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ABSTRACT OF THE DISSERTATION
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Physical systems often experience a complexity of behavior which requires many

degrees of freedom to model accurately. In practice, it may be impossible to experimentally

observe all the necessary state variables in a dynamical model. To make quantitative

predictions it becomes necessary to extract information from the observable variables

in order to estimate the entire state of the system. I discuss different approaches to

making estimating these unobservable state variables. In particular, I explore novel ways

of combining data at different times throughout the trajectory of the system to improve

the estimate of the system state at a single time.
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Chapter 1

Introduction

The study of the physical world is fundamentally a cycle between experimental and

theoretical endeavors. An ideal version of this cycle can start with the observation of a new,

previously unobserved, phenomena. A theory is developed which reproduces those new

behaviors while being consistent with previous experiments. The theory is then used to

predict novel behavior in the physical system, which is tested in new experiments. At each

step in the process the theoretical predictions must be matched with the experimental

results they are trying to reproduce to be considered valid. If the predictions do not meet

our standards of accuracy then the theory is failing to incorporate important interactions

which influence the physical behavior.

A physical theory commonly takes the form of a system of differential equations.

These equations define how state variables, which represent dynamic properties of system,

interact and change over time. Additionally, the equations include fixed parameters

which quantify the strength of different interactions. In a simulation, we can choose

arbitrary initial conditions for the state variables and values for the parameters. This can

be interesting and gives an idea for how a typical version of the system might evolve.

1
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Ultimately, however, to be truly be confident a theory is valid it must not just

qualitatively, but quantitatively reproduce observations of the real world. This means it

is not enough to use an arbitrary initial condition, because even a correct model will not

reproduce a recorded time series if it starts in a different state. The only way to conclusively

test a model is to start with the same variable and parameter values as the physical system,

then compare how well the evolution of the simulation matches the physical observations.

This is a problem if significant components of the system cannot be measured practically.

Measurement techniques are constantly evolving. Often, the tools do not exist or are not

sensitive enough to record a precise value for every significant variable.

Determining an accurate estimate for these unmeasured variables and parameters

is the primary focus of data assimilation. We utilize the fact that all the state variables in

the system are interdependent, so they exert an influence on the variables which we can

observe. The problem then becomes how to most effectively extract information about

these hidden components from the measurements that are experimentally possible. It

is not guaranteed that the available observations will carry all the information needed

by the system. In such cases, simulation can be used to determine if there’s a minimum

number of necessary variables or if existing experiments can be modified in a way that

probes the system in more detail.

1.1 Trajectories of a Dynamical System

The term dynamical system refers to a collection of variables which evolve in

concert over time. This applies to an infinite variety of real world systems: wind speeds in

the atmosphere, protein synthesis in cells, and the orbits of planets are just a few examples.

Such a system can generally be represented mathematically by a system of differential
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equations specifying the rate of change for each variable:

dx

dt
= F(x(t),p, t) (1.1)

Where x and p are vectors of arbitrary dimension. This says that in general, the

rate of change for each of the variables xi is given by an equation Fi which can depend on

any of the other variables, as well as the parameters p. The only distinction between the

states x and the parameters p is that the latter are static quantities, and as such have no

equations of motion.

Differential equations like Eq 1.1 generally have no analytic solution. Nevertheless,

using numerical integration we can obtain an approximation of the time series x(t) from

some initial conditions x(0). To perform a numerical integration one transforms the

continuous differential equation in Eq 1.1 into a discrete difference equation, of the form:

x(n+ 1) = f(x(n),p, n) (1.2)

Previously, time was a continuously varying quantity and the equations F repre-

sented the rate of change of states x with respect to time. In the discrete formulation time

is replaced with a integer index n which represents a time step. Accordingly the equations

f are discrete maps from time n to n+ 1. Each time step corresponds to a finite quantity

of time elapsed dt.

There are many possible ways to transform a continuous equation into a discrete

one. Different formulations can vary in their accuracy to the continuous solution, require
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different amounts of computational power, and have different stability properties. Numer-

ical integration is a entire subfield of applied mathematics with an extensive literature.

It is not the intention of this work to give a complete or detailed comparison different

discretization techniques, but I will list a few of the most common ones which are used in

our computational routines:

The simplest and fastest, but least accurate, way is a first order Euler method:

f(x(tn)) = x(tn) + dt · F (x(tn)) (1.3)

The Euler method is convenient to implement, but if the system varies too quickly can

introduce numerical instabilities.

The midpoint rule is a second order implicit routine:

f(x(n+ 1),x(n)) = x(n) +
dt

2
(x(n+ 1) + x(n)) (1.4)

This is an implicit method, meaning the equation for the map f at time n depends

on the point x(n+ 1) which is being mapped to. This results in an algebraic equation for

x(n+ 1) which during integration must be solved at each step. The implicit relationship

adds computational work, but is typically more stable than an explicit method.

Finally, the most accurate formulation used in this paper is the fourth order Runge-
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Kutta method. For clarity it is written as a sequence of equations:

k1 = F(x(tn), tn)

k2 = F

(
x +

dt

2
k1, tn +

dt

2

)
k3 = F

(
x +

dt

2
k2, tn +

dt

2

)
k4 = F (x + dt k3, tn + dt)

f(x(tn)) = x(tn) +
dt

6
(k1 + 2k2 + 2k3 + k4) (1.5)

1.2 Probability Distribution of a Trajectory

Mathematically, one way to state the data assimilation problem is: What is the

probability distribution of possible trajectories, given the data that has been recorded.

With this distribution we can find the most likely trajectories of the physical system, and

the variance around them.

More precisely, thinking in the discrete time space, we have a collection of D ·NT

points:

X = {x1(t0), . . . , xD(t0), . . . x1(tNT ), . . . , xD(tNT )} (1.6)

Where D is the dimensionality of the model in Eq 1.1 and NT is the number of time points

used to discretize the time series of the system.

The data is also recorded as a time series which must be discretized with some time

resolution. In principle the resolution at which the measurements are recorded does not

have to be the same as the resolution at which we simulate the model. However, for the
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examples herein we will assume they are the same unless otherwise noted. The time series

recorded from a measurement instrument can be written as:

Y = {y0(t0), . . . , yL(t0), . . . y0(tNT ), . . . , yL(tNT )} (1.7)

Note that there are L dimensions at each time in the data vector, rather than D as in

the model. This is because in general there is no reason every dimension in the model

can be observed. In fact, there is no reason the observations need to correspond directly

to a variable in the model. The relationship between the observations and the dynamic

variables are given by a measurement function:

y(t) = h(x(t)) (1.8)

With this notation, the distribution of interest is P (x(n)|Y). In other words, the prob-

ability distribution of the state of the system after a window of time [0, tn]. To achieve

some traction determining an explicit form for the distribution we can start by assuming

the dynamics only depend on the state of the system at the previous time. In a discrete

formulation, this means that the state at each time tn+1 depends only on the state at time

tn.

We can start by considering the probability of a state at time tn, given the time

series observed up to that time: P (x(tn)|Y(tn)). To interpret this probability it is useful

to write it in terms of the probability of the state at the previous time step n − 1 (for
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simplicity I will label times tn simply by the index n):

P (x(n)|Y(n)) = P (x(n)|y(n),Y(n− 1))

=
P (x(n),y(n),Y(n− 1))

P (y(n),Y(n− 1))

=
P (x(n),y(n),Y(n− 1))/P (Y(n− 1))

P (y(n),Y(n− 1))/P (Y(n− 1))

=
P (x(n),y(n)|Y(n− 1))

P (y(n)|Y(n− 1))

=
P (x(n),y(n)|Y(n− 1))

P (y(n)|Y(n− 1))P (x(n)|Y(n− 1))
P (x(n)|Y(n− 1))

= exp(I[x(n),y(n)|Y(n− 1)])P (x(n)|Y(n− 1)) (1.9)

Where I[x, y|Y ] = log
[

P (x,y|Y )
P (x|Y )P (y|Y )

]
is the conditional mutual information. This

is a measure of how much one random variable (such as the observation y(n)) tells us

about another random variable (such as the state of the system x(n)) given some other

information (in this case, the previous observations at previous times, Y(n− 1)). If x(n)

and y(n) are totally independent then the mutual information (and likewise the conditional

mutual information) will be zero.

The final term in Eq 1.9 can be rewritten to produce a recursion relation:

P (x(n)|Y(n− 1)) =

∫
dx(n− 1)P (x(n),x(n− 1)|Y(n− 1))

=

∫
dx(n− 1)

P (x(n),x(n− 1),Y(n− 1))

P (Y(n− 1))

=

∫
dx(n− 1)

P (x(n),x(n− 1),Y(n− 1))

P (x(n− 1),Y(n− 1))

P (x(n− 1),Y(n− 1))

P (Y(n− 1))

=

∫
dx(n− 1)P (x(n)|x(n− 1),Y(n− 1))P (x(n− 1)|Y(n− 1))

(1.10)
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Combining Eq 1.10 with 1.9 gives us an expression for P (x(n)|Y(n)) in terms of the

previous time step P (x(n− 1)|Y(n− 1)).

We can simplify the term P (x(n)|x(n − 1),Y(n − 1)) even further by utilizing

the fact that our system consists of differential equations which are local in time. This

makes the dynamics Markovian. In other words, the state x(n) is completely determined

by the state at the previous time x(n − 1), up to any stochastic randomness. There is

no additional information possible that can give a more accurate distribution for x(n).

Therefore,

P (x(n)|x(n− 1),Y(n− 1)) = P (x(n)|x(n− 1))

Putting all these pieces together gives us the complete recursion relation:

P (x(n)|Y(n)) = exp(I[x(n),y(n)|Y(n− 1)]

×
∫
dx(n− 1)P (x(n)|x(n− 1))P (x(n− 1)|Y(n− 1)) (1.11)

A final expression is obtained by iterating this relationship from time t0 to tn:

P (x(n)|Y(n)) =

∫ n−1∏
i=0

dx(i) exp(I[x(i+ 1),y(i+ 1)|Y(i)])

× P (x(i+ 1)|x(i))P (x(i)|Y(i))

(1.12)
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1.3 Synchronization Theory

There are several techniques to estimate the state of a system at the end of an

observation window [1–3]. One approach is to initialize a separate simulated model, starting

from an arbitrary initial state. Then the observations from the system we wish to estimate

(data system) will be used to adjust the trajectory of the model with the objective that

over time these adjustments will synchronize the model to the observed and unobserved

variables in the data system.

The problem can be framed mathematically in the following way:

xi(t) = yi(t) i = 1 . . . L (1.13)

dxi(t)

dt
= Fi(y1, . . . , yL, xL+1, . . . xD) i = L+ 1 . . . D (1.14)

Where xi(t) are the states of the model and yi(t) are the observed time series. The observed

data is used as a replacement for the corresponding state variables, then the remaining

variables are allowed to evolve according to the equations of motion, given those values.

This approach was first proposed by Pecorra and Caroll as a way of controlling the

chaos in nonlinear systems [4, 5]. Researchers studying dynamical systems found that

by connecting identical chaotic systems along a single degree of freedom, the uncoupled

degrees of freedom would come to synchronize as well. In the context of data assimilation

the two systems in question are the physical experiment from which we record data and

the simulated model. If we have done our jobs well as physicists the physical system should

be governed by the same (or very similar) equations as the model. If the coupling between

the physical system (i.e. the measured observations) to the model is sufficiently strong

then the hope is that the model will synchronize in all of its state variables to the same
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value as the data system.

An extension of this method for estimating the states and parameters xa(n) relies

on systematic adjustment from some initial state x(0)a (n) through an iterative process that

gradually results in a more accurate estimate:

x(0)a (n)→ x(1)a (n)→ x(2)a (n)→ . . .→ x(J)a (n)

If the procedure is successful, then after many iterations (J � 1) x(J)a (n) should converge

to a value consistent with the observations: hl(xJ(n)) ≈ yl(n).

Applying synchronization to a data and model system has the added limitation that

the coupling can only go in one direction. Because the data is typically prerecorded, and

we generally want to estimate the experimental system rather than perturb it, the data is

not modified by the synchronization procedure. Only the model system can be adjusted to

bring it in line with the data. This means that to successfully synchronize the model the

coupling may have to be stronger than when two dynamical systems are driven together

simultaneously.

If we can represent the dynamics of the system exactly and record data to infinite

precision, then the equations F(x) in the model provide deterministic constraints of what

the state of the model can be at each time, given a previous state. In this limit of low

noise, a straightforward and effective way of extracting information from the measured

components of the system is to modify the equations of motion using an external forcing

term based on the recorded data. The objective is over time to force the model state x(t)

to values consistent with the recorded variables in the physical system y(t). The modified
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equations take the following form:

dxl(t)

dt
= Fl(x(t)) +

L∑
l′=1

gl,l′(t) (yl′(t)− xl′(t)), (1.15)

for the l = {1, 2, . . . , L}measured states, and

dxk(t)

dt
= Fk(x(t)),

for the k = {L+ 1, L+ 2, . . . , D} unmeasured states. The control term ~g(t) is positive

definite and has a narrow peak centered at t = tn, so that it impacts the model trajectory

only at times when an observation is made.

The control term g(t) couples the model state to the observed data. This introduces

information about how the physical system is behaving. Then the equations of motion,

F(x), further filter this information and adjust the unobserved variables so that the overall

system can remain consistent with the time series y(t). This approach is commonly used

the study of meteorology to simulate a very high-resolution model using recordings from

a relatively sparse set of weather stations. It is often referred to as “nudging”, Newtonian

relaxation, or 4DDA, and is rooted in the theory of controls and dynamical systems [6, 7].

As stated earlier, we restrict ourselves to a constant and diagonal ~g(t). This means

each measurement y` corresponds to exactly one state variable x`. There is no interaction

or transfer of information between observations and other state variables. When we extend

the procedure to be include waveform information via time delayed measurements the

stability becomes quite sensitive to the magnitude of the coupling term. Section 3.3.1

discuss in more detail numerical techniques to ensure an appropriate value is chosen.



12

1.4 Twin Experiments

The techniques described in this paper are intended for experimental data. The

objective is to able to receive a time series from a measurement instrument and use that as

input to the procedures described below. However, this is not an effective way to explore

and refine the techniques themselves.

The problem is that real world systems are always more complicated than we can

account for in our models. Moreover, we do not know which equations accurately represent

the underlying dynamics (in fact, this is a major motivation for developing this procedure).

If we used data from real experiments it would not be possible to distinguish between

problems with the computational methods and physical errors in the model.

With this in mind we use a method we call twin experiments to produce simulated

data rather than using inputs from genuine experiments. The twin experiment simply

consists of simulating a model for some length of time. Then we choose a limited number

of time series from that simulation and treat them as data. A second model is run with

different initial conditions through a data assimilation procedure, without providing the

algorithm any information about unmeasured variables of the data system. After the

procedure completes, the model state variables are retroactively compared to the data

state variables. Then we can judge how accurately the method was able to estimate them.

This technique is very valuable for diagnostic purposes, because it allows us to

look at unmeasured states after the fact and confirm how well the assimilation procedure

worked and where it broke down. It also generates data to use on the fly, rather than

having to wait for the results of an experiment. The conditions of the “experiment” can

be tuned to specific regimes of interest. Most importantly, we are assured that the data

we have was truly produced by the model we are using so any failure in the estimate is a
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limitation of the technique itself, rather an unknown mistake in the physical model.

The twin experiments confirm that given an accurate model for the data, how many

and which variables must be observed to provide a effective predictions of the experimental

system. This is necessary to invalidate models on predictive grounds. Later, when we apply

a model to real data, if the model fails to predict behavior, we can be confident that there

is a mistake in the model and not the synchronization technique.



Chapter 2

Syncrhonization in Practice

Synchronization can be quite effective when a sufficient proportion of possible

states can be measured. It comes at a relatively small cost, essentially just adding a linear

term and external forcing (in the form of the data y(t)) to the equations of motion:

dx

dt
= f(x(t)) → dx

dt
= f(x(t)) + g · (y(t)− x(t)) (2.1)

where g is an arbitrary constant which sets the strength of the coupling from the data

to the model. Due to its relative simplicity, this approach provides a useful baseline for

comparison to other data assimilation methods.

2.1 Lorenz 96 Model

The Lorenz 96 system provides a useful toy model for testing new techniques. It

can be easily extended to an arbitrary number of dimensions, it is chaotic in the appropri-

ate parameter regime, and is stable to perturbations during the dynamics. Additionally,

14
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dynamical properties of the model are well studied in the literature. It is an abstract model

with properties relevant to atmospheric studies, namely external forcing and dissipation

and quadratic terms to represent advection advection [8–10]. The dynamics are given by:

dxi
dt

= (xi+1 − xi−2)xi−1 − xi + ν (2.2)

Where the index i is cyclical. This simple pattern makes it easy to extend the Lorenz

96 model to an arbitrary number of dimensions, depending how large of a system we want

to work with. For parameter values of ν > 8 the system is known to exhibit chaos.

Figure 2.1 shows typical time series for x0 in two the Lorenz 96 systems. Due to the

chaotic dynamics two Lorenz 96 systems with even minor differences in initial conditions

will eventually decorrelate completely. System 1 and 2 in the figure were initialized with

only 1% difference in initial condition. Despite the very similar initialization we see that

the trajectories very quickly diverge.

2.1.1 Coupling to observations

Despite the nature of the dynamics, by using synchronization we can regulate the

chaos as described in section 1.3. This means that the addition of data in the dynamics

modifies the Conditional Lyapunov Exponents for the model system. When sufficient

information is transferred from the data to the model, the CLEs become negative. This

means that over time the state of the model converges to the state of the data the data

system.

Figure 2.2 shows the effect for two cases. The left side of the figure shows the model
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Figure 2.1: First state variable x0 for two separate Lorenz 96 models with 10
dimensions. Initial conditions for system 2 are x2(0) = 1.01x1(0). Forcing
parameter ν = 8.17. Due to chaos even very similar initial conditions rapidly
diverge.

system with only 3 observed state variables. We see that as soon as the observation window

ends the trajectories quickly diverge. Although the measured variable in the model was

coupled to the data there was not enough information to synchronize the unmeasured

variables. By contrast the right side of the figure shows the same initial conditions but with

the first 5 states coupled to the data. The result is that enough information is transferred

to reasonably estimate the unobserved variables as well, which allows model to accurately

track the data for a time after the estimation window.

2.2 Limitations

Despite the convenience of the synchronization procedure, it leaves on at a loss

if there are not observations to reduce all of the Conditional Lyapunov Exponents. Addi-
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Figure 2.2: First variable in a 10 dimensional Lorenz 96 twin experiment. Both
plots show the same underlying data system along with a model initialized with
xmodel(0) = 1.01 xdata(0). Left: {x1, x2, x3} in model coupled to data. Right:
{x1, . . . , x5} in model coupled to data

tionally as we see on the right side of Figure 2.2, even when there appear to be enough

measurements the convergence may not be strong enough or happen quickly enough to

obtain a very long period of prediction.

The basic synchronization described until now only utilizes the unmeasured states’

dependence on the measured states to transfer information. That is, for unmeasured

state xL+1(t), in the model all of the information about the data system comes via the

unmodified dynamics FL+1(x(t)). This leaves us dependent on the details of model to

transfer sufficient data.

It is perfectly possible for example to have a set of equations where the dynamics

are only one way. The measured variable dynamics may depend on the unmeasured states,

but not vice versa:

xi =


Fi(x1, . . . , xD) i = 1, . . . , L

Fi(xL+1, . . . , xD−1) i = L+ 1, . . . , D − 1

(2.3)
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An example of such a system is discussed chapter 6.2. There I introduce a model

for a spiking neuron which is modulated by internal Calcium dynamics. The Calcium is

primarily stored in an internal repository which absorbs and emits Calcium into the cell’s

cytoplasm independently of voltage. Nevertheless the voltage itself depends on ions who

is regulated by Calcium.

In such situations no matter how strongly we couple the observed variables to the

data system, the unobserved states will never adjust. As a result, as soon as the estimation

window ends and we simulate the model independently the observed components will

take a totally separate trajectory in model from what happens in the data system.

An important category of problems that has this behavior is parameter estimation.

As we will see later (Eq 3.12) parameters can be interpreted as state variables with trivial

dynamics, but their dynamics do not have an explicit dependence on state variables.



Chapter 3

Time Delay Synchronization

There is information contained in the observed time series which is not utilized by

synchronization procedure described in the previous chapter. The traditional approach

compares the state of the model system to the data system at each time point independently

(at least in the measured components). The approach described in this section, instead

compares the evolution of the two systems over a short window. Looking at the waveform

of the measured components allows mismatched unobserved states the time to exert their

influence on the observations.

The idea of using changes in a dynamic variable as an independent source of infor-

mation is not new. Time-embedding is a well-known technique in the study of dynamical

systems for attractor reconstruction. Plotting the trajectory of a dynamical system in phase

space can illustrate properties of that system including it’s stability in different regions, the

prescence of chaos, and it’s fractal dimension. However, even if one does not have access

to a time series for every degree of freedom it is possible to reconstruct the attractor by

plotting a single variable at time delayed points: {x0(t), x0(t+ τ), . . . , x0(t+ (Dτ − 1)τ)}.

When Dτ is large enough it can be shown that the trajectory in this time-embedded

19



20

space will retain those properties of the attractor which are preserved under smooth

transformation.

In the context of data assimilation we do not wish to reproduce qualitative prop-

erties of a dynamical system, but rather quantitatively estimate its path through phase

space. The idea is to use the dynamical equations to determine how small changes in any

one state variable affect the values of other variables. Then we compare the trajectory the

model system to the recorded time series from the data system; these should differ because

the model does not start with the same initial conditions as the data system. Finally, we

utilize the Jacobian of the model equations to determine a perturbation to the entire state

vector which will adjust the model’s trajectory so that it coincides with the data trajectory.

Of course, this is an ideal case. In practice whenever you introduce an external

forcing to a dynamical system there is the possibility of pushing the dynamics into an

unstable region which diverges. The inverse problem of going from “a perturbation in

variable 1 propagates a change in variable 2” to “we require variable 2 to change by so

much, how can variable 1 be perturbed to accomplish this” is in general ill-posed. These

issues and heuristics to deal with them are discussed after the method is described in

detail.

3.1 Variational Matrix

The variational equation (Eq 3.1) quantifies how a perturbation in state variable

xi at time t0 will propogate to state variable xj at time t. The variational matrix, which

contains this information, is initialized as the identity matrix. This reflects the fact that at

t0 a perturbation has not had any time to affect any other state variables.
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Φab(t, tn) =
∂xa(t)

∂xb(tn)

dΦab(t, t1)

dt
=

D∑
c=1

∂Fa(x(t))

∂xc(t)
Φcb(t, t1) Φab(t0) = δab (3.1)

The equations of motion of the variational matrix Φ are given by multiplying

Φ with the Jacobian matrix. The Jacobian of a system of equations, ∂Fa(x(t))
∂xc(t)

represents

how the equations of motion of the states change in response to changes in the states

themselves. Multiplying these changes over time results in the changes of each variable to

changes from earlier in the trajectory.

This can be seen with a simple derivation:

dx(t)

dt
=F(x(t))

∂

∂x(t0)

dx(t)

dt
=
∂F(x(t))

∂x(t0)

d

dt

∂x(t)

∂x(t0)
=
∂F(x(t))

∂x(t0)

d

dt

∂x(t)

∂x(t0)
=
∂F(x(t))

∂x(t)

∂x(t)

∂x(t0)

3.2 Time Embedded Coordinates

To apply the variational matrix at a point in time, we need to know the precise

values of the ensuing trajectory. This information is contained in what we call the time

embedding vector, S(t). The values contained in S(t) are the values of the observed state
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variables at delayed times:

S(t) = {x1(t), x1(t+ τ1), x1(t+ τ2), . . . , xL(t+ τK)} (3.2)

Here the τ ’s are K constants, at which we delay the observation time. For con-

venience we typically use a fixed time delay so that τi = i · τ . Each of the L observed

components is included in the time embedding vector.

The time delayed values are obtained by integrating x(t) using the model equations

without any coupling over times t→ t+ τK

We construct a similar vector for the measured data values:

Y(t) = {y1(t), y1(t+ τ1), y1(t+ τ2), . . . , yL(t+ τK)} (3.3)

There is no need to integrate for Y, because all of the data has already been recorded

a priori. Looking at the difference (Y − S) shows how the model trajectory diverges from

the observed data system over the relatively short window [t, t+ τK ].

3.3 Calculating a control δx from time embedded coordi-

nates

In the original synchronization approach we modified the equations of motion by

adding a control term which nudged the measured states towards the value of the observed

data:



23

dx`
dt

= F`(x(t)) + g · (y`(t)− x`(t)), ` = {1, . . . , L}

Note that there are onlyL of these control terms, one for each measured component.

Now we will use the time embedded coordinates to calculate a different coupling term

which incorporates information from the entire time embedding window [t, t+ τK ], rather

than just the time t.

The following procedure is repeated at each time point:

Starting at the current time point in the simulation tn, we integrate both the state

x using the unmodified equations Eq 1.1 and the variational matrix using Eq 3.1. From

these values we construct the embedding vector in Eq 3.2. Additionally we have values for

the D2 entries of Φ(t) at each time in the time embedding window.

The matrix Φ, however, contains a lot of information that is not useful. Recall that

the entries are Φij = ∂xi(t)
∂xj(tn)

. We do not have knowledge of xi(tn) for L < i < D, so it is

not helpful to know how those states vary in response to changes in the system. Instead,

we construct a new matrix, essentially the Jacobian of the time embedded coordinates, by

combining rows 1 ≤ i ≤ L of Φij(t) at each time embedding point in the window:

∂S(tn)

∂x
=



Φ11(tn) · · · Φ1D(tn)

Φ11(tn + τ) · · · Φ1D(tn + τ)

...
...

...

Φ11(tn + τK) · · · Φ1D(tn + τK)

...
...

...

ΦL1(tn + τK) · · · ΦLD(tn + τK)


. (3.4)

The dimensions of ∂S
∂x

are: L · (K + 1) × D
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Defining δS(t) = Y(t)− S(t), the task of finding an appropriate control term for

the dynamical equations can summarized succinctly by solving

δS(t) =
∂S

∂x
(t) · δx(t) (3.5)

for the coupling vector δx. An important point to notice is that the dimension of δx is

D, rather than L. In other words, with the time delay calculation for the coupling vector

we have sufficient information to adjust our estimates of all states simultaneously, rather

than only the measured states.

To review the meaning of Eq 3.5:

• δx is a perturbation to the state x at time t

• ∂S
∂x

(t) is the effect a perturbation in each state variable x(t) will have on each of

observed states at the delayed times {t, . . . , t+ τK}

• Multiplying these quantities together gives the effect of perturbation δx on each of

entry of S, i.e. on each of the observed components at each time in the embedding

window.

However, we wish to solve the inverse problem. We already know the perturbation

we want to produce in the measured components: Y − S, which would mean the model’s

trajectory is aligned with the trajectory in the data. The goal is to find a perturbation δx

by which we can modify the state vector to the current time t to produce such a deviation.

Mathematically, we approximate the coupling term as:

δx =
∂x

∂S
δS (3.6)
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where ∂x
∂S

is the pseudoinverse of ∂S
∂x

.

We can use this perturbation as a control term the same way the “g(y − x)” term

in the Eq 2.1 was used. The states get nudged, but this happens during the integration,

and occurs more gradually then changing the states at once. This should intuitively help

prevent from being placed in an unstable regime due to a non-dynamical perturbation.

However discussions with other graduate students suggest that the discrete shift may be

preferable [11]. This approach is discussed in 3.4 below.

The equations of motion then become:

dx

dt
= F(x(t)) + g · δx(t) (3.7)

The perturbation in Eq 3.7 needs to be calculated at each time point during the

integration, this adds a significant computational cost. However the payoff is the ability to

predict the behavior of systems which previously seemed impossible.

The pseudoinverse allows us to effectively invert the dynamical dependence in

the equations of motion. Using the original synchronization term only the measured

variables in the model are affected directly. We must rely on the natural dynamics to

guide the unobserved variables to the underlying values in the data system. However, the

pseudoinverse of dS
dx

provides the information to adjust the unmeasured variables directly,

based on our observations of measured ones. This method gives us a way of reproducing

behavior of a system with dynamics like those in Eq 2.3.
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3.3.1 Computing the Moore-Penrose Pseudoinverse of ∂S∂x

Like many theoretical ideas inverting ∂S
∂x

is easier said than done. The first question

one must answer is how to solve the system of equations in Eq 3.5, if δS and δx have

different dimensions. Depending on the of number of time embedded points used there

may be either more or less equations than variables in δx. An additional condition must

be imposed in order to obtain a single solution (for under-determined systems) or an

approximate solution (for over-determined systems).

We do this by computing the Moore-Penrose pseudoinverse. The M-P pseudoin-

verse results in a solution a which solves a least squares problem: arg minX ‖b−Xa‖2.

This solution exists even if a and b have different dimensions. If a and b have the same

dimensions then the pseudoinverse will be the literal inverse, which gives the unique

solution for a in the system of equations X−1b = a.

A typical approach to calculating the pseudoinverse is with singular value decom-

position (SVD). SVD is a way of factorizing a matrix into three distinct parts.

UΣV∗ = M (3.8)

In general, for an m× n matrix M with rank ρ, SVD will produce:

• U: m× ρ unitary matrix

• Σ: ρ× ρ square diagonal matrix. The diagonal entries of this matrix are the singular

values

• V: n× ρ unitary matrix (V∗ is the conjugate transpose)

This factorization is very convenient because each of the component matrices can
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be easily inverted. The inverse of a unitary matrix is, by definition, its conjugate transpose.

Technically, a diagonal matrix in general is only invertible if all it’s entries are non-zero, in

which case the inverse is simply another diagonal matrix whose entries are the reciprocal

of those in the original matrix:

D =


d11 · · · 0

... . . . ...

0 · · · dmm

 D−1 =


1
d11
· · · 0

... . . . ...

0 · · · 1
dmm

 (3.9)

In general, the matrix Σ from the SVD will diagonal entries equal to zero. In this

case the pseudoinverse is the same way as when the matrix is invertible, but with the

modification that zero-valued diagonal entries are left as zero in the pseudoinverse. This

will give a “reduced rank identity matrix”:

Σ−1 =



1
σ11
· · · · · · · · · · · · 0

... . . . ...

... 1
σρρ

...
... 0

...
... . . . ...

0 · · · · · · · · · · · · 0


Σ−1Σ =



1 · · · · · · · · · · · · 0

... . . . ...

... 1
...

... 0
...

... . . . ...

0 · · · · · · · · · · · · 0


(3.10)
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Once we’ve done the SVD, the pseudoinverse of a matrix M is simply:

M−1 = VΣ−1U∗ (3.11)

Using SVD for the pseudoinverse is perhaps the primary source of instability in this

method. Although it may seem like a trivial numerical consideration, it is not obvious how

small a singular value should be to be regarded as “zero” for the purposes of inverting. This

decision can significantly affect the success of the time delay synchronization procedure.

If very small non-zero values are inverted the resulting control term may be orders of

magnitude larger than the dynamics of the system and result in instabilities. On the other

hand, if too many singular values are regarded as “zero” and not used in the inverse then

the control terms may be too small to regulate the chaos in the system and synchronization

is never achieved. This is discussed in more detail in Appendix A

3.4 A problem using δx as a dynamic control

A potential issue I have brushed over until now is the value of the coupling constant

g in Eq 3.7. It was mentioned in passing that it can be chosen empirically, as a hyperpa-

rameter of the algorithm. This parameter should be adjusted so that it is large enough to

transfer information from y(t) to x(t), but not so large that the resulting perturbation

forces the state x(t) into an unstable region of phase space. In other words, tweak it til it

works. In practice this represents the most rigorous method we have derived for choosing

this constant.

Nevertheless, it is productive to dwell for a moment on what this constant truly

represents. Placing it on sound theoretical footing could ultimately result a valuable
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extension which improves the method. The units of g are easily seen to be 1/[time].

Realize that the perturbation we have calculated, δx, was intended to be an estimate of

the difference between the state of the model system and the state of the data system.

However by modifying the dynamical equations, we are adjusting the rate of change of the

state, not the state itself. The constant g can then be interpreted as a rate, chosen for how

quickly we feel the state of the model should be driven towards the (our estimate of) the

state of the data.

This is in no way particular to the time delay method. In the original paper on

synchronizing chaotic systems Pecorra and Caroll [4] simply replaced the observed states

in x directly with the values of y in the data system like was introduced in Eq 1.14. Later

this approach was generalized to act as additional driving force in the equations of motion

[9, 12, 13], with variable coefficient. The original replacement scheme of xi = yi (i ∈

{1, . . . , L}) is the special case where g → ∞. In our own work we have found there is

often an advantage to limiting the size of the coupling constant. If the system is restrained

too tightly it may be forced out of a stable chaotic region by either numerical or dynamical

instability. Previous graduate students discuss the impact of using different coupling

constant values on synchronization [11].

One way to frame this question is “how should we convert a spatial distance into a

rate of change to arrive at that location”. A simple answer is to make the whole shift in

a single step, rather than nudging the equations of motion. At first glance, a reasonable

choice seems to be setting g = 1/dt, the step size of the integrator. This should scale the

control term g δx so that the model system makes the full shift in one time step. Unfortu-

nately we have found that using such a large g is unstable. Even though theoretically we

are taking a full step, using an explicit integrator with too large of a step can easily get
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out of control. The problem is primarily due to the fact that δx was calculated with the

pseudoinverse, it is inherently imprecise. There is likely no solution which exactly solves

dS
dx
δx = δS. If we are unlucky the errors in δx (by which I mean the extent to which is

does correctly perturb the model to match S to Y) can create instabilities.

An alternative to controlling the equations of motion was explored by others in the

lab after some development had taken place on this dynamical formulation [14]. Referred

to heuristically as a Newton’s Method, the idea is to decouple the estimation from the

integration. Rather than using the nudging as an external force the idea we tried simply

using δx to shift the initial condition x(0)→ x(0)+δx and integrate the model from there

with unmodified equations. This approach is discussed in the reference. I myself did not

explore it in detail, but based on conversations I believe it is the most promising avenue to

take if one wants to continue to develop and apply the time delay synchronization method

more broadly. A noteworthy advantage of separating the shift in state from the dynamic

equations is that the process can be repeated several times with the same segment of

data. Shifting the state at a single point in time only requires an estimation window of

T = K · τ , which is just enough to perform the time embedding. Once δx is obtained the

process can be repeated starting from the new estimate x + δx. If the procedure converge

to an estimate of x(0) which is not yet accurate, we can integrate the equations forward

to a new time point and repeat this procedure at a somewhat later time. I think this will

provide more flexibility than using δx to modify dx
dt

.
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3.5 Putting Time Delay Synchronization to Work

3.5.1 Lorenz 96

In Fig 2.2 the Lorenz system is shown with basic synchronization. When only the

observed variable is controlled directly, measurements of the first 5 of 10 state variables

are necessary to achieve a reasonable amount of prediction. With a 20 second window of

assimilation, the model can predict accurately for about 5 seconds.

By using the time delay information to control all of the states remarkably better

results are achieved. Fig 3.1 shows the same system, with the same initial conditions

for both the model and the data systems. In this case only x1(t) was observed from the

data system. Thanks to the additional information extracted from seven time embedded

coordinates, this system was able to synchronize so well that the predictions remained

good for around 13 seconds. That is more than twice as long as the basic synchronization

could predict with 5 observations.

There is no free lunch, but in this case at least it pretty cheap. The Fig 2.2 example

with 5 measurements takes about 14 seconds to run the assimilation on my laptop. On the

same computer the time delayed example with 7 embedded coordinates at each time step

took 108 seconds. That’s about 8 times as much time to synchronize the same amount of

data. In exchange, the problem can be solved with only one time series recording instead

of five. In practical problems like weather prediction where each additional weather

station requires funding, time, and political effort to construct it can be much cheaper

to simply run extra calculations on a computer. In other fields, like neurobiology, where

some variables are simply inaccesible during an experiment substituting computational

power for measurements can be invaluable.
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Figure 3.1: Lorenz 96 model with 10 dimensions. Only x1 is observed. 7 time
delay points are used during synchronization τk = 0.05 · k. Red: Measured data
time series; Blue: Model estimation and prediction. Like Fig 2.2, x(0) = 1.01y(0)

Even this is overstating the cost, because the results turned out to be substantially

better with time delays than with basic synchronization. Its conceivable that we could have

used a much shorter estimation window with the time delay synchronization to obtain a

comparable result to the standard synchronization. Using a shorter window would require

proportionally less time.

To test this I ran another twin experiment on the same system, with 1 measurement

and 7 time embedding dimensions. This time the data assimilation only lasted 2.59 seconds.

I chose this length of window to scale down the window from the previous example by

how much faster the basic synchronization ran: (20s window) * (14 sec)/(108 sec) = 2.59s

window.

The results worked even better than expected. Fig 3.2 shows that even with this

small window of time series data The time delay result still performs dramatically better

than the basic synchronization method (this short window actually completed in 10s,
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almost 30% less than the basic synch. result).

In fact this approach with the shorter window works just as well as the much

longer window used in Fig 3.1. This brings up at least two interesting points that are

worth highlighting. First is that not only does the time delay synchronization help solve

problems with fewer observed variables, it also gives much faster convergence. This is not

trivial, experiments cost resources and scientists do not always have the ability to record

for arbitrary lengths of time. Having a recording which is too short can be just as limiting

as one which incomplete.

Another point worth mentioning is the fact that there are severe diminishing

returns when estimating chaotic systems. Due to the fact that chaotic trajectories diverge

exponentially one needs orders of magnitude better estimation to get obtain a linear

increase in prediction time. That would explain why estimating for 2.6s or 20s gives

essentially the same prediction length. In problems with noise the upper bound is really

insurmountable.

Figure 3.2: Lorenz 96 system data and model trajectories. Only observing x1 with
7 time embedding dimensions.
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The extensibility of the Lorenz 96 model allows us to really show off how powerful

the time delay synchronization can be. We can include an arbitrary number of dimensions

in the Lorenz 96 system. Previous work had found that with the traditional control method

roughly 40% of the dimensions had to be measured to obtain successful synchronization

across all states [15–17].

However by using time embedding coordinates to access information latent in

the waveform of the time series, we can synchronize even very large models with only 1

variable recording.

3.5.2 Parameter estimation

The time delay synchronization method also provides a way to estimate static

parameters in the model. This follows naturally from the observation that parameters can

be thought of as state variables with the trivial dynamics:

dp

dt
= 0 (3.12)

If these variables were appended explicitly to the state vector x and the basic control

coupling were performed, they would never change. No matter how closely the model

states x1:L approach the data values y1:L, the parameters do not change dynamically.

Recall, on the other hand, that the time embedding synchronization gives control

terms for all states, rather than just the observed. This means that even if there is a

“variable” that doesn’t change, its influence on the observed states will provide some

information about how it needs to change.

If we append the parameters to the state vector x has dimensions D +Np, where
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xD+1:Np = p. Then the of the parameters is determined entirely by the control terms:

dxD+1:Np

dt
=
∂xD+1:Np

∂S
(Y − S) (3.13)

Until now the examples have all assumed the mode has access to the correct fixed

values for all of the twin experiments. Naturally, without perfect knowledge of these

parameters the estimation problem is harder. Nevertheless Fig 3.3 shows that time delay

control compensate for this lack of information, at least to an extent.

The Lorenz 96 model in Eq 2.2 contains a forcing parameter, which determines

whether the system is in a limit cycle or a chaotic regime (chaos occurs for ν ≥ 8). Below

we show the value of the forcing parameter in the model system as the time delay control

term gradually approaches the value in the data system. The model was initialized with

ν = 9.0, while the data system had ν = 8.17.

Figure 3.3: Forcing parameter ν estimated in Lorenz 96 equation. Fifty time
embedding coordinates used (τk = k · dt, k = 1 . . . 50).

Fig 3.3 demonstrates that this approach works in principle. There is information

about the parameters contained in the state variable behavior, which we can access with

time embedding coordinates. As always though there are practical concerns. Allowing

the parameter in our model to fluctuate gives the system much more freedom and makes
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the data assimilation correspondingly harder. To obtain the estimate in Fig 3.3 the data

assimilation required 49 time embedded coordinates, whereas the previous example in Fig

3.2 made do with 7. Additionally, the prediction deteriorated significantly, with only 2-3

seconds worth of accurate prediction.

3.5.3 Accounting for Noise

Besides being limited by the number of observations, we must also consider the

practical reality of noise during data assimilation. There are two main ways noise can enter

the procedure. The first is through missing or incorrect terms in the dynamic equations; so

that the state x(n+ 1) is not quite given by f(x(n)) . This can occur in stochastic systems,

where random perturbations at each time occuring at a smaller scale than the dynamics,

or may simply be from missing terms in the model equations. The other form of error is

the uncertainty inherent in all measurement instruments. In this case the concern is that

y is not a precise observation of x, even though the dynamics of the system itself were

not affected. Because it does not affect the evolution of the physical, or data, system the

latter type of error (measurement error) is easier to deal with and is what will be mainly

discussed.

To minimize the effects of noise a longer time embedding window is required. That

is, τK in general should be larger than what is acceptable without measurement noise.

This is because the time embedding window effectively acts as a low-pass filter. To see

this heuristically, assume that the measurement noise is Gaussian (ν(t) ∼ N(0, σ)) and
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independent at each time point. The difference between two observations is:

ỹ(t+ ∆t)− ỹ(t) = y(t+ ∆t)− y(t) + ν(t+ ∆t)− ν(t)

= ∆y +N(0,
√

2σ)

Independently of how much time elapses between two measurements, the amount

of the difference due to noise is fixed at a standard deviation of
√

2σ. The difference

between the underlying variables at different times, ∆y, is roughly proportional to the

time elapsed, ∆t (at least over short times; the difference ∆y eventually asymptotes to

the size of the attractor).

This means that when comparing values of the same variable at different times, as

the time embedding control term does, the longer the time elapsed between those the less

the difference is attributable to noise.

This effect is easily seen in Fig 3.4. These plots using the same conditions as Fig

3.1. In the previous figure, the measurements were basically exact, and we found that 6

time delays was sufficient to accuratley synchronize the system and predict for about 15

seconds. Adding noise makes this process much harder. The plots in Fig 3.4 below show

the same procedure with Gaussian noiseN(0, 0.2) added to the observed component, after

the data is simulated.

When the noise is added we see that even 10 embedding dimensions are not suf-

ficient to synchronize the model, if the time delays are too short. Taking the spacing

between each time delay τk from one time step up to fifteen, however suddenly makes syn-

chronization possible. The issue with a short time delay is that percentage error becomes

much greater the less time between the time delay terms δS which we apply in Eq 3.6.
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Noise in the observations interferes with the pseudoinverse described in section

3.3.1. The ∂s
∂x

matrix can be unstable even without noise, if there are few enough mea-

surements. Adding rapid short time scale fluctuations to the measurements y means that

when we try to calculate a perturbation δx = ∂s
∂x

(Y − S) we can huge unphysical per-

turbations. We are effectively looking for a perturbation which will result in the random

noise fluctuations. Such a trajectory is not a real solution of the model, and so the control

term δx can diverge and take on very large values. The effect will be reduced however

over a longer window for Y and S, because the noise will account for a smaller percentage

of the changes in the variable. The time delay essentially acts as a low-pass filter, which

cuts out small time scale fluctuations the longer it gets.
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Figure 3.4: L96 10-dim system with Gaussian noise N(0,0.2) added to mea-
sured variable, x1(t). Unmeasured variable x7(t) plotted in the data and model
system. Integration time step dt = 0.01. Top: τ = {1 . . . 10}dt Middle: :
τ = {5, 10, 15, . . . 50}dt Bottom: τ = {15, 30, 45, . . . , 150



Chapter 4

Path Integral Approach

The data assimilation techniques so far have been in the form I have called “syn-

chronization”, which is often known as “filtering” in the literature. The general idea is to

take recordings of the data system and, using either a single time point or a window or time,

calculate a modification to the equations of motion which would drive a secondary system

closer to that data. This approach is often effective, but it is not immediately obvious how

to relate it to the probability distribution in Eq 1.12, which is reproduced here:

P (x(n)|Y(n)) =

∫ n−1∏
i=0

dx(i) exp(I[x(i+ 1),y(i+ 1)|Y(i)])

× P (x(i+ 1)|x(i))P (x(i)|Y(i))

(4.1)

Where I[x, y|Y ] = P (x,y|Y )
P (x|Y )P (y|Y )

is the conditional mutual information.

An alternative approach is to utilize this distribution directly to obtain an estimate

of the path in phase space. We start with the observation that for any functional G(X)

which depends on the trajectory of the system, the expected value of G(X), given the

40
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observations, is given by:

〈G(X)|Y〉 =

∫
dXG(X)P (X|Y)∫
dXP (X|Y)

=

∫
dXG(X) exp(A(X,Y))∫
dX exp(A(X,Y))

(4.2)

Where P (X|Y) =
∏

m P (x(m)|Y). A(X,Y) = log(P (X|Y)) is referred to as the Action,

in analogy with the physical path integral; it is equal to the log probability.

This form of the expected value is familiar to physicists. When we there the data Y

has high accuracy (little noise) the probability distribution should become sharply peaked.

This represents that there is only one path consistent with the trajectory as observed. This

is analogous to the principle of least action, which states that the trajectory of a moving

body must minimize the action. When the recordings become noisy, however, there may

be many trajectories with a reasonable likelihood. Then the expected value becomes more

like the quantum-mechanical path integral, which must integrate over several possible

trajectories to give the average value.

4.0.4 Form of the Action

To write an explicit mathematical form for the action, we start by first considering

the transition probability P (x(i + 1)|x(i)) in Eq 1.12. This probability depends on the

dynamical model we have chosen. We take the model to have the general form:

g(xn+ 1,x(n),p) = η(n) (4.3)

Where η represents stochastic components in the equations.
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Writing the model explicitly is slightly less general, but a bit easier to read:

x(n+ 1) = f(x(n),p) + η(n) (4.4)

P (x(n+ 1)|x(n)) = δD (x(n+ 1)− f(x(n),p)) , η = 0 (4.5)

When the model is fully deterministic η = 0, and the transition probability is simply:

P (x(n+ 1)|x(n)) = δD(x(n+ 1)− f(x(n),p)) (4.6)

Which states that the only possible value of x(n+ 1) is the one mapped to by the model

equations g from x(n) has any likelihood of being state at the next time point.

If η is presumed to be a Gaussian distribution, then the transition probability

broadens around x(n+1), because the previous state does not deterministically determine

the state at the subsequent time:

P (x(n+ 1)|x(n)) = P
(
f
(
x(n+ 1)

)
+ η
)

= Pη

(
f
(
x(n+ 1)

)
− x(n+ 1))

= C exp
[(
xa(n+ 1)− fa(x(n))

)
Rf
ab

(
xb(n+ 1)− fb(x(n))

)]
(4.7)

The diagonal elements of the matrix Rf
ab represent the variance in the dynamical noise

η, for a particular variable. The off-diagonal elements in this matrix represent cross-

correlations in the dynamics between different states. For simplicity, we typically take these

off diagonal entries to be zero, however by incorporating the Jacobian in a manner similar

to Kalman Filters [18, 19] there may be additional information to extract by introducing an
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approximation of these cross-correlations.

The relationship between the probability distributions of η and the dynamics

variables x can be seen with the following identity for the probability distribution of a

sum of random variables

Z = X + Y :

PZ(z) =

∫
dY Px(z − Y )Py(Y ) (4.8)

Applying this to the distribution of a trajectory in path space gives:

Px(x
n+1|xn) = Px(f(xn) + η|xn)

=

∫
df̂ Pη(x

n+1 − f̂ |xn)Pf(x)(f̂ |xn)

=

∫
df̂ Pη(x

n+1 − f̂ |xn)δD(f̂ − f(xn))

= Pη(x
n+1 − f(xn))

= C exp
[(
xa(n+ 1)− fa(x(n))

)
Rf
ab

(
xb(n+ 1)− fb(x(n))

)]
(4.9)

Where Pη = C exp[ηaR
f
abηb] is the Gaussian probability distribution of the noise

term η.

The other important factor in 4.1 is conditional mutual information term, which

adjusts the probability of a trajectory based on the observations.

I[x(n),y(n)|Y(n− 1)] = log

[
P (x(n),y(n)|Y(n− 1))

P (x(n)|Y(n− 1))P (y(n)|Y(n− 1))

]
(4.10)

The CMI can be simplified when it’s used to calculate the path integral in 4.2. Note

that the term in the denominator depends only on the observations Y and as a result, can
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be brought out of both integrals and will cancel. If we neglect that term, the remaining

fraction can be rewrtten:

exp [CMI(x,y|Y)] =
P (x(n),y(n)|Y(n− 1))

P (x(n)|Y(n− 1)P (y(n)|Y(n− 1)))

→ P (x(n),y(n)|Y(n− 1))

P (x(n)|Y(n− 1))
(4.11)

P (x(n),y(n)|Y(n− 1))

P (x(n)|Y(n− 1))
= P (y(n)|x(n),Y(n− 1)) (4.12)

= P (y(n)|x(n)) (4.13)

Eq 4.12 is simply Bayes theorem, which inverts the conditional probability distribution. Eq

4.13 represents the fact that given the underlying state x(n), measurements of that state

are independent of states at previous times. In layman’s terms this is the statement that

the probe works the same at each time point, and doesn’t degrade or depending on what it

has previously observed.

The relationship between the measurements is straightforward:

y(n) = h(x(n)) + ε (4.14)

Where similar to the η in the dynamics, ε is the noise in the measurement instruments,

which causes the observations y to vary from the exact value given the state, h(x). Note

that throughout this work I assume a direct measurment of the state variables, to simplify

the equations: y(n) = x(n) + ε.

With the relationship between y and x, we use the same argument as 4.9 to show
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show that, for a Gaussian distribution of the measurment error ε:

P (y(n)|x(n)) = Pε(y(n)− h(n))

= D exp
[(

y(n)− h(x(n))
)
a
Rm
ab

(
y(n)− h(x(n))

)
b

] (4.15)

Where again Rm
ab represents the crosscorrelation matrix of observing different compo-

nents of the states through h(x). D is just a normalization constant which cancels when

evaluating the path integrals in the numerator and denominator of 4.2

Combining the expressions from Eq 4.7 and Eq 4.15 we get the form for the residual

action (written simply A, because its the quantity we care about):

A(X|Y) =
N∑
n=1

− log[P (y(n)|x(n))]− log[P (x(n+ 1)|x(n)) (4.16)

=
N∑
n=1

−
(
xa(n+ 1)− fa(x(n))

)
Rf
ab

(
xb(n+ 1)− fb(x(n))

)
(4.17)

−
(
ya(n)− hb(x(n))

)
Rm
ab

(
ya(n)− hb(x(n))

)
(4.18)

=
N∑
n=1

Rf

D∑
i=1

(xi(n+ 1)− fi(x(n)))2 +Rm

L∑
j=1

(yj(n)− fj(x(n)))2 (4.19)

The last line Eq 4.19 is a simplifications for when the error covariance matrices Rf and

Rm are diagonal and constant (effectively reducing them to a scalar number). This form is

the easier to read. The most probabilistic path will be the one with the lowest action. We

can see above that minimizing the Action is essentially a least squares minimization of

two competing terms. One term is the difference between the model variables X to the

data Y. The other is between state at each time, x(n), and the state which is mapped to

from the previous time, f(x(n− 1)).
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Because the model f(x) is not necessarily linear, the action is not necessarily

convex in the state variables X. This is why the data is so important. The measurement

term (yi − xi)2 is convex, and presumably also follows the model approximately. With

enough of measurement terms the action becomes convex around a few very likely paths.

This makes it possible for a numerical routine to actually find a consistent trajectory in

the entire space of X, which typically numbers in the thousands of variables.

4.0.5 Surface of the Action

Figure 4.1: Action surface in x7(500ms) dimension. Left: Plot when other vari-
ables and time points are synchronized. Right: When path X is unsynchronized.

Figure 4.1 shows plots of a single variable in the path integral (one state variable at

one time point) and how the value of the action changes as one variable is varied while

the others are held fixed. This is an attempt to visualize the high dimensional (NTD-

dimensions) path space. Here I have reduced it to one dimension, a single entry x7(500ms)

in the path-vector X (Eq 1.6). There are still many places in space where we can look along

this dimension. Fig 4.1 shows plots of the action at two locations: the left is when all the

other variables are near the correct values in the data system, the right is when the other

variables are given some random values. Notice at when the other variables are given
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correct value then the minimum of the action along the x7(500) dimension is correctly

located, but not when the other variables are at random values. As some of the variables

approach their true values it becomes easier to optimize the ones which remain, further

demonstrating the value of additional measurements.

Previous work [Kostuk, Quinn] claimed that the value of the action created a fractal

surface as one variable varies. However, Fig 4.1 shows a smoothly varying, seemingly

convex surface. The difference is that the plots in previous works did not really show the

action in the context of an optimization problem. Instead, they plotted the synchronization

error (essentially just theRm term of the action) after integrating the entire trajectory with

different initial conditions. Here we vary each variable independently, with no integration,

and include the dynamics term. In that one variable the action looks convex.

Convexity is not the end of the story, however. Fig 4.1 shows that even though the

surface is convex, the minimum of the action is not the correct underlying value (i.e. does

not match the data system). This is because the action depends the state at multiple time

points simultaneously. If we plot the action over state a at time tb (xa(b)), the location of

the minimum depends on the other variables xi(n) (i 6= a, n = {b − 1, b + 1}). When

the neighboring state variables are at their correct value (Fig 4.1, right) then indeed, the

minimum occurs at the correct value as well. However, when the rest of the path is drawn

from unrelated initial conditions (Fig 4.1, left) then the value of xa(b) which minimizes

the action occurs far from the underlying data value.

I believe in practice, the idea that having sufficient data allows us to distinctly

identify the minimum is inaccurate. The minimum is still very hard to place accurately

unless the variables at all times are already very close to their correct values. Instead,

the way an optimization routine finds the lowest action is through iteratively varying the
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values at every time point. I think the importance of observations is the more subtle and

complex. The measurments make it mroe likely for this iterative process to converge to the

data by repeatedly moving the variables at all time points. After moving all the variables

to these incorrect minima, the interactions between them change the action surface in

each dimension.

4.1 Laplace’s Method

The most common way to evaluate the average of a quantity 〈G(X)〉 in Eq 4.2 is to

approximate it by Laplace’s Method [20, 21]. The Laplace approximation utilizes the fact

that integrand which includes exponential with a large coefficient has the leading-order

behavior

I(x) =

∫
dx f(x)eαg(x) (4.20)

∼
∫ x0+ε

x0−ε
dx f(x0)e

α(x0+b(x−x0)2 as α→∞ (4.21)

∼ eαx0f(x0)

∫ x0+ε

x0−ε
dx eαb(x−x0)

2

as α→∞ (4.22)

Where b = 1
2
d2g(x0)
dx2

. The claim is that because the term αg(x) is exponentially

large, only points in the infinitesimal vicinity of the maximum of g(x) will contribute to

the integral.

In discrete time Eq 4.2 becomes N ·D separate integrals. Nevertheless Laplace’s

method follows the same logic. The problem then reduces to finding a minimum of the
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action in the multi-dimensional path space

∂A(X)

∂X

∣∣∣∣
X=X0

= 0 (4.23)

Recall that in the expression of the action, Eq 4.19:

A(X) =
N∑
n=1

Rf

D∑
i=1

(xi(n+ 1)− fi(x(n)))2 +Rm

L∑
j=1

(yj(n)− fj(x(n)))2

The coefficients Rm and Rf represent the inverse of the variance (covariances in the gen-

eral case) in the observation and model errors respectively. For the Laplace approximation

to be valid these coefficients must be very large. This criteria will be met to higher accuracy

the smaller the noise is in both the observations and model dynamics.

This should not be surprising. The smaller the variance of the noise the more

exactly we can enforce a match between the data and model. In the limit that there

measurements and equations are exact we would expect only a perfect copy of the data

system state to able to reproduce a the observed projection in the measured variables. This

is of course true so long as there is no degeneracy, such as a limit cycle or fixed point, in

phase space. If there were, an exact trajectory in one or a few variables could be reproduced

even if the unobserved variables were different.

In practice, we utilize existing optimization programs to find the trajectory X0

which minimizes the action. We begin with some randomly chosen initial values for the

state variables at different times. Then the optimization algorithm uses the gradient and

Hessian of the action function to adjust the values of the state variables at each time

independently until the value of entire action function converges to a local minimum. The

simplest approach to simply take the gradient of the action with respect to each variable
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at each time and step down that gradient. Typically optimization algorithms can only

guarantee a local minimum. More advanced algorithms will have different approaches for

getting out of a shallow well if there is a deeper minimum nearby.

This limitation emphasizes the importance of having as many measurments as

possible. Note that the measurement term in the action Rm(y(n)− x(n))2 is quadratic

and can be trivially minimized. More observations mean more of the model variables will

be driven towards the vicininity of the corresponding data values, making it much more

likely that the final answer will be the true solution. Another way to verify that the result

of the minimization is a global minimum is addressed in the following section.

4.2 Annealing

One limitation with Laplace’s Method is that a minimization algorithm typically

returns a single path meeting the critera in Eq 4.23. However, in general there will be

multiple possible paths which represent local minima in the NTD-dim path space, and

therefore potential solutions of the minimization routine. If the noise is too large or the

observed variables do not contain sufficient information, then several of these trajectories

may have comparable values of the action. In this case the procedure would be inconclusive.

Perhaps we could average over the different minima to obtain an estimate. In any case

we want to know if we can be confident that the minimum path found is truly the global

minimum of the action. This would mean it represents the underlying trajectory that the

data system takes, as accurately as possible.

Two techniques can be combined to answer this question. First we utilize an

ensemble approach: we initialize the search for the minimum with multiple different initial

conditions in the minimization algorithm. Because each search starts from a different
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region of path space if there are multiple equivalent minima we expect to find several of

them.

There is still the problem that not all minima are created equal. Some may be very

narrow and difficult to locate; even if they represent a lower value of the action (i.e. higher

probability path). Such minima can be hard to access if a being slightly away from the

minima results in a large value of the action.

To address this problem we combine the ensemble approach with an annealing

technique. The name comes from the similarity to simulated annealing, where in a pa-

rameter in the cost function (traditionally, the temperature) is slowly adjusted as space

is explored [22–24]. In this case the parameter we tune is Rf . We start with a very small

number, making the measurement term Rm almost exclusively dominant in the action.

Once a minimum is found we increase Rf by a multiplicative factor, using the previous

minimum as an initial point, and minimize again. We continue increasingRf exponentially

until it is much larger than Rm and dominates the action.

Fig 4.2 and 4.3 show typical plots of the action values as Rf increases. As expected

when Rf is small the value of the action increases exponentially. Even though each path is

different, there does not appear to be much variation in the value of the action. This is

because when Rf is small the minima are degenerate. The measurement term Rm quickly

brings the observed components in line with the recorded data y, because Rf is not large

enough to impose any significant constraint on the other variables.

At intermediate Rf , however, an interesting phenomena takes place. Even though

the coefficient on the model error keeps increasing exponentially the value of the action

at the lowest minima plateaus. This suggests that the error (x(n+ 1)− f(x(n))) is so

close to zero that even when the coefficient increases exponentially the entire quantity
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Figure 4.2: Plot of action levels for 100 randomly chosen initial paths (every xi(n)
chosen randomly). Only 1 measurement available from data system y = {y1}.
Measurement noise drawn from Gaussian dist: N(µ = 0, σ = 0.5)

Figure 4.3: Plot of action levels for 100 randomly chosen initial paths (every
xi(n) chosen randomly). 5 measurements available from data system y =
{y1, y3, y5, y7, y9}. Measurement noise drawn from Gaussian dist: N(µ = 0, σ =
0.5)
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Rf (x(n+ 1)− f(x(n))) remains constant.

Fig 4.2 shows the results of the annealing procedure when a D = 10 Lorenz 96

system, with only 1 observed variable (L = 1). This is typically too little information

to achieve an accurate estimate of the unobserved trajectories. Fig 4.3 was made with 5

observed variables, which should be sufficient for accurate estimation. The most obvi-

ous difference between the plots is that the latter has a clearly distinct minimum path.

Regardless of the initial conditions all the paths converge to the same local minimum,

suggesting it is in fact the global minumum. On the other hand, the case with insufficient

observations results in a broad spread of of different action valued paths. Because there

is not sufficient information in the measured components, paths that are initialized in

different regions of path space get caught in whatever local well they are near.

It is sometimes possible that the lowest action level path is in fact a good estimate

of the overall state, even if there are many nearby minima. However in order to find it

we may need to run the optimization a hundred different times, as we did in Fig 4.2. The

fact that several plausible paths were found tells us that the result is ambiguous and may

not be useful with experimental data, outside the context of a twin experiment. On other

hand if there is clearly one path whose action value is orders of magnitude lower than any

of the other local minima, we can have some confidence that it truly represents the state

of the target data system.

We can see what the lowest action level actually represents in Fig 4.4 and 4.5. Both

figures show two plots: one for a measured variable x1(t) and one for an unmeasured

variable x2(t). Fig 4.4 shows the lowest action trajectory from Fig 4.2, when only x1 was

observed in the data system. Fig 4.5 shows the lowest trajectory when x1, x3, x5, x7, x9 are

observed and incorporated in to the measurement term of the action. In both cases all of
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the observations were simulated with Gaussian “measurement noise” N(0, 0.5) added to

y(t) after the data system was fully integrated.

The main thing to note in the two trajectories is that in both cases the measured

variable is well estimated. This means that just looking at the available data is not going

to be very helpful. In a real experiment, x1 is the only information we have access to

and there’s no good way to distinguish from that whether the entire state is accurately

estimated. Fig 4.5 shows what is happening beneath the surface, so to speak. Even though

both paths represent the lowest action out 100 initial conditions, when there are sufficient

measurements the optimization is able to estimate even the unmeasured components via

the model term Rf (xi(n+ 1)− fi(x))2.

This is one of the main advantages of the annealing procedure. The qualitative

difference in the distribution of the action minima is clear between Fig 4.2 and 4.3. The

latter has a broad spread of different action levels, suggesting the information in the

available measurements is insufficient to find an unambiguous minimum. However when

the observations are sufficient, as in Fig 4.3, all of the initial conditions collapse to a single

global minimum. Although there’s no mathematical guarantee, this indicates that we have

likely found the correct trajectory taken by the data system. If all the variables have been

well estimated, this latter situation will allow us to integrate the model forward to make

predictions of the data system.

4.3 log(P ) as Entropy, rather than Action

Throughout this section I have referred to the negative log probability distribution

as the “Action”. Our group framed the problem this way for several years to draw attention

to the analogy of performing a path-integral over all possible trajectories. The path
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Figure 4.4: Plots of the x1 and x2 variables for both the data and model system
in a Lorenz 96 10-dimensional system. Trajectories are taken from the largest
Rf value of the annealing procedure in Fig 4.2. Only x1 was observed, this was
insufficient to accurately estimate x2.

Figure 4.5: Plots of the x1 and x2 variables for both the data and model system
in a Lorenz 96 10-D system. Taken from the largest Rf value of the annealing
procedure in Fig 4.3. x1, x3, x5, x7, x9 were observed, this was enough to estimate
x2 and other unobserved variables.
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integral and Laplace’s approximation can even connect to both the classical and quantum

mechanical action distinctly. The measurment and observation noise play the role of ~.

In the limit of small variance noise we solve the problem via Laplace’s method, which

only considers the lowest action value, analogous to Hamilton’s Least Action Principle.

When the noise is larger (Rm, Rf not small) we can attempt to estimate the probability

distribution via Monte Carlo sampling, in which case we are considering contributions from

all (or at least, many) possible trajectories, which must be done in quantum mechanics.

It has occurred to me that there may be an alternative analogy. I have not thor-

oughly explored this idea, but mention it here in case future researchers find it an inspiring

or fruitful direction to pursue. Although the path integral we perform brings to mind

an action, the very definition of the action A(X) = − log(P (X)) is very similar to the

traditional the definition of entropy.

I started by thinking that the thermodynamic entropy is traditionally given as

S = kB log(Ω)), where Ω is the number of microstates. If each microstate is equally

probable, then

p =
1

Ω
(4.24)

S = −kB log(p) (4.25)

While these forms look superficially similar, they depend on rather different things.

The “action” we use depends on the probability of realizing a trajectory in path space,

given some recordings. The thermodynamic entropy depends on the probability of being

in one of many identical microstates. In the former case, we are looking for a unique path

with a large probability distinct from other alternatives. In the latter, we are typically
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moving towards a macrostate with as many identical microstates as possible. Indeed, the

goal in data assimilation is to minimize the quantity we’ve called “action”, whereas entropy

is a quantity that almost by definition must go towards a maximum.

A better way to relate these quantities instead is to view the likelihood of a given

path P (X) as being like the probability of the macrostates of a thermodynamic system,

which is exactly proportional to the number of microstates Ω. IfP (X) ∼ Ω, then minimizing

A(X) = − log(P (X)) is effectively the same as maximizing S = kB log Ω.

My interpretation of this analogy is that each trajectory of the model system in

path space is like a distinct macrostate. Different instantiations of noise in either the

observations or the dynamics result in a variety of possible microstates that are all related

to the fundamental path. When the model system path is closer to the data systems

trajectory, then more of these different instantiations of noise will be consistent with the

recordings. The path that’s consistent for widest variety of noise is the most likely to be

an accurate reflection of the data system.



Chapter 5

Incorporating Time Delays into Action

A typical scenario in data assimilation involves a model ofD differential equations,

which can be discretized into a map from one time point to another:

x(n+ 1) = f(x(n))

along with L observations of these variables. In general the observations can arbitrary

functions of the variables, but for simplicity we will assume we have direct observations,

y(n), which except for noise represent the exact state variable:

y(n) ≈ x(n)

The Path Integral approach typically consists of optimizing cost function which is

a function of the entire trajectory

X = {x1(n = 1), x2(1), . . . , xD(1), x1(2), . . . xD(n = N)}

58
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as well as the measured observations, y.

A standard form for the cost function in these procedures is

A(X) =
N∑
n=1

(
1

2
Rm

L∑
`=1

(x`(n)− y`(n))2 +
1

2
Rf

D∑
i=1

(xi(n+ 1)− fi(x(n)))2

)

In previous works, we have investigated the relation between this cost function

and the probability distribution of all the possible paths. We formulated probability of the

path in a form of a path integral and from this context we referred to the cost function

as the action, in a sense analogous to the action in Hamiltonian and Quantum Mechanics.

Minimizing this function will ideally result in a path which matches observations in the

measured components and which obeys the model throughout the entire trajectory.

However, if the number of measurements L is too small the manifold of the action

as a function of the path will be highly irregular and difficult, if not impossible to search

over. By modifying the action, my intention is to regularize the action and make it more

conducive to an optimization search. Equivalently, one could say that the goal is to extract

more information from the measurements, or use the information more efficiently, to

make it possible to find the minimum of the action.

The modification I propose is to add on to the previous form of the action additional

terms using time-delay measurements:

A(X) = . . .+
1

2
Rτ

L∑
`=1

DM∑
k=1

(
f`(f

τk−1(x(n)))− y`(n+ τk)
)2

Where DM is the total number of time delays one wishes to use, and τk is the total

number of time steps in one delay. f τk−1(x(n)) is shorthand for f(f(f(. . . f(x(n))))) which

is to say, τk recursive applications of the map.
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The general idea is add a cost if the unmeasured variables (the term f`(f
τk−1(x(n)))

depends on the entire state vector at t = n) are inconsistent with the measurements at a

later time.

5.1 Theory

To learn the impact of the time delay term in the action, we find it instructive

to look at the gradient. Most optimization algorithms will utilize the gradient to inform

which direction the algorithm should search in to find a minimum.

With traditional cost function the derivative with respect to a state variable at a

given time can take one of two forms, depending on whether there is a measurement of

that state.

For measured states:

dA(X)

dxi(n)
= Rm (xi(n)− yi(n)) +Rf (xi(n)− fi(x(n− 1)))

+Rf

∑
j

(xj(n+ 1)− fj(x(n)))
dfj(x(n))

dxi

For unmeasured states there is no Rm term, and as a result the observations y have no

direct influence on the gradient:

dA(X)

dxi(n)
=Rf (xi(n)− fi(x(n− 1))) +Rf

∑
j

(xj(n+ 1)− fj(x(n)))
dfj(n)

dxi

The addition of the time delay term will change the derivative with respect to an
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unmeasured state to:

dA(X)

dxi(n)
=Rf (xi(n)− fi(x(n− 1))) +Rf (xj(n+ 1)− fj(x(n)))

dfj(n)

dxi

+Rτ

L∑
`=1

DM∑
k=1

(
f`(f

τk−1(x(n)))− y`(n+ τk)
)

× df`(f
τk−1(n))

dx

df(f τk−2(n))

dx
. . .

df(x(n))

dxi(n)

All the terms like df
dx

are matrices, and the products follow the rules of matrix multiplication.

It is also understood that f τ (n) really means f τ (x(n)).

The first thing to notice is that we have added a lot of extra terms to the gradient.

Previously we had two or three terms, whereas now we have added an additional L ·DM

terms, where remember L is the number of measured variables and DM is the number

of time delays we choose to use. Additionally these terms all involve significantly more

calculation because at each time step we have to apply the chain rules and multiply another

instance of the Jacobian of the map df
dx

.

However, in exchange for all this computation we are able to adjust the direction

of the gradient in the unmeasured variables using information from the observations. My

hope is that this additional information produces a smoother surface, particularly along

the unobserved directions. As a result, it may be possible to optimize on a surface that was

otherwise too irregular.

5.2 Annealing with Time Delay terms in Action

To explore the effects of using the proposed time delay action vs the traditional

4DVar action I have primarily utilized the continuous optimization technique, also referred
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to as annealing described in section 4.2. This technique consists of adjusting Rf term so

that it is initially negligible compared toRm. With this cost function, we take several initial

paths (randomly distributed in path space), and for each one find an optimum using some

optimization algorithm. For now, all of these results have been optimized with a L-BFGS

quasi-newton algorithm. The precise results may vary if one uses different optimization

algorithms, such as IPOpt which was utilized elsewhere.

Once the minimum paths are found for each initial condition the cost function is

modified by increasing Rf , typically by a factor of 2x. Then using the previous minimum

path as an initial condition the optimization routine is run again and a new minimum path

is found for this new cost function. This is repeated several times until Rf is eventually

much bigger than Rm (which remains constant the entire time).

We have found that using this procedure it is possible to find global minima in cases

where it not be possible the optimization started with Rf comparable in magnitude to

Rm and a random initial condition. The easier it is for the optimization to find the global

minimum, the larger the fraction of paths which end up there will be. In this way, trying

several initial conditions can give us an idea of the likelihood of finding the true minimum

path.

5.2.1 Value of Rτ

One question that arises when extending the continuous optimization procedure

to the time delayed action is what we should do with a value of Rτ , the coefficient on

the time-delay term in the action. As it stands, Rm remains constant and Rf varies over

many order of magnitude. Because the time delay term relies on both the model equations,

f(x(n)), and the measured observations, y(t) errors in either piece will appear in the term.
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As a result, my thinking was thatRτ should therefore be bounded by whichever coefficient

is smaller (representing less confidence or more error in that part cost function).

A intuitive functional form with this behavior is what we’ve called the “parallel

resistors” form, named after the familiar equation for combining these. Rτ is calculated

as follows:

Rτ =
1

1/Rm + 1/Rf

(5.1)

If we recall that the action represents the logarithm of the probability distribution:

P (X) = exp (−A(X)), then it is apparent that the R coefficients are just the reciprocal

of the variance of a Gaussian error, R = 1/σ2. Then the parallel resistor form is simply

saying that the variance due to the model error and due to the observations simply add

independently to give the variance of the time-delay error:

1

Rτ

=
1

Rm

+
1

Rf

(5.2)

σ2
τ = σ2

m + σ2
f (5.3)

5.2.2 Lorenz 96 D = 5

The best place to start with a new technique is with the simplest problem available.

In the case of data assimilation this is the Lorenz 96 model, with 5 dimensions. As mentioned

in previous sections, this system is chaotic for the chosen parameter value (ν = 8.17)

and typically cannot be well estimated without at least 2 measurements. To evaluate the

performance of the time delayed action I performed the annealing procedure by gradually

increasing Rf from 0.01 to 0.01 ∗ 230, with Rτ changing concurrently according to Eq 5.1
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above.

Figures 5.1 and 5.2 show the action level plots for a system with no time delay terms

and with a single time delay τ = 10dt. Qualitatively, there is not a dramatic difference.

Both figures appear to show a clear break between the lowest action level and the others.

Fig 5.2 shows some more fragmentation in the larger action levels. However, given that the

higher trajectories all represent inaccurate estimates this is not too interesting. Fine-grain

separation in the minima is perhaps to be expected due to the added complexity of the

function we’re evaluating when we include time delay terms.

Figure 5.1: Lorenz 96 action levels with no time delay terms, when D = 5 and
L = 1.

The structure of the action levels, is not the whole story however. These plots were

made by taking one hundred random initial conditions and seeing which local minima

they settled into as we increased Rf . An important question then is, how many of the

initial conditions actually end at the apparent global minimum, once Rf is large? Table

5.1 summarizes the results for different lengths and quantities of time delays.
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Figure 5.2: Lorenz 96 action levels with a time delay τk = 10 · dt, when D = 5
and L = 1.

The first thing to note is that although the action plot in Fig 5.1 looks reasonable,

in fact only 1 of the 100 possible paths actually ended up at the global minimum. This 1%

success rate is not feasible for any kind of real estimation. With a slightly different initial

condition it is possible none of the paths would have determined good estimates.

However with an appropriate choice of time delays, the success rate can be in-

creased to over 10%. This is a substantial improvement considering no new information

was introduced to the procedure. Evaluating the time delayed action and its derivatives

for the purposes of optimization certainly requires more computational work, however

this is small cost when experimental limitations make obtaining information directly from

the system impossible.
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Table 5.1: Table showing how many random initial paths (out of 100 initializa-
tions) which ultimately arrived at the lowest action value (i.e. the best path
estimate)

Time Delays (in units of dt) Paths at lowest Action level

0 1
5 8

10 11
20 6
30 6

5, 10 12
10, 20 12

5, 10, 15 10
5, 10, 20 10

10, 20, 30 12

5, 7, 9, 11 7

5.2.3 Lorenz 96 D = 10

With a 10 dimensional model, the task of finding a the global minimum becomes

much harder. Even with annealing and time delays, I was not able to find an accurate

estimate of the entire path. This fail case is reflected the action level plots in Fig 5.3

and 5.4. Unlike the previous section, with the 5 dimensional model, here we see there

is no significant separation between the lowest minimum and the other local minima.

This suggests that the lowest action path found during this procedure is not qualitatively

different than the others. Indeed, Fig 5.5 and 5.6 show the estimated trajectories of an

unmeasured variable in the lowest path. Fig 5.5 was estimated with 1 observation and no

time delays whereas Fig 5.6 was estimated with 1 observation and 5 time delays. However

in both cases the estimates are visibly quite different than the underlying variable in the

data system.
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Figure 5.3: Action levels for a 10-D Lorenz 96 system with no time delay terms.
No noise was added to data.

Figure 5.4: Action levels for a 10-D Lorenz 96 system with τ = {5, 10, 15, 20, 25}.
No noise was added to data
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Figure 5.5: Plot of x2(t), which was not observed, for one of the paths with lowest
action level. 10-D Lorenz 96 system, minimized with no time delays.

Figure 5.6: Plot of x2(t), which was not observed, for one of the paths with
lowest action level. 10-D Lorenz 96 system, minimized with time delay terms
τ = {5, 10, 15, 20, 25}.
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5.2.4 Lorenz 96 D=10 with two observed variables

In the five dimensional model there is a modest but clear improvement with the

inclusion of time delays. Although by no means 100% successful, using a cost function

with time delays results in a substantially higher percentage of successful estimation given

random initial conditions.

Unfortunately, as the systems become more complicated the benefits of the time

delayed action becomes ambiguous. With only 1 observed component even the inclusion

of time delays was insufficient to accurately identify a correct action minimum, as shown

by Fig 5.5 and 5.6.

The next natural place to look for a difference between the traditional and time

delayed cost function is to consider the same 10 dimensional system, but with 2 of the

observations recorded. However, here again we fail to distinguish a difference. Fig 5.7

and 5.8 show that with and without time delays 2 observed variables provide enough

information that all paths find the correctly estimated global minimum. In this case the

additional computational cost of including the time-delay terms becomes unnecessary.

It has been difficult to find a problem sufficiently challenging that annealing the

original action function is insufficient, but which is improved by the adding time-delay

terms. It is possible that the approach suggested here is incomplete or can be improved

further, to broaden the scope of problems where this technique would help. Nevertheless,

the results with the Lorenz 96D = 5 system show that there is in fact residual information

which is not accessed via the previous action minimization approach.
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Figure 5.7: Annealing plot for D=10 with L=2, with no time delay terms. All paths
end at the global minimum.

Figure 5.8: Annealing plot for D=10 with L=2, with no time delay terms. All paths
end at the global minimum.



Chapter 6

Neuron Models

Neuroscience lends itself naturally to the application of data assimilation. Neurons

are cells which communicate with one other by fluctuating the voltage in the interior

of the cell relative the exterior. The typical behavior is that voltage will quickly spike

from a resting negative potential to high positive value, then back down. This spike

will propagate like a wave down along the cell until it reaches a synapse at the end. A

synapse is a gap between two adjacent neurons. The voltage spike initiates a release of

chemicals into the synapses between neurons and these chemicals prompt a spike in the

next neuron’s internal voltage. These interactions continue throughout a network of cells,

which convey information about everything from sensation and motor function thoughts

and emotion [25, 26].

Neuron dynamics depend on the interactions of chemical concentrations and mi-

croscopic membrane properties which continually fluctuate. Additionally, they are living

cells which must be kept mostly intact to continue functioning. This creates significant

limitation on what kind of sensors can be developed. Many of the physiological changes

which occur during spiking are at a molecular scale and we have not developed a way of

71
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recording these changes on the same time scale as the voltage spiking.

6.1 Neurons in DA

In developing and using methods of statistical data assimilation to characterize

the biophysical properties of functional networks of neurons, we have previously built a

Hodgkin-Huxley type model (HH model) of the dynamics of individual neurons [27–29] .

This model, as all such models, has numerous unknown fixed parameters that must be de-

termined for each class of neuron under consideration. We used well designed stimulating

currents for individual neurons in the avian song system nucleus HVC and measured the

response of the membrane voltage to estimate the many biophysical parameters in the

voltage and kinetic equations of such a model. This estimation ‘completes’ the model in

the sense that once the fixed parameters are established, then given initial conditions for

the state variables, observed and unobserved, we can predict the response of the model

neuron to a new stimulus [29].

We tested/validated the biophysical HH model by showing that with the estimated

parameters it could reliably predict the observed response to new stimulating currents.

The required initial conditions for prediction in the completed model were established

by using a very short (100 ms) segment of the data set for times beyond the observation

window.

The methods we utilize here were quite instrumental in designing the large collec-

tion of data sets analyzed in [29], and we expect that to be the case again when we move

from simulations of neurons with important Ca dynamics to the design of experiments to

explore those dynamics.

Our stimulation/response protocols presented data comprising an applied stimu-
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lating current Iapp(t) and the observed response membrane voltage Vdata(t). These time

series alone allow estimation of the fixed parameters and unobserved state variables of

the neuron. The latter are the voltage dependent gating variables associated with ionic

currents of Na+, K+, and Ca2+ ions.

The cost function or objective function representing the error between the data

and the model output is taken as

m∑
n=0

(y1(tn)− V (tn))2, (6.1)

where observations are made at times tn; n = 0, 1, 2, ..., tm = T . This objective function

was minimized subject to the deterministic HH equations of motion, given below, as equality

constraints dynamically taking the states between time tn and time tn+1. This cost function

is also seen as the error in the synchronization of the model output with the data. It is

not always clear that measurement of a single state variable, here membrane voltage,

even when very well sampled in time, will suffice for this estimation procedure. Many

examples are known of the necessity for more measurements at each measurement time to

remove impediments associated with the instability of the manifold in state space where

the data and the model output are synchronized [30]. When synchronization fails, the

synchronization error Eq. (6.1) has multiple local minima as a function of the parameter

or state value sought through the minimization. This impediment to estimation must be

regulated to provide a smooth surface on which one implements a search procedure for

the minimum of the cost function Eq. (6.1).

The systems where more measurements are required appear to be those where

chaotic solutions to the dynamical equations are possible for some biophysically plausible

set of stimuli and model parameters. We did not encounter models of this form among
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those in our analysis of the HVC data [29]. p There is now substantial evidence of the role

of Ca2+ dynamics in the neurons of HVC [31–35]. This adds a set of rather slow dynamical

processes to the much faster voltage gated processes involving Na+ and K+ ions. When we

extended these voltage dynamics models to include the important biophysical processes

of Ca2+ uptake and release from internal stores, the question of how many measurements

are required changes. Mixing slow and fast dynamical processes, coupled nonlinearly to

each other, can be a setting for the appearance of chaotic behavior. In the case of voltage

plus calcium dynamics, chaos does appear, as we shall discuss, and this leads to a situation

where more than voltage measurements alone are required to estimate the system. Our

objectives are:

• to synchronize data with model output,

• accurately estimate fixed parameters and unobserved state variables, and

• provide accurate predictions as validation of the consistency of the model with the

observations.

The goal of this chapter is to discuss the properties of an HH neuron model with

both voltage and Ca2+ dynamics to demonstrate that the estimation of model parame-

ters and unobserved state variables when such models are considered will require more

than just voltage measurements to complete the model through the use of experimental

observations. Afterwards, I will explore the use of information in the waveform of the

measurements, via the time embedded coordinates, as a way to succeed in providing suffi-

cient information to the HH model, and thus permit accurate estimation of parameters

and states.
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6.1.1 Hodgkin-Huxley (1952) model

A common framework for neuron models is to think of them as a capacitor with

the cell membrane separating the internal and external voltage. This approach was first

used by Hodgkin and Huxley in 1952 [36] A semi-permeable membrane allows ion currents

to enter and exit the cell. The voltage dynamics are then:

C
dV

dt
=
∑
α

Iα(V, α1, α2, . . .) (6.2)

The currents are derived from a balance of diffusion and electric repulsion called the GHK

equation. They take a general form:

Iα(V, α1, α2) = gαα
p1
1 α

p2
2 (Eα − V ) (6.3)

The αi are called gating variables. They are dynamic state variables in the system,

representing the proportion of channels for ion α that are open or blocked at a given

time. As a result, they vary between 0 and 1. The parameters pi in the current equations

determine how sensitive the current is to ion channels. The parameter Eα is known as the

reversal potential, it is the voltage at which the current changes from flowing into the cell

to out of the cell.

The gating variables make up most of the non-voltage state variables in the system.

The equations are derived by averaging over the stochastic dynamics of individual channels

to express the macroscopic behavior in terms of an opening and closing rate. The dynamic

equations for these variables can also be written in terms of an equilibrium value and time

constant, which in general can both be functions of voltage:
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dαi
dt

=
αi,∞(V )− α
ταi(V )

One of the first models to use these representations of neuron dynamics is the

Hodgkin-Huxley neuron. With an appropriate stimulus (Iext(t)) this model produces

voltage spiking as a limit cycle behavior:

C
dV (t)

dt
= INa(t) + IK(t) + IL(t) + Iext(t)

INa(t) = gNam(V (t))3h(t)(ENa − V (t))

IK(t) = gKn(t)4(EK − V (t)),

Il(t) = gL(EL − V (t)) (6.4)

A variety of data assimilation techniques have been applied to the Hodgkin Huxley

neuron [37–40]. One feature of these equations is that the gating variables all depend very

strongly on the voltage. Indeed the dynamics of each gating variable depends only on

itself and voltage. This makes a technique like synchronization very effective because if

we restrict the voltage in a model to observed time series from the data, then the gating

variables are almost guaranteed to line up without any more measurements. The HH

neuron does not typically exhibit chaotic behavior, which makes the estimation much

easier but may not be reflect real neuron behavior.
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6.1.2 The Biophysical Role of Ca2+ Dynamics

Calcium ions play an important role in regulating a great variety of neuronal

processes. Intracellular calcium signals regulate processes that operate over a wide time

range, from neurotransmitter release at the microsecond scale to gene transcription,

which lasts for minutes and hours [41]. In the HVC of the songbird, the contributions

of calcium channels and calcium mediated events to spiking and bursting have been

observed. In vivo, L-type Ca2+ bursting activity in HVCRA neurons [35], and calcium

transients show strong preference for bird’s own song (BOS) in identified HVC neurons

where a strong correspondence between calcium signals and juxtacellular electrical activity

is exhibited [32]. In vitro, T-type low voltage activated Ca channels are expressed in HVC

neurons contributing to their postinhibitory rebound firing [34]. Moreover, the spike

frequency adaptation seen in HVC projection neurons is largely due to a Ca2+ induced

K+ channel [34, 42]. In addition multiple calcium binding proteins that determine the

dynamics of free calcium inside neurons [43] are enriched in the HVC of songbirds [31, 33].

All these studies motivate an investigation of the roles that Ca2+ play in the electrical

activity of HVC neuronal subpopulations in vitro and during singing.

Calcium is a crucial intracellular messenger in mammalian neurons where the

final transduction of any neuronal signal involves the movement of calcium ions. At rest,

the intracellular calcium concentration of most neurons is about 50∼100 nM, and that

can rise to levels that are ten to 100 times higher during electrical activity [44]. The

cytosolic calcium concentration is determined by the balance between calcium influx and

efflux as well as by the exchange of calcium with internal stores. In addition, calcium-

binding proteins such as parvalbumin or calretinin, acting as calcium buffers, determine

the dynamics of free calcium inside neurons. However, and most importantly, only the free



78

calcium ions inside the cytosol are biologically active. Calcium influx from the extracellular

space is controlled by various mechanisms including voltage gated calcium channels,

ionotropic glutamate receptors, nicotinic acetylcholine receptors (nAChR), and transient

receptor potential type C (TRPC) channels [45–48]. The extrusion of calcium ions from the

cytosol is done via the plasma membrane calcium ATPase (PMCA) and the sodium-calcium

exchanger (NCX) [41]. The release of messenger calcium ions from internal stores, mostly

the endoplasmic reticulum (ER), is controlled by the inositol trisphosphate receptors

and ryanodine receptors [49]. The high calcium level inside the ER is controlled by the

sarco-endoplasmic reticulum calcium ATPase (SERCA) pump that transports calcium ions

from the cytosol to the ER. In addition to the ER, mitochondria can also play the role of

calcium buffers by absorbing calcium ions during cytosolic calcium elevations via the

calcium uniporter and then releasing the calcium ions back to the cytosol slowly via the

sodium-calcium exchange [50].

Variation in the intracellular concentration of Ca2+ ions, [Ca2+]i(t) ≡ Ca(t), is

governed by the flow of these ions through the cell membrane via voltage gated channels,

as well as by uptake and release by the endoplasmic reticulum (ER) as a storage device.

These properties and more are discussed in many research papers [41, 51], including a very

informative review and summary by Falcke and colleagues [52].

Earlier work on coupling voltage and calcium dynamics [53, 54], as well as the

dynamics of Ca2+ uptake and release [55] independent of its connection to voltage dynamics

of Na+ and K+ ion flow, provide the foundation for the model we discuss here. The presence

of Ca2+ channels and their interaction with voltage dynamics in HVC neuron cells has

been established by [34]. These results have strongly motivated us to explore the inclusion

of Ca2+ dynamics in the model utilized in conjunction with our analysis of experiments on
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HVC neurons [29].

Ca2+ ions are released and stored in the ER predominately through the mediation

of inositol 1,4,5-triphosphate (IP3) in many cell types [52], and we will incorporate a model

of these processes in our overall model of the cellular dynamics. This uptake and release

via IP3 mediation has been suggested as a source ofCa2+ oscillations in the work of Houart,

et al [55], and we adopt their model, with a faster time scale, compared to their original

idea of its role in more global rhythms of animals. This is not the only candidate for

incorporating calcium dynamics into neuronal processes; we have analyzed two other

models of Ca dynamics with some care [53, 54], but we do not report on them here.

Examples of the important role of calcium in intracellular dynamics abound. For

instance, the permeability of some potassium channels in the cellular membrance are

affected by the presence of calcium, and membrane calcium channels themselves may be

voltage-gated [28, 56]. The interplay between these two mechanisms acts to regulate firing

patterns [57]. Additionally, calcium is known to be a major determinant in the potentiation

and depression of excitatory synaptic strength, and thus is expected to play an important

role in memory and learning. This is widely thought to underly how networks of neurons

“rewire” and learn. While these processes are certainly important, they act on a much

longer time scale than the interacting voltage and calcium processes we include in our

model.

The main issues we address in this chapter are those raised when the relatively

slow dynamics associated with Ca2+ ion uptake and release interact with the much faster

voltage dynamics to produce chaotic behavior. These are issues in using methods of data

assimilation to estimate parameters and unobserved state variables using time series of

observed quantities from experiments.
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We do not yet use any of these models in the analysis of experiments in this chapter,

but we perform “twin experiments”. In these we generate data by solving the model

with known parameters, and then by presenting observables such as membrane voltage

V (t) or intracellular Ca2+ concentration Ca(t) to the model, we are able to examine our

estimation methods in a controlled context.

When additional complex dynamics is introduced into a neuron model, such as the

intracellular calcium dynamics we present here, the synchronization manifold of the model

may become unstable [12]. This can make it impossible to estimate unknown parameters

and unobserved states with voltage measurements alone, raising the following interesting

questions:

• How do calcium dynamics affect neuron behavior?

• How many measurements are needed to synchronize such a neuron model with

observed data after the introduction of calcium dynamics?

• If other measurements are required in addition to membrane voltage, what can play

that role?

We do not have full answers to these questions. However, below we construct a

conductance-based neuron model, into which we couple a detailed model of intracellular

calcium dynamics. Using this model, we investigate the estimation problems through

numerical experiments to give a clear image of the biophysical issues raised via calcium

dynamics. We will show that voltage measurements are not enough to ‘cure’ the instabili-

ties just noted, and we will address a solution to this. When we move from simulations to

experimental data, we expect to encounter the same issues in a more cluttered context.
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6.2 Chaotic Calcium and Voltage model

To try a more difficult challenge we extended the HH neuron to include Calcium dy-

namics. In addition to new currents in the dV
dt

equation, we coupled a chaotic 3-state model

of Calcium concentrations between different reservoirs in the cell. The final model consists

of 9 state variables: Voltage, 5 gating variables, and 3 distinct Calcium concentrations.

C
dV

dt
= INa + IK + Il + IL + IT + IK/Ca + Ih + Iapp

dαi
dt

=
αi,∞(V )− α
ταi(V )

αi ∈ {h, n, rT , rf , rs}

d[Ca]

dt
= ν0 + βinput(IL + IT )− γleak[Ca] + νCICR([Ca], [Ca]ER, [IP3])

+ γERleak[Ca]ER − νpump([Ca]),

d[Ca]ER
dt

= −νCICR([Ca], [Ca]ER, [IP3])− γERleak[Ca]ER + νpump([Ca])

d[IP3]

dt
= νsynthesis − γ[IP3]leak[IP3]− νdegradation([Ca], [IP3]) (6.5)

In the Voltage dynamics Iapp(t) is an external applied current selected by us, and

the other currents are given as
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INa(t) = gNam0(V (t))3h(t)(ENa − V (t))

IK(t) = gKn(t)4(EK − V (t)),

Il(t) = gL(EL − V (t))

IL(t) = gCaLs0(V (t))(ECa − V (t))

IT (t) = gCaT [aT0(rT (V (t))) bT0(rT (V (t)))]3(ECa − V (t))

IK/Ca(t) = gK/Ca
[Ca](t)4

[Ca](t)4 + κ4K/Ca

Ih(t) = gh(0.3rf (t) + 0.7rs(t))(Eh − V (t)). (6.6)

and for the Calcium model:

νpump = γpump
[Ca]2

[Ca]2 + κp2

νCICR = γCICR
[Ca]2

[Ca]2 + κcCa2
· [Ca]ER

2

[Ca]ER
2 + κcER2

· [IP3]
4

[IP3]
4 + κcIP3

4

νdegradation = γdegradation
[IP3]

[IP3] + κdIP3

· [Ca]4

[Ca]4 + κpCa4
(6.7)

This model has the following features:

• Calcium variables ([Ca], [Ca]ER, [IP3]) collectively make a chaotic three-state sys-

tem.

• Calcium influences voltage dynamics primarily through IK/Ca, Calcium-gated potas-

sium current.
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• Voltage affects [Ca] through Calcium currents, IT and IL.

• Voltage and Calcium dynamics occur on different time scales (1-10 ms vs 100-1000

ms). This results in a pattern of “bursting”, where the voltage will spike frequently

over a period while the Calcium concentration is low, then shut off when it rises

above a certain threshold.

The model we used in [29] for describing the experimental data on stimulus/voltage

response experiments we have conducted on HVC neurons comprised these currents,

absent the IK/Ca(t) current, along with additional Na and K currents. The manner in

which some voltage dependent conductances, especially Ih(t), was represented there

is different in that model, and the Ca currents used GHK [28] voltage current relations

reflective of the 10,000:1 ratio of extracellular to intracellular CA concentrations. As we

are concentrating here on the role of the added slow Ca dynamics to be described in a

moment, we adopted a subset of the full model used earlier.

When we utilize the lessons from the “twin experiment” analysis of this V+Ca

model and select models with which to analyze the observed laboratory data, we will

examine several variants, all with the same core issue as explored here, but with somewhat

different realizations of the Calcium dynamics. To proceed we select one version of Calcium

dynamics: the model of Houart, et al [55].

6.2.1 Coupling Ca2+ to voltage dynamics

We introduce a calcium-dependent potassium current IK/Ca as the first ingredient

in coupling the voltage and calcium dynamics. The conductance of this channel depends



84

Ta
bl
e
6.
1:

Co
nt

ri
bu

tio
ns

to
th

e
ki

ne
tic

so
ft

he
vo

lta
ge

ga
te

d
ch

an
ne

ls
.

σ
(x
,y
,z

)
≡

0.
5
[ 1

+
ta

n
h
x
−
y

2
z

] ,
E

(x
,y
,z

)
≡

ex
p
[ x−y z

] .

I c
h
a
n
n
el

(t
)(
µ
A

)
X(

t)
X

0
(V

)
τ X

(V
)(
m
s)

I N
a
(t

)
m

(t
)

σ
(V

(t
),
−

3
5,
−

5
)

—
I N

a
(t

)
h(

t)
σ

(V
(t

),
−

3
7
.4
,4
.3

)
1

I K
(t

)
n(

t)
σ

(V
(t

),
−

3
0,
−

5
)

10
[c

os
h
(V

(t
)+

3
0

1
0

)]
−
1

I C
a
T

(t
)

a
T

(V
(t

))
σ

(V
(t

),
−

6
5
,−

7.
8
)

—
I C

a
T

(t
)

b T
(r
T

(t
))

σ
(r

T
(t

),
0
.4
,−

0.
1
)
−
σ

(0
,0
.4
,−

0
.1

)
—

I C
a
T

(t
)

r T
(t

)
σ

(V
(t

),
−

6
7,
−

2
)

20
0

+
87
.5
σ

(V
(t

),
68
,2
.2

)

I C
a
L
(t

)
s(

t)
σ

(V
(t

),
−

4
0,
−

5
)

—
I h

(t
)

r f
(t

)
σ

(V
(t

),
−

1
0
5
,5

)
1
0
0
/
{

−
7
.4
[V

(t
)+

7
0
]

[E
(V

(t
),
7
0
,−

0
.8
)−

1
]

+
6
5
E

(V
(t

),
5
6
,2

3
)}

I h
(t

)
r s

(t
)

σ
(V

(t
),
−

1
0
5
,2

5
)

15
00



85

on Ca(t) through a Hill function, which has the generic form

Hill(x, κx, n) =
xn

xn + κnx
(6.8)

where the Hill coefficient n is a positive integer. It is a sigmoid curve which represents

the opening and saturation of a channel as the concentration of x becomes much larger

than the half-activation κx. This type of IK/Ca is also referred to as an SK current, distinct

from a so-called BK current, whose conductance has dependence on both voltage and

intracellular calcium [56]. This gives rise to a K/Ca current of the form

IK/Ca(t) = gK/Ca
Ca(t)4

Ca(t)4 + κ4K/Ca
(EK − V (t)). (6.9)

The choice n = 4 gives it a high sensitivity to Ca(t), which is commonly used in similar

studies [53, 58]. Additionally, we selected κK/Ca = 0.35µM since intracellular calcium

levels are normally about 0.1 µM. This means only a slight rise in internal calcium levels

are required to activate IK/Ca, which suppresses spiking behavior and “turns off” bursts.

Since calcium levels are generally about 104 times larger in the extracellular medium than

in the cytoplasm, this yields a relatively small influx of Ca2+ ions.

With an appropriate stimulus, a model containing only INa and IK would produce

a continuously repeating spike train. The introduction of IK/Ca means the neuron model

intermittently activates another K current which drives the voltage response of the neuron

towards EK = −90mV and turns off spiking behavior of the neuron. Combined with the

hyperpolarization-activated Ih and ICaL, the neuron model’s subthreshold behavior is

greatly enriched, as will be seen in the simulations to follow.
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6.2.2 Modeling intracellular Ca2+ uptake and release

To fully model the complexity of calcium dynamics, we are looking for a model

that exhibits various complex behaviors. [59] proposed a model to study complex Ca2+

oscillations [59], later studied in detail by [55,60]. They demonstrated that the model shows

complex oscillatory phenomena such as limit cycle oscillations, bursting, quasiperiodic

oscillations, and deterministic chaos [55]. In many cell types, the uptake and release of Ca2+

ions by the ER is mediated predominantly by inositol 1,4,5-triphosphace (IP3) [52]. This

uptake and release via IP3 mediation has been suggested as a source of intracellular Ca2+

oscillations. The complex Ca(t) oscillations arising in this model are due to the release of

Ca2+ from internal stores, with dynamics based mainly on mechanisms of Ca2+-induced

Ca2+ release (CICR) that take into account the Ca2+-stimulated degradation of IP3 by a

3-kinase [55].

CICR was originally found to occur in muscle and cardiac cells, and was later found

in a variety of other cells including neurons [61]. [62] have observed CICR in cultured rat

dorsal root ganglia neurons [62]. However, they also observed CICR triggered by Ca2+

entry through voltage-gated Ca2+ channels. The sum of the two voltage-gated calcium

currents ICaT and ICaL may therefore act as a calcium-release stimulus. We thus used

the intracellular calcium dynamics model of [55] [55], but with the replacement βinput →

βinput (IL(t) + IT (t)) for the (previously constant) external stimulus. This change now

acts to couple the calcium dynamics to the membrane voltage.

In this model we assume free calcium ions are uniformly distributed across the cy-

tosol. This avoids the additional complication of introducing a partial differential equation

to model the spatial dependence of the Ca(t) dynamics. This simplification is consistent

with experimental results [62].
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6.2.3 Calcium in Time Delay Synchronization

Unlike the gating variables, Calcium variables are only lightly affected by the

voltage. This means that synchronizing the model by controlling just this one variable is

unlikely to correctly synchronize the others. Even if the voltage estimates look accurate

during estimation, the model will diverge from the data if the Calcium variables are not

synchronized as soon as the estimation window ends.

However, by using the time delay control terms we utilize the Calcium’s effect

on voltage to adjust the Calcium variables directly. It becomes possible to synchronize

Calcium and, as a result, the entire model. This demonstrates the real power of the

time embedded coordinates. Even though we have a chaotic model with asymmetric

relationships between different variables the time embedding coordinates allow us to use

the influence of the unmeasured states on the voltage in addition to the influence of the

voltage on the unmeasured states.

Figure 6.1 shows synchronization performed with the standard nudging approach

and with time delay synchronization. While there is no detectable difference between the

data and model voltage trace in the estimation window, the prediction is much more accu-

rate with the time delays. Figure 6.2 demonstrates why. Although the voltage is estimated

accurately, with the traditional synchronization the intracellular Calcium concentration

differs between the data and the model system.

It is worth noting in Fig 6.2 that both situations use the same initial conditions. In

the time delay case the control term initially pushes Calcium variable in the model way off

of the trajectory before correcting. That is the reason the Calcium spikes suddenly near

the beginning.

This highlights one of the pitfalls of the time embedding method. The pseudoin-
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Figure 6.1: Voltage estimation and prediction, with only voltage observed.
Left: No time embedding coordinates. Right: With time-embedding τk =
k · dt {1, . . . , 9}

Figure 6.2: Calcium estimation and prediction, with voltage observed. Left: No
time embedding coordinates. Right: With time-embedding τk = k·dt {1, . . . , 9}



89

verse is not perfect, and when it goes wrong it can go significantly wrong. In this situation

it self-corrects, however if the equations were more sensitive or unstable, perturbing a

state variable as dramatically as in the right side of Fig 6.2 could cause the whole simulation

to crash.

6.3 Noise in Voltage measurement

It is especially interesting to consider the effect of noise when dealing with a

biophysical model. Biological systems are extremely complex. As a result, any model

trying to represent such a system is likely in complete and will be subjected to stochastic

noise from external influences. This inherent complexity also means that recordings are

often limited in their accuracy. With so many chemical reactions occurring inside a 1

micron cell, it is not hard to believe that a probe would have trouble measuring voltage to

arbitrary precision.

Like much of data assimilation, there is no hard and fast rule for compensating

for noise with time embedding synchronization. The trend however, is clear enough. The

more noise that exists in the measurements, the longer the time delay window needs to

be. This can be accomplished either through using a longer spacing between the τ ’s or

by taking more time delays. To some extent these two approaches are equivalent. Like

the noiseless case, it can be effective to have more time delays for larger dimensionality

systems.

Figure 6.3 shows the model estimates for two twin experiments. Both twin ex-

periments performed a regular RK4 numerical integration of the data system. After the

trajectory was determined in a twin experiment, uniform random noise of ±0.1V was

added to the voltage measurement. This is effectively a representation of an inaccurate
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voltage probe, which might pick up noise from poor contact or other electronics in the

room. In other words, we are artifically simulating observation noise: the dynamics are

unaffected but our values of y(t) are perturbed.

Noise in an observation makes the estimation of unobserved variables much harder.

This is the same phenomena as in Fig 3.4. Notice that when τ is too short, the synchroniza-

tion fails completely in the presence of noise (left half of Fig 6.3). As the length of the time

delay gets longer the results improve dramatically. In fact too short of a delay (τ = 0.1)

caused the routine to crash, most likely by making the pseudoinverse diverge.

Figure 6.3: Plots of [Ca] variable in twin experiment. The observed variable
(Voltage) had uniform noise±0.1V . 10 time embedding dimensions were used to
synchronize. Left: Short time delays τk = 0.2k. Right: τk = 0.5k.

6.4 Parameter Estimation

Yet another advantage of the time embedding procedure over conventional syn-

chronization is that it allows us to treat unknown constant parameters within the same

framework as state variables. We simply use the dynamics dp
dt

= 0. Doing so increases the

dimensionality of the problem from D → D + Dp, where Dp is equal to the number of

unknown parameters. We can do this because time embedding synchronization provides a
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coupling term to every one of the dynamical equations. So although the parameters do

not naturally have dynamical equations the coupling term can still change them over time

until they agree with the data.

In many cases solving for parameters may be even more important than the state

variables. Because they are constants of a physical system, understanding them can tell us

about the structure of the system beyond the instantaneous dynamics. The same parame-

ter can also appear in different types of models. In a neuron for example, the membrane

capacitance is relevant for voltage dynamics as well as modeling ion channels. By compar-

ing values obtained from different models we can test their consistency. Estimates can also

be compared to direct experimental evidence to evaluate the validity of a given model.

Previous attempts at data assimilation in neurons [11,63] searched in path space for

an optimal trajectory. In those trials, the researchers did something similar, by including

parameters as state variables with trivial dynamics. However, what we are developing now

is a little different; rather than searching over different parameter values and calculating

a new trajectory for each one, we are instead introducing virtual dynamics. These vir-

tual dynamics move a parameter during the model simulation, adjusting it as the model

integrates forward in time.

Using time be can effective for synchronizing parameters, but there are caveats that

make this an important area of further research. As we better understand the challenges

with estimating parameters, we hope to merge these results with previous methods to

make predictions which were previously impossible without more data.
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6.4.1 Synchronizing Sodium Conductance

I start by only synchronizing the Maximum Sodium Conductance. This is a par-

ticularly convenient parameter to start with because it enters directly in the equation

of the measured state variable (Voltage). In addition the dV
dt

equation is linear in gNa

and the Sodium current is typically the largest in the model. It stands to reason that the

parameters with most influence on the trajectory and with the simplest functional form

would synchronize the best. Nevertheless, this serves as an important proof of concept for

a new method to determine the parameters of a physical model.

When this parameter is synchronized by itself (other parameters are all fixed at the

correct values) I can obtain an accurate value even when the starting point of the model

simulation is very different. In Figure 6.4 we see that when the conductance begins at 0.5

mS in the model and the actual value of the data simulation is 4.5mS, the time embedding

coupling term quickly pulls the model value closer to the actual value.

An important phenomenon that occurred during this coupling is that the unknown

parameter synchronizes better with a smaller time-delay and less embedding dimensions.

Normally we would expect a system with more degrees of freedom to require more embed-

ded dimensions to synchronize. However when the additional dimension is a parameter (i.e.

it has dynamics dxi
dt

= 0), additional embedding dimensions hinder the synchronization

process.

Similarly, if the time-delay (τ ) is too large the SE suddenly jumps up to a substan-

tially larger value. The smaller the embedding dimension is the larger τ can be before the

synchronization becomes very inaccurate.

Both of these effects are exactly opposite of what was observed with noise. When I

had introduced additional embedding dimensions and longer time delays became necessary
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Figure 6.4: Fast Sodium Conductance of model over time. In the data simulation
a gNa = 4.5 was used. The model was started with gNa(0) = 0.5. Sodium
Conductance rises over time to a value of 4.4799 at t = 5000ms, at which point the
coupling is turned off.

to obtain accurate synchronization results. We might have expected that inaccurate

parameter values would have an effect comparable to measurement noise, and indeed the

trajectories look qualitatively similar (compare the red model trajectories in Fig 6.5 in the

coupling period before 5000ms).

This is the first hint that parameters are not as simple to determine as I had hoped.

At least for some parameters, not knowing the exact value has a very different effect than

simply adding noise. Because the effects are opposite, I expect that when both effects

are present (noise and an unknown parameter) there is an optimum τ somewhere in the

middle. Indeed, Figure 6.6 shows that when noise is introduced the SE at low values of τ

goes up, so that a larger τ becomes optimal. The larger the embedding dimension used,

the smaller the optimal tau is when noise is present.
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Figure 6.5: Left: Cytosolic Calcium when Sodium Conductance is unknown and
synchronized, no noise. DE = 2, Tau = 0.4. Right: Cytosolic Calcium when there is
measurement noise = 0.5mV. DE = 4, Tau = 1.0 ms.

Despite this issue, we have successfully demonstrated a new technique that can

simultaneously determine both a parameter and all state variables in a complex chaotic

model of a neuron. Further work is necessary to determine what can be done if the

synchronization at the optimal time-delay is insufficient.

6.4.2 Other Parameters

Additional challenges are revealed by looking at other parameters. These param-

eters were chosen from the total of 60 present in the model for the variety of different

equations they appeared in and how they appeared (linearly, exponentially, or some other

more complicated form). The results in this section were obtained by varying each param-

eter separately, so only one was undetermined at a time.

The parameters I have looked at are:

• xhV 1 - The half-activation voltage of theh gating variable sigmoid function. Appears

in the dh
dt

equation only. h produces slow sodium deactivation. Actual Value = -37.4

mV

• tn - The time constant of the n gating variable. Appears in dn
dt

only. n produces slow
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Figure 6.6: Spike Timing differences vs Time-Delay when gNa undetermined AND
δV = +/-0.5 mV of noise is present in Voltage measurement. The synchronization
becomes very inaccurate at large Time delay values. For DE = 10 a much smaller
time-delay is optimal than when DE = 2.

potassium activation. Actual Value = 10 ms.

• Kp - The Half-Concentration of the νpump Hill Function. Appears in dCacyt
dt

and dCaER
dt

.

• β - The coefficient of the Calcium currents (ICaT and ICaL) which drives the Cytosolic

Calcium concentration.

The first problem is that not all parameters synchronize as quickly as gNa. This

should not be too surprising because all of the parameter are further removed, in a func-

tional sense, from the voltage dynamical equation. As a result we expect the voltage

trace to carry less information about these parameters than the current conductance, for

example.

Fig 6.7, 6.8, and 6.9 show how little these parameters actually vary. Over 5000 ms of

synchronization a typical change is less than 5%. The sodium conductance on the other
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Figure 6.7: Parameter xhV1 when attempted to synchronize with DE = 2, τ =
0.1ms. Initial Model value was xhV 10 = −34mS/cm2. True data value was
xhV 1 = −37.4mS/cm2. The perturbation δx is not large enough to sufficiently
adjust the parameter

Figure 6.8: Parameter tnwhen attempted to synchronize with DE = 2, τ = 0.1ms.
Initial Model value was tn0 = 9ms. True data value was tn0 = 10ms. The
perturbation δx is not large enough to sufficiently adjust the parameter

hand, could move from 0.5 mS to 4.5 mS with no problem.

To correct this, a somewhat simple, albeit inelegant, solution often proves effective.

What I have found is that many times the sign of the coupling term is correct, even though

the magnitude is too small to significantly change the value in the time allowed. This

can be compensated by adjusting the control coefficient g to be a much larger number.

For most states we use g = 1, but for parameters we found that a coefficient as large

as 10, 000 − 100, 000 allows the time-delay procedure to adjust insensitive parameters
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Figure 6.9: ParameterKp when attempted to synchronize with DE = 2, τ = 0.1ms.
Initial Model value wasKp,0 = 0.12µM . True data value wasKp,0 = 0.1µM . The
perturbation δx is not large enough to sufficiently adjust the parameter

effectively.

Although most parameters vary very slowly, the opposite can happen as well. This

seems to be at least partially based on the magnitude of the parameter. When I did the

procedure with the external Calcium current β, it fluctuated wildly. In this case, I had to

use a g = 0.01 to obtain synchronization.

We are currently developing the theoretical understanding of the control coef-

ficients gp to understand what exactly they influence the model. Our hope is that as

we understand the dynamical significance of this coefficient on the rate of convergence

and stability of the dynamics we will be able to develop better, more systematic, ways of

choosing it appropriately.

6.4.3 Multiple Parameters

We can use this procedure to estimate multiple parameters simultaneously. This is

certainly a more difficult problem. When multiple parameters are included they will often

compensate for each other by moving in the wrong direction. This means that several of

the parameters will actually be moved away from their correct values.
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If the parameters are independently straightforward to estimate, then there is a

good chance they can be solved for simultaneously as well. The impact can be seen in

Figure 6.10 when multiple parameters are estimated simultaneously. As usual, the voltage

is estimated very well in the observation window, however prediction is much less accurate

than previous results. This is because the parameters in Fig 6.11 and 6.12 are not quite

synched to the value they’re supposed to have. Comparing Fig 6.11 to the situation with

only gNa estimated, in Fig 6.4, we see that it is noticeably less accurate. This inaccuracy

results in inaccurate estimates of other state variables as well.

Figure 6.10: Voltage with 2 params estimated simultaneously
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Figure 6.11: Sodium conductance gNa with another param (gK) also estimated

Figure 6.12: Potassium conductance gK with another param (gNa) also esti-
mated
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Chapter 6 is reproduced in part from material as it appears in “Estimating the

biophysical properties of neurons with intracellular calcium dynamics”. Jingxin Ye, Paul J

Rozdeba, Uriel I Morone, Arij Daou, and Henry DI Abarbanel. The author of this thesis was

a co-author of this paper.



Appendix A

Techniques for choosing the threshold

of M-P Psuedoinverse

In theory, the pseudoinverse inverts any singular value that is not equal to zero.

However, for numerical calculations the numbers are never exactly zero. Most pre-

programmed algorithms use machine precision (typically ∼ 10−14) as the cutoff. Any

number larger than this will be inverted. This can be a problem in the time delay synchro-

nization procedure, because the smaller the singular value the larger of a perturbation it

will result in. Usually terms of order 1013 will be a such a large magnitude that they push

the trajectory off the attractor into a very different region of phase space. The psuedoin-

verse is not exact, and a large perturbation only needs to happen once to knock the system

into an unstable regime, at which point the model will quickly diverge. In many systems,

such as neuron models shown later, many of the states are variables which are highly

constrained on physical grounds. Gating variables, for example, express a proportion so

can only ever take on values between 0 and 1. If they artificially exceed their requisite

range by a sufficient amount the model becomes nonsensical.
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Different heuristics or procedures can be used to determine an optimal threshold.

The more singular values one includes (treats as non-zero), the larger the coupling term

in the equations will eventually be. The fundamental balancing is finding a cutoff that

produces a large enough coupling term to synchronize the model in a reasonable length of

time, but not so big that it moves the state variables in the model outside of stable regimes.

A.1 Absolute Threshold

The simplest way to set the threshold between zero and non-zero is to choose a

constant small number. Most SVD routines default to machine precision,∼ 10−14. This

will often be far too small. After inverting, we could end up with an entry in S−1 which is

∼ 1012. Assuming our variables are order 1, this perturbation will usually be vastly too big.

On the other hand, selecting a much larger threshold (say, 10−5) may be sufficient to keep

the perturbations small enough to be in a stable range everywhere along the attractor.

However, if we increase the threshold for “zero”, then in more stable regions the resulting

δx might be too small to make any meaningful difference in the dynamics.

Some systems, like Lorenz 96, do not change qualitatively as they evolve very much.

The time scales of the fluctuations stay around the same, the magnitude of the state

variables stays within a constant range, and the local Lyapunov exponents do not change

dramatically throughout the trajectory. In situations like these setting a fixed a threshold

for inverting singular values can work alright. As long as the threshold is only slightly

larger than we need to guarantee the stability of the perturbations, the perturbations are

likely to still be relevant throughout the trajectory.

Other systems may resemble neuron models, the distinguishing feature of which is

very rapid large magnitude spikes, followed by long periods of slowly varying behavior. In
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this situation choosing a threshold which keeps the system stable during spiking could

easily be so large that the system cannot synchronize during any subthreshold behavior.

The problem, is that a system can have very different properties as it explores different

regions of the attractor.

It is worth noting, that we have observed that the most synchronization happens

during periods of of large Lyapunov exponents, such as during spiking. This makes sense

if we think that the variational equation essentially quantifies how the trajectory of the

model system diverges from the data. During stable periods, such as subthreshold neuron

behavior, the model and data systems can display very similar trajectories regardless of

the particular values of the unobserved state variables. With this in mind, it is possible

in some systems using an absolute threshold might be acceptable, if the coupling during

only the quickly varying periods is sufficient to synchronize the system overall.

The most obvious advantage of this approach is its simplicity. The threshold cutoff

is implemented into every SVD routine can be quickly changed as a parameter in the

algorithm.

A.2 Fixed Rank Inverse

A useful alternative to setting constant numerical threshold is to consider the effect

it has on the matrix being inverted. Choosing a threshold for the inversion effectively sets

the rank of the matrix. Instead of thinking what is the value above which we will include

singular values, we can ask how many singular values we want to include. A particularly

useful number of singular to include is the humble 1.

If we have R nonzero singular values, the inverse matrix is given by (recall the S is

diagonal):
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dxi
dsk

=
∑
j

VijS
−1
jj U

∗
jk j = 1, . . . , R (A.1)

So each additional singular value that is included just adds additional terms the

pseudoinverse matrix. This does not necessarily make the entries of dx
ds

larger, because

some of the terms can be negative. However, assuming we sort the singular values from

greatest to smallest and invert only the largest R of them, each additional value included

will be larger in magnitude and more likely to result in instability.

Using a rank of 1 for the inverse guarantees we have the most conservative possible

perturbation at any point along the trajectory. This can be very helpful for chaotic systems

which seem to inevitably hit a difficult part of the dynamics and diverge if they’re perturbed

a little too much. It is also much more convenient effectively set the coupling term to its

minimum nonzero value, rather than simulating the entire model repeatedly and tweaking

the absolute threshold to see it is large enough to finish the simulation.

Similar to the absolute threshold, this method is also very easy to implement. One

simply specifies how many columns and rows to use for the matrix multiplication in Eq A.1.

Each additional rank results in a significant addition to the coupling terms over the course

of the integration. This means that if 1 singular value is found to be totally ineffectual, just

going up to 2 or 3 can produce a totally different data assimilation result.

A.3 Continuity Constraint

The most effective method we found is a continuity constraint. The intention is

to limit the size of the coupling term based on unmodified rates of change in the model.
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We choose the singular values in such a way that all the coupling terms in the dynamic

equation do not exceed some percentage of the original derivative fi(x).

So long as the condition

min
1≤i≤D

Fi(~x(t))

g δxi(t)
≤ ε. (A.2)

holds, we increase the rank and try again.

An appealing aspect of this method is that the effective threshold is in some way

normalized to account for the different state variables. Assuming the inherent dynamics

themselves are always stable, keeping the additional coupling on the same scale should

make it very unlikely to drive the model outside of its basin of attraction.

The continuity condition works as follows: Starting with r = 1, make all singular

values of ∂s
∂x

equal to 0, except the largest. Calculate the time derivatives from both the

original dynamical equations and the equations with the added coupling. If the ratio

ẋoriginal/ẋcoupling is smaller than some predetermined ratio ρ increase r by one, and repeat

the procedure with more singular values. Use the largest rank so long as the ratios of

the derivatives are all less than the tolerance ρ. We typically used ρ = 0.1, so the largest

control term can be no more than 10 times the unmodified derivative.
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