als (Fig 1A), there was no difference in A20 expression between uninfected and viremic sub-

jects (S2F Fig). This was the case even though cytokines such as IL-1β and TNF are known to

induce A20 [29,36,38] and also known to be elevated in untreated HIV disease [37,39]. Since

IFNα has been shown to suppress A20 in dendritic cells in the context of HCV infection [40],

we hypothesized that the lack of A20 upregulation during untreated disease might be due to

the high levels of type I interferon in viremic participants. Consistent with prior literature

[1,17,41], elevated type I interferon activity was observed during untreated HIV, including an

increase in the plasma ratio of kynurenine-to-tryptophan (K/T) [3] (S3A Fig) and elevated lev-

els of IFN-stimulated genes (e.g., OAS2 in a statistically significant manner and a trend for

MX1) in whole gut biopsies (S3B Fig).

To determine whether such elevated levels of type I IFN might have a direct effect on A20

expression in IECs, we generated organoid cultures from murine small intestine. Derived from

primary tissue, comprised solely of epithelial cells, and exhibiting a crypt/villus architecture,

intestinal organoids have been previously shown to serve as a relevant and experimentally trac-

table model of the intestinal epithelium [42–44]. Organoids were treated with recombinant

IFNα for 48 hours and then harvested to measure A20 protein levels by western blot. After

incubation with IFNα, A20 levels were found to decrease in a dose-dependent manner (Fig 2A

and 2B). These observations are consistent with the possibility that A20 is downregulated in

viremic individuals by high levels of type I IFN activity.

A20 downregulation renders epithelial organoids susceptible to IFNγ-

mediated reduction of genes that contribute to barrier function

We hypothesized that type I IFN-mediated downregulation of A20 in viremic individuals may

render the epithelium more vulnerable to the damaging effects of other proinflammatory cyto-

kines, e.g., IFNγ, that are abundant in untreated disease. As shown in prior studies [45], eleva-

ted levels of IFNγ were found in viremic participants at the protein level in terms of frequency

of CD8+ T cells producing the cytokine (S4A Fig) and at the transcript level in whole rectosig-

moid biopsies (S4B Fig). Additionally, RNAseq analysis on IECs revealed that IFNGR1, which

encodes the primary signaling receptor for IFNγ, was upregulated in viremic subjects relative

to ART-treated individuals (Fig 1A). Taken together, these data suggest that IECs experience

higher levels of IFNγ signaling in the viremic state.
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To test the effect of high IFNγ levels on the expression of genes important to epithelial cell

function in the presence or absence of A20, we utilized murine epithelial organoid cultures

derived from mice genetically modified to conditionally delete A20. A20FL/FL villin-ERCre+

mice are engineered such that, in an epithelial-specific manner (driven by the villin promoter),

ligands that signal through the estrogen receptor (ER) induce deletion of A20. 4-hydroxytamox-

ifen (4OHT), the active metabolite of tamoxifen, is used in culture to quickly and potently

induce ER-signaling [46]. As such, A20 deletion in organoids is induced upon 4OHT adminis-

tration in vitro, whereas organoids derived from A20FL/FL villin-ERCre- mice continue to ex-

press A20 even after 4OHT administration. Organoids were exposed to 4OHT for 24 hours to

allow for A20 deletion, as confirmed by western blot analysis (Fig 3A), and then stimulated with

rIFNγ for 12 hours, after which transcript levels of genes for inflammatory chemokines, mucins,

tight junction proteins, and antimicrobial peptides were assessed (Fig 3B–3E and S1 Table).

In organoids from A20FL/FL villin-ERCre+ mice, A20 deletion alone in organoids, in the

absence of exogenous stimuli, had effects on gene expression of a small number of genes, with

statistically significant reductions in the transcript levels of the mucin genes, Muc2 and Muc4
(Fig 3C), and the tight junction gene Tjp1 (Fig 3D). Separately, IFNγ treatment alone led to

more widespread changes in gene expression, with significant decreases in transcript levels of

mucin genes (Muc2, Muc4, Muc13) (Fig 3C) and tight junction genes (Tjp1, Ocln) (Fig 3D).

Importantly, when A20 deletion was combined with IFNγ, we observed a robust increase in

the expression of the inflammatory chemokines, Cxcl1 and Cxcl2 (15- and 300-fold, respec-

tively) (Fig 3B) and further reductions in the expression of Muc2 transcripts (Fig 3C), suggest-

ing an A20-specific role in protecting organoids from IFNγ-mediated inhibition of mucin

expression. Similarly, downward trends in the transcript levels for Muc4, Muc13, Tjp1, and
Ocln, (Fig 3C and 3D) indicate that A20 deletion further potentiates the effect of IFNγ,

although those changes did not reach statistical significance. These data, in sum, suggest that

A20 expression has the capacity to protect IECs from the detrimental effects of IFNγ.

Interestingly, and in contrast to the expression of other measured mucin genes, Muc1 tran-

scripts increased with IFNγ but were not affected further by deletion of A20 (Fig 3C). Previous

literature has linked Muc1 to intestinal inflammation with a specific role in promoting cyto-

kine-mediated immune responses [47], suggesting this might be a mechanism through which

Fig 2. Intestinal epithelial A20 is downregulated after exposure to IFNα (A) Protein levels of A20, measured by western blot, in murine organoids

after treatment with indicated dose of IFNα for 48 hours. (B) Quantification of A20 levels normalized to GAPDH in three independent experiments

conducted as in (a). Statistical significance was assessed using a t-test. � P<0.05, ��P�0.01, ���P�0.001.

https://doi.org/10.1371/journal.ppat.1006806.g002
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IFNγ is exerting its negative effects on the epithelium. In a similar manner, the expression lev-

els of Cldn4 increased upon IFNγ stimulation and were even further increased upon deletion

of A20 (Fig 3D). Since Cldn4 expression has been shown to be directly induced by NFκB [48],

the observed increase of this particular gene could be a by-product of ongoing NFκB-related

inflammation in the absence of A20. Intriguingly, antimicrobial peptide Defb1 was markedly

inhibited by IFNγ and was not further affected by A20 deletion (Fig 3E), suggesting that A20 is

not directly involved in regulation of Defb1 expression but that IFNγ alone can modulate the

antibacterial defense of the epithelium.

Fig 3. A20 deletion is associated with enhanced IFNγ-mediated inhibition of tight junction and mucin gene expression. (A) Western blot for A20 protein levels

in A20FL/FL villin-ERCre+ or Cre- organoids after treatment with 4-hydroxytamoxifen (4OHT) for 24 hours. Gene expression by qPCR of (B) the proinflammatory

chemokines Cxcl1 and Cxcl2, (C) the mucins Muc2, Muc4, Muc13, and Muc1, (D) the tight junction proteins Tjp1, Ocln, and Cldn4, and (E) the antimicrobial peptide

Defb1 after stimulation with IFNγ for 12 hours. Statistical significance within Cre+ and Cre- conditions was first tested by ANOVA and specific pairwise

comparisons were made using t-tests corrected for multiple comparisons by the Scheffe method (see also S1 Table). Stars above each column indicate statistical

significance relative to the media condition. Bars with stars indicate statistically significant differences between the two indicated conditions. � P<0.05, ��P�0.01,
���P�0.001, ����P�0.0001.

https://doi.org/10.1371/journal.ppat.1006806.g003
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A20 downregulation enhances the inflammatory effects of IL-17A

Given the observation that IL-17A levels are restored to normal in ART-treated subjects (S1B

and S1C Fig) and prior work in stromal cell lines showed that IL-17 signaling is restricted

byA20 [49], we next tested whether A20 deletion altered the effects of IL-17A stimulation in

organoid IECs. Intestinal organoids were treated with 4OHT to delete A20 and were then

stimulated with rIL-17A for 12 hours. IL-17A stimulation in the setting of A20 deletion led

selectively to dramatic increases in the expression of the proinflammatory genes Lcn2 [50] (by

30-fold), Cxcl1 (by 15-fold), and Cxcl2 (by 60-fold) (Fig 4A–4C and S2 Table). A20-sufficient

Cre- organoids showed no such increase in gene expression, suggesting that these changes

occur specifically in the absence of A20. Similar to the effect seen with IFNγ, the expression of

the mucin gene Muc1 also increased with IL-17A independent of A20 function (since this ef-

fect was also observed in Cre- organoids), with the magnitude of the effect being much more

modest than that observed with the inflammatory genes (Fig 4D). Taken together, these results

indicate that A20 expression in IECs restricts the ability of IL-17 to upregulate pro-inflamma-

tory genes while not affecting the expression of epithelial integrity-related genes (e.g., Cldn4,

Tjp1, Ocln, Muc2, Muc 3, Muc4, and Muc13) (S3 Table).

Deletion of A20 enhances cytotoxicity induced by IFNα and IFNγ
In addition to the effects described above, both IFNα and IFNγ were found to have significant

cytotoxic effects on organoid cultures (Fig 5A and 5B). Cell death was defined by organoid

morphology, propidium iodide staining, and a quantitative ATP-based luminescence assay.

Compared with A20-sufficient organoids in media alone, A20-deficient (4OHT-treated) orga-

noids demonstrated a small but statistically significant increase in cell death (Fig 5A). When

A20-sufficient organoids were treated with the indicated cytokines (IFNγ, IFNα, or IL-17A)

(black line in Fig 5A), only treatment with IFNγ caused elevated cell death. Treatment of

A20-deficient organoids with either IFNα or IFNγ revealed increased levels of cytotoxicity rel-

ative to A20-sufficient organoids, an effect that was enhanced upon exposure to increasing

concentrations of cytokine (red line in Fig 5A). Furthermore, confocal microscopy revealed

that A20 deletion combined with IFNγ treatment resulted in a loss of crypt structure in orga-

noids (Fig 5B). This is consistent with prior work demonstrating IFNγ induction of epithelial

cell death such that IFNγ-knockout animals were protected from epithelial damage in vivo in a

DSS-colitis model [51,52] and, in epithelial cell lines, IFNγ inhibited epithelial proliferation

by suppressing β-catenin activity [53]. In contrast to the phenomena observed with IFNα and

IFNγ, IL-17A showed no such effect on cell viability (Fig 5A and 5B). These results, together

with the observed IFNγ-mediated suppression of epithelial genes (Fig 3), suggest that IFNγ
may be a primary driver of IEC dysfunction in HIV, an effect exacerbated by type I IFN-medi-

ated downregulation of A20 expression.

Treatment of HIV-infected ART-treated individuals with IFNα reduces

A20 expression in vivo
To extend our findings in the organoid system to more clinically relevant scenarios, we

assessed the effect of pegylated IFNα2a (Peg-IFNα2a) immunotherapy in ART-suppressed

chronically infected subjects on A20 gene expression in samples obtained from a previously

published study [54]. Briefly, HIV-infected individuals on ART were treated weekly with Peg-

IFNα2a for five weeks, with blood samples taken at baseline and after the immunotherapy

period (Fig 6A). RNA was isolated from peripheral blood mononuclear cells (PBMCs), and

probed for the transcript levels of A20 and a key interferon-stimulated gene, ISG15 [55]. After
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five weeks of Peg-IFNα2a, the expression of ISG15 was highly elevated in PBMCs, at an aver-

age of 21-fold increased from baseline levels (range of 7 to 44-fold) (P�0.0001) (Fig 6B). Con-

currently, there was a significant decrease (a mean of 1.56-fold) in the mRNA expression of

A20 (P<0.05) (Fig 6C), an effect that appeared most dramatic in those with the highest A20

levels at baseline. These observations provide clear evidence that high levels of type I IFN sig-

naling can regulate A20 expression in the context of HIV infection.

Discussion

Our study is the first to identify a role for A20 in modulating inflammatory signals and epithe-

lial function in the context of HIV infection and treatment. The work outlined here advances

our understanding of the molecular underpinnings of epithelial barrier function as well as its

relationship to inflammation during HIV infection. It has long been observed that disruption

in epithelial homeostasis is a hallmark of HIV infection [21,22,24,25,56]. Prior work examined

Fig 4. Deletion of A20 enhances the proinflammatory effects of IL-17A. Gene expression of (A) Lcn2, (B) Cxcl1, (C)

Cxcl2, (D) Muc1 by qPCR of organoid cultures after 24 hours of 4OHT treatment and/or a 12 hour stimulation with

recombinant IL-17A. Cre+ or Cre- conditions were tested separately by ANOVA. Pairwise comparisons were

completed post-hoc using t-tests and correcting for multiple comparisons by the Scheffe method (see also S2 Table).

Stars above each column indicate statistical significance relative to the media condition of the same organoid line (Cre+

or Cre-) by a t-test. Bars with stars indicate statistically significant differences between the two indicated conditions.
��P�0.01, ���P�0.001, ����P�0.0001.

https://doi.org/10.1371/journal.ppat.1006806.g004
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whole intestinal tissue, while our approach of isolating IECs allowed us to identify A20 as a key

regulator of epithelial cell survival and function. These observations deepen our understanding

of HIV pathogenesis and further expand our knowledge about the capacity of A20 to regulate

epithelial barrier function during viral infections.

Given our findings, we propose that the intestinal epithelial dysfunction found in untreated

HIV disease is caused by high levels of type I and type II IFN activity likely mediated in part by

IFNα production by plasmacytoid dendritic cells [41,57–59], IFNβ production by TLR4-sti-

mulated macrophages [60], and IFNγ production by CD8 T cells recognizing viral particles

respectively [45], that exist concurrently with low levels of IL-17A (Fig 7). We show that IFNα
is capable of suppressing A20 expression in IECs. Since A20 limits induction of inflammatory

genes and cell death by IFNγ, and preserves expression of epithelial function genes (e.g., for

Fig 5. A20 deletion enhances the cytotoxic effects of IFNα and IFNγ. (A) Quantification of cell viability by CellTiter Glo 3D assay in organoid cultures after

stimulation with three doses of rIFNγ, rIFNα, or rIL-17A for 24 hours. Significance of Cre+ or Cre- was assessed separately by ANOVA. Stars above data points

represent statistical significance of cytokine treatment relative to the media control within either the Cre+ (red) or Cre- (black) line after post-hoc comparisons

were made by t-test, correcting for multiple comparisons by Scheffe method. Stars above brackets indicate a significant difference between A20-sufficient (Cre-,

black) and A20-deficient (Cre+, red) culture within the indicated media condition by t-test. �P<0.05, ��P�0.01, ���P�0.001, ����P�0.0001. (B) Representative

confocal images of propidium iodide (PI)-stained organoids treated for 24 hours with 4OHT followed by 10 ng/ml of indicated cytokine for 24 hours. Two

organoids representing the range of PI staining are shown for each condition.

https://doi.org/10.1371/journal.ppat.1006806.g005
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some tight junctions proteins and some mucins), high type I IFN levels during untreated HIV

disease may render epithelial cells more susceptible to IFNγ-induced damage by preventing

A20 upregulation. We speculate that, in the setting of ART, reduction of type-I IFN-mediated

signaling [61] results in higher levels of A20, leading to the re-establishment of epithelial

homeostasis, as indicated by the positive association between A20 transcript levels and tight

junction gene expression in ART-treated individuals. While prior studies defined a role for

A20 in maintaining the proper localization of tight junction proteins [34], these results show

that A20 can modulate cytokine-mediated inflammatory signaling to promote the production

of components associated with epithelial barrier function.

In addition to the impact of the virus itself on the cytokine milieu of the intestine, it is likely

that HIV also causes additional shifts in the intestinal immune system that persist in the rela-

tive absence of virus, e.g., after the initiation of ART. The intestinal immune system is consid-

ered a “trialogue” between epithelial cells, lamina propria immune cells, and the commensal

bacteria [62]. Recent work from our lab and others has shown that there is a shift in the com-

position of microbial communities during HIV infection, the extent of which was associated

with inflammatory biomarkers [63,64]. Of note, we found that IFNγ inhibited the expression

of a key antimicrobial peptide, Defb1 (Fig 3E). As such, epithelial barrier dysfunction could

initially be induced by the combination of proinflammatory cytokines secreted by virus-inf-

ected cells, altering the profile of antimicrobial peptides and thus leading to microbial dysbio-

sis. As productively-infected cells are depleted due to progressive disease and viral particles are

no longer the primary driver of inflammation, this dysbiosis appears to result in the transloca-

tion of microbial products past the epithelium, resulting in a chronic inflammatory response

[26] and pushing forward the cycle of cytokine release and disrupted barrier integrity. The spe-

cific stages in which this crosstalk between the epithelium, immune cells, and microbial species

occurs remains to be clearly identified, and will be important in understanding the establish-

ment and maintenance of disrupted barrier integrity during HIV infection and treatment.

IL-17A is thought to be important for the maintenance of intestinal mucosal integrity in the

case of HIV infection [15–18], yet, it is also capable of driving tissue inflammation [19]. Our

data on A20 expression in intestinal organoids suggest these dual effects might be dependent,

at least in part, on the presence or absence of A20. Thus, we observe that deletion of A20

clearly enhances the proinflammatory effects of IL-17A signaling (e.g., with increased expres-

sion of Lcn2, Cxcl1, and Cxcl2). In the setting of ART, where IL-17A levels rise in the context

Fig 6. Five week pegylated-IFNα2a immunotherapy of ART-suppressed HIV-infected individuals leads to reduction in A20 expression. (A) Schematic showing

duration and frequency of pegylated-IFNα2a administration in participants. Transcript levels of (B) IFN-stimulated gene ISG15 and (C) A20 in PBMCs at baseline

and after five weeks of IFNα treatment as assessed by qPCR. Statistical significance was determined by paired t-test. � P<0.05, ����P�0.0001.

https://doi.org/10.1371/journal.ppat.1006806.g006
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of ongoing inflammation, this could be particularly important in protecting the epithelium

from inflammation-mediated damage. Interestingly, the A20 gene is a susceptibility locus for

inflammatory bowel disease (IBD) [65]. IBD is characterized by high levels of IL-17A cytokine

[66], yet inhibitors targeting IL-17 pathways have been shown to be ineffective at curbing

inflammation [67,68]. Our data suggest that it is the presence or absence of IL-17A coupled

with modulation by A20 that is important for disease progression. IL-17A levels did not di-

rectly associate with markers of epithelial function in our cohort, as would have been predicted

by prior studies [15]; instead, A20 and related genes (e.g., IκBα) demonstrated a positive asso-

ciation with epithelial function. This observation suggests that A20 modulation of cytokine sig-

naling plays an important, and perhaps primary, role in barrier dynamics during HIV disease

and treatment.

A caveat attending our studies in intestinal organoids is that the concentrations of IFNα
used in vitro (0.25–25 ng/ml) are considerably higher than those found in the plasma of acutely

Fig 7. A20 modulation of epithelial function during HIV infection and treatment. Model demonstrating proposed relationship of A20 and relevant cytokines (Type I

IFNs, IFNγ, and IL-17A) in the context of untreated (viremic) (left) and ART-treated (right) HIV disease.

https://doi.org/10.1371/journal.ppat.1006806.g007
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SIV-infected rhesus macaques [16,69] or chronically-infected humans [70], in which maxi-

mum levels of 0.05 ng/ml have been observed. Nevertheless, a plethora of studies indicate that

HIV disease progression is associated with persistent type I IFN signaling [59,71]. Likely, such

signaling occurs upon secretion of IFNα and IFNβ (e.g., by plasmacytoid dendritic cells or

myeloid cells) within lymphoid or mucosal organs, microenvironments in which type I IFNs

levels may be higher than those found in the circulation and also not possible to measure. It

will be of interest in future studies to more precisely measure these intra-organ cytokine con-

centrations and to determine their relevance to the in vitro studies presented here.

It is important to recognize that the ART-treated individuals studied here exhibited sub-

stantial inter-individual variability in levels of IL-17A, IFNα, IFNγ, and A20. We postulate that

such variation, and the balance amongst each of these, might, in turn, reflect differences in the

physiologic status of the gut. In addition, though our experiments parsed out the individual

effects of IFNα, IFNγ, and IL-17A on epithelial function, these cytokines are expressed concur-

rently in vivo, and their potential interactions were not studied here. In future studies, it will be

important to ascertain whether these cytokines potentiate each other (e.g., in the case of IFNγ
and IL-17A) or, conversely, if they synergize (e.g., in the case of IFNα and IFNγ) to establish a

setpoint of epithelial function.

Treatment of primary organoids with HIV-associated cytokines IFNα and IFNγ, espe-

cially when combined with A20 deletion, recapitulated the epithelial biology observed in

HIV-infected individuals, specifically in the case of elevating epithelial cell death and inhib-

iting expression of the tight junction genes, Ocln and Tjp1. While these data provide clear

evidence for A20 downregulation and high proinflammatory cytokine levels as being in-

volved in the establishment of intestinal epithelial dysfunction during HIV, more thorough

analyses of tight junction dynamics during the modulation of these pathways will need to

be done. Future work should seek mechanistic insight into how A20 is modulated by IFNα
and, downstream of this, how IFNα and IFNγ regulate barrier-related genes. Contrary to

prior literature that identified a reduction of tight junction expression in viremic subjects

[21,22,56] and our findings in organoids demonstrating an impact upon many epithelial

function genes, our RNAseq analysis did not reveal differences in tight junctions, mucins,

or antimicrobial peptides across participant subgroups. One potential explanation for this

discrepancy could be a difference in methodology. While previous studies assessed epithe-

lial function by measuring either transcripts or protein at the whole biopsy level [21,22,56],

we specifically isolated and profiled IECs. Thus, observations made in the context of whole

biopsies may be more inclusive of events occurring in hematopoietic cells and non-hemato-

poietic stromal cells. A more robust analysis of genes mentioned above (e.g., tight junctions,

mucins, antimicrobial peptides) is warranted, perhaps at the protein level with epithelial

specificity, to fully understand the impact of A20 upon epithelial function in vivo during

HIV infection. It should also be considered that the demographics of the cohort from which

we sampled, the SCOPE cohort at UCSF, are such that the vast majority of clinical samples

were obtained from male participants [4,17,63]. It is thus important that these analyses be

carried out in a cohort more balanced for gender type in future work. Despite these caveats,

we were able to reproduce the epithelial barrier dysfunction (e.g., reduced levels of tran-

scripts for tight junction proteins and elevated cell death) observed in prior studies during

HIV infection using our organoid model, and expanded upon these findings by identifying

key cytokines (IFNα, IFNγ) that are likely to be causing these changes in vivo, as well as

establishing the importance of A20 levels in mediating these changes. Given prior associa-

tions made between A20 and epithelial function [34], the work outlined here indicates

potential utility for A20 as a modulator and biomarker of intestinal health in HIV-infected

individuals.
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In sum, our identification of A20 involvement in epithelial survival and function during

HIV infection and treatment is a novel finding that adds to our understanding of intestinal

epithelial dysfunction during HIV disease. Further studies are warranted to quantify A20 levels

and function in treated HIV-infected individuals, investigating further how A20 modulates

epithelial barrier function to affect immune activation and HIV persistence.

Methods

Ethics statement

The study from which human tissues were obtained was approved by the institutional review

board at UCSF and all participants provided written informed consent (IRB #: 10–01218). All

recruited human participants were of adult age and provided consent themselves. Cryopre-

served PBMCs were obtained from Clinical Trial NCT00594880. All mice used in this study

were housed and bred in a specific pathogen-free facility and euthanized by CO2 inhalation

according to the guidelines of the UCSF Animal Care and Use Program (IACUC Protocol #:

AN144847). The UCSF Animal Care and Use Program adheres to guidelines established by

the Office of Laboratory Animal Welfare (Domestic Assurance #: A3400-01), and is accredited

by the Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC)

International.

Study design

The goal of this study was to isolate intestinal epithelial cells in an effort to identify, in a specific

manner, how their function changes during HIV infection and treatment. Upon identification

of key pathways, we utilized a murine organoid model to determine how manipulation of

these pathways altered epithelial function. Detailed information of individual experiments is

provided in the sections below.

Participant recruitment & clinical sampling

HIV-infected individuals and controls were recruited and consented from the SCOPE (Observa-

tional Study of the Consequences of the Protease Era) cohort at UCSF for sigmoidoscopy and

collecting relevant gastrointestinal biopsy samples for research purposes. HIV-negative controls,

HIV viremic untreated, and individuals suppressed with ART were recruited from this cohort.

The ART-treated group included HIV-infected individuals maintaining undetectable viral loads

(<40 copies/mL) on stable ART for at least one year and spanned a full spectrum of peripheral

blood CD4+ T cell recovery, ranging from 220 to 1107 CD4+ T cells per ml of blood. Prior to

their procedure, study participants underwent a blood draw and received a Fleets enema. Con-

senting participants underwent flexible sigmoidoscopy with rectal biopsies obtained at 10–20 cm

above the anus using jumbo forceps. Twenty biopsies were placed immediately in 15 ml of RPMI

1640 with 10% fetal calf serum, with piperacillin–tazobactam (500 μg/ml), and amphotericin B

(1.25 μg/ml), and transported within one hour to the Division of Experimental Medicine at

UCSF, where they were processed the same day. Freshly drawn blood was also transferred to the

AIDS Specimen Bank, where plasma was isolated and stored. The study was approved by the

institutional review board at UCSF and all participants provided written informed consent (IRB

#: 10–01218).

Cell isolation & processing of primary tissue

Cells of interest were isolated from rectosigmoid biopsies in two sequential ethylenediamine-

tetraacetic acid (EDTA) (Corning, Fremont, CA) and collagenase (Type II from Clostridium
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histolyticum, Sigma-Aldrich, St. Louis, MO) treatment steps. Briefly, biopsies were washed with

phosphate buffered saline (PBS) (Corning) and then incubated in 8 mM EDTA (in Hank’s Buff-

ered Saline Solution) (HyClone, Logan, UT) on a shaker for one hour at 37˚C. After vortexing,

supernatants were filtered using a 70 μM mesh filter and centrifuged to obtain the IEC fraction.

EDTA isolates (estimated to be in the range of 80–90% enriched for IECs, as assessed by flow

cytometry) were lysed in Trizol (Thermofisher Scientific, South San Francisco, CA) and RNA

was extracted using a phenol-chloroform extraction [72]. RNA Clean & Concentrator 5 (IC)

columns (Zymo Research, Tustin, CA) were used to clean RNA preps. Whole tissue RNA was

isolated using an AllPrep RNA Isolation Kit (Qiagen, Hilden, Germany). The RNA concentra-

tion of all samples was measured on a Nanodrop 1000 Spectrophotometer (ThermoFisher Sci-

entific). Remaining tissue was washed with PBS with 2% FBS and subsequently incubated in

1 mg/ml collagenase in Complete RPMI (RPMI-10 media supplemented with penicillin-strepto-

mycin, L-glutamine, and FBS) for one hour at 37˚C on a shaker. Peripheral blood lymphocytes

were obtained from whole blood by density centrifugation using Histopaque-1077 (Sigma-Al-

drich) and washed in Complete RPMI.

Flow cytometric analysis of lymphocyte populations

Freshly isolated lymphocytes were analyzed by flow cytometry. Cells were surface stained with

Aqua amine reactive dye for viability (Thermofisher Scientific), and antibodies against CD45

(Clone HI30, Alexa 700-Conjugated, Thermofisher Scientific), CD3 (Clone UCHT1, V450-Con-

jugated, BD Biosciences, San Jose, CA), CD4 (Clone S3.5, PE Texas Red-Conjugated, Thermo-

fisher Scientific), CD8 (Clone 3B5, Qdot 605-Conjugated, Thermofisher Scientific), CD38 (Clone

HB7, PE-Conjugated, BD Biosciences), and HLA-DR (Clone L243, FITC-Conjugated, BD Bios-

ciences) for 30 minutes at 4˚C, and washed in PBS with 2% FBS. Separately, 5 x 105 cells were

plated and stimulated with 10 ng/ml phorbol 12-myristate 13-acetate (PMA) (Sigma-Aldrich)

and 1 μg/ml ionomycin (Sigma-Aldrich) at 37˚C for five hours in the presence of BD GolgiPlug

Protein Transport Inhibitor (BD Biosciences, San Jose, CA). Stimulated cells were surface stained

with antibodies against CD45 (Clone H130, PerCPCy5.5-Conjugated, Biolegend, San Diego,

CA), CD3 (Clone SP34-2, Pacific Blue-Conjugated, BD Biosciences), CD4 (Clone L200, Brilliant

Violet 605-Conjugated, BD Biosciences), and CD8 (Clone 3B5, Qdot 705-Conjugated, Thermo-

fisher Scientific) for 30 minutes at 4˚C, fixed in 4% PFA, and then permeabilized in Perm/Wash

Buffer (BD Biosciences) according to manufacturer’s instructions. Permeabilized cells were

stained intracellularly with antibodies against IL-17A (Clone eBio64DEC17, FITC-Conjugated,

eBioscience, San Diego, CA), IL-22 (Clone 142928, PE-Conjugated, R&D Systems, Minneapolis,

MN) and IFNγ (Clone B27, Alexa 700-Conjugated, BD Biosciences) and washed in PBS with 2%

FBS. Freshly-isolated EDTA-isolates were surface stained with Aqua amine reactive dye for viabil-

ity (Thermofisher Scientific) and antibodies against CD45 (Clone H130, PerCPCy5.5-Conju-

gated, Biolegend) and EpCAM (Clone 9C4, BV421-Conjugated, Biolegend). All samples were

acquired on a BD LSRII flow cytometer (BD Biosciences) and analyzed using FlowJo 9 software

(FlowJo, LLC, Ashland, OR).

RNAseq & qPCR validation

Samples utilized for RNAseq included epithelial RNA from all participants as well as whole

biopsy RNA from a subset of patients, representing each disease subgroup. The whole biopsy

samples included five uninfected individuals, all six viremic untreated participants, and five

ART-treated individuals selected to span the full range of CD4 count. Total RNA (2 ng) from

IEC isolates and from whole rectosigmoid biopsies was converted to pre-amplified cDNA

using template-switching reverse transcription via the SMARTer Ultra-Low RNA Input Kit
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(Clontech, Mountain View, CA), with modified procedures for low input (Fluidigm, South

San Francisco, CA) [73,74]. Pre-amplified cDNA libraries were quantified by Quanti-IT Pico-

Green dsDNA assay (ThermoFisher Scientific) and normalized to 0.15 ng/ml for input into

fragmentation reactions. Fragmentation was performed enzymatically using a Nextera XT

DNA kit with indexing primers (Illumina, San Diego, CA). All 50 samples were normalized

and multiplexed into a single library. The compiled library was purified by a double-sided

bead-based size-selection method using Agencourt AMPure XP beads (Beckman Coulter

Genomics, Danvers, MA). A fragment size distribution of 200–500 base pairs for the library

was confirmed by running a High Sensitivity dsDNA assay on a Bioanalyzer 2100 (Agilent

Technologies, Santa Clara, CA). A quality-controlled library was sequenced as 50-base single

end reads on a HiSeq 4000 in rapid-output mode at the UCSF Center for Advanced Technol-

ogy (San Francisco, CA). Sequence reads were aligned to the human genome (GRCh37) using

STAR [75], and gene expression estimation was performed with RSEM [76]. Differential

expression analysis was performed on counts data using DESeq2 [77], and candidate genes

were false discovery rate corrected prior to determining lists of significantly altered genes.

Data were visualized as transcripts per million (TPM). All data are available in the NCBI Gene

Expression Omnibus under accession GSE81198.

To validate RNAseq results, original RNA isolates from each sample were used to generate

cDNA by reverse transcriptase using the Omniscript RT kit (Qiagen). Amplification was per-

formed on a StepOnePlus (Applied Biosystems, Foster City, CA) with PrimePCR SYBR Green

Assays (Bio-Rad Laboratories, Hercules, CA) using the assay-specified cycling protocol. After

normalization to housekeeping genes B2M and ACTB, the fold-change in expression of target

genes (TNFAIP3, NFKBIA, IL1R2) was calculated relative to the uninfected subgroup and cor-

related against fold-change calculations of RNAseq data from matched participants.

Measurements of plasma markers of inflammation

Concentrations of kynurenine and tryptophan in the plasma were measured by high-perfor-

mance liquid chromatography–tandem mass spectrometry, as previously described [17].

Whole biopsy qPCR

To measure transcript levels of cytokines in the gut, qPCR was conducted on whole rectosig-

moid biopsy RNA, isolated as above. IFNγ mRNA expression was assessed using a Taqman

Gene Expression Assay (Thermofisher Scientific). Expression was normalized to the house-

keeping gene ACTB and fold-change calculated for each participant relative to the average of

all uninfected controls.

Mice

A20 flox mice were generated in the Ma lab as described previously [78]. Transgenic mice har-

boring a tamoxifen-inducible Cre recombinase under the control of the villin-promoter (vil-

lin-ER-Cre) were a kind gift from S. Robine (Institut Curie-CNRS, Paris, France) These two

strains of mice were intercrossed to generate A20FL/FL villin-ERCre+ mice, used for the estab-

lishment of organoids. All mice used in this study were housed and bred in a specific patho-

gen-free facility according to the IACUC guidelines of UCSF.

Organoid culture establishment & maintenance

Murine small intestinal organoids were established as previously described [42], with modifi-

cations. Intestinal crypts were isolated from the small intestine and cultured as outlined, with
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substitution of 10% R-spondin1 conditioned medium for recombinant R-spondin1, and the

addition of Normocin (100 mg/ml, Invivogen, San Diego, CA). R-spondin1-expressing 293T

cells were a kind gift from Dr. Noah Shroyer (Baylor College of Medicine). Cultures were pas-

saged every three to four days.

Cytokine stimulation assays & gene target qPCR

Three to four days after last passage, 250 nM 4-hydroxytamoxifen (4OHT) was added to orga-

noid cultures for 24 hours to allow A20 deletion. Mouse recombinant IL-17A, IFNγ (R&D Sys-

tems), or IFNα (PBL Assay Science, Piscataway, NJ) were added to cultures and incubated for

12 hours. Cells were harvested by adding PBS and pooling wells of the same condition into a

single conical tube. Cultures were centrifuged, resuspended in Cell Recovery Solution (Corn-

ing), and incubated on a rotator at 4˚C for 15 minutes. Cells were centrifuged, pellets were

resuspended in Trizol and stored at -80˚C, if for qPCR analysis, or snap frozen in a dry ice-eth-

anol bath and stored at -80˚C, if for western blots. RNA was isolated using a phenol-chloro-

form extraction as above and cDNA generated by reverse transcriptase using the Omniscript

RT kit (Qiagen). Transcripts of interest were probed for by qPCR using Taqman Gene Expres-

sion Assays (Thermofisher Scientific). All genes probed for are listed in S3 Table. Amplifica-

tion reactions were performed on a StepOnePlus (Applied Biosystems). Cycle threshold (Ct)

values were normalized to three housekeeping genes (Rplp0, Gapdh, Actb). The fold-change

was calculated by normalizing to values for media alone, resulting in the control condition in

each run to appear as 1.

Immunoblotting

Cell lysates were made from snap frozen pellets of organoids using ice-cold 1% NP-40 (Calbio-

chem, San Diego, CA) containing 50mM Tris HCl pH 7.4, 150mM NaCl, and 10% glycerol and

a protease inhibitor cocktail (cOmplete mini EDTA-free, Roche, Indianapolis, IN). Protein was

quantified using a Pierce BCA Protein Assay Kit (Thermofisher Scientific) according to manu-

facturer’s instructions, with absorbance measured on a Spectramax M5 (Molecular Devices,

Sunnyvale, CA) and analyzed using SoftmaxPro software (Molecular Devices). Lysates were

combined with NuPAGE LDS Sample Buffer (Invitrogen, Carlsbad, CA) and NuPAGE Sample

Reducing Agent (Invitrogen), and resolved on a NuPage precast Novex 4–12% Bis-Tris Protein

Gel (Invitrogen) in volumes normalized to protein content alongside PageRuler Plus Prestained

Ladder (Thermofisher Scientific). Protein was transferred onto a PVDF membrane. Nonspecific

binding was blocked by incubation in 5% nonfat dry milk dissolved in Tris-Buffered Saline with

Tween-20 (TBST) for one hour. Membrane was incubated in 5% Bovine Serum Albumin (BSA)

TBST with 0.1% azide containing primary antibody at 4˚C overnight on a shaker. Primary anti-

body for GAPDH was purchased from EMD Millipore (Billerica, MA), while all other primary

antibodies used were purchased from Cell Signaling Technology (Danvers, MA). After washing

with TBST, membrane was incubated with HRP-conjugated secondary polyclonal antibodies to

mouse or rabbit IgGs (Cell Signaling Technology) in 5% milk TBST for one hour at room tem-

perature. Signals were developed using SuperSignal West Pico, Dura, or Femto Chemilumines-

cent Substrate (Thermofisher Scientific). Blots were imaged on a ChemiDoc Touch Imaging

System (Bio-Rad Laboratories). For reprobing, blots were stripped of existing antibodies by in-

cubation in Restore Western Blot Stripping Buffer (Thermofisher Scientific) at 56˚C with gentle

rocking for 20–30 mins and incubated with primary and secondary antibodies as above. Band

intensity was quantified using ImageLab Software (Bio-Rad Laboratories).
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Cytotoxicity assays in organoid cultures

Cultures were treated with 250 nM 4OHT for 24 hours prior to addition of cytokine. Orga-

noids were stimulated with 10 ng/ml of IFNα (PBL Assay Sciences), IFNγ, or IL-17A (R&D

Systems) for 24 hours and then stained with 1 μg/ml propidium iodide (PI) (Biolegend). Con-

focal imaging of intestinal organoids was performed on a Leica SP5 laser scanning confocal

system (Leica Microsystems, Wetzlar, Germany) using a 10X dry objective. Images were ac-

quired in a format of 512x512, with a line average of at least 3, scan speed of 400 Hz, and pin-

hole airy unit 1. Excitation for both PI and bright field was done with the 488nm laser line at

30% power with a detection band of 550-732nm. Image analysis was performed on the Leica

Application Suite (Leica Microsystems). Cell death assays of intestinal organoids were per-

formed by resuspending in Matrigel (Corning) and plating 25 μl per well in 96-well round bot-

tom plates (Corning). After 24 hours, organoids were stimulated as indicated. Viability was

measured using the CellTiter Glo 3D assay (Promega Corporation, Sunnyvale, CA) according

to the manufacturer’s specifications. Luminescence was read on a SpectraMax M5 (Molecular

Devices) and analyzed using SoftMax Pro (Molecular Devices).

Treatment of HIV-infected individuals on ART with pegylated-IFNα2a

HIV-infected ART-treated participants of Clinical Trial NCT00594880 were enrolled based on

pre-determined criteria, including viral load (<50 copies per ml as an indicator of effective

suppression) and CD4 count (>450 cells per ul). Eligible individuals were treated with pegy-

lated-IFNα2a (Roche), as published previously [54]. Cryopreserved PBMC samples taken from

each participant at baseline and at five weeks post-initiation of IFNα administration were

obtained for use in this study, providing paired samples from before and after cytokine

treatment.

Assessment of transcript levels in pegylated-IFNα2a-treated HIV-infected

individuals

250 ng of RNA isolated from whole PBMCs were transcribed into cDNA using the SuperScript

VILO cDNA Synthesis Kit (Invitrogen). Quantitative real-time PCR measuring TNFAIP3 and

ISG15 using TaqMan real-time PCR was performed using the QuantStudio 6 Flex Real-Time

PCR System (Applied Biosystems). Raw cycle threshold (Ct) numbers of amplified gene prod-

ucts were normalized to the housekeeping gene, GAPDH, to control for cDNA input amounts.

Fold induction was determined using the comparative Ct method [79].

Statistical analyses

For data obtained from clinical samples, Kruskal-Wallis tests were performed in Prism Ver-

sion 6 (GraphPad, La Jolla, CA) (www.graphpad.com/scientific-software/prism/). A p-value of

less than 0.05 (normal-based 95% Confidence Interval) was considered significant. Spearman

correlations and associations were generated using R software (www.r-project.org) with gen-

eral data analysis (https://cran.r-project.org/package=Hmisc) and statistical calculation (stats)

packages. For data generated by murine organoid experiments, data were determined to be

normally distributed and analyzed for significance by ANOVA in Stata (StataCrop LLC, Col-

lege Station, Texas) (www.stata.com); post-hoc pairwise comparisons were made using t-tests

with Scheffe adjustment for multiple comparisons. Analysis of qPCR measurements from

PBMC samples taken from participants in the IFNα-treatment clinical trial was completed by

paired t-test in Prism Version 6.

A20 and epithelial dynamics during HIV infection

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006806 March 5, 2018 18 / 24

http://www.graphpad.com/scientific-software/prism/
www.r-project.org
https://cran.r-project.org/package=Hmisc
www.stata.com
https://doi.org/10.1371/journal.ppat.1006806


Supporting information

S1 Fig. Immunologic measurements of participants characterized by flow cytometry. (A)

Percentages of gut CD4+ (blue) and CD8+ (teal) T cells in clinical subgroups. Black stars rep-

resent significance of differences in these subsets found in the clinical subgroups compared to

uninfected controls. Red stars below error bars represent significance of differences of these

subsets found in the ART-treated group compared to viremic untreated group. (B) Represen-

tative flow cytograms for each subgroup showing IL-17A and IL-22 producing gut CD4+ T

cells after 5 hours of PMA/ionomycin stimulation. Quantification of (C) IL-17A and (D) IL-22

production in gut CD4+ T cells across all subjects. (E) Production of IL-17A by total gut lym-

phocytes, gated on live CD45+ events. (F) Immune activation, defined by CD38 and HLA-DR

co-expression, on peripheral blood CD8+ T cells across subgroups. Statistical significance was

determined by Kruskal-Wallis analysis. � P<0.05, ��P<0.01, ���P<0.001, ����P<0.0001.

(EPS)

S2 Fig. Differentially expressed genes between uninfected individuals and HIV-infected

subgroups. (A) Percentages of CD45-EpCAM+ across participant subgroups. (B) Spearman

correlation of A20 and EPCAM gene expression of all patients (uninfected in blue, viremic

untreated in orange, HIV+ART+ in maroon) as assessed RNAseq. Pairwise comparison of

IEC gene expression between uninfected controls and (C) ART-treated subjects or (F) viremic

untreated subjects by RNAseq as analyzed by DESeq2 workflow. Genes of interest are high-

lighted in bold. (D) Spearman correlation of expression of indicated genes measured by RNA-

seq or qPCR in all subjects. (E) A20 mRNA levels in uninfected and viremic individuals, as

well as HIV+ART+ participants subdivided by exclusion (-) or inclusion (+) of either (i) efavir-

enz, (ii) tenofovir, or (iii) abacavir in the treatment regimen.

(EPS)

S3 Fig. Type I IFN signature in blood and gut of viremic subjects. (A) Ratio of kynurenine

and tryptophan levels in plasma, assessed by liquid chromatography tandem mass spectrome-

try. (B) Expression of interferon stimulated genes MX1 and OAS2 in gut biopsies by RNAseq.

Statistical significance was determined using a Kruskal-Wallis test. � P<0.05, ��P<0.01.

(EPS)

S4 Fig. HIV viremia is characterized by high levels of peripheral and gut-associated IFNγ.

(A) IFNγ production across clinical subgroups. IFNγ cytokine levels in CD8+ T cells as

measured by flow cytometry after a five hour stimulation with PMA/ionomycin. Statistical

significance is determined by a Kruskal-Wallis test. (B) Transcript levels of IFNγ in whole

rectosigmoid biopsies as assessed by qPCR and normalized to ACTB levels. Statistical signif-

icance is determined by Kruskal-Wallis. � P<0.05, ��P<0.01.

(EPS)

S1 Table. Statistical analyses of IFNγ-treated A20FL/FL villin-ERCre organoids. Analysis

by ANOVA and post-hoc t-tests after adjustment for multiple comparison by Scheffe method

of organoids treated with recombinant IFNγ. For each gene tested, p-value of the ANOVA test

is listed above (orange). Gray indicates that the ANOVA yielded insignificance. p-values

within the table represent significance after Scheffe adjustment for the indicated pairwise com-

parison.

(XLSX)

S2 Table. Statistical analyses of IL-17-treated A20FL/FL villin-ERCre organoids. Analysis

by ANOVA and post-hoc t-tests after adjustment for multiple comparison by Scheffe method

of organoids treated with recombinant IL-17. For each gene tested, p-value of the ANOVA test
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is listed above (orange). Gray indicates that the ANOVA yielded insignificance. p-values

within the table represent significance after Scheffe adjustment for the indicated pairwise com-

parison.

(XLSX)

S3 Table. Table lists genes tested by qPCR in cytokine stimulation experiments in orga-

noids. Magnitude of how A20 deletion affected IL-17 signaling was determined by calculating

fold change of gene expression in the 4OHT- and cytokine co-treated conditions between

Cre+ and Cre- organoids. Statistical significance of the difference between Cre+ and Cre- lines

was determined by a t-test. Significant p-values are highlighted in green. For genes significa-

ntly altered by A20 deletion, upregulation is indicated in red.

(XLSX)
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