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Autonomic activation mediates the majority of the in-
crease of glucagon secretion during insulin-induced hypo-
glycemia in several species including dogs, mice, and
rats. However, the role of the autonomic nervous system
to increase glucagon during hypoglycemia in humans
remains controversial, and investigations in nonhuman
primates have not been previously conducted. The auto-
nomic contribution to glucagon secretion during hypo-
glycemia in a nonhuman primate was examined by two
independent pharmacological approaches. Glucagon re-
sponses to clamped insulin-induced hypoglycemia were
compared in conscious rhesus monkeys in the presence or
absence of ganglionic blockade with trimethaphan, or
during combined muscarinic and adrenergic receptor
blockade with atropine, propranolol, and tolazoline. In-
sulin-induced hypoglycemia (plasma glucose = 1.9 + 0.1
mmol/l) activated parasympathetic nerves to the pan-
creas as assessed by increased plasma pancreatic poly-
peptide (PP) levels (A = 135.0 + 36.8 pmol/, P < 0.01),
produced sympathoadrenal activation as assessed by ele-
vations of plasma epinephrine (EPI) (A = 22.3 + 2.95
nmol/l, P < 0.0005) and norepinephrine (NE) (A = 3.72 =+
0.77 nmol/1, P < 0.0025) and increased plasma immuno-
reactive glucagon (IRG) (A = 920 + 294 ng/l, P < 0.025).
Nicotinic ganglionic blockade with trimethaphan pre-
vented parasympathetic (APP = 16.5 =+ 16.3 pmol/l, P <
0.01 vs. control) and sympathoadrenal (AEPI = 1.52 +
0.98 nmoVL; ANE = —0.62 *+ 0.24 nmol/l, both P < 0.0025
vs. control) activation during hypoglycemia and inhibited
the IRG response by 70% (A = 278 + 67 ng/l, P < 0.025 vs.
control). Combined muscarinic and adrenergic receptor
blockade reduced parasympathetic activation (APP =
48.3 + 16.3 pmol/l, P < 0.01 vs. control) and inhibited the
IRG response by a similar degree to ganglionic blockade
(AIRG = 284 = 60 ng/l, P < 0.025 vs. control). These
results demonstrate by two independent pharmacological
approaches that autonomic activation makes a substan-
tial contribution to increased glucagon secretion during
hypoglycemia of ~2.0 mmol/l in a species of nonhuman
primate. Diabetes 45:960-966, 1996
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ncreased glucagon secretion, in concert with adrener-
gic mechanisms, is a primary counterregulatory re-
sponse for the recovery of plasma glucose levels
cduring hypoglycemia (1,2). However, the question of
which mechanisms are responsible for stimulating glucagon
secretion during hypoglycemia remains controversial. Hypo-
glycemia activates three autonomic inputs to the pancreas,
which include pancreatic parasympathetic nerves (3,4), the
direct sympathetic innervation of the pancreas (5), and
epinephrine from the adrenal medulla (6). Although each of
these autonomic inputs to the pancreas is capable of stimus-
lating glucagon secretion (7-10), hypoglycemia per se may
contribute to increased glucagon secretion as lowered glu-
cose concentrations can increase glucagon secretion in vitro
(11,12).

A number of early studies in human subjects found that
selective impairment of parasympathetic or sympathoadre-
nal inputs to the pancreas did not reduce the glucagon
response to hypoglycemia (13-16). These results contrast
with those from studies conducted in several species of
animals in which autonomic activation was demonstrated to
mediate the majority of the glucagon response to hypoglyce-
mia (17-22), The animal studies are generally characterized
by the use of interventions that impair activation of both the
parasympathetic and the sympathoadrenal inputs to the
pancreas,

The failure of the early human studies to find a significant
autonomic contribution to the glucagon response to hypo-
glycemia could have been due to unrecognized redundancy
among the autonomic inputs, In accord with this hypothesis,
the glucagon response to hypoglycemia in rats is reduncdantly
mediated such that simultaneous blockade of both the
parasympathetic and sympathoadrenal Inpuis to the pan-
creas is required to reduce the response (21). However, more
recent studies have found that the glucagon response to
hypoglycemia was not reduced by the combination of ¢las-
sical muscarinic and adrenergic receptor blockade in hu-
mans (23,24). It is possible that the release of neuropeptides
such as vasoactive intestinal polypeptide from pancreatic
autonomic nerves could contribute to glucagon secretion
during hypoglycemia (25). The actions of neuropeptides
would not be expected to be blocked by classical receptor
antagonists. In contrast, pharmacological blockade of nico-
tinic receptors in autonomic ganglia would be expected to
impair autonomic activation whether classical or peptider-
gic. One limited study in humans found that administration
of a ganglionic blocking agent significantly reduced the
glucagon response to hypoglycemia (26): however, addi-
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tional experiments are needed to determine the autonomic
contribution in humans.

In the present study, we sought to determine the auto-
nomic contribution to the glucagon response (o hypoglyce-
mia in a species more closely related to humans than other
laboratory animal species. Plasma glucagon responses to
insulin-induced hypoglycemia were measured in conscious
rhesus monkeys with chronically implanted arterial cathe-
ters and in the same animals during ganglionic blockade with
trimethaphan. As a second independent approach to this
question, an additional experiment was conducted with
atropine, tolazoline, and propranolol to block the autonomic
inputs to classical muscarinic and adrenergic receptors.
Plasma pancreatic polypeptide (PP) responses to hypoglyce-
mia were measured in all three studies as an index of the
activation of pancreatic parasympathetic nerves during hy-
poglycemia, and the effectiveness of ganglionic blockade or
atropine to impair parasympathetic activation. Plasma cate-
cholamine responses to hypoglycemia were measured in the
control and trimethaphan studies as an index of the affec-
tiveness of ganglionic blockade to impair sympathoadrenal
activation,

RESEARCH DESIGN AND METHODS

Animals and catheter implantation. Six adult male rhesus monkeys
(Macace mulatia) (weight = 8.4-14.4 kg, mean = SE = 10.8 % 0.9 Ikg)
were used for these studies. Before selection for the study, a physical
examination, complete blood count, and serum biochemistry panel were
performed on each animal, The animals had previously been acclimated
to several hours of chair restraint with a minimum of 10 training
sessions (27). One week before the first experiment, an iliac or femoral
artery was catheterized under ketamine/isoflurane anesthesia with a
polyurethane catheter connected Lo a subculaneous vascular-access-
port (Access Technologies, Skokie, i) as previously described (28).
Animals were housed in the American Association for the Accreditation
of Laboratory Animal Care accredited facilities of the California Re-
gional Primate Research Center (CRPRC) in accordance with standards
established by the U.S. Animal Welfare Act and the Institute ol Labora-
tory Animal Resources, The experimental protocols were approved by
the Institutional Animal Use and Care Commitiee at the University of
California, Davis and the CRPRC and were conducted in accordance
with the National Institutes of Health Guide for the Care and Use of
Laboratory Animals,

Hypoglycemia protocol. The animals were fasted overnight and placed
in restraint chairs at least 1 h before the experiment. A cephalic vein was
catheterized for infusion of galine, autonomic blockers, and insulin. Two
haseline arterial blood samples (3 ml) for plasma glucose, PP, catechol-
amine, and glucagon determination were drawn 10 min apart, then
regular human insulin was infused intravenously via a cephalic vein
catheter at a rate of 3.5 mU < kg™ - min” L &mall (0.2 ml) blood samples
were drawn frequently (every 5-15 min) [rom the arterial catheter [or
on-line determination of plasma glucose levels with a Beckman glucose
analyzer (Beckman, Fullerton, GA). The arterial plasma glucose was
maintained at ~2.0 mmol/l by administering small boluses of glucose
(5-10 mg/kg) and infusing glucose at a variable rate (1-5 mg- kg '
min~"). A plasma glucose level of 2.0 mmol/l is a moderate degree of
hypoglycemia in adult male rhesus monkeys since the normal fasting
serum glucose (~4.0 mmol/l) is lower in rhesus monkeys than in many
other species (29). The plasma glucose reference range in adult male
rhesus monkeys at the CRPRC was 3.1~4.9 mmol/] (mean = 1 8D = 4.0
+ 0.9 mmol/) (n = 36). The animals showed no adverse effects during
hypoglycemia other than slight drowsiness. Blood samples for hormone
measurement were drawn every 15 min during the hypoglycemic period
(90 min), and then the glucose infusion rate was increased (126 mg/kg -+
12.5 mg~kg"‘1-1nin"’"1) to reverse the hypoglycemia, and additional
samples were drawn at 16, 30, and 60 min,

Pharmacological autonomic blockade. To induce ganglionic auto-
nomic blockade and impair parasympathetic and sympathoadrenal
activation during hypoglycemia (30), trimethaphan camsylate (Arfonad,
Roche, Nutley, NJ) (0.1~0.5 mg/min i.v.) was infused for 40 min before
the induction of hypoglycemia and throughout the study, Arterial blood
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TABLE 1
Heart rate in rhesus monkeys before and during insulin-induced
hypoglycemia in the control study, and before and after
ganglionic blockage with trimethaphan or muscarinic plus o-
and p-adrenergic receptor blockade

i - el Y 8, okl L byt gy it = pelea AR

- o

Control Ganglion Receptor
study bloclk hlock
Baseline heart rate 104 + 8 190 + 13 168 & 12
After blockers — 171 = 6 153 & &
Aheart rate — 10 4 8 —15 = 16
During insulin-induced
hypoglycemia 180 = 7 158 + 5 128 = 8
Aheart rate —14 £ 7 —13 & 3% —24 -+ B

-y

Data are means = SE. #P < 0.0b vs. haseline, TP < 0,006 vs. hase-
line,

pressure was monitored continuously with a digital blood pressure
analyzer (DigiMed, Louisville, KY), The infusion rate was adjusted Lo
decrease systolic biood pressure (sBP) by ~40 mmHg without lowering
sBP below 80 mmllg. To produce pharmacological muscarinic and
adrenergic blockade, in a third experiment the same animals received
atropine sulfate (Elkins-Sinn, Gherry Hill, NJY (0.1 mg/kg + 0,001 mg:
kg™! min™"), plus combined o- and B-adrenergic blockade with tolazo-
line HCl (Priscoline, Ciba-Geigy, Summit, NI (@ mg/lkg + 0.033 mg:
kg ™! - min~*t) and propranolol FICl (Solopak, Elk Grove Village, 1L) (0.3
mg/kg -+ 0.003 mg kg™ e min” 1y, intravenously for 30 min before the
induction of hypoglycemia and throughout the experiment, The control
and trimethaphan studies were performed in random order 7 days apart.
The muscarinic and adrenergic blockade studies were CON ducted 3 months
later.

Assays and data analysis. Blood samples for plasma glucose determi-
nation were drawn and placed in tubes containing heparin, Blood
samples for glucagon and PP determination were placed in tubes
containing EDTA and aprotinin (Sigma, St. Louis, MO). Blood samples
{or catecholamine determination were placed in tubes containing EGTA
and glutathione. All samples were kept on ice until centrifugation (20
min at 4°C). The plasma was decanted and frozen at —20°C until
assayed.

Plasma glucose was assayed by the glucose oxidase method with a

Beckman glucose analyzer (Beckman). Plasma PP was measured with a
radioimmunoassay (31). Plasma norepinephrine (NE) and epinephrine
(EPI) were measured In duplicate with a highly sensitive and specific
radioenzymatic assay (32). The intra- and interassay coefllcients of
variation for the plasma catecholamine assay are 6 and 12%, respec-
tively, Plasma immunoreactive glucagon (IRG) and insulin (IR1) were
measured radioimmunologically in unextracted plasma with reagents
supplied by Linco (5L, Louis, MQO). The intra- and interassay coeflleients
of variation for the plasma insulin assay are <10 and 14%, respectively.
The antibody used for the plasma glucagon assay has high speclicity for
the COOH-terminal portion of the glucagon molecule, The intra- ancd
interassay coelficients of variation for the plasma glucagon assay are
<10 and 11%, respectively.
Calculations and data analysis. All values are means 4 8K, The
changes in blood pressure, heart rate, arterial plasma glucose, PP, 1P
and NIE, and glucagon were caleulated by subtracting the mean of the
—10- and 0-min baseline values from the mean ol the 30-, 46-, 6()-, 7H-,
and 90-min values after the infusion of insulin. Statistical comparison of
moeans within a treatment group were made with a paired © test. Ifor
comparison of means ol various treatment groups, analysis of variance
with a Dunnett’s post-test was performed.

RESULTS
Heart rate and blood pressure. Baseline heart rate was

similar in all three studies. Trimethaphan, but not Mmuscarinic
plus adrenergic blockade, significantly reduced heart rate
(P < 0.05). Heart rate was lower or tended to be lower during
hypoglycemia than in the prehypoglycemic period in all three
studies (Table 1).

Baseline systolic and mean arterial blood pressure was
similar in all three studies. As required by the experimental
design, trimethaphan infusion significantly reduced both
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TABLE 2

Systolic arterial pressure and mean arterial pressure in rhesus
monkeys before and during insulin-induced hypoglycemia in
the control study and before and after ganglionic blockade
with trimethaphan or muscarinic plus «- and B-adrenergic
receptor blockade

Control  Ganglionic Receptor
study block block
Systolic pressure (mmHg)
Baseline systolic pressure 130 %= 7 136 = 5 133 + 4
After blockers — 07 + 3 116 £ 8
Asystolic arterial pressure — —39 4% —16 - G}
During insulin-induced
hypoglycemia 117 £ 7 84 + 6 107 £ 7
Asystolic arterial pressure ~13 + 5t —13 + 4+ -9 %5
Mean pressure (mmHg)
Baseline mean pressure 109 = G 117 £ 15 112 + 4
After blockers o 80 + 3 99 £ 7
Amean arterial pressure — —-37+3F —13 =56}
During insulin-induced
hypoglycemia 07 + 4 7125 90 £ 7
Amean arterial pressure —-12 £ 34 -9 +5 —§ ok

Data are means *+ SE. *P < 0.06 vs. baseline. TP < 0.025 vs. base-
line, +P < 0.01 vs, baseline.

systolic and mean arterial blood pressure (both P < 0.0005
vs. Initial values); however, marked hypotension was not
produced by these rates of trimethaphan infusion. Musca-
rinic plus adrenergic blockade produced a modest reduction
of systolic and mean arterial pressure (both P < 0.05 vs.
Initial values). Systolic and mean arterial pressure were
lower or tended to be lower during hypoglycemia than
before hypoglycemia in all three studies (Table 2).
Plasma glucose and plasma IRI. The initial fasting plasma
glucose in the control study averaged 4.9 + 0.4 mmol/l. The
Initial plasma glucose before the blockers were administered
was similar in the trimethaphan and atropine plus combined
adrenergic blockade studies, averaging 4.7 * 0.4 and 4.8 +
0.2 mmol/l, respectively. Atropine and combined adrenergic
blockade, but not trimethaphan, significantly reduced plas-
ma glucose levels to 3.7 * 0.1 mmol/l (A = —0.6 = 0.1 mmol/
I, P < 0.0025 vs. initial). In the control study, arterial plasma
glucose during the hypoglycemic period was 1.9 =+ 0.1 mmol/
l. Plasma glucose during the hypoglycemic period was slight-
ly lower in the trimethaphan study (1.8 % 0.1 mmol/l, P <
0.025 vs. control), but not during the atropine plus combined
adrenergic blockade study (1.9 + 0.1 mmol/l} (Fig. 1).
Initial plasma IRI levels were similar in all three studies.
Plasma IRI was modestly decreased by atropine plus adren-
ergic blockade, but not by trimethaphan. Plasma IRI levels
during the hypoglycemic clamp were comparable in all three
studies (Table 3),
Plasma PP. In the control study, baseline arterial plasma PP
was 69.1 = 19.8 pmol/1 and increased to 204.1 + 51.0 pmol/l
during hypoglycemia (A = 135.0 = 36.8 pmol/ll, P < 0.01).
The initial plasma PP level was not significantly different in
the trimethaphan or atropine plus combined adrenergic
blockade studies; however, trimethaphan eliminated the in-
crease of plasma PP during hypoglycemia (A = 16,5 + 16.3
pmol/], NS vs. prehypoglycemia, P < 0.01 vs. control). Atro-
pine plus combined adrenergic blockade significantly re-
duced but did not abolish the PP response (A = 48.3 + 16.3
pmoll, P < 0.02 vs, prehypoglycemia, P < 0.01 vs. control)
(Fig. 2).
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F1G. 1. Arterial plasma glucose before and after insulin plus variable
rate glucose infusion, and during posthypoglycemin glucose infusion in
gix saline-infused rhesus monkeys (control) and in the same monkeys
during ganglionic block with trimethaphan or muscarinie plus combined
a- and -adrenergic receptor block with atropine, tolazoline, and
propranolol.

Plasma catecholamines: EPI and NE, In the control study,
baseline arterial plasma EPI averaged 5.51 =+ 0.66 nmol/l and
increased (o 27.78 X 3.44 pg/ml (A = 22.21 *+ 2.95 nmol/l, P <
0.0005). The initial plasma EPI level in trimethaphan study
(6.66 = 0.76 pg/ml) was not dilferent from the control study.
Trimethaphan administration lowered plasma EPI to 2.890 -+
(.44 nmol/l (A = —~3.77 = 0.76 nmol/l, P < 0.0025 vs. base-
line) and prevented plasma EPI from increasing significantly
during hypoglycemia (A = 1,53 = 0.98 nmol/l, NS vs, Pre-
hypoglycemia, P < 0.001 vs. control) (Fig. 3).

Baseline arterial plasma NE in the control study was
8.87 * 1.06 nmol/l and increased to 12.58 *+ 1.77 nmol/l dur-
ing hypoglycemia (A = 3,72 = 0.77 nmol/l, P < 0.0020). The
initial plasma NE in the trimethaphan study before trimeth-
aphan infusion was similar to that in the control stucly
(10.22 % 1,36 nmol/L); however, trimethaphan lowered the
NE level before hypoglycemia to 4.49 = 0.61 nmol/l (A =
=073 * 112 nmol/l, P < 00025 vs. initial NI%). Arterial
plasma NE did not increase, and in fact decreased slight-
ly, during hypoglycemia in the frimethaphan study (A =
—0.65 = 0.23 nmol/l, P < 0.02 vs. prehypoglycemia, 22 < (0,01
vs. control) (Fig. 4). Plasma catecholamines were not mea-
sured in the study with combined adrenergic blockade
because adrenergic antagonists block the action and not the

TABLE 3
Plasma IRI levels in rhesus monkeys before and during
msulin-induced hypoglycemia in the control study and heflore
and after ganglionic blockade with trimethaphan or muscarinic
plus a- and B-adrenergic receptor blockade

A by el 3 el el g Tl el WY Fi st peasy T Al A b L il el L s P L A8 B e U BTE LR PR R e e A

Control Granglion
study block block
Baseline IRI 145 + 47 115 & 8b 108 =+ 14
After blockers - 107 + 25 82 10
AIRI — —8 + 22 w26 b 11K
During insulin-induced
hypoglycemia, 2,302 £ 320 2,669 £ 280 2,620 *+ 440

Data are means = SE (pmol/l). *P < 0.05 vs. baseline.
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FIG. 2. Arterial plasma PP before and after insulin plus variable-rate
glucose infusion and during nosthypoglycemia glucose infusion in 8ix
rhesus monkeys (control) and in the same monkeys during ganglionic
block with trimethaphan or muscarinic plus combined a- and
f-adrenergic receptor block with atropine, tolazoline, and propranolol.

release of NE and EPL Therefore, circulating plasma cate-
cholamine levels are not a relevant index of sympathoadre-
nal input to the islet during adrenergic receptor blockade.,
Plasma IRG. Baseline arterial plasma IRG in the control
study averaged 414 * 24 ng/l and increased to 1,334 & 297
ng/l during hypoglycemia (A = 020 =+ 294 ng/l, P < 0.02). The
initial plasma IRG level was not significantly different in the
trimethaphan and the atropine plus combined adrenergic
blockade studies, averaging 458 = 80 and 454 * 46 ng/l,
respectively, Plasma IRG was significantly reduced by mus-
carinic plus combined adrenergic blockade (A = —122 = 27
ng/l, P < 0.005), but not trimethaphan (A = —61 £ 46 ng/l, NS
vs. initial IRG). The increases of plasma glucagon during
insulin-induced hypoglycemia were reduced, but not abol-
ished by trimethaphan (A = 278 = 67 ng/l, P < 0,006 vs.
baseline, P < 0.025 vs. control) or atropine plus combined
adrenergic blockade (A = 284 * 60 ng/l, P < 0.005 vs. base-
line, P < 0.025 vs. control) (Fig. b).

Glucose infusion rates. The mean glucose infusion rate
required to maintain the plasma glucose level at 1.9 = 0.1
mmol/l during the insulin infusion in the control study was
1.1 = 0.1 mg- I(g""l*min‘“l. Higher glucose infusion rates
were required to maintain plasma glucose levels at 1.8 = 0.1
and 1.9 = 0.1 mmol/, respectively, in the trimethaphan
(2.6 = 0.7 mg kg™'-min~", P < 0.025 vs. control) and atro-
pine plus combined adrenergic blockade studies (3.4 % 0.4
mg - kg™ +min"!, P < 0.006 vs. control) (Fig. 6).

DISCUSSION

The major finding of the studies described in this report is
that either pharmacological impairment of autonomic neural
activation or autonomic receptor blockade reduces the In-
crease of plasma glucagon during insulin-induced hypogly-
cemia by 70% in rhesus monkeys. Thus, the autonomic
contribution was defined by two separate but complemen-
tary pharmacological approaches, demonstrating a promi-
nent role for the autonomic nervous system to contribute to
increased glucagon secretion during hypoglycemia in a non-
human primate. It is unlikely that the autonomic antagonists

DIABETES, VOL. 45, JULY 19906
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FIG. 3. Arterial plasma epinephrine before and after insulin plus
variable rate glucose infusion, and during posthypoglycemia glucose
infusion in six saline-infused rhesus monkeys (control) and in the same
monkeys during ganglionic block with trimethaphan,

by themselves directly impaired glucagon secretion since
these agents do not directly suppress glucagon secretion in
vitro from isolated perfused pancreas preparations (33-37).

The effectiveness of the ganglionic blockade produced by
trimethaphan infusion was demonstrated by the lack of both
parasympathetic (plasma PI’) and sympathoadrenal (EPI and
NE) responses to hypoglycemia, all of which increased in the
control study. Plasma PP levels are useful as an index of the
activation of the parasympathetic nerves to the pancreas dur-
ing hypoglycemia (3,4,22,38). Plasma PP responses to hypo-
glycemia were abolished by ganglionic blockade, but only
reduced by 65% during muscarinic plus combined adrenergic
blockade, suggesting that noncholinergic, nonadrenergic (pep-
tidergic) mechanisms could contribute increased PP secre-
tion during hypoglycemia in rhesus monkeys.

1t should be noted that while effective ganglionic blockade
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FIG. 4, Arterial plasma NE before and after insulin plus variable rate

glucose infusion and during posthypoglycemia glucose infusion in six
rhesus monkeys (control) and in the same monkeys during ganglionic

block with trimethaphan.
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FIG. 5. Arterial plasma IRG before and after insulin plus variable rate
glucose infusion, and during posthypoglycemia glucose infusion in six
rhesus monkeys (control) and in the same monkeys during ganglionic
block with trimethaphan or muscarinic plus combined a- and
B-adrenergic receptor block with atropine, tolazoline, and propranolol,

or large doses of autonomic antagonists eliminated the
majority (70%) of the increase of glucagon secretion, a
significant portion of the glucagon response to hypoglycemia
persisted despite the pharmacological interventions. Thus,
autonomic activation is not likely to be the sole mediator of
the glucagon response in rhesus monkeys. Other potential
mechanisms include effects at the level of the islet. These
islet effects could either be due to a direct action of low
glucose levels on the A-cell itself or indirect via release of the
A-cell from tonic paracrine inhibition by insulin (39), since
intraislet insulin levels are directly suppressed by hypogly-
cemia per se and are likely to be reduced by exogenous
insulin (40). |

The role of the autonomic nervous system in mediating
increased glucagon secretion during hypoglycemia was pre-
viously examined in a number of animal species, including
dogs (17,18), rats (20,21), and mice (22), but not in nonhu-
man primates, One related study in baboons showed a con-
tribution of sympathoadrenal activation to glucagon secre-
tion during central neuroglucopenia, in the absence of hypo-
glycemia, because «- or B-adrenergic blockers alone, or
together, reduced plasma glucagon responses after 2-deoxy-
D-glucose administration (41). In rats, the glucagon response
to hypoglycemia is redundantly mediated by parasympa-
thetic, cholinergic, and sympathoadrenal adrenergic activa-
tion, such that input from both autonomic subdivisions must
be simultaneously blocked to significantly Impair the gluca-
gon response (21). In dogs, there is recent evidence that the
direct sympathetic innervation of the pancreas can contrib-
ute to Increased glucagon secretion during hypoglycemia,
independently from the vagal and adrenal medullary inputs
(42). Thus, autonomic inputs to the pancreas have been
shown to make an important contribution to increased
glucagon secretion during hypoglycemia, in several species
(25) and in the present study in rhesus monkeys,

In contrast, the role of the autonomic nervous system in
mediating increased glucagon secretion during hypoglyce-
mia in humans is more controversial. Results of early studies
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in human subjects in which one or two, but not all three, of
the autonomic inputs to the pancreas were blocked usually
did not support a significant contribution of the autonomic
nervous system ( 10). However, ina more recent short report,
ganglionic blockade, which would impair activation of all
three autonomic inputs, significantly reduced the ghucagon
response to hypoglycemia in human subjects (26). Other
recent studies of acute hypoglycemia-~associated autonomic
failure in humans also support the case for autonomic
mediation. In these experiments, a prior episode of hypogly-
cemia markedly reduces both parasympathetic activation
(PP responses) and adrenal medullary activation (EPI re-
sponses) during subsequent hypoglycemia, 24 h later (43).
Since prior hypoglycemia also markedly reduced the gluca-
gon response and the degree ol hypoglycemia in the two
episodes was closely matched, it is wunlikely that a direct
effect of hypoglycemia on the islet, either to directly stimu-
late the A-cell or to release the A-cell from tonic paracrine
restraint by high levels of intraislet insulin (39), is solely
responsible for mediating the glucagon response 1o hypogly-
cemia in humans. Thus, it is possible that the glucagon
response to hypoglycemia in humans is mediated, at least in
part, by activation of the autonomic nervous system.

There are, however, other data in humans that seem to
argue agamst an autonomic contribution. Classical c¢holin-
ergic and adrenergic receptor antagonists did not reduce the
glucagon response to hypoglycemia in two studies in human
subjects (23,24), in contrast with the marked effect of these
agents In rhesus monkeys. However, in the human studies
much lower doses of autonomic antagonists were used than
in the present study, suggesting that higher doses might he
necessary to abolish the effects of hypoglycemia-induced
autonomic activation on A-cell receptors. In accordance with
this idea, it has been shown that the low doses of atropine
often used in human studies do not provide sufficient mus-
carinic blockade to suppress cardiovascular parasympa-
thetic reflexes (44). Alternatively, it is possible that neuro-
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peptides, such as vasoactive intestinal polypeptide, could be
involved in the autonomic stimulation of glucagon secretion
during hypoglycemia in humans (25). The actions of neu-
ropeptides would not be likely to be blocked by classical
muscarinic and adrenergic receptor antagonisis. Another
explanation for the discrepancies between the human and
animal studies is the level of hypoglycemia examined. The
present study and most animal studies only examined one
level of hypoglycemia (~2.0 mmol/l). It is possible that the
autonomic contribution may differ at other degrees of hypo-
glycemia and that autonomic mechanisms are relatively un-
important for stimulating glucagon secretion during the
moderate hypoglycemia usually used in human studies,
whereas during more marked hypoglycemia studied in ani-
mals, autonomic activation makes a substantial contribution.
Clearly, further experiments examining other degrees of
hypoglycemia and lower doses ol autonomic biockers will be
required to address these issues.

In summary, the present study demonstrates that activa-~
tion of the autonomic nervous system mediates a substantial
portion of increased plasma glucagon during hypoglycemia
in rhesus monkeys. These results extend observations made
in several other animal species to a species of nonhuman
primate. However, defining a role for the autonomic NErvous
system in mediating glucagon responses to hypoglycemia In
humans will require new studies with ganglionic blockers
and/or peptidergic antagonists.
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