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Abstract 
 

Traffic congestion is a substantial time cost for many urban commuters.  This paper studies the 

response of subjects in an experimental setting in which subjects choose between a short direct 

route that becomes increasingly congested as more people travel on it and a more indirect route 

that does not become congested.  More specifically, I investigate how subjects respond to the use 

of a toll that theory predicts will minimize travel time costs.  The experimental results reported in 

this paper show that this toll comes very close to achieving efficient use of the travel network. 

 

Keywords:  congestion, Pigou-Knight-Downs paradox, experiment, toll 
JEL Classification numbers: C92, D62, H41, R41, R48 
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1.  Introduction 

In real traffic environments, coordination problems occur in any congested area on a 

daily basis.   Thousands of drivers try to determine the “best” route to travel on, based on the 

information they have about traffic speed on their set of route choices on previous days and/or 

current traffic reports.  In such a situation, thousands of drivers essentially make simultaneous 

travel decisions without the ability to coordinate, which leads to equilibrium being an unlikely 

occurrence on many congested routes.  Furthermore, cooperation that could lead to more 

efficient outcomes is not seen much (if at all) on congested routes. 

This situation is similar to coordination games, as discussed in Ochs (1995).  Cooper et 

al. (1990) describe coordination games as “a class of symmetric, simultaneous move, complete 

information games” (p. 218).  In these games, multiple Nash equilibria exist.  However, there 

may also exist outcomes that are better for all participants but are not Nash equilibria.  For 

example, in a two-player game in Cooper et al. (1990), the highest payoff that is also a Nash 

equilibrium gives each player 550 units.  Another possible outcome gives 600 units to both 

players.  The latter outcome is not a Nash equilibrium since if only one of the players could 

switch their strategies, that player could receive a payout of 1000 units. 

One specific type of coordination game involves a congested transportation network, 

which could have inelastic or elastic trip demand (e.g. de Palma 1992).  In this type of game, 

each person receives a benefit if the trip is made, but typically incurs two types of costs.  The 

first cost is due to the time required to travel a particular distance under congestion-free 

conditions.  This cost is dependent on the route chosen.  The second type involves costs due to 

congestion.  These costs are dependent on the route chosen and the number of other people 

deciding to travel the same route. 



 3

Consider the network of the Pigou-Knight-Downs paradox (see Arnott and Small 1994).  

In this network, drivers must travel on one of two routes, one congested and one uncongested.  

The congested route is the shorter of the two in distance, but this entices at least some of the 

drivers to this route.  In any Nash equilibrium with at least one driver on the uncongested route, 

all subjects have the same travel time,1 which is known as a user equilibrium by Wardrop’s 

(1952) first principle.  However, if the drivers coordinated their efforts, or a central planner could 

enforce the Vickrey-Clarke-Groves mechanism,2 they could decide to have fewer drivers than 

the equilibrium number on the congested route.  This would result in a faster travel time on the 

congested route.  The system optimal point, which comes from Wardrop’s second principle, is 

the point in which minimizes the total costs of driving.  In a world of drivers with homogeneous 

travel times, an optimal outcome could have a different group traveling the congested route each 

day so that each driver could travel the congested route some of the time, resulting in an outcome 

that Pareto-dominates any Nash equilibrium.  Although all drivers are better off if they all follow 

the agreement, this outcome is not a Nash equilibrium if they are not bound to follow it.  More 

specifically, it is not a Nash equilibrium because any single driver could deviate and travel the 

congested route on a day that he is assigned to the uncongested route, leading to a better travel 

time for that driver.  This paper uses a different mechanism than the one described above, with a 

toll used to discourage travel on the congested route. 

 

 
                                                 
1 Another set of Nash equilibria exists.  Let the set of equilibria with equal travel times have X drivers on the 
congested route.  Due to the discrete nature of driving, another set of Nash equilibria has X – 1 drivers on the 
congested route. Although the travel time is lower on the congested route in this case, these are also Nash equilibria 
because if someone on the uncongested route switches to the congested route, the times then become equal, leading 
to no change in the travel time of the person who switches.  This set of equilibria is ignored for simplicity in the 
analysis. 
2 See Vickrey (1961), Clarke (1971), and Groves (1973) for more on the Vickrey-Clarke-Groves mechanism.  In a 
route choice context, the mechanism is described in Sandholm (2002). 
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2.  Congestion Experiments 

In recent years, experiments have been used to explore human behavior on various traffic 

networks.  These experiments pay subjects based on their performance in the experiment, with 

better performance resulting in higher payouts.  The experiments listed below use modifications 

of the Pigou-Knight-Downs paradox.  Before discussing the finding of these experiments, it is 

important to emphasize that only one of these experiments uses tolls as a mechanism for 

improving average travel time.  A brief summary of the congestion experiments described below, 

along with a few others, is found in Table 1.  Note that all of these experiments have subject 

profiles that are the same for each person, and that total demand is inelastic for traveling through 

the route network described. 

Selten et al. (2007) modify the two-route network described by the Pigou-Knight-Downs 

paradox by allowing both routes to be congestible.  In this experiment, 18 subjects must travel 

between two points on either the “main” road or the “side” road, where the side road requires 

more travel time than the main road if the number of subjects traveling on both routes is the 

same.  Subjects then receive a payout in each round as a function of travel time, with higher 

travel time resulting in a lower payout.  These choices are repeated over 200 rounds, with theory 

predicting an equilibrium in each round of 12 subjects on the main route.  On average, subject 

route choices come very close to the theoretical predictions.  However, since the population in 

this experiment is homogeneous and no tolls are charged, any subject’s route choice can be part 

of an equilibrium as long as 12 subjects travel the main route, since theory only predicts the 

number of people on each route.  With thousands of equilibria possible, any subject could be on 

either route in equilibrium, leading to substantial fluctuations of the number of travelers on each 

route from round to round, even in rounds after equilibrium.  Although such fluctuations reject 
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the predictions of pure-strategy equilibrium, the mean number of travelers on each route comes 

close to this equilibrium. 

Chmura and Pitz (2004a and 2004b) modify the payoffs to a minority game structure.  In 

this version of the minority game, an odd number of travelers must travel on one of two routes.  

The route with the fewest travelers (in each round) leads to a positive payment for the travelers 

on this route and everyone else receives nothing.  Although the minority game framework is 

useful in many economic settings, it may not be the best way to model the payoffs in a 

transportation network because commuters typically do not “win” or “lose,” but rather incur one 

of many possible commuting costs. 

Two results from the Selten et al. (2007) and Chmura and Pitz (2004a and 2004b) 

experiments are worth highlighting.  First, a person’s payout in one round is negatively 

correlated to the likelihood that same person will switch routes in the following round.  This 

implies that many subjects think that the “other” route will be the better choice after a relatively 

bad payout.  In other words, many people believe that a relatively bad payout follows another 

relatively bad payout if they remain on the same route from one round to the next.  Second, 

subjects who switch routes frequently over the course of the experiment tend to have worse 

overall payouts than those who switch less frequently.  These results shed some light on how 

subjects react when faced with a coordination problem (which is described in more detail in the 

next subsection), and how their reactions affect overall payoffs. 
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3.  A Two-Route Model With Only One Route That Congests 

Suppose a group of people need to travel from point A to point B, and that each person 

has the option to travel on an uncongested but indirect highway, or a more direct but narrow 

bridge that gets congested (See Figure 1).3  In other words, highway travel time is independent of 

the number of travelers, while travel time on the bridge is an increasing function of bridge traffic.  

Assume that the per-minute travel time cost is independent of route choice.  This rules out the 

possibility that the more scenic route is preferred, all else being equal.  Given this framework, it 

is easy to show that under the standard assumption of homogeneous travel time costs (using 

uniform point deductions in an experimental setting) equilibrium occurs when the total cost to 

commuters (including tolls, if any) is identical on both routes.4 

 

3.1.  The No Toll Case Equilibrium 

In the absence of tolls, the only costs of traveling from point A to point B are time costs.  

In this example, I assume that each person’s per-minute travel time costs are homogeneous.  For 

simplicity, I assume that N commuters know the travel time on the bridge (tB) and the highway 

(tH) with certainty.  (See Table 2 for a description of all variables and constants used in this 

paper.)  In particular, they know that travel time on the highway is constant and that travel time 

on the bridge is an increasing linear function of the number of travelers on the bridge (Q) with 

intercept α and slope β, such that:                                                                                                                              

(1) tB = α + βQ.                                                                                                                      For 

each additional traveler on the bridge, time increases by β minutes.  Based on the above 

                                                 
3 This route network structure is as in Arnott and Small (1994), and some of the theory is similar to Walters (1961). 
4 Note that as long as some drivers travel on the highway, adding capacity to the bridge will not change the 
equilibrium, since the added capacity will create demand on the bridge to the point where the new equilibrium once 
again has equal costs on both routes.  
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information, drivers can determine the marginal private benefit (MPB) of traveling the bridge 

relative to the highway.  If Q drivers travel the bridge, the MPB in minutes of the Qth person 

traveling the bridge is the difference in travel time between the two routes, or tH – (α + βQ).  To 

convert the travel time into monetary terms, the time saved needs to be multiplied by the 

individual’s value of time:                                                                                                                     

(2) VQtMPB HQ ×)+−= )  (( βα ,                                                                                                     

where V represents the value of time for the Qth person to travel the bridge.  Because V is 

constant in a homogeneous framework, and time savings decrease linearly with Q, MPB is a 

decreasing linear function, as shown in Figure 2.5 

I also assume that subjects maximize utility by minimizing travel time.  Equilibrium 

therefore occurs when the travel time on both routes is the same, or at the point where MPB is 

zero:6                                                                                                                                                 

(3) tB = tH   ⇒   
β
α−

= Ht
Q̂ . 

Finally, although theory is able to predict the number of people on each route in 

equilibrium, it is unable to predict the route that any particular person travels.  Since any person 

can travel on either route in equilibrium, any combination of Q people on the bridge constitutes 

an equilibrium.  Thus, there exist ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Q
N

 equilibrium combinations. 

 

                                                 
5 The same cost/benefit analysis in Figure 2 can be done in minutes with the same result, since per minute travel 
time costs are the same for each person in this case. 
6 In a no-toll scenario, the same equilibrium occurs when drivers have different values of time.  The idea of 
homogeneity of value of time is relevant for the analysis of the toll case, which is described below. 
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3.2.  Tolls and Efficiency in a Homogeneous Time Cost Setting 

The problem in the no-toll case is that people fail to internalize the additional costs they 

impose on others when they use the congestible bridge.  In a no-toll equilibrium, everyone is just 

as well off in an environment in which both routes exist than in an environment in which only 

the highway exists.7  If only the highway exists, adding the bridge adds no social benefit because 

commuters simply congest the bridge to the point where there is no time gain to traveling the 

bridge over the highway.  Given the negative externalities present on the congested route, a toll 

on the bridge can effectively optimize its use by reducing the travel time of some of the drivers 

on this route.  At the same time, no toll is needed on the highway because there are no 

externalities, since congestion is never present by definition.   

The optimal toll minimizes drivers’ total travel time costs.8  In a framework with 

homogeneous values of time, this minimization problem is equivalent to minimizing the total 

travel time of all drivers, since the monetary equivalent of time costs is the same for all drivers.  

So if Q commuters use the bridge and (N – Q) commuters use the highway, then the total travel 

time for all drivers (TT) is given by:                                                                                              

(4)  TT = Q ×  tB + (N – Q)tH.                                                                                                

Minimizing total travel time then gives the optimal distribution of travelers:                                        

(5)  Q* = (tH – α) / 2β.                                                                                                                 

Another way of determining Q* is by finding the point where MPB equals the marginal external 

cost (MEC) on the bridge.  MEC is positive because an additional driver on the bridge imposes 

an additional β minutes to each driver already on the bridge.  MEC is then:                                                             

                                                 
7 The fact that everyone would be as well off in a no-toll equilibrium with or without the bridge is specific to the 
Pigou-Knight-Downs paradox.  Other paradoxes are presented in Arnott and Small (1994) in which travel times are 
increased when road capacity increases.  One such case is the Braess paradox.  See Braess, Nagurney, and 
Wakolbinger (2005) and Murchland (1970) for more information. 
8 Recall that I assume that tolls are simply transfers to the government, which can be rebated to the drivers. 
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(6) ∑
=

×=
T

j
jT VMEC

1
)(β .                                                                                                                  

In this case, since both β and Vj are constants in this framework, MEC is an increasing linear 

function, as seen in Figure 2. 

The optimal toll is then defined as the toll that makes travelers indifferent between 

traveling on the bridge and the highway when Q* drivers travel on the bridge.  To find this toll, I 

must find the monetary equivalent of the difference between highway travel time and optimal 

bridge travel time.  This perceived cost (C) is a linear relation of time, and so I only need to 

multiply this time difference by the per-minute value of time:                                                                                  

(7) C = [tH − (α + βQ*)]V.                                                                                                               

Finally, similar to the previous subsection, there exist ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
*Q

N
 possible combinations that lead to 

equilibrium when the optimal toll is imposed. 

 

3.3.  Travel Time Uncertainty and Mixed-Strategy Nash Equilibria 

There is one important item to note regarding equilibria.  In previous subsections, each 

person knows the number of other travelers who take the bridge with certainty.  In reality, 

decisions of others are not known until after each repetition is over.  This may lead to subjects 

favoring mixed strategies over pure ones.  Mixed strategies, including those that are Nash 

equilibria, are analyzed more in the analysis of the experiment, in Section 5.3.1.   
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4.  Experimental Design  

The two-route travel network from the Pigou-Knight-Downs paradox is used in this 

experiment both with and without tolls.  In each experimental session, 18 subjects must travel 

from point A to point B using either a congested bridge or an uncongested highway in each 

round (see Figure 1).9  Subjects know that the highway guarantees a travel time of tH = 20 

minutes.  In contrast, subjects also know that while the bridge is uncongested for the first 

traveler, and hence has a travel time of 10 minutes, each additional driver on the bridge adds one 

minute to every bridge user’s travel time.  In other words, if there are Q subjects traveling the 

bridge in any round, the travel time for each person is tB = (9 + Q) minutes, or α = 9 and β = 1 

using the notation from the previous section.  Each subject may stay on the same route or change 

from round to round, but no one is permitted to change their choice within a round once their 

decision has been made.  At the end of each round, subjects receive information as to how many 

people travel on the bridge for that round.10 

Each of the 10 experimental sessions consists of three segments with 20 rounds (or 

repetitions) each, and each subject begins with 8500 points and a guaranteed $5 show-up fee.  

Points are deducted for travel time in the first two segments, but not for the third segment.  This 

paper examines the first two segments of the experiment.11  After the experiment is finished, the 

remaining points are converted at a rate of 50 points per $1.  Each session averages earnings of 

about $12 to $15 per subject for the experiment, which lasts about one hour. 

                                                 
9 The experiment was programmed and conducted with the software z-Tree (Fischbacher 2007). 
10 Selten et al. (2007) compare experimental sessions with and without giving information to subjects about travel 
time on the route not chosen in each round.  They find that when this information is given, subjects travel each route 
with about the same frequency, but switch routes less often. 
11 In the third segment, subjects are told that no point deductions are made for travel time, but they must wait a 
fraction of their travel time in the computer lab in which the experiment is conducted after the experiment is over.  
Subjects can reduce their waiting time by traveling the bridge and paying a six-point toll. 
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4.1.  Segment 1: The No Toll Case With Homogeneous Time Costs 

Subjects are told that each minute of travel time leads to a 10-point deduction, but no 

tolls are charged.  If subjects are profit maximizers, they attempt to choose the route that 

minimizes their point deduction in every round.  This, of course, means that their route choice 

depends on their expectations about what the other 17 subjects will do in any particular round.  

Within this framework, theory predicts an equilibrium with 20 minutes of travel time on both 

routes.   This occurs when Q = 11.  

 

4.2.  Segment 2: The Toll Case With Homogeneous Time Costs 

Subjects continue to pay a 10-point deduction per minute of travel time, but now there is 

a 60-point per round toll charge.  At a cost of 10 points per minute, a 60-point toll translates to 

the equivalent of six minutes of travel time cost.  This means that a 14-minute commute on the 

bridge is now equivalent (in total point deductions per round) to a 20-minute commute on the 

highway.  So the new toll equilibrium results in a drastic decline in the number of subjects on the 

bridge, with five people using the bridge, compared to 11 in Segment 1.12  This equilibrium also 

minimizes the total travel time of all subjects.  Since travel costs are homogeneous the Segment 

2 equilibrium is also efficient. 

 

 

                                                 
12 Based on the theory section, the optimal toll is based on the equivalent of 5.5 minutes, or 55 points.  This would 
result in a prediction of 5.5 travelers on the bridge.  Since fractional numbers of travelers are not allowed, two 
optimum results can occur, with either five or six travelers on the bridge. 



 12

5.  Experimental Results 

5.1. Data Summary and Comparison to Pure-strategy Equilibria 

Table 3 reports the average number of bridge travelers per round for each of the 

experimental groups, with column 2 reporting the average number of bridge travelers in the no-

toll case (Segment 1) and column 3 reporting the results for the toll case (Segment 2).  Consistent 

with the theory presented in Section 3, tolls persuade some subjects to change their route choice 

from the congested bridge to the uncongested highway.  Specifically, about five fewer subjects 

travel the bridge on average in Segment 2 than in Segment 1.  This means that an optimal toll is a 

successful tool to re-route traffic into a more efficient equilibrium. 

For Segment 1, recall that the theory in Section 3 predicts 11 subjects on the bridge and 7 

on the highway in pure-strategy equilibrium.  All of the session averages are within 1.1 of this 

prediction, with none of these averages statistically differing from 11.  Round-by-round results 

can be seen Figure 3, while Figure 4 shows the nearly normal distribution of the number of 

travelers on the bridge.  As seen in Figure 3, the number of people traveling the bridge often 

changes after a round is in equilibrium.  Although no single subject can be made better off by 

being the only person to switch routes after equilibrium is reached, some people tend to switch 

after a round in equilibrium.  Session 3 is a good example. Despite the fact that this group has 

reached equilibrium in Round 3, in the fourth round, two subjects switch from the bridge to the 

highway, while six switch from the highway to the bridge, resulting in 15 subjects on the bridge.  

With nearly half of the subjects switching routes after equilibrium is reached, predictions made 

by a pure strategy Nash equilibrium typically do not apply in such a situation.  Subjects may also 
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lack full rationality, although testing this is difficult since subjects may be doing what they think 

is optimal given the actions of others.13 

In Segment 2, theory predicts 5 subjects on the bridge and 13 on the highway in 

equilibrium.  Unlike Segment 1, some of the group averages significantly differ from this 

equilibrium.  Specifically, Sessions 1, 6, and 8, along with the collective average of all of the 

groups significantly average more than 5 subjects on the bridge per round.  This is likely due to a 

transitioning effect going on from the end of the first segment to the beginning of the second, 

where subjects may not initially understand the new environment.  For example, the first four 

rounds of Segment 2 for Session 5 result in 13, 8, 7, and 7 bridge travelers, respectively.  In the 

fifth round, the number of bridge travelers is finally below equilibrium for the first time, and 

equilibrium is finally reached for the first time in the sixth round.  As in Segment 1, many of the 

rounds are out of equilibrium after equilibrium is reached for the first time. 

 

5.2. Efficiency 

Given the imposed constant value of time, minimizing total travel time is equivalent to an 

efficient outcome.  As such, social welfare in the route network used in this experiment can be 

measured by comparing the average travel times between the no-toll and toll schemes.  Recall 

from Section 3.2 that tolls are simply transfers and assumed not to be a cost.14  So the lower the 

average travel time is, the higher the social welfare is for a group with homogeneous travel costs.  

Thus, the lower the overall travel time, the more efficient the outcome of the experiment.  Given 

the imposed homogeneity, comparing average travel times tells something about relative 

efficiency.  Based on the model described in Section 3.2, for a given group of drivers, five or six 

                                                 
13 For more on limited rationality, see Simon (1955) and Mahmassani and Chang (1987).  The latter paper addresses 
bounded rationality in a transportation system framework. 
14 Note, however, that drivers perceive tolls as costs. 
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drivers on the bridge will yield the fewest total number of minutes traveled.  This results in the 

minimum possible total travel time of 330 minutes.15  With the 10 sessions of the experiment, the 

best attainable average time per round is 18.32 minutes.16  In Segment 1, the average is 20.20 

minutes, or 10.2% higher than the efficient outcome.  In fact, only 2% of the rounds achieved the 

minimum total travel time possible, which occurs when five or six subjects travel the bridge.  In 

Segment 2, the average travel time is 18.51 minutes, or 1.0% more than the efficient outcome.  

Here, 48.5% of the rounds resulted in efficient outcomes. 

 

5.3. Analysis 

5.3.1. Comparing Mixed-strategy Equilibria with the Experimental Results 

In most of Section 3, the discussion focuses on situations in which subjects know with 

certainty the actions of the other players before making her or his decision.  In reality, this does 

not occur, implying that some or all subjects may decide route choice based on mixed strategies.  

More evidence supporting the possibility of subjects playing mixed strategies comes from Figure 

3.  In this figure, once a pure-strategy Nash equilibrium is reached at any point in the first two 

segments, one or more subsequent rounds in the same segment are typically not in equilibrium. 

Appendix A derives a symmetric mixed-strategy Nash equilibrium in Segment 1, with 

each person playing bridge with probability 10/17.  Also from Appendix A, the probability of 

playing bridge in mixed-strategy equilibrium is 4/17 for Segment 2.  Note that in mixed-strategy 

equilibrium for Segment 1, the expected number of bridge travelers is 18 × (10/17), or 10.59, 

which is less than in the pure strategy Nash equilibrium prediction.  In Segment 2, the 

expectation is 18 × (4/17), or 4.24 travelers on the bridge, also less than the pure strategy Nash 
                                                 
15 This assumes 18 subjects.  In the one group with 17 subjects the minimum total travel time possible is 310 
minutes. 
16 This average factors in that one group has 17 subjects. 
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equilibrium.  In Appendix A, I show that the total number of travelers on the bridge in Segment 1 

is not significantly different from the mixed-strategy prediction at the 5% level.17  However, in 

Segment 2, the total number of travelers on the bridge is significantly different from the mixed-

strategy prediction.  Another measure that can be compared between experimental results and the 

mixed-strategy prediction is the number of road changes within a segment.  As Appendix A 

shows, there are far fewer route changes in Segments 1 and 2 than the mixed strategy predicts.18  

So although there may be some players acting close to the mixed-strategy equilibrium, there 

appears to be some route “stickiness,” in which once a player is on a particular route, there is an 

increased tendency to stay on the route in the next round. 

 

5.3.2.  Variation in Number of Bridge Travelers by Group 

Theory predicts the same equilibrium for each group in Segments 1 and 2, specifically 11 

and 5 subjects on the bridge, respectively.  Note that equilibrium is predicted to be the same in 

each session.  Group-to-group heterogeneity in Segments 1 and 2 can be tested using an F-test.  

More specifically, the null hypothesis is that the mean number of bridge travelers is the same 

across sessions.  In Segment 1, the average number of bridge travelers per round by group ranges 

from 9.90-11.35. (See data summary in Table 3 for a more thorough summary.)  By finding an F-

statistic (in an ANOVA framework) for the difference in means, these averages are not 

statistically different from each other, with a p-value of 0.743.  This is consistent with the 

theoretical prediction of the same equilibrium in each group.  Segment 2’s averages by group 

range from 5.15-6.00.  Again, the averages are not significantly different from each other, with a 

                                                 
17 In Selten et al. (2007), a similar calculation in the experiment rejects the null hypothesis that the number of 
travelers on the bridge each round is consistent with the mixed-strategy Nash equilibrium. 
18 The similar calculation for the Selten et al. (2007) experiment is also rejected in their experiment. 
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p-value of 0.978.  This is also consistent with the theoretical prediction of the same equilibrium 

in each group. 

 

 

6.  Conclusions 

While theory certainly supports the use of tolls as a mechanism for reducing congestion, 

there is only limited empirical and experimental evidence examining the functioning of such 

plans.  Consistent with standard theory that assumes homogeneity in time costs across all 

commuters, on average, the Segment 1 results show that inefficient levels of congestion occur 

when no tolls are imposed.  When tolls are imposed in the same homogeneous time cost 

framework in Segment 2, the results match the theoretical prediction that fewer subjects choose 

the congested route. 

Although the results reported in this paper, and previous experimental congestion papers, 

answer some important questions about congestion behavior, further research is necessary to 

address some nagging problems in congestion experiments.  More specifically, the existing 

experimental results do not match very well with some aspects of congestion theory.  In 

particular, in many experiments, a round in disequilibrium follows a round in equilibrium.  The 

most obvious generalization is to allow for the fact that in reality different people have different 

values of time, which may affect who decides to travel toll and non-toll routes.  The question is, 

does this type of heterogeneity lead to a stable, or at least more stable, equilibrium? 
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Table 1:  A summary of select congestion experiments 
Author(s) Year Brief description 
Selten et al. 2007 Two congestible routes, with one route congesting more 

quickly than the other; no tolls on either route; payout linearly 
related to total travel time 

Chmura and 
Pitz 

2004a 
and 
2004b 

Two routes in a minority game structure; in each round, the 
route with the fewest travelers receives a positive payout, 
while the others receive no payout; no tolls 

Schneider and 
Weimann 

2004 (Experiment 1) One route; only time incurred is due to 
congestion; small cost per minute for early arrival; large cost 
per minute for late arrival; no tolls 
(Experiment 2) Similar to Experiment 1, except each 
experimental subject drives 10 vehicles instead of one 

Gabuthy, 
Neveu, and 
Denant-
Boemont 

2006 Two routes; toll imposed on one of the routes (with a higher 
toll leading to less efficient use of route network in 
equilibrium); small cost per minute for early arrival; large cost 
per minute for late arrival 

Rapoport et 
al. 

2004 Each individual has the choice of whether or not to enter a first 
in, first out queue; no cost to enter the queue itself; a single 
service is performed once a person is at the front of the queue; 
fixed opening and closing times; for each person that enters the 
queue, a positive payout is received if the service is able to be 
made before closing time; costs are incurred for each minute in 
the queue 
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Table 2:  Variable/constant table 
Variable/constant Use of variable 

N Total number of drivers 
Q Number of drivers on the bridge 
tB Time to travel on the bridge, defined as a linear function tB = α + βQ 
tH Time to travel on the highway, defined to be constant 
β Marginal increase of travel time on the bridge for each additional 

driver 
α Constant in bridge travel time function 
Q̂  User equilibrium, which is also a Nash equilibrium; travel time on the 

bridge and highway are equal without any restrictions on travel 
V Value of time, which is assumed constant 
TT Total travel time of all drivers 
Q* System optimal, which occurs when TT is minimized when V is 

constant 
MECQ Marginal external cost of the Qth driver 

C Cost of toll on the bridge 
A, B Starting and ending points of the travel network, respectively 

pi Probability of person i traveling on the bridge 
p_ Probability of anybody except person i traveling on the bridge 
Vp Variance given probability p 

QB, QH Expected number of travelers on the bridge and highway, respectively
q Probability of switching routes 
R Expected number of route changes 
p Symmetric mixed strategy probability equilibrium, which is 10/17 
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Table 3:  Average number of bridge travelers per round in Segments 1 and 2, by session. 
Standard deviations are in parentheses. 

 Segment 1 Segment 2 
Session 1 10.70 

(2.15) 
5.85* 
(1.79) 

Session 2 11.10 
(2.05) 

5.60 
(2.09) 

Session 3 9.90 
(2.45) 

5.55 
(2.28) 

Session 4 10.90 
(2.83) 

5.15 
(1.31) 

Session 5 11.05 
(1.93) 

5.70 
(2.43) 

Session 6 11.30 
(2.77) 

5.80* 
(1.51) 

Session 7 10.85 
(1.98) 

5.70 
(1.66) 

Session 8 10.85 
(1.69) 

6.00* 
(2.03) 

Session 9** 10.80 
(1.51) 

5.60 
(1.96) 

Session 10 11.35 
(2.50) 

5.50 
(1.93) 

All sessions 10.88 
(2.21) 

5.65* 
(1.89) 

* Denotes significantly different from 11 (5)  
at the 5% level in Segment 1 (2). 

** Only 17 subjects participated in this session. 
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 Figure 1:  A visual of the scenario that subjects see for their travel situation. 
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Figure 2:  Marginal external cost (MEC) and marginal private benefit (MPB) in a homogeneous 
value of time case 
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Figure 3:  Round-by-round results of number of travelers on the bridge for each session, 
Segments 1 and 2 
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Session 7, Segment 1 
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Session 1, Segment 2 
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Session 7, Segment 2 
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Figure 4:  Distribution of number of bridge travelers in Segment 1, by round 
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 Appendix A19 

Let pi equal the probability of person i traveling the bridge and let p_ equal the 

probability of everybody except person i traveling the bridge.  If each subject is risk neutral, then 

maximizing expected utility is equivalent to maximizing expected payout.  These are also 

equivalent to minimizing total expected travel time in Segment 1.  Let nB denote the number of 

travelers on the bridge in any round. 

In Segment 1, if person i travels the highway, the travel time is guaranteed at 20 minutes, 

while the expected travel time on the bridge is  

(A1) E(nB | person i travels the bridge) = 1 + 17p_. 

To find out when person i is indifferent on either route, p_ must be found such that expected 

travel times are equal: 

(A2) 9 + (1 + 17p_) = 20, 

which yields 

(A3) p_ = 
17
10  = 0.588. 

Thus, when the expected travel times are equal, person i is indifferent over any strategy.  In such 

a case, each person playing with probability 10/17 (which will be henceforth be p) gives a 

symmetric mixed-strategy Nash equilibrium. 

In the mixed-strategy equilibrium described above, the expected number of travelers on 

each route is 18 * (10/17) = 10.588.  This results in fewer expected travelers on the bridge than 

in the pure-strategy equilibrium.  The variance of this distribution is 

(A4) Vp = p (1 – p) = 0.242, 

which results in a standard deviation of 2.088 total travelers in each period. 

If QH and QB denote the total number of expected travelers over 20 rounds on the 

highway and bridge, respectively, then 

(A5) QB = 20 ×  18p = 211.765 and QH = 20 ×  18(1 – p) = 148.235. 

The variance of the totals in equation (A5) is 

(A6) V = 87.197, 

which results in the variance of the mean of 9 groups20 of 

                                                 
19 This Appendix uses the same techniques as Selten et al. (2007). 
20 Group 9 is not examined here, since it only has 17 subjects. 
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(A7) 689.9
9
=

V . 

The standard error is then 

(A8) σ = 3.113. 

In the experiment, a per-group average of 217.778 bridge trips are taken in the 9 groups with 18 

subjects, while the expected number of trips in the mixed-strategy equilibrium is 211.765.  Since 

this difference is about 1.93σ from the mean, a null hypothesis of subjects playing the mixed 

strategy equilibrium cannot be rejected at the 5% level. 

Similarly, in Segment 2, pi = p_ = 4/17, Vp = 0.180, QB = 84.706, QH = 275.294, V = 

64.775, (V / 9) = 7.197, and σ = 2.683.  In the experiment, a per-group average of 113 bridge 

trips are taken in the 9 groups with 18 subjects, while the expected number of trips in the mixed-

strategy equilibrium is 84.706.  This difference is more than 10σ from the mean, and so a null 

hypothesis of subjects playing the mixed strategy equilibrium can be rejected at a very high level 

of significance.21 

Another aspect worth examining is whether or not the predictions of mixed-strategy 

equilibrium are consistent with the number of route changes in the experiment.  For each subject 

playing the mixed-strategy equilibrium in Segment 1, the probability q that a subject will switch 

routes from one round to the next is 

(A9) q = 2p(1 – p) = 0.484. 

In Segment 1, there are 19 opportunities to switch routes, leading to 342 opportunities to switch 

routes for all players within the same group of Segment 1.  The expected number of route 

changes (R) is thus 

(A10) R = 342q = 165.7. 

Since the binomial distribution is used, the variance is  

(A11) Vq = q(1 – q) = 0.2498, 

which implies that the variance of R is 

(A12) VR = 342Vq = 85.42. 

Since there are 9 groups of participants with 18 subjects, it is useful to calculate the variance for 

the mean of 9 observations: 

                                                 
21 Since there is likely a transition period from Session 1 to Session 2, it is worth noting that the same rejection of 
the null hypothesis can be made when only the final 10 rounds of Session 2 are looked at. 
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(A13) 
9
RV = 9.491. 

The standard error of this variance is thus 

(A14) σR = 3.081. 

The observed number of route changes per group is 113.78.  This is more than 16σR below the 

predicted number of route changes, leading to the conclusion that the number of route changes 

being inconsistent with the mixed-strategy Nash equilibrium. 

In Segment 2, the same calculations lead to q = 0.360, R = 123.1, Vq = 0.2304, VR = 

78.78, (VR / 9) = 8.754, and σR = 2.959.  The number of route changes per group is 80.56, which 

is more than 14σR below the predicted number of route changes.  Again, the number of route 

changes is not consistent with the mixed-strategy Nash equilbrium. 
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