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Abstract Evolutionary and meta-heuristic algorithms are widely used to solve water resources
optimization problems. In this context, the honey bee mating optimization (HBMO) algorithm,
inspired by the mating ritual of honey bees, is a reliable and efficient algorithm. The HBMO
algorithm is modified in this work leading to the Enhanced HBMO (EHBMO) algorithm. The
EHBMO is then applied to solve several unconstrained/constrained mathematical benchmark
functions and a multi-reservoir problem. The performance of the EHBMO is compared with
those of the elitist genetic algorithm (EGA) and the HBMO algorithm. The results show that the
EHBMO achieves a better solution in a smaller number of functional evaluations and with less
variance of results about global optima in comparison with the EGA and the HBMO algorithm.

Keywords Enhanced honey-beemating optimization (EHBMO) . Honey-beemating
optimization (HBMO) . Elitist genetic algorithm (EGA) .Multi-reservoir optimization .

Heuristic search

1 Introduction

Reservoir systems must be optimally operated to maximize the efficiency of water use. Several
authors have applied classic optimization methods such as linear programming (LP) (Chow and
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Cortez-Rivera 1974) and dynamic programming (DP) (Murray and Yakowitz 1979) to the optimal
operation of reservoir systems. Recently, Soleimani et al. (2016) reported the application of
stochastic dynamic programming (SDP) for water reservoir operation. However, classic optimi-
zation methods have several limitations that constrain their range of applicability (Bozorg-Haddad
et al. 2006). The limitations of classic optimization methods have given rise to evolutionary and
meta-heuristic algorithms in recent years. Maier et al. (2014) studied the current status and future
research directions on evolutionary algorithms applied to water resources problems.

One of the most well-known evolutionary algorithms is the genetic algorithm (GA) devel-
oped by Holland (1975). The standard GA begins with a randomly generated population of
possible solutions (individuals). After estimating individuals’ fitness, some of them are selected
as parents according to their fitness values. A new population (or generation) of possible
solutions (the children’s population) is produced by applying the crossover operator to the
parent population and then applying the mutation operator to their offspring. These iterations
involving the replacement of parents’ population with children’s populations of solutions are
repeated until stopping criteria are satisfied (Michalewicz 1996). The Elitist version of the GA,
that allows the best individual(s) from a generation to carry over to the next one, was introduced
by De Jong (1975). Several authors have implemented various types of GAs to water resources
optimization (East and Hall 1994; Wardlaw and Sharif 1999; Aboutalebi et al. 2015). Nicklow
et al. (2010) provides a review of GAs applied to water resource problems. Also, genetic
programming (GP) has been applied to solve reservoir problems by several authors (Fallah-
Mehdipour et al. 2012, 2013; Ashofteh et al. 2014, 2015, 2016).

Simulated annealing (SA) was implemented by Tospornsampan et al. (2005) for solving a
ten-reservoir optimization problem. Ant colony optimization (ACO) was applied to water
resources optimization by Jalali et al. 2006. Ghimire and Reddy (2013) applied the particle
swarm optimization (PSO) algorithm to optimize the operation of a reservoir for hydropower
production. Asgari et al. (2015) used weed optimization algorithm (WOA) for optimal water
reservoir optimization. Bozorg-Haddad et al. (2015a) applied the bat algorithm (BA) to find
the optimal operation of reservoir systems. The water cycle algorithm (WCA) was implement-
ed to find optimal operation strategies water reservoir systems by Bozorg-Haddad et al.
(2015b). The firefly algorithm (FA) was modified and applied to solve reservoir problems
by Garousi-Nejad et al. (2016a), b).

The HBMO algorithm is inspired by the mating ritual of honey bees. It was developed and
applied to reservoir operation by Bozorg-Haddad et al. (2006). Several studies have reported the
successful application of the HBMOalgorithm to solve a variety of problems such as water reservoir
operation (Bozorg-Haddad et al. 2008a; Bozorg-Haddad et al. 2010a), water distribution networks
(Bozorg-Haddad et al. 2008b; Bozorg-Haddad et al. 2016a; b; Solgi et al. 2015, 2016) and project
management (Bozorg-Haddad et al. 2010b). Several of those works have proven the superiority of
the HBMO algorithm compared with other algorithms such as the GA, ACO, and PSO.

This study improves the capability of the HBMO by introducing a newly Enhanced HBMO
(EHBMO) that relies on a newmating process that replaces the one used in the HBMO algorithm.
This change allows the EHBMO to achieve solutions closer to the global optimum with smaller
computational effort compared to the HBMO. The performance of the EHBMOalgorithm is tested
with constrained and unconstrained mathematical optimization problems. The EHBMO is applied
to find optimal operation of a multi-reservoir system, also. The next section briefly describes the
HBMO algorithm. This is followed by the development of the EHBMO. Lastly, the performance
of the EHBMO is compared with those of the elitist GA (EGA) and the HBMO algorithm in
solving different well-known benchmark optimization problems.
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1.1 The HBMO Algorithm

The flowchart of the HBMO algorithm is shown in Fig. 1 where it is seen that the HBMO employs
a simulated annealing (SA) function to choose drones for generating the next generation in the
search for a solution (Bozorg-Haddad et al. 2006). The best solution of the HBMO algorithm is
known as the queen, which mates with randomly generated drones that are successful in a
simulated annealing (SA) function to procreate the next generation. In the mating ritual a drone
is first randomly generated. After evaluating its fitness value, its genome is memorized in the
queen’s spermatheca if the drone succeeds in the SA function according to Eq. (1):

MPROB ¼ e−
Qf − f dj j
Speed ð1Þ

in which,MPROB = the probability of mating drone dwith the queen,Qf = the fitness value
for the best solution in the present generation (Queen), fd = the fitness value of the mating

Fig. 1 The flowchart of the EHBMO (left) in comparison with the HBMO (right)
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droned, Speed = the queen’s speed. An uniformly distributed random variable (PROB) within
[0,1] is generated while MPROB is evaluated. If MPROB is larger than or equal to PROB the
drone d is successful in mating with the queen, otherwise it is not. Equation (1) acts as an
annealing function. The probability of mating is high when either the queen’s speed is high or
the fitness of drone d(fd) is as good as that of the queen (Qf).

This selection method of the HBMO is computationally burdensome because the SA
function requires evaluating the fitness values of the drones. In HBMO a drone is randomly
generated and its fitness value is evaluated but it may not be successful in mating with the
queen. The unsuccessful drones are deleted and another one is generated to be tested. It may be
necessary to generate many drones before selecting only one of them from the decision space.
This requires a large number of evaluations of the objective function involving unsuccessful
drones. It is worthy of notice, also, that the mating process simulated in the HBMO algorithm
differs with the actual mating of honey bees in that real queens choose drones from the existing
population. These drones inherit their genome from previous generations. However, in the
HBMO algorithm drones are randomly generated solutions that are independent of solutions in
previous iterations. Therefore, in the present study the EHBMO is modified in a way that the
queen only chooses from the existing population instead of the entire decision space.

1.2 The Life Cycle of Honey Bees as a Precursor of the Enhanced HBMO (EHBMO)

There is fossil evidence of honey bees’ existence dating back 100 million years ago (Michener
and Grimaldi 1988). Honey bees live in well-organized hives. The purpose of such hive is to
maximize efficiency by resorting to division of labor. A well-organized hive remains viable
except in special circumstances. A colony of bees is a group of bees living together in one bee
hive. A honey bee hive consists of a single queen, broods, drones and workers (Moritz and
Southwick 1992). Queen and workers are female and drones are male. The queen is generally
the main reproductive individual. In other words, the queen is the only bee that can mate with
drones and can fertilize the eggs. The primary duty of workers is brood caring and the drones
are the fathers of the colony. The queen can lay both fertilized and unfertilized eggs. Fertilized
eggs represent female bees (worker or queen) and unfertilized eggs represent drones. So drones
are haploid and amplify their mother’s genome without alteration of their genetic composition
except through mutation. However female bees inherit their genome from both their mothers
and fathers. When a new queen is born, it replaces the old queen or it leaves the hive.

To lay fertilized eggs the queen must mate with drones. For this purpose the queen exits from
the hive and engages inmating flight around the hive. The queenmates with several drones in each
mating flight. In each mating flight the queen usually mates with seven to twenty drones. In each
mating the drone’s sperm reaches the queen’s spermatheca and accumulates there to form the
genetic pool of the colony. After the end of the mating flight the queen returns to the hive and starts
laying eggs. The successful drones in mating flights die immediately after mating with the queen.
In other words, insemination ends with the death of the drone. The unsuccessful drones (those that
do not mate with the queen) also die from starvation and exposure because the workers forbid their
entry to the hive at the end of the mating season.

In the EHBMO the queen, broods, and drones represent solutions that are made of genes.
Each gene is equivalent to a decision variable expressed as a real value. The best solution is
considered as the queen. Broods can be diploid or haploid. The former are made by applying
mutation and crossover operators on the queen’s genome and drone’s, whereas the latter are
made by applying mutation on the queen. Brood caring by workers is mapped into the
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algorithm to improve the broods by applying heuristic functions. A mating flight is mapped
into the EHBMO as the queen chooses drones from the present population using a selection
method. The genome of each drone that is successful in mating is stored in the queen’s
spermatheca and this drone is deleted from the population as these drones die after mating.
Also, the death of drones at the end of mating season is simulated by destroying all remaining
drones after the mating flight in each iteration of the EHBMO algorithm.

1.3 The Enhanced HBMO Algorithm

The EHBMO starts with the random generation of the initial population. The solutions are
ranked based on their fitness. Then the fittest (best) solution is marked out as the queen and the
other solutions are considered as drones. Some drones (solutions) are chosen from the present
population to mate with the queen. The genome of each selected drone is stored in the queen’s
spermatheca and the drone is deleted from the population so that a drone can only be chosen
once. The number of drones selected for mating is equal to the capacity of the queen’s
spermatheca (SC), which is a predefined parameter. After the selection process, the remaining
solutions are deleted. The queen and the solution stored in the queen’s spermatheca are used to
make the next generation. First, the broods (diploid or haploid) are made. The haploid broods
are made by applying mutation on the queen. The diploid broods are made by applying
crossover and mutation operators between the queen and the solutions stored in the queen’s
spermatheca. Then, by applying heuristic functions as workers, an attempt is made to improve
the broods. Finally, if the best brood is better than the old queen, the best brood replaces the old
queen. Again other solutions of the population are considered as drones and the queen chooses
drones from the population to make the next generation. Figure 1 shows the flowchart of the
EHBMO algorithm in comparison with the HBMO’s.

1.4 Selection

Selection in the EHBMO is the procedure by which SC drones are chosen from the population to
mate with the queen. A popular selection approach is proportionate selection (Michalewicz 1996).
According to proportionate selection, the probability of a drone being selected is given by Eq. (2):

Pd ¼ ξ f dð Þ
XND
d¼1

ξ f dð Þ
ð2Þ

in which, Pd= the probability of drone d being selected,ξ(fd) = the scaled fitness value for
drone d, and ND = the total number of drones in the population.

Population diversity and selective pressure are the most important factors in the search
process. These factors are inversely related so that increasing one causes reducing another one
(Whitley 1989). A high selective pressure may lead to prematurely convergence while a low
selective pressure may lead to stagnation (Wardlaw and Sharif 1999). Several scaling functions
exist that help balance the effect of selective pressure and population diversity including: linear
scaling (Michalewicz 1996), sigma truncation (Michalewicz 1996), power law scaling
(Michalewicz 1996), logarithmic scaling (Grefenstette and Baker 1989) and exponential
scaling (Grefenstette and Baker 1989). Boltzmann selection is another scaling method that
relies on a scaling functionξ(fi) = exp (fi/T). It has been indicated that selective pressure to be
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low (high) when the control parameter T is high (low) (Back 1994). This study proposes a new
Boltzmann scaling function as follows:

ξ f dð Þ ¼ e−
Qf − f d
Qf −Wf ð3Þ

in which, Wf = the fitness value of the worst solution in the present generation.
The proposed scaling function is self-regulation and it does not have parameters to be

adjusted. This departs from previous scaling methods that require the analyst to set their
parameters to regulate the selective pressure. The selective pressure is high (low) when the
difference between the best solution and the worst solution in the present generation is low
(high). The scaled fitness for the best solution and the worst one are equal to e0 (1) and e−1

(0.368) respectively. Other solutions in the populationare exponentially scaled between 1 and
0.368 based on how close they are to the queen.

The EHBMO selects a drone from the population by first valuating the scaled fitness values
of all drones using Eq. (3). Then the probability of selection of each drone is evaluated using
Eq. (2). Based on the evaluated probabilities a Roulette Wheel is turned once to select a drone.
The selected drone is deleted from the population and is transported to the queen’s sperma-
theca. Again, the probability of selection for each drone is evaluated using Eq. (2) and a new
roulette wheel is played based on the new probabilities to select another drone. Deletion of
each drone changes the probability of the remaining drones in Eq. (2). This process continuous
until the queen’s spermatheca is filled.

1.5 Brood Caring by Workers

In the brood caring stage of the EHBMOan attempt is made to improve the generated broods using
heuristic functions. For this purpose, a heuristic function is introduced in this study. A heuristic
function consists of a procedure to collect and provide information for the search process about the
direction to reach a goal. It is clear that the best solution in the population, which is known as the
queen, is mostly nearer the optimum rather than other individuals of the population. Also, in the
EHBMO successive queens are memorized and compared with each other. Consequently the
values of decision variables of the best solution in the present population (new queen) and the result
of comparison between it and the best solution of the previous population (old queen) provide
valuable information that serves as a guideline to generate new random values for the new
generated solutions. In fact, the features of the new queen and changes between two consecutive
queens show directions for generating random values of the brood’s decision variables that are
most likely leading to an improved point. The introduced heuristic function replaces the value of
some genes of a brood with new ones that are randomly generated based on the value of the
corresponding genes that belong to the brood, the queen of the previous iteration, and the queen of
the present population. If X = (x1, ... , xn) is a brood, Y= (y1, ... , yn) is the best solution in the

present iteration, Y
0 ¼ y

0
1; :::; y

0
n

� �
is the best solution in the previous iteration, and the component

xk from brood X is obtained by substitution, X
0 ¼ x1; :::; x

0
k ; :::; xn

� �
to produce the brood after

brood caring. x
0
k is evaluated according to Eq. (4):

x
0
k ¼ sign δð Þ2 � G yk ; sign δð Þð Þ þ 1−sign δð Þ2

� �
� sign σð Þ2 � G xk ; sign σð Þð Þ þ 1−sign σð Þ2

� �
� xk

n o
ð4Þ
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where

G a; bð Þ ¼ 1þ b
2

� RND ubk ; að Þ þ 1−b
2

� RND a; lbkð Þ ð5Þ

σ ¼ yk−xk ð6Þ

δ ¼ yk−y
0
k ð7Þ

in which, xk= the value of the brood’s k-th component before substitution;x
0
k= the value of

the brood’s k-th component after substitution;yk= the value of the best solution’s k-th compo-

nent in the present iteration;y
0
k= the value of the best solution’s k-th component in the previous

iteration;RND(a, b)= a random value between a and b;sign(a)= returns the sign of the number
a (sign function) that can be equal to 1, −1 or 0; lbk= the feasible lower value of component k;
and ubk= the feasible upper value of component k. Thereafter, the functions sign(a) and G(a,b)
are evaluated and are substituted in Eq. (4) as follows:

x
0
k ¼

RND ubk ; ykð Þ if δ > 0
RND yk ; lbkð Þ if δ < 0

RND ubk ; xkð Þ if δ ¼ 0 and σ > 0
RND xk ; lbkð Þ if δ ¼ 0 and σ < 0
xk if δ ¼ 0 and σ ¼ 0

8>>>><
>>>>:

ð8Þ

According to Eqs. (8) if the gene of the best solution (yk) in the present iteration is larger than
that of the best solution in the previous iteration y

0
k

� �
, a random value between yk and ubkreplaces

the gene of the brood. Conversely if yk is less than y
0
k , x

0
k is made equal to a random value between

lbk andyk. When yk and y
0
k are the same (δ = 0), x

0
k is determined based on the result of the

comparison between the present value of the brood’s gene and that of the corresponding gene of

the best solution in the present iteration (yk). If yk is larger than xk,x
0
k is made equal to a random value

between xk and ubk. If yk is less than xk, x
0
k is made equal to a random value between lbk and xk.

Otherwise ifyk,y
0
k and xkare the same, the value of the brood’s gene is not changed.

1.6 Crossover Operators

The crossover operator generates new offspring by exchanging some genes between the queen
and the drone. Michalewicz (1996) have described several methods of crossover including: (1)
one-point crossover; (2) two-point crossover; and (3) uniform crossover.

1.7 Mutation Operators

The mutation operator replaces randomly some genes of an offspring. Two methods of
mutation for real-value representations are uniform mutation and non-uniform mutation.
Uniform mutation permits a value that is randomly generated within the feasible range of
valuesto replacethevalue of a gene. The algorithmic search for an optimum becomes
more localized as a run of the algorithm progresses when implementing on non-uniform
mutation (Michalewicz 1996).
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1.8 Differences between the HBMO and EHBMO

& In the mating process of the HBMO drones are generated randomly among the decision
space. However in the EHBMO drones are selected only from the previous population.

& In the HBMO selection of drones is performed based on the SA function. But the EHBMO
uses proportionate selection and roulette wheel. Hence the developed scaling function
plays a key role.

& The HBMO eliminates the present population (of current solutions) before selection of the
drones. The EHBMO, instead, first selects the drones among the present population and
then eliminates the remaining.

& The EHMBO, unlike the HBMO, takes advantage of a developed heuristic function in the
brood carrying stage.

1.9 Case Studies

The benchmark mathematical optimization problems and a well-known multi-reservoir opti-
mization problem are used in this work to examine the performance of the EHBMO algorithm.
The elitist GA (EGA) and the HBMO algorithm are also implemented to solve these problems
and to compare their results with those of the EHBMO. The brood caring stage is removed in
the EHBMO (WBC) and its results are compared to the EHBMO with the mathematical
functions. This permits assessing how the brood caring stage and the introduced heuristic
function affect the EHBMO. The global optima of all problems are calculated with the Lingo
software to investigate the accuracy of the solutions obtained with the presented algorithms.
The parameters of all the algorithms are listed in Table 1. The values of the parameters were
determined by performing sensitivity analysis. In this way a combination of parameters is
considered and the algorithm is run several times. The algorithm is run several times, each time
with a different combination of parameters. The results of different runs are compared and the
best parameters values are chosen. According to the Table 1 it is recommended that for the
EHBMO a population size of at least 180 be selected. The capacity of the spermatheca is an
important parameter in the EHBMO that ensures population diversity. It is therefore recom-
mended that in the EHBMO the population size and the capacity of spermatheca be selected
such that the capacity of the spermatheca equal about 14% of the number of populations.

Table 1 Parameters of the EGA, HBMO, and EHBMO employed to solve the test problems

Algorithm Parameter Goldstein-Price Shubert Constrained Four-reservoir

GA Number of populations 100 100 100 100
Probability of crossover (%) 40 50 50 20
Number of iterations 1,200 4,500 60,500 15,000

HBMO Number of populations 201 201 201 220
Capacity of the spermatheca 50 50 50 10
Number of iterations 100 100 10,000 5,000

EHBMO Number of populations 211 211 181 211
Capacity of the spermatheca 30 30 25 30
Number of iterations 100 100 1,000 4,000

EHBMO (WBC) Number of populations 211 211 181 -
Capacity of the spermatheca 30 30 25 -
Number of iterations 200 200 5,000 -
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1.10 Unconstrained Mathematical Benchmark Functions

The first unconstrained problem is the Goldstein-Price function (Goldstein and Price 1971).
This function is given by Eq. (9). The second unconstrained problem is Shubert’s function
(Hennart 1982). Shubert’s function is given by Eq. (10).

Minimize f x1; x2ð Þ ¼ 1þ x1 þ x2 þ 1ð Þ2 � 19−14x1 þ 3x21−14x2 þ 6x1x2 þ 3x22
� �h i

�
30þ 2x1−3x2ð Þ2 � 18−32x1 þ 12x21 þ 48x2−36x1x2 þ 27x22

� �h i
−2≤x1; x2≤2

ð9Þ

Minimize f x1; x2ð Þ ¼
X5

j¼1

j� Cos jþ 1ð Þ � x1 þ jð Þ
( )

�
X5

j¼1

j� Cos jþ 1ð Þ � x2 þ jð Þ
( )

−10≤x1; x2≤10
ð10Þ

1.11 Constrained Mathematical Benchmark Function

The EHBMO was applied to solve a two-variable nonlinear, constrained, programming
problem to further test its capabilities. The objective function and constraints of the constrained
problem are given by Eqs. (11)–(13). Bozorg-Haddad et al. (2006) solved this function for an
allowable decision variable between 0 and 6. In the present study the degree of difficulty of
this problem was increased by expanding the decision space.

Minimize f x1; x2ð Þ ¼ x21 þ x2−11
� �2 þ x1 þ x22−7

� � 2

−6≤x1; x2≤6
ð11Þ

Subject to:

g1 xð Þ ¼ 5:062−x21− x2−2:5ð Þ2≥0 ð12Þ

g2 xð Þ ¼ x1−0:05ð Þ2 þ x2−2:5ð Þ2−4:83688798≥0 ð13Þ

1.12 Multi Reservoir Optimization

A four-reservoir optimization problem was solved to further test the performance of the
EHBMO in solving water resources problems with a large decision space. This problem was
introduced by Chow and Cortez-Rivera (1974) (see also, Murray and Yakowitz 1979).
Although this problem can be solved with classic methods, it is challenging for evolutionary
and meta-heuristic algorithms and this feature makes it a reasonable choice for testing the
newly developed algorithm. Recently, several investigators examined the performance of
different types of evolutionary and meta-heuristic algorithms to solve this problem (Bozorg-
Haddad et al. 2010a; Bozorg-Haddad et al. 2015a; b; Garousi-Nejad et al. 2016a).
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Releases from the reservoirs are used to generate hydropower and to satisfy irrigation water
demand in the four-reservoir system. The objective function is given by Eq. (14) that satisfies
the constraints stated in Eqs. (15) through (21).

Maximize OF ¼
XN
n¼1

XT

t¼1

BNF n; tð Þ � R n; tð Þ ð14Þ

Subject to:
Reservoir water balance:

S n; t þ 1ð Þ ¼ S n; tð Þ þ I n; tð Þ þMR n; tð Þ t ¼ 1; :::;T ; n ¼ 1; :::;N ð15Þ
Constraints on reservoir releases:

Rmin n; tð Þ≤R n; tð Þ≤Rmax n; tð Þ t ¼ 1; :::; T ; n ¼ 1; :::;N ð16Þ
Constraints on reservoir storage:

Smin n; tð Þ≤S n; tð Þ≤Smax n; tð Þ t ¼ 1; :::; T ; n ¼ 1; :::;N ð17Þ
Constraints on initial storage at each reservoir:

S n; 1ð Þ ¼ Sinit nð Þ n ¼ 1; :::;N ð18Þ
Constraints on ending storage:

S n; T þ 1ð Þ ¼ Star nð Þ n ¼ 1; :::;N ð19Þ

M ¼
−1 0 0 0
0 −1 0 0
0 1 −1 0
1 0 1 −1

2
664

3
775 ð20Þ

MR ¼ M � R ð21Þ

in which, n = the counter of the reservoir number; N = the total number of reservoirs; t = the
counter of operation period; T = the total number of operation periods; BNF(n, t)= benefit per unit
of release of reservoir n in period t;R(n, t)= the release of reservoir n in period t; S(n, t)= the storage
of reservoir n at the start of period t; I(n, t)= the inflow to reservoir n in period t;M = aN ×Nmatrix
of indices of reservoir connectivity;R= aN × Tmatrix of indices of reservoirs’ releases;MR= aN ×
Tmatrix that equals the multiplication of matrixMby matrix R; Rmin (n, t)= the minimum release
of reservoir n in period t; Rmax (n, t)= the maximum release of reservoir n in period t; Smin(n, t)=
the minimum storage of reservoir n in period t; Smax(n, t)= the maximum storage of reservoir n in
period t; Sinit(n)= the initial storage of reservoir n; Star(n)= the target ending storage of reservoir n.

The values of Rmin (n, t)for all reservoirs and all periods are equal to 0.005. The values of R
max (n, t)for all periods for reservoirs 1, 2, 3, and 4 are equal to 4.0, 4.5, 4.5, and 8.0 respectively.
Both Sinit(n) and Star(n) for reservoirs 1, 2, 3, and 4 are equal to 6.0, 6.0, 6.0, and 8.0, respectively.
Other data of the four-reservoir problem including inflows, reservoir storages, and additional
details required for modeling the system are available in Murray and Yakowitz (1979).
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2 Results

The results of 10 independent runs of the EGA, HBMO, and EHBMO are listed in Table 2.
Figure 2 shows the convergence curve of the EHBMO and the progression traces of the best
run of all the algorithms.

2.1 Unconstrained Mathematical Benchmark Functions

The global minimum values of the Goldstein-Price function the Shubert function are equal to
3.00000000 and −186.73090000, respectively. It is seen in Table 2 that the performance of the
EHBMO is better than those of the EGA and HBMO in solving the unconstrained problems. In
both unconstrained problems, The EHBMO’s convergence rate is superior to those of the GA
and HBMO in addition to yielding a better objective function value. The EHBMO achieved a
closer solution to the global optimum than the other algorithms, while the number of functional
evaluations with the EHBMO is less than those of the other algorithms and the value of the CV
of the EHBMO is smaller (better) than those of the EGA and HBMO. Table 2 shows that the
values ofANFE of the HBMO algorithm employed to solve the Goldstein-Price and the Shubert
function are respectively five and 20 times larger than those of the EHBMO while the best
solutions of the EHBMO are better than those of the HBMO. Figure 2 shows that the EHBMO
achieved a better solution with fewer objective functional evaluations than the other algorithms.
For the Goldstein-Price function, the values of x1 and x2of the best solution obtained with the
EHBMO are equal to −1.00 and 4.62 × 10−6 respectively. For the Shubert function, the values of
x1 and x2 of the best solution obtained with the EHBMO are equal to 5.482845 and −7.708321
respectively, which is one of several global optima of this function.

2.2 Constrained Mathematical Benchmark Function

The global optimum of this problem using nonlinear programming (NLP) of Lingo 11 after
288 iterations is 10.16858. The value of x1 and x2corresponding to the answer of Lingo 11 are
−2.187390 and 3.026615, respectively.

The results of Table 2 establish that the best solution of the EHBMOafter 1000 iterations equals
10.16859. The value of x1 and x2 related to the best solution obtained with the EHBMO are
−2.187986 and 3.024136, respectively. It is seen in Table 2 that the value of theCVof the EHBMO
after 1000 iterations is smaller (better) than those of the EGA and HBMO after 60,500 and 10,000
iterations respectively. Although the number of iterations of the EGA and HBMO is respectively
60 and 10 times larger than that of the EHBMO, the best solution of the EHBMO after 1000
iterations is closer to the global optimum than those achievedwith the EGA andHBMO. Theworst
solution obtained with the EHBMO after 1000 iterations is better than the best solutions obtained
with the EGA and HBMO. It is noticeable that the EHBMO achieved a better solution while its
ANFE value is approximately equal to only 20% of those associated with the EGA and HBMO
(Table 2). Also, in Fig. 2, it is seen that the EHBMOachieved a better solutionwith fewer objective
functional evaluations than those required by the other algorithms.

2.3 Effect of the Brood Carrying Stage on the EHBMO’s Performance

In addition to the EHBMO, the results of the EHBMO without brood caring (WBC) are also
shown in Table 2. It is seen in Table 2 that the performance of the EHBMO with brood caring
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is better than that of the EHBMO (WBC). The EHBMO achieved a better solution than the
EHBMO (WBC) while the number of iterations and the number of functional evaluations
executed by the EHBMO is two times less than that of the EHBMO (WBC). Therefore, the
introduced heuristic function and its application in the brood caring stage improve the
capability of the EHBMO. Furthermore, it is seen in Table 2 that the performance of the
EHBMO (WBC) is also better than those of the EGA and HBMO. This demonstrates that even
without brood carrying the EHBMO has a better performance in comparison to its competitors.

Fig. 2 Convergence curve of the EHBMO (left) and the progression traces of the best run of all the algorithms (right)
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2.4 Multi Reservoir Optimization

The four-reservoir problem has been previously solved by several investigators with a variety of
optimization methods. Chow and Cortez-Rivera applied Linear Programming (LP) to solve this
problem and they reported that the LP solution is equal to 308.26. The best solution achieved by
Murray and Yakowitz (1979) using differential dynamic programming (DDP) was equal to
308.23. Bozorg-Haddad et al. (2010a) solved this problem with Lingo 8 software and reported
that the global optimum of the four-reservoir problem is equal to 308.29. This problem has
already been solved with several evolutionary and meta-heuristic algorithms (Bozorg-Haddad
et al. 2010a; Bozorg-Haddad et al. 2015a; b; Garousi-Nejad et al. 2016a). The results reported in
previous studies are listed in Table 2. Moreover, Table 2 lists the results of 10 independent runs
of the EGA, HBMO, and EHBMO for the four-reservoir problem obtained in this study.

The EHBMO achieved a closer solution to the global optimum in comparison to other
algorithms while the number of functional evaluations done by the EHBMO is smaller than
those of the EGA and HBMO. According to Table 2, the best solution obtained with the
EHBMO equals 308.24 that is 0.016% different from the global optimal solution of the
problem. It is also seen in Table 2 that the value of the SD for the EHBMO is smallest than
those of the other algorithms. The average value of objective function obtained with the
EHBMO exhibits 0.068% difference with the global optimal solution of the problem and the
small coefficient of variation (CV) obtained with the EHBMO illustrates the high accuracy of
the EHBMO and its capacity to reach near-optimal global solutions of the reservoir problem.
Bozorg-Haddad et al. (2010a) solved this problem with the HBMO algorithm. They reported
that the best solution obtained with the HBMO was equal to 308.24 after a long processing
time (65,000 iterations). The number of populations was equal to 220, the number of iterations
was 65,000, and the number of functional evaluations of the HBMO was estimated to equal
about 14 million. The EHBMO has achieved the same solution with less than one million
(840,211) objective function evaluations, which is approximately equal to only 6% of the
number of functional evaluations executed by the HBMO algorithm.

Reservoir releases and reservoirstorage variations are graphed in Fig. 3, respectively, for all
reservoirs. The maximum and minimum were met by the optimized releases and storages for
all reservoirs. Additionally, reservoir storage is the same at the beginning and end of the
operation period and it is equal to the target storage value for all reservoirs.

2.5 Concluding Remarks

The HBMO algorithm is an optimization algorithm inspired by the mating ritual of honey
bees. Although in recent years the good performance of the HBMO algorithm was shown in
various studies, it imposes a large computational burden to model the mating ritual of honey
bees. In the present study a modified version of the HBMO algorithm was developed and
called the EHBMO. The EHBMO was designed to reduce the computational demands of the
HBMO algorithm while retaining its strengths. The performance of the developed algorithm
was evaluated with unconstrained and constrained mathematical benchmark functions and a
multi reservoir system. The performance of the EHBMO was compared to those of the EGA
and the HBMO algorithm in terms of the convergence to global optima and of the variance of
results about global optima. The results showed that the EHBMO algorithm is an improvement
over the HBMO algorithm. In all the solved problems the number of functional evaluations
executed by the EHBMO was significantly less than those required by the EGA and the
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HBMO algorithm while the EHBMO achieved a better solution with smaller coefficient of
variation in comparison to the other algorithms. The EHBMO achieved 99.984% of the global
optimum in the multi reservoir optimization problem with a number of functional evaluations
of that is significantly smaller than those of its competitors, which proves the efficiency and
applicability of the EHBMO algorithm in solving such problems. Lastly, although the perfor-
mance of the EHBMO was examined with several problems in this study, the performance of

Fig. 3 Reservoir schematic, reservoir releases and reservoir storages obtained with LP, GA, HBMO, and
EHBMO for the four-reservoir system
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the EHBMO deserves further scrutiny with other types of problems with larger decision spaces
and higher complexity than those of this study’s test problems.
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