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Statistical Model of Lossy Links in Wireless Sensor Networks

Alberto Cerpa, Jennifer L. Wong, Louane Kuang, Miodrag Potkonjak and Deborah Estrin
Computer Science Department, University of California, Los Angeles, CA 90095

{cerpa,jwong,lkuang,miodrag,destrin}@cs.ucla.edu

Abstract— Recently, several wireless sensor network studies demon-
strated large discrepancies between experimentally observed communi-
cation properties and properties produced by widely used simulation
models. Our first goal is to provide sound foundations for conclusions
drawn from these studies by extracting relationships between location
(e.g distance) and communication properties (e.g. reception rate) using
non-parametric statistical techniques. The objective is to provide a prob-
ability density function that completely characterizes the relationship.
Furthermore, we study individual link properties and their correlation
with respect to common transmitters, receivers and geometrical location.

The second objective is to develop a series of wireless network models
that produce networks of arbitrary sizes with realistic properties. We
use an iterative improvement-based optimization procedure to generate
network instances that are statistically similar to empirically observed
networks. We evaluate the accuracy of our conclusions using our models
on a set of standard communication tasks, like connectivity maintenance
and routing.

I. INTRODUCTION

It is well known that the performance of many protocols and
localized algorithms for wireless multi-hop sensor networks greatly
depend on the underlying communication channel. Hence, to evaluate
performance in simulation, we must have an accurate communication
model. Until recently, only two approaches have been in widespread
use in the sensor network community: unit disk modelling and
empirical data traces.

Both approaches present some drawbacks. For example, the unit
disk model implies complete correlation between the properties of
geometric space and the topology of the network, a property refuted
by numerous experiments in actual deployments [1], [2], [3]. When
using empirical data traces approach is difficult and expensive to
create a large number of large networks that are properly character-
ized. Therefore, neither probabilistic nor statistical analysis of large
networks is feasible. In addition, since a given trace is the result
of communication over a specific topology, such a trace does not
permit a simulator to reposition nodes. Finally, without validated
communication analysis, theoretical analysis is not possible.

In an effort to address this problem, recently there have been
a number of efforts to empirically capture communication patterns
in wireless sensor networks. In particular, there have been several
studies that use different low power, narrow band radio transceivers
chipsets [4], [5] to deduce properties of communication links in
wireless networks in several environments, such as open space and
laboratories. These hybrid models introduce empirically observed
factors that modify the communication patterns based on the unit
disk communication model.

While these models are a significant step forward with respect to
the unit disk model, they are only an initial step in the exploration
of the space. These initial models do not capture many important
features of communication links in empirically observed networks.
For example, they do not address the correlation in communication
reception rates between nodes that originated at the same transmitter
or differences in the quality of transmitters.

Our goal is to develop accurate simulations of sensor network com-
munication environments that are statistically accurate with respect to

several features that impact network protocols and algorithms in real
networks. To generate these simulated environments, we construct a
set of models that map communication properties such as absolute
physical location, relative physical proximity and radio transmission
power into probability density functions describing packet reception
likelihood. For all of these models, we calculate an interval of con-
fidence. These models not only serve to generate simulated environ-
ments, they themselves have lent support to many hypotheses relating
to variation in communication link quality [1], [2]. In our study, we
do not consider packet losses introduced by multi-user interference
(concurrent traffic, contention-based MAC). Nevertheless, our results
are useful for three reasons. First, the amount of traffic expected in
most application in sensor networks is small, which means either
small contention, or in case of highly synchronized events, nodes
could be programmed to prevent simultaneous transmissions. Second,
they apply directly when using contention free MAC protocols, like
pure TDMA or pseudo-TDMA schemes [6]. Finally, they provide a
tight upper bound as to what is achievable when using contention-
based MAC schemes. The analysis of multi-user interference and
temporal properties of the links is part of future work.

II. RELATED WORK

There is a large body of literature on mobile radio propagation
models that have influenced this work. The emphasis has been on
large scale path loss models that predict the average received signal
strength at a given distance from the transmitter and the variability
of the signal strength in proximity to a particular location [7].
Furthermore, the models are used to predict the coverage area of
a transmitter. In addition, small scale fading models are used for
modeling localized time durations (a few microseconds) and space
locations (usually one meter) changes. All these models are based
on the Fries free space equation and indicate that reception quality
decays with the inverse of distance raised to a small power [7].

Differences between the classical models and our approach are
numerous. We have different modeling objectives (reception rate of
packets vs. signal strength), our radios have different features (e.g.
communication range in meters instead of km), we capture phenom-
ena that is not addressed by the classical channel models (asymmetry,
different quality of receivers and transmitters, correlations between
reception rate of links), we use different modeling techniques (free of
assumptions), and we use unique evaluation techniques (resubstitution
and evaluation of multi-hop routing). We believe existing and new
techniques have complementary objectives, tools, and applications.

More recently there have been many studies of significant-scale
deployments in several environments [2], [8], [3], [1], [9], [10].
Majority of these studies used the TR1000 [5] and CC1100 [4] low
power RF transceivers. There are three major differences between
the models developed in this paper and the previously published
models. The first is that we study the impact of a significantly large
number of factors that impact reception rate and attempt to model
not only isolated pairs of transmitters and receivers, but also the
correlation between different pairs and different subsets of links. The



1. Conduct exploratory data analysis;
2. while (interval of confidence > criteria) {
3. Collect new data or define new windows;
4. Sort all points according to distance;
5. for(from smallest to largest distance) {
6. Define sliding window for distance;
7. Apply weight function to distances inside of sliding window;
8. Sort all points according reception rate;
9. for(from smallest to largest reception rate ) {
10. Define sliding window for reception rate;
11. Apply weight function to reception rates sliding window; } }
12. Build mapping function;
13. Build normalized mapping function;
14. Establish intervals of confidence; }

Fig. 1. Pseudo-code of the PDF model generation for two features.
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Fig. 2. Scatter plot of distance vs. reception rate

second major difference is that our goal is not only to establish a
model, but also to establish statistically sound measures as to what
extent the model corresponds to experimentally captured data. Our
statistical techniques are generic in the sense that they can be used
in other studies with minimal changes. Also, we have developed a
procedure for creating instances of an arbitrary size for simulation
and mechanisms to ensure that they are accurate models with respect
to the collected data.

All of our techniques are based on non-parametric statistical proce-
dures. Specifically, we use smoothing and density kernel estimators,
resubstitution and bootstrap techniques [11].

III. INDIVIDUAL LINK MODELS

In this Section, we present a new statistical approach for building
communication link models in wireless multi-hop networks. The goal
is to find a statistically sound mapping between two user-specified
features that characterize communication links.

A. Design Guidelines

Our starting task is to analyze the dependency between two prop-
erties of wireless networks. We note that exactly the same procedure
described below can be used to find the dependency between any
two wireless communication features, but for the sake of brevity and
clarity, we focus on two specific features: distance and reception rate.
The objective is to find the PDF of reception rate for any distance
and to calculate intervals of confidence. For example, we could use
our model to find that the probability of the reception rate of the link
to be 95% at a distance of 25 ft is 0.05 ± 0.000012.

We are guided by three principles, smoothness, compactness, and
prediction ability. The validation for adopting these principles is
provided by evaluation using resubstitution, which indicates that the
derived models have tight interval of confidence and therefore, the
statistical model is accurate and the assumptions are justified. The
smoothness property states that if two pairs of receivers have very
similar distance, their reception rates also often have rather similar
probabilistic distribution. In other words, instances of reception rates
may be different from one distance to the other, but the underlying
reception rate probabilistic distribution is similar. There are two
fundamental justifications for this assumption. The first is that at

an intuitive level one expects that small changes in one variable (in
our case, distance) should have limited impact on the probability
distribution of the other parameter (reception rate). In addition, it
is important to recognize that both distance and reception rate are
subject to errors in measurement that smooth the mapping function.

Quality of the statistical model is ensured through compactness and
performance on test cases to measure the prediction ability. There
are two sound criteria for any sound statistical model. The first is
the Occam principle: the ability to explain a large set of data using
a small number of parameters is usually a strong indication that the
model will predict well. From a statistical point of view, our goal
is to simultaneously have low bias and low variance and therefore
low prediction error. Low bias is ensured by preferring models
that use fewer parameters. For this task we use Akaike information
criteria (AIC) [11]. The second criteria is its ability to predict. We
scan and alter various parameters in our procedures so long as the
adopted parameter values produce a model that withstands standard
evaluations of accuracy. Specifically, we use the resubstitution rule,
which builds additional models using a variety of randomly selected
subsets of the data set. If the resulting models from all data subsets are
similar, we conclude that the parameters used were properly selected.

From a technical point of view, when building a model of in-
dividual links we have two major difficulties: (i) we do not have
enough measurements for each distance of interest, and (ii) for a given
distance and given reception rate, we do not have enough collected
data samples. We use the kernel smoothing technique to resolve this,
and identified that the best performing window had ±10% of the size
of the central value and pyramidal shape.

B. Methodology

The global flow of our approach is shown in Fig. 1 using pseudo-
code format. The starting point for the procedure is exploratory data
analysis. As the first step of this phase, we examine a scatter plot of all
available data points. Specifically, we position each communication
link in a two dimensional space, placing on the x-axis distance and
on the y-axis the reception rate. The goal is to identify if there are any
specific trends in the data and to determine whether it is advantageous
to split the data into two or more subsets that have specific features.
Fig. 2(a) illustrates a scatter plot of distance versus reception rate



Fig. 3. PDF for distance versus reception rate.
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Fig. 4. PDF values of the different random points as a function of the
confidence interval/PDF value ratio. Outdoor Urban, 90% Confidence Level.

at medium power for the outdoor case. Fig. 2(b) shows a zoomed
version of a subset of data which was examined during exploratory
data analysis. We conducted exploratory analysis in order to gain
semantic insights, which can only be done by humans according to the
techniques presented in [12]. We did consider automatic clustering, in
particular, self-organizing maps, principal components, independent
components and multidimensional scaling [11], but they did not show
intuitive trends.

Phase two consists of three steps shown in Fig. 1 in lines 4-8.
In the step shown in line 4, we sort all available data according
to distance to identify data points that are similar with respect to
this parameter. Next, we use a sliding window for all points which
are within a similarity range of a given point (distance). Each point
within this range is weighted according to its quantified similarity
to a given point. For each distance of interest we also build another
system of sliding windows this time along the y-axis corresponding
to the reception rate. The points within the window are weighted as
the product of the weight factor of both the distance window and the
reception rate window.

Once the first eleven lines of the pseudo-code are executed we
have enough information to build a PDF that indicates how likely
a particular reception rate is for a given distance. For this task,
following compactness principle, we used quadratic least linear
squares fitting for a particular pair of distance and reception rate.

Once the model is built, the next step is PDF normalization that
ensures that for a given distance the integral of the function below

TABLE I
GLOBAL EVALUATION RESULTS

Environment
Conf. H.L.PDF Conf.
Level Value Intervals

Indoor 90 0.997627 ±0.325969
Outdoor 90 1.064365 ±0.381719
Indoor 95 1.023886 ±0.723887

Outdoor 95 1.022372 ±0.691752

the PDF mapping function is equal to one. Fig. 3 illustrates how the
normalized reception rate PDF changes with respect to distance.

C. Evaluation

The final step of our procedure is the evaluation of the quality of
the developed statistical model for the PDF. The evaluation procedure
itself has three components: Monte Carlo sampling, resubstitution,
and establishment of interval of confidence. Monte Carlo sampling
selects k (in our experimentation we use 200) randomly selected pairs
of distance and reception rate points.

Resubstitution is the process where a statistical model is built using
the exact same procedure (same kernel window scope and weight
function) on randomly selected subsets of data. Specifically, in our
simulations, we select 70% of the available data to build a model
on each resubstitution run. For each resubstitution run we record the
value of the PDF function at each of the k selected points. After
conducting m resubstitution runs (in our experimentation m was
100), we are ready to establish an interval of confidence for our
statistical PDF model. This is performed in two stages. We first es-
tablish an interval of confidence for each point individually, and then
by combining information from all local interval of confidence we
establish a global interval of confidence. Fig. 4 shows the relationship
between the different confidence intervals for each random sample
tuple (reception rate and distance) and the highest likelihood PDF
value for different confidence levels. Each point in the graphs show
the highest likelihood PDF value with its confidence interval. For
example, the top left point in the graph of Fig. 4 corresponds to
sample point of distance 52 meters, reception rate 0% with highest
likelihood PDF value of 0.2 ± 0.0001953 with confidence level of
90%. The final step of resubstitution is to build a global measure
of the model’s accuracy. To build a global interval of confidence
we use the following procedure. First, for each separate point in k,
we use the highest likelihood PDF value and normalize all other
values against this value. After that, we combine all data from all
sampling points into one set of the size k x m. Finally, we calculate
the confidence intervals of the normalized global array. Table I shows
the overall interval of confidence for indoors and outdoors with
different confidence levels. In general, the global highest likelihood
PDF values are centered around one, which is a good sign of the
statistical soundness of the model.

IV. EXPERIMENTAL DATA COLLECTION

We used an existing data set and performed additional experiments
using the SCALE wireless measuring tool [1]. The topology used
for our experiments consisted of 16 nodes distributed in an ad-hoc
manner in different environments. We also used up to 55 nodes
for our indoor experiments deployed in the ceiling of our lab. For
outdoor experiments, nodes were placed in a variety of different
positions, such as near the ground or elevated off the ground, with or
without line of sight (LOS) between them, and with different levels
of obstructions (furniture, walls, trees, etc.). The placement of the
nodes also took into account the distance between them, in order to
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(a) Distance of 8.75m.
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(b) Distance of 25m.
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(c) Distance of 46.5m.

Fig. 5. PDFs for reception rate for various values of distance.

TABLE II
SUMMARY OF EXPERIMENTAL FACTORS CHANGED

Will Rogers State Park (outdoor),
Environment Boelter Hall courtyard (urban),

LECS lab (indoor)
Radio Type TR1000 [5] (916MHz),

CC1100 [4] (433MHz)
TX Power -10 to 0 dBm (TR1000),

-20 to 10 dBm (CC1100)
Packet Size 25, 50, 100, 150, 200 bytes

Antenna Height 0, 0.25, 1, 3, 5 ft

create a rich set of links at distances varying from 2 to 50 meters and
in multiple different directions from any particular sender.1 In most
of our experiments, each node sends up to 200 packets per round,
transmitting 2 packets per second.2 Using this setup, we varied several
factors in our experiments. Table II shows a summary of them.

In summary, the data set used in this paper consisted of packet
delivery data from more than 450,000 packet probes in experiments
performed in 3 different environments, with 2 different type of
radios, with 6 different power settings, 5 different packet sizes,
and 4 different antennae heights.3 We used up to 16 nodes in our
outdoor experiments and up to 55 nodes in our indoor experiments.
We measured the packet delivery performance of 240 links for the
outdoor experiments and 2970 links for the indoors experiments.

V. PROPERTIES OF INDIVIDUAL LINKS

At the highest level of consideration the features can be classified
into two groups: physical properties of the network, and communi-
cation features of the network. Physical properties include distance,
direction as a function of angle with respect to reference direction,
and areas. Communication properties include reception rate between
receiver A and transmitter B, asymmetry in communication which
refers to the absolute difference in reception rates between a pair
of nodes (transmitter A → receiver B and transmitter B → receiver
A), and temporal variation of reception rate between receiver A and
transmitter B.

We have analyzed two types of mapping functions between prop-
erties. The first is the established one-way mapping relationship
between a given structural property and a targeted communication

1There are algorithms to find the optimal placement of nodes to get a
uniform range of distances in the area of interest. We did not perform that
optimization in our experiments.

2We have left for future work the evaluation of how accurate is an average
reception rate.

3We did not test all possible combinations in all environments.

feature. The second analyzes the one-way dependency between two
communication features. We once again emphasize that our goal is to
not only establish the most likely value of one property for a given
value of another property, but also to obtain probability distribution
functions for all expected values of the second property for a given
value of the first feature. We have studied the following pairs of
properties.

Dependency of reception rate as a function of distance. This
property is selected mainly because there is a wide consensus that
distance significantly impacts reception rate.

Dependency of asymmetric reception rate as a function of
distance. Note that in the previous case we assumed that reception
rate between transmitter A to receiver B is the same as from
transmitter B to receiver A, but recently several empirical studies
demonstrated this is not the case [1], [2]. Our goal is to quantitatively
capture how frequently there is asymmetry in reception rates as a
function of distance.

Dependency of asymmetric reception rate as a function of re-
ception rate. This property studies functional dependencies between
two communication properties. Our goal is to identify if it is more
likely that high asymmetry happens when links have high, low, or
medium reception rates. For example, we are interested if it is more
likely to have a pair of nodes with reception rates of 95% and 75%,
or with 30% and 10% reception rates.

Dependency of reception rate standard deviation as a function
of the average reception rate. The final property studies temporal
dependencies between two communication properties. An empirical
study [1] has shown that such correlation exists. Our goal is to
quantitatively capture this relationship and provide some initial results
on how this property affects the link estimation algorithms used for
online quality estimation.

In addition to the listed properties, we also studied link quality
dependency on angle, but were not able to identify any interesting
patterns with significantly strong intervals of confidence.

In Sect. III, Fig. 3 we have illustrated how the reception rate
changes as a function of distance. Figs. 5 show normalized PDFs for
three typical distances for 8.75, 25, and 46.5 meters. These results
confirm the findings of several studies in the literature that show
that there is a significant percentage of the radio range where links
are highly variable, with similar probabilities of having very high or
low reception rates. In addition, we show that even for very short
distances, the probability of having very low reception rate links
is not zero, and it starts growing fast as distance increases. More
importantly, it is clear from the graph in Fig. 5(b) that the average and
standard deviation values of reception rate are insufficient parameters



(a) Asymmetric links vs distance (b) Asymmetric links vs reception rate

Fig. 6. PDFs for asymmetric links features.

Fig. 7. PDF for temporal variation as a function of the reception rate.

(a) High Reception Rate (b) Med. Reception Rate

Fig. 8. Time series for on-line link quality estimation.

to model reception rate as a function of distance. While the average
reception rate is around 50% in this case, most of the links have
either very high or low reception rates.

Figs. 6(a) and 6(b) show the PDF of how asymmetric reception rate
depends on distance and average reception rate. Fig. 6(a) shows that
there is no clear correlation between link asymmetries and distance.
Fig. 6(b) shows an interesting pattern; links with very high or very
low reception rates tend to be highly symmetrical, as it can be
observed by the two peaks in the PDFs. Links with medium reception
rate tend to be much less symmetrical.

Fig. 7 shows the temporal variability of the links as a function of

the reception rate. We clearly see that links with very low or very
high reception rates tend to be more stable over time (smaller standard
deviation), while the links with intermediate values of reception rate
tend to be more unstable (higher standard deviation).

From our data, we observe that while the quantitative values of the
PDFs for different conditions were not the same, the PDFs generated
were qualitatively similar in most cases. For example, the PDF shown
in Fig. 3 was qualitatively similar across all three environments tested.
We have left the statistical analysis of the differences between the
different conditions to get statistical sound conclusions for future
work because it requires additional experiments.

One interesting question we wanted to answer is how long a node
needs to measure the communication channel in order to get an
accurate estimate of reception rate with a certain confidence interval.
This has a profound impact in the design of algorithms for topology
control that need to measure the channel as little as possible in order
to save energy by periodically turning the radio off. To evaluate this,
we took long time series of reception rate data, and picked k window
sizes. For each window size, we took p (set to 100) initial random
points of measurements from the time series, generating a reception
rate estimate for each p using only a window of size k (ranging
from 30 seconds to 64 minutes) of data from the starting point.
Then we compare the absolute difference between each of the p× k
estimates with the absolute reception rate calculated using the entire
time series of data. Fig. 8 shows the results of the previous analysis
on two qualitatively different type of links. Fig. 8(a) shows that links
with very high reception rate need very short window sizes to get an
accurate estimate of the reception rate, and they converge quite fast to
an accurate estimate (low reception rate links show similar behavior).
Fig. 8(b) shows that links with intermediate reception rates take much
larger window sizes to converge to accurate estimate values. We have
left for future work the issue of optimal on-line link characterization
using statistical methods.

From the spatial, asymmetrical, and temporal properties presented
in Figs. 3, 6(b) and 7 we can see an interesting pattern that has
emerged. For a large range of distances there is a low but non-zero
probability of links with medium reception rates. These links are
also the ones that present the most highly asymmetrical and temporal
variability properties. We believe these links may introduce serious
stability and convergence problems for several routing algorithms,
and it might be useful to design mechanisms to detect these types
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Fig. 9. PDF for Normalized Transmitter and Receiver Quality and Correlation

of links and filter them out [9]. Another interesting point is that
reliable, highly symmetrical and stable links exist even at long
distances (although with low probability). It is important to detect and
take advantage of those long distance/high quality links in order to
minimize packet transmission in a multihop setting. Online detection
and use of these type of links could affect algorithm design. (e.g. by
minimizing energy consumption or end-to-end hop count).

VI. GROUP LINK PROPERTIES

Group link properties are joint properties of related subsets of links.
These links may be links that originate from the same transmitter
or received by the same receiver, processed by the same radio, or
communicated by nodes that are geometrically close. These properties
are of crucial importance for any analysis and answer the frequently
asked fundamental questions about reasons for particular behavior
of communication patterns. These questions include whether the
performance of a particular node as a transmitter mainly depends on
the quality of its radio or its geometric position. Another frequently
asked question is whether asymmetry is a consequence of different
radio properties between two nodes or their location. However, with
the exception of the property which examines pairs of links between
two nodes, group link properties have been rarely studied due to their
perceived complexity.

The first question we answer is to what extent the quality of trans-
mitters and receivers on different nodes is uniform. We normalized
the quality of each link at each node versus the average link quality
at the corresponding distance in terms of reception rate. After that,
we calculated the geometric mean of all links that originate or end
at a particular node. For the reception quality, we decided to use the
geometric mean instead of arithmetic in order to avoid too high an
impact from a few exceptionally strong links. For example, if a node
has one link that is 5 time better than average and 5 links that are
5 times worse than average, the arithmetic mean would still indicate
that the nodes have links of superior quality, which is obviously not
the case. When there are not outliers, the arithmetic mean is preferred.

Figs. 9(a) and 9(b) show the PDFs for normalized transmitter and
receiver quality of nodes in indoor and outdoor environments. We
see that a large percentage of nodes are either significantly better
transmitters or receivers than average, in particular for the outdoor en-
vironment. The result is important because if nodes were completely
uniform, deployment strategy would be based solely on topology.
However, our results show that further communication optimization
can be made by considering transmitting/receiving quality.

The second question we answer is whether there is correlation
between the quality of the transmitter and receiver on the same node.

TABLE III
CORRELATION OF ALL PAIRS FOR INDOOR AND OUTDOOR.

Outdoor Indoor
r t-test DofF r t-test DofF

TX -0.004 0.121 887 0.0592 11.824 39770
RX 0.012 0.370 885 0.0590 11.859 40183

Fig. 10. Covariance Matrix and Layout for Indoor Experiments.

Figs. 9(c) and 9(d) show a summary of our results. We analyzed both
indoor and outdoor data using arithmetic mean. We calculated both
arithmetic and geometric mean correlations, but due to the lack of
outliers in the data, we preferred to use the arithmetic mean. All
studies indicate that there is a positive correlation of transmitting
and receiving capability of the nodes, and the probability of this
result being accidental is low (lower than 0.1% in the indoor case).
The linear correlation factor values are different depending on the
environment, being much higher for the indoor case.

Once we conclude that some nodes are much better transmitters or
receivers than other nodes, the natural question is to what extent they
are uniformly better transmitters or receivers with respect to all their
links. In order to answer this question we calculated the correlation
between all transmitting (receiving) links related to the same node.
Table III shows the correlation value r, the t-test value and the degree
of freedom (DofF). For both indoor and outdoor environments we see
essentially very small or no correlation with very high probability (the
probability of this result being accidental is lower than 0.1% for the
indoor case). This essentially means that no node has perfectly good
links to all other nodes in some distance range, and even the best
nodes have average or very poor links. In addition, almost all nodes
have good links to some neighbor in the same distance range.

The last question we would like to answer is whether there



are subsets of nodes that communicate well with each other while
communicating at significantly lower levels with other nodes in the
network. Fig. 10 shows the covariance matrix for 9 nodes in the
indoor environment. We clearly see that nodes A, B, C, D and E
form one group, nodes E, G and H another, and F and G, the third
group. All nodes in these groups are highly correlated in terms of
normalized communication with respect to other nodes. The data was
obtained in the following way. For each node we sorted in decreasing
order the quality of its links to other nodes. After that, for each pair
of nodes, we found a subset of corresponding receivers that hear both
nodes, and eventually found rank correlation for these two lists. As
part of the table indicates, very often the correlation between two
nodes is rather high, close to positive 1 or very low close to -1. The
Spearman t-test indicates that all covariance values have probability
of accidentally happen well below 0.1%. In other words, group of
nodes in a particular distance range can communicate to each other
significantly better than other group of nodes in the same distance
range. Identification of these groups of nodes could be important for
tree-based routing algorithms; it would be convenient that at least one
node in each of these groups join the tree since it could communicate
better to the other nodes in the group than any other node.

VII. WIRELESS NETWORKS GENERATORS

Using the knowledge gained from analysis of single and multiple
link properties, we have built a series of wireless multi-hop network
instance generators to be used in simulation environments. We present
three models, increasing in complexity, which create communication
links for an arbitrary network that are statistically similar to observed
networks. The basic model assigns communication links based solely
on the relationship between reception rate and distance. To build the
more complex models, we introduce an iterative improvement-based
procedure for creating communication links which abide by multiple
link properties. The starting point for all models is the generation
of a user specified number of nodes in the given area, with specific
locations or a particular distribution.

A. Probabilistic Disk

The basic model, probabilistic disk, considers only the dependency
between distance and reception rate. It is created by generating for
each calculated distance between two nodes a randomly selected
reception rate according to the PDF (Fig. 3) for the respected
distance. We first translate the PDF into the corresponding cumulative
distribution function (CDF) and use a uniform random generator
between 0 and 1 to generate a value of CDF. The resulting value
is then mapped into the corresponding reception rate.

B. Bi-Directional Correlated Probabilistic Disk Model

In this model, we consider two functional dependencies. In addition
to the dependency between reception rate and distance (Fig. 3), we
also consider the dependency between asymmetric reception rate and
reception rate (Fig. 6(b)). Our goal is to generate an instance of
the network where all communication links follow the PDF for a
corresponding distance and for any given pair of nodes, we have a
reception rate between transmitter A and receiver B and transmitter B
and receiver A that follows the PDF for asymmetric reception rate.
An instance of the network which follows this model is generated
in the following way. We first generate for each pair of nodes the
reception rate between the transmitter of node A and receiver of
node B, where the notation of nodes A and B for a given pair of
nodes is randomly conducted. Next, we generate the reception rate
of the transmitter of node B and the receiver of node A following

the PDF for reception rate into probabilistically selected asymmetric
rate using one of the previously mentioned methods. One can prove
using Bayesian rules that the network generated using this procedure
does follow both PDF functions.

C. Non-parametric Statistical Model

While the Bayesian rule is powerful enough to generate instances
of the network that follow one and in some cases two PDFs, it
is easy to see that when a large number of statistical measures
must be followed, it does not provide an adequate solution. For
example, it is not clear how to simultaneously generate a network
which follows PDFs for reception rate versus distance, asymmetric
reception versus distance, and non-uniform quality of transmitters
and receivers. In order to overcome this difficulty we have developed
an iterative improvement-based algorithm that generates an instance
of the network that approximately, or arbitrarily closely, follows
an arbitrary number of interacting PDFs defined on arbitrary pairs
of network and communication properties. The key idea is to first
separately generate an instance of the network that follows each
of the considered PDFs and to randomly select one of them as
a starting point for the iterative improvement procedure. At each
step of the iterative improvement procedure, we attempt all possible
changes at all possible pairs of nodes A and B and select one which
makes the overall discrepancy between the parameters of that network
more similar to a combination of the originally generated networks
that separately considers the PDF of only a single property. The
similar PDF function is defined using standard L2 measure. The
procedure is repeated until no further improvement can be found.
In order to improve the quality of the generated network, one can
perform restarts or employ probabilistic mechanisms for escaping
local minima (e.g. simulated annealing). If a restart is performed,
there is the option to probabilistically select one of the final solutions
for the restart according to their maximum likelihood expectation.
These expectations are generated from the space that contains all
networks that follow all the specified PDFs.

D. Generation of Large Network Instances

Scalability is one of the key issues in wireless sensor networks
both during deployment as well as during protocol and algorithm
development. Unfortunately, it is both expensive and time consuming
to deploy large networks solely for the purpose of building a model or
developing a localized protocol. Therefore, there is a need to develop
a methodology and approach that creates and validates networks of
an arbitrary size.

We have developed a perturbation-based analysis that facilitates
sound statistical validation of networks of an arbitrary size with
respect to experimentally available and characterized networks. The
key idea is to begin by creating an instance of the network using a
specific communication model, and run the algorithm or protocol
of interest on the network instance. Next, we replace randomly
selected subparts of the instance with instances of data from actually
deployed networks. generate, using the selected statistical model,
the connectivity between nodes in the patches of the real networks
and the neighboring nodes from the generator. After the procedure
is completed, we compare the initial and perturbed networks with
respect to results they produce on a task of interests. The extent to
which the results are similar, the large instance is representative of
the real-life networks. Fig. 11 illustrates the similarity in terms of
all-pairs shortest path between two large network examples of 400
nodes built using the asymmetric link model.



TABLE IV
COMPARISON OF FOUR STATISTICAL MODELS USING FLOYD-WARSHALL ALL PAIR SHORTEST PATH ALGORITHM.

Unit Unit Real Prob. Prob-Real Asymm Asymm Real Statistical Statistical-Real
MIN 2 2 2.0079 2.0079 2.00188 2.00188 2.00002 2.00002
MAX 26 20.0569 41.881 43.354 45.9964 44.1535 42.99 42.9285
AVE 6.87574 5.78918 14.687 15.002 14.8176 14.6217 14.6991 14.6928
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Fig. 11. Similarity between path weights in large networks.

We compared using the perturbation-based method four models:
unit disk model, probabilistic disk model, asymmetric probabilistic
disk model, and a non-parametric statistical model. For this purpose
we compare the length of all-pairs shortest paths for an instance
with 400 nodes. Table IV provides a summary for the length of
the minimal, maximal, and average path. Note, that all three newly
developed models, and in particular the non-parametric statistical one,
are much more statistically sound.

The network generators have been implemented in the Em-
Star simulator [13]. The code is available for downloading at:
http://cvs.cens.ucla.edu/emstar.

VIII. DESIGN CONSIDERATIONS AND CONCLUSION

From the conceptual point of view, the first important observation
is that the distribution of lossy links can greatly affect routing
algorithms based on geometric concepts. For example, all local
avoidance approaches that reduce the routing problem to traversal on
Gabriel or local neighborhood graphs may no longer be applicable
in practice. Another, possibly more impacting ramification is that no
deterministic method can be used to guarantee packet delivery in
stateless routing protocols. This is justified by the small but non-zero
probability of having links with very small or close to zero reception
rate even at very small distances (Fig. 3). The third major conceptual
change is that there is a strong benefit of observing at least some
percentage of links on-line. This is because some of the most effective
links in terms of metrics of travel distance versus required number
of messages are links that have a reception rate between 40-60%. In
addition, we can observe from Figs. 3, 6(b) and 7 that it is perfectly
possible to find high reception rate links that are stable and highly
symmetrical that cover medium to long distances.

The complex and correlated nature of links implies that newly
developed routing protocols should be simulated for much longer
periods of time in order to ensure that overall they perform well.
The existence of superior nodes in terms of both transmitters and
receivers capabilities implies that fairness will become one of the
major issues for any routing, multicast, and broadcasting approach,
because all of these protocols have a tendency to disproportionately
use a subset of nodes.

The statistically demonstrated space correlation will also greatly
impact the development of routing protocols, as well as power
management techniques. For example, since nodes are naturally
clustered in subsets that efficiently communicate with each other
and poorly with the rest of the network, it will be important that
power management strategies, simultaneously turn down or up the
majority of the nodes in one of such subsets. Furthermore, clustering
techniques might be even more efficient than in networks modeled
with the unit disk communication model.

In summary, we have developed a set of non-parametric statistical
models for characterizing links in wireless sensor networks. The
models are the basis for new generators of wireless networks to be
used in simulations that are statistically similar to deployed networks.
The insight gained while building these models has helped identifying
future directions for developers of protocols and localized algorithms
for wireless sensor networks.
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