

DC Power Distribution in Buildings

Richard Brown, Wei Feng, Bruce Nordman, Daniel Gerber, Chris Marnay, Vagelis Vossos

Why DC?

DC Power most effective with Local Generation and Storage

- Energy Efficiency: Lower conversion loss with natively DC loads (LEDs, electronics, variable speed motors)
- Cost: Lower equipment capital cost (once market size increases)
- Non-energy benefits: easy local reliability, better power quality, flexibility
- Communication: New capabilities plug-and-play for generation & storage

Overall Project Objectives

- Research and demonstrate technical viability of DC building distribution
- Simulate and measure its potential energy efficiency savings and other benefits (renewable integration, reliability, resilience, power quality, etc.)

Task 1: Hardware Testing and Verification

- Experimental devices selected to represent major end-uses: lighting, HVAC motor loads, electronics
- Modified power electronics in sample devices to accept 120 V AC or 48 V DC

USB Charger

• Enhance benefits through communication, using low voltage (<600 V) DC directly integrated with renewable energy technologies and storage in buildings

Task 1: Energy savings modeling and measurement of DC buildings

- Review and analyze different results in previous literature
- Model and validate with lab measurements DC power
- Conduct Tech-economic analysis of DC system and their life-cycle performance in buildings

Task 2: Communications and Control in networked DC systems

- Develop a sophisticated simulation model for networked DC grids
- Use this model to demonstrate quantitative savings / benefits

Task 1: Efficiency and Economic Savings Model

- Selected devices tested in AC and DC systems with different load configurations
- All results than 3% error simulation vs. experiment
- Main DC system loss due to the inefficient PoE injector

Experiment	Connected loads	Median measured input power (AC, DC)	Median modeled input power (AC, DC)	Median percent error
Test 1	LED fixture, bath fan	31.4 W 35.2 W	31.2 W 36.1 W	-0.48% 2.45%
Test 2	LED fixture, wall adapter	33.0 W 38.3 W	33.1 W 38.9 W	0.16% 1.61%
Test 3	Bath fan, wall adapter	16.0 W 22.7 W	16.1 W 22.3 W	0.81% -1.92%

LED Fixture

Task 2: Local Power Distribution

What

- "Network model of power" brings principles of Internet system architecture to electricity
 - Only within buildings does not extend past utility meter
- Organized bottom-up, into "nanogrids", each with local price of electricity
- All power exchange peer-to-peer, digitally managed

First Cost_{DC System} – First Cost_{AC System} Payback =Operating Cost_{AC System} – Operating Cost_{DC System}

Description	Network	Average LCC Savings (US\$)
Total First Cost (C)	AC	252,000
Total First Cost (\$)	DC	301,000
Net Annual Electricity	AC	177,000
Consumption (kWh/yr)	DC	101,000
Average LCC Savings (\$)	AC vs. DC	61,000
% Cases with Net Benefit	AC vs. DC	>90%
Average Payback Period (<u>yr</u>)	AC vs. DC	~1

- battery inverter
- DC building loss dominated by the grid tie inverter, particularly bad with high solar and no storage Both buildings suffer significant battery chemical
- loss

echno-Economic Analysis

- Results determined from market cost data, grid tariffs, and Monte-Carlo analysis
- First cost is higher for DC
- With significant reliability efficiency savings, the payback period is less than a year

Why

- Enables local storage and generation to be truly plug-and-play
- Inherently safe; simple, flexible; interbuilding power links
- Creates better value proposition for Direct DC – efficiency gains
- Enables inexpensive microgrids inexpensive local reliability

Overall Plan

- System architecture \rightarrow Communication
- model Simulation model \rightarrow Quantitative benefits
- Hardware
- Communication model \rightarrow Technology standards

Market Impact

- Technology standards \rightarrow Products
- Simulation code \rightarrow Sample

algorithms for industry

Initial results

- Modeled single, simple nanogrid with 3 tariffs
- -Tariffs drive local price, causing different:
 - Use of battery
 - End—use device operation
- Dynamic **local prices** reduce total

Commercialization

• Local Price Indicator in newest version of Ethernet – IEEE 802.3bt

Proposed Demo Sites

IBR Building Shenzhen

 \rightarrow It really works

Potential Impact

DC Power Distribution

- Reduces electricity use by 5-13%
- Significantly decreases life cycle cost
- Improves safety, power quality, and resilience
- Price-based control creates scalable network organization

Websites

- dc.lbl.gov
- nordman.lbl.gov

Contacts

Bruce Nordman -- bnordman@lbl.gov) Wei Feng -- weifeng@lbl.gov) Richard Brown -- rebrown@lbl.gov)

