UC Davis

UC Davis Previously Published Works

Title

Association of Patient Frailty With Increased Risk of Complications After Adrenalectomy

Permalink

https://escholarship.org/uc/item/4s2628fp

Journal

JAMA Surgery, 153(10)

ISSN

2168-6254

Authors

Anderson, Jamie E Seib, Carolyn D Campbell, Michael J

Publication Date

2018-10-01

DOI

10.1001/jamasurg.2018.1749

Peer reviewed

Patient Frailty is Associated with Increased Risk of Complications after Adrenalectomy

Jamie E. Anderson, MD MPH¹

Carolyn D. Seib, MD, MAS²

Michael J. Campbell, MD¹

¹Department of Surgery; University of California, Davis Medical Center, Sacramento, CA

²Department of Surgery; University of California, San Francisco Medical Center, San Francisco,

CA

Corresponding Author:

Jamie Anderson UC Davis Medical Center 2215 Stockton Boulevard, OP512 Sacramento, CA 95817 E-mail: jeanderson@ucdavis.edu

Presented at the 89th Annual Meeting of the Pacific Coast Surgical Association Meritage Resort and Spa, Napa, CA February 17, 2018

Disclosures: This research was unfunded. The authors have no conflicts of interest.

Word count: 600 / 600

INTRODUCTION

The frequency of adrenal tumors increases with patient age.¹ As the U.S. population continues to grow older, surgeons will more frequently be asked to evaluate elderly patients for adrenalectomy due to concern for adrenocortical cancer or to mitigate the effects of a hormonally-active tumor.² Frailty, a measure of physiologic reserve independent of age, is associated with an increased risk of postoperative morbidity and readmissions in patients undergoing a variety of elective surgeries,³-5 but its association with complications following adrenalectomy has not been well established. The purpose of this study is to evaluate the association of patient frailty with complications following adrenalectomy.

METHODS

Using the American College of Surgeons National Surgical Quality Improvement Project database from 2005-2011, we identified patients who underwent laparoscopic or open adrenal ectomy. Post-operative ICD-9 diagnosis codes were used to identify malignant versus benign pathology.

Outcomes of interest were length of stay (LOS) and any serious 30-day post-operative complication, which were previously described by Seib, et al.³ Frailty was defined using the validated modified frailty index.³ One point was given for each frailty variable and patients were categorized into four groups: 0, 1, 2, 3+ frailty variables.

Multivariable logistic regression was used to examine the impact of frailty on complications, adjusting for malignancy, sex, race, corticosteroid use for a chronic condition (within 30 days of

surgery), and smoking (current smoker within 1 year). Statistical significance was defined as p<0.05. Statistical analysis was performed using Stata version 14.2.

RESULTS

Of 4,043 patients, 3,091 (76.5%) underwent a laparoscopic adrenalectomy. Most patients had benign tumors (n=2,180, 53.9%), while 553 (13.7%) had malignant tumors and 1,310 (32.4%) had pathology that could not be classified. Median age was 53 years (range 16-90). 270 patients (6.7%) were > 75 years old. The majority (72.9%) of patients had a frailty score of 0 or 1, but 282 (7.0%) had a frailty score of 3+. The most common contributor to frailty was hypertension, present in 2,835 (70.1%) patients.

The 30-day complication rate was 8.0% (n=324). The most common complications were bleeding requiring transfusion (n=128, 3.2%), pneumonia (n=61, 1.5%), ventilator required >48 hours (n=57, 1.4%), and sepsis (n=57, 1.4%). Laparoscopic procedures were associated with fewer complications (4.3% vs. 20.0%, p<0.001) and shorter LOS (2.9 days [95% CI 2.7-3.1] vs. 7.7 days [95% CI 6.7-8.6], p<0.001). Patients with benign tumors also had fewer complications (6.2% vs. 16.1%, p<0.001) and shorter LOS (3.6 days [95% CI 3.2-4.1] vs. 5.9 days [95% CI 5.2-6.6], p<0.001). Higher frailty score was associated with increased complications and LOS regardless of type of operation or diagnosis (**Table 1**).

On multivariable logistic regression, risk of serious complications was associated with higher frailty score (frailty score 3+ vs. 0: odds ratio [OR] 7.21, 95% CI 4.06-12.79, p<0.001), open

operations (vs. laparoscopic: OR 4.81, 95% CI 3.50-6.61, p<0.001), and malignancy (OR 1.83, 95% CI 1.30-2.59, p=0.001) (**Table 2**).

DISCUSSION

We found that among patients undergoing adrenalectomy, higher patient frailty scores (as well as malignancy and open operations) are more predictive of complications than older age. This novel finding complements research by Murphy, et al., who did not find an association between age and complications, but did find worse outcomes associated with a higher Charlson comorbidity index. ⁶ These findings are in contrast to research by Kazaure, et al., who reported that increasing age was associated with higher risk of complications, but their analysis did not evaluate frailty.¹

In this study, frailty was associated complications even following laparoscopic adrenalectomy, which has been shown to have shorter operative times, less blood loss, and decreased long-term morbidity than the open approach.² Therefore, our results suggest that patient frailty should be considered in patient selection for adrenal operations and should be addressed in informed consent discussions.

ACKNOWLEDGEMENTS

American College of Surgeons National Surgical Quality Improvement Program and hospitals participating in the ACS NSQIP are the source of the data used herein; they have not verified and are not responsibility for the statistical validity of the data analysis or the conclusions derived by the authors.

REFERENCES

- 1. Kazaure HS, Roman SA, Sosa JA. Adrenalectomy in older Americans has increased morbidity and mortality: an analysis of 6,416 patients. *Ann Surg Oncol*. 2011;18:2714-21.
- Zeiger MA, Thompson GB, Duh QY, et al. American Association of Clinical
 Endocrinologists and American Association of Endocrine Surgeons Medical Guidelines
 for the Management of Adrenal Incidentalomas: executive summary of recommendations.

 Endocr Pract. 2009;15:450-3.
- 3. Seib CD, Rocheford H, Chomsky-Higgins K, et al. Association of patient frailty with increased morbidity after common ambulatory general surgery operations. *JAMA Surg*. 2018;153(2):160-168.
- 4. Wahl TS, Graham LA, Hawn MT et al. Association of the Modified Frailty Index With 30-Day Surgical Readmission. *JAMA Surg.* 2017;152(8):749-757.
- 5. Revenig LM, Canter DJ, Master VA, et al. A prospective study examining the association between preoperative frailty and postoperative complications in patients undergoing minimally invasive surgery. *J Endourol*. 2014;28(4):476-80.
- 6. Murphy MM, Witkowski ER, Ng SC, et al. Trends in adrenalectomy: a recent national review. *Surg Endosc.* 2010;24:2518-26.

Table 1. Outcomes and length of stay by frailty score; by type of procedure and diagnosis

		Total	Frailty Score			P-value			
			0	1	2	3+			
By Type of	Open Adrenalect	omy	•	•	•		•		
Procedure	At least one	190	34	70	54	32	<0.001*		
	complication –	(20.0%)	(12.3%)	(18.1%)	(26.3%)	(38.1%)			
	n (%)								
	Length of stay –	7.7	5.8 (5.5)	6.2 (5.8)	10.0	15.1	<0.001**		
	mean days (SD)	(14.3)			(26.7)	(15.5)			
	Laparoscopic Adrenalectomy								
	At least one	134	15	50	38	38	<0.001*		
	complication –	(4.3%)	(2.0%)	(3.3%)	(6.3%)	(15.7%)			
	n (%)								
	Length of stay –	2.9 (5.1)	2.1 (2.2)	2.5 (3.7)	3.2 (4.8)	8.0	<0.001**		
	mean days (SD)					(13.6)			
By	Benign Tumors								
Diagnosis**	At least one	135	13 (3.0)	54 (4.7)	42 (9.1)	26	<0.001*		
*	complication –	(6.2)				(18.4)			
	n (%)								
	Length of stay –	3.7 (9.7)	2.5 (2.3)	2.9 (4.3)	4.9	9.3	<0.001**		
	mean days (SD)				(18.0)	(14.0)			
	Malignant Tumors								
	At least one	89	18 (9.9)	29	22	20	<0.001*		
	complication –	(16.1)		(19.1)	(19.1)	(46.5)			
	n (%)								
	Length of stay –	5.9 (8.2)	4.5 (4.9)	5.1 (5.9)	6.5 (7.9)	14.6	<0.001**		
	mean days (SD)					(18.9)			

^{*}Pearson chi-square test

**Bartlett's test for equal variances

***Functional tumors may be benign or malignant

Table 2. Univariate and multivariable logistic regressions predicting serious morbidity. (Bold indicates statistically significant with

p<0.05.)

	Univariate		Multivariable – All patients			
	Odds Ratio (95% CI)	P-value	Odds Ratio (95% CI)	P-value		
Frailty						
0	Ref		Ref			
1	1.32 (0.94-1.86)	0.111	1.71 (1.08-2.73)	0.023		
2	2.53 (1.77-3.63)	<0.001	2.69 (1.62-4.47)	<0.001		
3+	5.71 (3.82-8.53)	<0.001	7.21 (4.06-12.79)	<0.001		
Open (vs.	5.50 (4.34-6.96)	<0.001	4.81 (3.50-6.61)	<0.001		
Laparoscopic)						
Malignant (vs.						
Benign)	2.91 (2.18-3.87)	<0.001	1.84 (1.30-2.59)	0.001		
Age						
<50	Ref		Ref			
50-64	1.31 (0.99-1.73)	0.056	0.95 (0.65-1.39)	0.793		
65-74	1.68 (1.21-2.34)	0.002	1.05 (0.66-1.66)	0.836		
75+	3.11 (2.13-4.55)	<0.001	1.50 (0.86-2.62)	0.150		
Race –						
White	Ref		Ref			
Black	1.35 (0.98-1.86)	0.069	1.27 (0.84-1.93)	0.262		
Hispanic	1.37 (0.84-2.25)	0.210	1.72 (0.91-3.28)	0.097		
Asian or	0.60 (0.24-1.48)	0.267	0.76 (0.26-2.22)	0.620		
Pacific						
Islander						
Female	0.90 (0.71-1.13)	0.370	1.05 (0.77-1.44)	0.737		
Steroid use	2.26 (1.32-3.84)	0.003				
within 30 days	· ,		0.98 (0.40-2.36)	0.956		
Current	1.32 (1.04-1.70)	0.025				
smoker within	,		1.39 (0.99=1.95)	0.057		
1 year						