

DC Power Distribution in Buildings

- System architecture \rightarrow Communication model
- Simulation model \rightarrow Quantitative benefits
- Hardware \rightarrow It really works
- Communication model \rightarrow Technology standards
- Energy Efficiency: Lower conversion loss with natively DC loads (LEDs, electronics, variable speed motors)
- Cost: Lower equipment capital cost (once market size increases)
- Non-energy benefits: easy local reliability, better power quality, flexibility
- Communication: New capabilities plug-and-play for generation & storage

Market Impact

- Technology standards \rightarrow **Products**
- Simulation code \rightarrow **Sample**

Initial results

Conduct Tech-economic analysis of DC system and their life-cycle performance in buildings

Richard Brown, Wei Feng, Bruce Nordman, Daniel Gerber, Chris Marnay, Vagelis Vossos

Why DC?

DC Power most effective with Local Generation and Storage

Overall Project Objectives

- Research and demonstrate technical viability of DC building distribution
- Simulate and measure its potential energy efficiency savings and other benefits (renewable integration, reliability, resilience, power quality, etc.) • Enhance benefits through communication, using low voltage (<600 V) DC directly integrated with renewable energy technologies and storage in buildings

- Results determined from market cost data, grid tariffs, and Monte-Carlo analysis
- First cost is higher for DC
- With significant reliability efficiency savings, the payback period is less than a year

Why

- Enables local storage and generation to be truly plug-and-play
- Inherently safe; simple, flexible; interbuilding power links
- Creates better value proposition for Direct DC – efficiency gains
- Enables inexpensive microgrids inexpensive local reliability

Overall Plan

Task 1: Energy savings modeling and measurement of DC buildings

- Review and analyze different results in previous literature
- Model and validate with lab measurements DC power

M M M LED Lighting Bath Fan **M** \bigcup \bigcup 120/12 120/12 USB Charger **M M M** LED Lighting Bath Fan 48/30 48/12 48/12 **M** 120/48 USB Charge 120 V AC 48 V DC Tycon PoE Injector

Task 2: Communications and Control in networked DC systems

- Develop a sophisticated simulation model for networked DC grids
- Use this model to demonstrate quantitative savings / benefits

• Transfer results to global technology standards

Task 1: Efficiency and Economic Savings Model

Proposed Demo Sites

Task 1: Hardware Testing and Verification

Task 2: Local Power Distribution

What

- "Network model of power" brings principles of Internet system architecture to electricity
	- Only within buildings – does not extend past utility meter
- Organized bottom-up, into "nanogrids", each with local price of electricity
- All power exchange peer-to-peer, digitally managed

First $Cost_{DC\ System}$ – First $Cost_{AC\ System}$ Payback $=$ Operating Cost_{AC System} — Operating Cost_{DC System}

-
-
-
-
-

Potential Impact

- Modeled single, simple nanogrid with 3 tariffs
- $-$ Tariffs drive local price, causing different:
	- Use of battery
	- End-use device operation
- –Dynamic **local prices** reduce total

Contacts

Bruce Nordman -- bnordman@lbl.gov) Wei Feng -- weifeng@lbl.gov) Richard Brown -- rebrown@lbl.gov)

- **dc.lbl.gov**
- **nordman.lbl.gov**
-
-
-
- **battery inverter**
- DC building loss dominated by the **grid tie inverter**, particularly bad with high solar and no storage
- Both buildings suffer significant **battery chemical loss**

Techno-Economic Analysis

• Selected devices tested in AC and DC systems with different load configurations

IBR Building Shenzhen

algorithms for industry

LED Fixture

USB Charger

- All results than 3% error simulation vs. experiment
- Main DC system loss due to the inefficient PoE injector

Bath Fan

- Experimental devices selected to represent major end-uses: lighting, HVAC motor loads, electronics
- Modified power electronics in sample devices to accept 120 V AC or 48 V DC

San Leandro Marriott Sinclair Fort Worth

DC Power Distribution

- Reduces electricity use by 5-13%
- Significantly decreases life cycle cost
- Improves safety, power quality, and resilience
- Price-based control creates scalable network organization

Websites

Commercialization

• Local Price Indicator in newest version of Ethernet - IEEE 802.3bt

