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Executive Summary 
 

Under the Moving Ahead for Progress in the 21st Century Act of 2012 (MAP-21), transportation 

agencies now face greater requirements with respect to the collection and analysis of surface-

transportation data. Data-driven performance measurement is expected to play an important role 

in assisting transportation agencies with their transportation operations and planning decisions. 

The transportation world is experiencing a major shift from a “data desert” to a “data ocean”. 

With the emerging development of Intelligent Transportation Systems (ITS) technologies, 

surface-transportation data can now be collected by a wide variety of ITS traffic sensors, 

including Bluetooth sensors, automatic vehicle location (AVL) devices, inductive loop sensors, 

and radar-based detectors. In practice, ITS data are collected from multiple sources but 

individually analyzed or processed. It has been challenging to take full advantage of the ITS data 

from multiple sources by enabling them to exchange information with each other to compensate 

for their various disadvantages.  

Bluetooth technology has been widely used in transportation studies to collect traffic data 

(e.g. travel time and partial Origin-destination data). Bluetooth media access control (MAC) 

readers can be installed along roadways to collect Bluetooth-based data. This data is commonly 

used to measure traffic performance. One of the advantages of using Bluetooth technology to 

measure traffic performance is that travel time, one of the most important traffic performance 

measures, can be measured directly instead of by estimation. Bluetooth-based travel time 

accurately represents ground truth on long freeway corridors in most circumstances. However, in 

urban environments, more effort is required to use Bluetooth-based data to measure arterial 

travel time. This is because traffic on arterials is controlled by traffic signals, and therefore, 



 

 
 

traffic conditions are more complex than on freeways. Additionally, heterogeneous traffic is 

observed, and multiple travel modes travel simultaneously, including transit, bicyclists, and 

pedestrians. Knowing the travel mode of Bluetooth-based data would help practitioners and 

researchers accurately estimate mode-specific travel time. The primary goal of this report is to 

identify the travel mode using the Bluetooth-based data. 

In order to accomplish this goal, the first step is to fully understand the Bluetooth 

technology. Five aspects have been summarized: 

1. Privacy concerns. A MAC address represents a unique identify of a Bluetooth-based 

device. A mechanism should be designed to protect the privacy. 

2. Data types. Three major data types can be collected, including MAC, timestamp and 

location identifier. 

3. Detection range. Few previous studies physically examine the detection range of 

Bluetooth-based MAC readers, especially for different travel modes (e.g. pedestrian and 

bike). 

4. Multiple detections. The application of using multiple detections remains largely 

undefined. 

5. Limitations on Bluetooth-based data applications. The Bluetooth-base data are primarily 

used to measure travel time and estimate O-D information. Traffic volume, lane-by-lane 

information and etc. are nearly impossible with Bluetooth technology. 

The second step is to collect Bluetooth-based data, and then a custom Client-Server 

architecture based Bluetooth-based data collection system was designed: 

1. Over 40 Bluetooth-based MAC readers have been installed at major intersections in 

Tucson, Arizona. 

2. The MAC readers have been successfully collect the Bluetooth-based signals and 

transmit to a computer server at the University of Arizona (UA) . 



 

 
 

3. A database was designed and implemented in the computer server to receive and store the 

transmitted Bluetooth-based data. The successful use of Bluetooth-based data highly 

depends on the efficiency of the database. 

At the beginning of the project, multiple data sources were identified.  Travel time 

estimation was based on the Bluetooth data collected from those installed Bluetooth-based MAC 

readers.  GPS-enabled devices with high updating frequency were used to help collect ground 

truth trajectories in order to measure the accuracy of estimated Bluetooth-based travel time. 

Three travel modes were also identified, including pedestrians, bicyclists and autos. Since few 

studies physically examine the Bluetooth-based MAC reader detection ranges, especially with 

the consideration of travel modes, electronic devices with both GPS and Bluetooth modules 

enabled were used to examine the detection ranges. Two findings were noted: 1) most of these 

detection ranges were less than 300 m (985 ft.) in our study; 2) the detection ranges varied 

depending on the intersection and travel mode.  

A genetic algorithm and neural network (GANN)-based travel mode identification 

methodology was developed using the collected Bluetooth-based data. A traditional K-NN 

algorithm was also implemented to compare the results with those produced from the GANN-

based models. Seven collections of model inputs were tested using the Bluetooth-based travel 

time measures in the previous studies. Four consecutive links with three intersections on the 

Speedway Bulverde was selected to be the study corridor. The results of the GANN-based model 

suggested that: 

1. Using both First-to-First (FF) and Last-to-Last (LL) speed as inputs performed better than 

using FF or LL speed alone. 

2. The detection ranges of the travel modes had little impact on travel mode identification. 

3. The travel mode misidentification rate can be decreased by considering higher numbers 

of arterial links. 



 

 
 

4. Multiple detection data may not improve the rate of successful travel mode identification. 

5. The GANN based model outperformed the KNN. Using the KNN, even pedestrians were 

sometimes misidentified as other modes. 
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Section 1 BACKGROUND 
Under the Moving Ahead for Progress in the 21st Century Act of 2012 (MAP-21), transportation 

agencies now face greater requirements with respect to the collection and analysis of surface-

transportation data such as freeway data, arterial data, and transit data. Data-driven performance 

measurement is expected to play an important role in assisting transportation agencies with their 

transportation operations and planning decisions. Once the data is further processed and 

disseminated, travelers should also benefit from more accurate and timely information about 

current traffic conditions to help them determine optimal travel routes. 

 It is generally accepted that the transportation world is experiencing a major shift from a 

“data desert” to a “data ocean”. Due to lack of mobile and fixed traffic sensors on the roads, it 

has been difficult to collect multiple sources of data; however, with the emerging development of 

Intelligent Transportation Systems (ITS) technologies, surface-transportation data can now be 

collected by a wide variety of ITS traffic sensors, including Bluetooth sensors, automatic vehicle 

location (AVL) devices, inductive loop sensors, and radar-based detectors and the information 

gathered applied for various purposes. Meanwhile, issues have begun to appear due to the 

transformation in the data environment. Traffic data collection and utilization are generally 

conducted by a body such as a city transportation department for a single purpose (e.g. travel 

time). In practice, ITS data are collected from multiple sources but individually analyzed or 

processed. It has been challenging to take full advantage of the ITS data from multiple sources 

by enabling them to exchange information with each other to compensate for their various 

disadvantages.  



 

 
 

In order to measure arterial performance measures, the data used in the report used multi-

source ITS data, primarily including Bluetooth-based data and Global Positioning Systems-based 

(GPS-based) data. Bluetooth technology has been widely used in transportation studies to collect 

traffic data (e.g. travel time and origin-destination data). Bluetooth media access control (MAC) 

readers can be installed along roadways to collect Bluetooth-based data. This data is commonly 

used to measure traffic performance (e.g. Araghi et al., 2013;  Barceló et al., 2013;  Khoei et al., 

2013; Qiao et al., 2013; Aliari and Haghani, 2012; Barceló et al., 2010; Quayle et al., 2010; 

Haghani et al., 2009; and Wasson et al., 2008). One of the advantages of using Bluetooth 

technology to measure traffic performance is that travel time, one of the most important traffic 

performance measures, can be measured directly instead of being estimated. In recent years, the 

number of personal Bluetooth devices (e.g. laptops, smart phones and smart watches) has grown 

significantly, enlarging the size of Bluetooth-based data samples (increased penetration rate). 

Therefore, travel time can be more accurately measured since the penetration rate has increased. 

Bluetooth-based travel time accurately represents ground truth on long freeway corridors 

in most circumstances (Haghani et al., 2009). However, in urban environments, more effort is 

required to use Bluetooth-based data to measure arterial travel time. This is because traffic on 

arterials is controlled by traffic signals, and therefore, traffic conditions are more complex than 

on freeways. Additionally, heterogeneous traffic is observed, and multiple travel modes travel 

simultaneously, including transit, bicyclists, and pedestrians. Several travel time outlier detection 

algorithms have been developed to clean Bluetooth-based data before use (e.g. Moghaddam et 

al., 2013(a); and Van Boxel et al., 2011). In the work as stated by Moghaddam et al. (2013(a)), 

the authors tested several outlier detection algorithms based on autos and buses. Based on this 

approach, if travel modes can be identified, then outliers can be eliminated and Bluetooth-based 



 

 
 

travel time can be more precisely estimated. Therefore, knowing the travel mode of Bluetooth-

based data would help practitioners and researchers develop mode-specific travel time outlier 

detection algorithms and accurately estimate mode-specific travel time. 

The rest of the report is organized as follows: first, relevant Bluetooth technology is 

overviewed. Next, a study corridor in Tucson, AZ, and its corresponding dataset is presented. A 

genetic algorithm neural network (GANN) based model is introduced to identify travel modes 

using the Bluetooth-based data. The model performance is presented before drawing final 

conclusions. 
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Section 2 STUDY SITE AND DATA  

2.1 Multi-source data in Tucson, Arizona 

Three real-time data sources can be primarily collected in Tucson, Arizona, including Bluetooth-

based data, General Transit Feed Specification (GTFS) transit data, and video-based data. Figure 

2-1 shows the overview of the three data sources. Sun Tran, which manages the regional public 

transportation system in Tucson, AZ, has installed automatic vehicle location (AVL) devices in 

approximately 180 of its transit buses. Real-time data are saved in the GTFS format, a 

generalized data format for transit information exchange. Both static and real-time GTFS data 

can be collected through a free online public portal hosted by Sun Tran. In addition to the GTFS 

data, traffic detection (Autoscope®) and Pan-Tilt-Zoom (PTZ) surveillance cameras have already 

been installed at major intersections. The video stream facilitates travel time ground truth data 

collection by manually matching vehicles, and counting vehicles and pedestrians.  

Multi-source 
ITS Data

Bluetooth
(Auto, Transit, Bike, 

Ped)

GTFS Data
(Transit)

Video-base Data
(Ped)

Customized 
C/S System 

Call HTTP web 
service

Manual 
Collection

Sun Tran Web Server

Bluetooth-based 
Devices

Multi-source Data Center 
@ UA

 

Figure 2-1. Three Major Data Sources in Tucson, AZ, U.S. 

 



 

 
 

The department of transportation in the City of Tucson has been using the traffic 

detection and PTZ surveillance cameras to manage traffic. However, only one traffic detection 

camera was configured properly for experimental testing at the intersection of Cherry Avenue 

and Speedway Blvd during the project. Due to limited installation, our project team was unable 

to collect the data from traffic detection cameras. Therefore, the Bluetooth-based data served the 

major data source for measuring the multi-modal arterial performances. 

2.2 Bluetooth Technology Overview 

2.2.1 Privacy Concerns 

Bluetooth technology has been widely used for short-range wireless communication. For 

example, data can be shared between two Bluetooth-enabled devices, and certain devices (e.g. 

smart phones) can be remotely controlled by other devices (e.g. smart watches) via Bluetooth 

connections. These wireless operations require a share or control agreement between the two 

devices. These agreements are typically unnecessary in transportation studies, because: 1) only 

the Bluetooth signals broadcasted from devices that have Bluetooth turned on are detected. The 

detected signals are usually encrypted before analysis. 2) No communication between the 

detecting and detected devices can be established since no agreement is initialized. 3) The MAC 

addresses of the detected devices are used anonymously and are not connected to specific 

individuals. Therefore, the privacy concerns regarding detected Bluetooth-enabled devices are 

not an issue. 

2.2.2 Bluetooth-Based Data 

Three primary types of Bluetooth-based data are used in transportation studies: 



 

 
 

 Media access control (MAC) addresses: every electronic device with a Bluetooth module 

built in has a global unique identifier. Travel times are usually estimated by matching 

identical MAC addresses detected at upstream and downstream MAC readers. 

 Timestamp: the time of detection for the Bluetooth-enabled device. 

 Location identifier: the location where the Bluetooth-enabled device is detected. 

The Bluetooth received signal strength indication (RSSI) can also be used. The RSSI 

could be recorded depending on the functionality and configuration of the Bluetooth MAC 

readers. A few studies have used the RSSI in traffic studies to estimate or predict travel time 

(see, for example, Araghi et al., 2013; and Saeedi et al., 2013). These authors concluded that 

RSSI-based travel time may be a better representation of ground truth travel time. 

2.2.3 Detection Range 

Bluetooth MAC readers detect Bluetooth-enabled devices within a certain range. Several factors 

influence detection range, including the types and power gains of Bluetooth antennas and the 

antenna installation position. Additionally, previous studies have also shown that the Bluetooth 

signal strength inside cars may be half of the normal range due to the vehicle’s metal body 

(Quayle et al., 2010), resulting in a smaller detection range. Therefore, detection range depends 

on both hardware and travel mode. This characteristic could be helpful in travel mode 

determination. 

2.2.4 Multiple Detections 

Bluetooth-enabled devices may be detected multiple times within a particular detection range. 

However, the specific locations of the devices remain unknown and the location identifier is the 

only known spatial information. For example, consider a Bluetooth MAC reader installed at an 

intersection. The information collected by the Bluetooth MAC reader includes the MAC 



 

 
 

addresses of the detected devices, multiple timestamps for each device due to repeat detections, 

and the location identifier of the reader. The timespan of repeat detections is also called duration. 

A few studies have tried to explore the value of duration at intersections and establish the 

relationship between the duration and traffic congestion (Tsubota et al., 2011). However, the 

relationship remains largely undefined. 

2.2.5 Limitations on Bluetooth-Based Data Applications  

Most existing Bluetooth-based data applications are focused on two areas: 1) travel time 

estimation and prediction (e.g. Araghi et al., 2013;  Khoei et al., 2013; Qiao et al., 2013; Aliari 

and Haghani, 2012; Quayle et al., 2010; Haghani et al., 2009; and Wasson et al., 2008). 2) 

Origin-destination matrix estimation (e.g. Barceló et al., 2013; and Barceló et al., 2010). Several 

researchers have conducted work zone analysis (e.g. Haseman et al., 2010) or route choice 

analysis (e.g. Hainen et al., 2011) based on either estimated or predicted Bluetooth travel time. 

Few studies have used Bluetooth-based data to study bike travel time (Mei et al., 2012). Unlike 

other traffic data sources (e.g. loop sensors or GPS), which have been applied to various 

subjects, Bluetooth-based data applications have been limited. Therefore, Bluetooth-based data 

has been considered as complementary transport data (Bhaskar and Chung, 2013). Because of 

the limited applications of Bluetooth data, Bluetooth-based data types are few in number, and 

errors, mainly caused by detection range, multiple detections, and various travel modes, are 

common. 

Three major types of traffic data are difficult to collect with Bluetooth technology: 

Traffic volume information and turning movements: previous studies have shown that 

only 2.0% to 3.4%  of the total traffic volume is detected by the average Bluetooth system (Aliari 

and Haghani, 2012); therefore accurate traffic volume cannot be estimated.  



 

 
 

Lane-by-lane information is nearly impossible with Bluetooth technology. Detailed lane-

by-lane information is valuable for studying driving behavior, such as lane changing maneuvers. 

Lane-by-lane information is critical for locating vehicles in a connected vehicle environment. 

Additionally, Haghani et al. (2010) concluded that Bluetooth technology was not suitable for 

facilities with managed lanes. 

Travel mode information. On freeways, autos are the primary travel mode, including 

passenger cars, motorcycles, trucks, etc. However, in an urban context, multiple travel modes, 

including autos, bikes, and pedestrians, are mixed and share the roadway. Since Bluetooth-

enabled devices are independent of travel mode and device privacy is protected, travel mode 

information is unavailable. Our study seeks to enable mode identification using modeling 

methods. 

Errors created by detection range and multiple detections are difficult to correct. 

Moghaddam and Hellinga (2013) categorized the characteristics of Bluetooth measurement 

errors into three types: sampling error, sampling bias, and measurement error. These errors were 

mainly caused by detection range, multiple detections, and different travel modes. For example, 

without knowing the travel mode of detected devices, estimated travel time could be biased. 

Slower modes, such as pedestrians, could result in a longer estimated travel time. A recent study 

quantified the relationship between estimated speed errors and arterial corridor length (Haghani 

et al., 2010). The authors concluded that estimated speed errors increased with decreasing arterial 

corridor length. However, few studies have developed models to mathematically correct these 

errors. 



 

 
 

2.3 Bluetooth Data Collection  

With the help of the City of Tucson, the Pima Association of Governments (PAG), and the 

Arizona Department of Transportation (ADOT), a Bluetooth-based data collection system has 

been developed and maintained in the Tucson, Arizona, area since 2013. Figure 2-2(a) shows the 

locations of Bluetooth MAC readers in the Tucson area. These MAC readers were installed 

inside traffic control cabinets located at major intersections. Instead of using commercial MAC 

readers, custom MAC readers with 9 dbi antennas, Bluetooth external adapters, and mini PCs 

were created.  The Bluetooth channel scan time interval was programed to be 3.84 seconds 

instead of the default value of 10.24 seconds in order to more precisely record entering and 

exiting times for each detector (Saeedi et al., 2013, p.92). After completing a Bluetooth scan time 

interval, the MAC readers sent the detected MAC addresses back to a central computer server 

located at the University of Arizona (UA) using user datagram protocol (UDP). Figure 2-2(b) 

shows the data collection system architecture. 



 

 
 

 

 

(a) Bluetooth MAC reader locations  



 

 
 

 

 

(b) Data collection system architecture  

Figure 2-2. Bluetooth-based Data Collection System in Tucson, AZ, U.S. 

2.2 Study Corridor and Ground Truth Data Collection 

Speedway Boulevard is one of the busiest roadways in Tucson. Since UA is located next to 

Speedway and Tucson is a bicycle-friendly city, sidewalks and exclusive bike lanes had been 

built along the corridor. Because of the high volume of multiple transportation modes along the 

route, Speedway between Park Avenue and Campbell Avenue was chosen as the study corridor. 

... ...
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Bluetooth MAC Reader at Intersections
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Internet

Real-time Communication  Server

Database  Server

Applications



 

 
 

This corridor included four intersections, three westbound links, and three eastbound links. Each 

intersection was configured with a custom MAC reader. To identify travel modes using 

Bluetooth-based data, ground truth data was collected. Several components of the data collection 

plan are shown below. 

1) Three travel mode categories were classified, including autos (passenger cars, 

motorcycles, and trucks), bicyclists, and pedestrians. A preliminary study showed that Bluetooth 

signals from devices in transit buses were weak and could not be reliably detected by the MAC 

readers, possibly due to the metal body of the buses (Quayle et al., 2010). Therefore, transit was 

not included in our study.  

2) Table 2-1 shows the ground truth data collection plan. A trip was defined as either 

eastbound Speedway from Park to Campbell or westbound Speedway from Campbell to Park. 

The data was split into two parts: data used for travel mode identification model calibration 

(training data) and data used for verification (testing data). 

3) The Bluetooth devices used for ground truth collection included two Blackberry 

cellphones, a Samsung cell phone, an iPhone, and an iPad. The GPS module for each device was 

also enabled to track the device’s location every second. The GPS data was used only to estimate 

the MAC reader detection ranges. 

4) As noted in Table 2-1, to account for real vehicle behavior, some trips ended in right, 

left, or U-turns at Campbell and Park, rather than continuing straight on Speedway beyond the 

study corridor. 

 



 

 
 

Table 2-1. Ground Truth Data Collection 

                               

Mode 

Date 

Autos Bike Pedestrian 

Collection Number 

of trips 

Collection Number 

of trips 

Collection Number 

of trips 

Data used for model calibration (training data) 

(GPS enabled during data collection) 

2015-08-31      4 

2015-09-01    12  8 

2015-09-04  18    8 

2015-09-11  16    8 

2015-09-16    12  8 

2015-09-17  20*  12   

2015-09-18    12   

Data used for model verification (testing data) 

2015-09-28    14   

2015-09-29  20     

2015-10-01  20     

2015-10-05  20  14   

2015-10-06    14  8 

2015-10-10      8 

2015-10-12      8 

* Five trips ended in non-through movements at the intersection with Campbell. 

2.3 Detection Range Examination 

Although previous studies have determined theoretical MAC reader detection ranges (e.g. 100 – 

300 m (Araghi et al., 2013) or 300 ft. (Haghani et al., 2010)), few studies have physically 

examined actual MAC reader detection ranges. Our study used both GPS and Bluetooth-based 

data to examine the MAC reader detection ranges by matching the timestamps collected from 

both data. Figure 2-3 shows the detection ranges for each of the three travel modes at two 

intersections. The red areas in Figure 2-3 represent the regions where most of the tested devices 

were detected. Two findings were noted: 1) most of these detection ranges were less than 300 m 

(985 ft.) in our study; 2) the detection ranges varied depending on the intersection and travel 

mode. 



 

 
 

  
(a) Speedway & Cherry, auto mode (b) Speedway & Mountain, autos mode 

  
(c) Speedway & Cherry, bike mode (d) Speedway & Mountain, bike mode 

  

(e) Speedway & Cherry, pedestrian mode (f) Speedway & Mountain, pedestrian mode 

Figure 2-3. Detection Range by Three Travel Modes 

(Background images from OpenStreetMap) 
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Section 3 GENETIC ALGORITHM AND NEURAL 

NETWORK-BASED MODE IDENTIFICATION 

3.1 Justification for Using a Genetic Algorithm to Train a Neural Network 

Neural networks and the K-nearest neighborhood (KNN) are two primary approaches to training 

nonparametric models (Qiao et al., 2013, p.166). Neural networks are widely used for data 

classification and prediction because of their high accuracy. Three common types of neural 

networks include feed-forward, recurrent, and high-order. One of the most popular neural 

network structures is the single hidden layer feed-forward neural network (SHLFFNN). Many 

commercial and open source software implementations of the SHLFFNN can be found, such as 

the neural network toolbox in MATLAB and the “RANN” package in R language. SCHLFFNNs 

are composed of three layers in the following order: input, hidden, and output layers. Each layer 

contains one or more neurons. The neuron connections strictly follow these rules: 1) connections 

are only made between two consecutive layers, such as the input layer to the hidden layer; or the 

hidden layer to the output layer. 2) Neurons in a layer must fully connect to every single neuron 

in the consecutive layer. 3) During the neural network training procedure, only the connection 

weights can be updated.  

With regards to the SHLFFNN, recent research has found that: 1) several factors may 

affect the accuracy and efficiency of training SHLFFNNs, including learning rate, number of 

iterations, and initial connection weights (Michalewicz, 1996; and Koehn, 1994). 2) The back-

propagation algorithm (BP) (Rojas, 1996) is commonly used to train the SHLFFNNs. However, 

the connection weight “often gets trapped in a local minimum of the error function and is 

incapable of finding a global minimum” (Yao, 1996, p. 1425). 3) Optimal combinations of the 



 

 
 

three abovementioned training factors are typically found by trial-and-error, making this a time 

consuming experiment. 4) Not only the connection weights but also the topology of neural 

networks can be updated during the training procedure. Updating neural network topology can 

improve accuracy and find near-optimal solutions (Yao, 1996).  

The genetic algorithm is a near-optimal search algorithm commonly used for solving 

problems that are difficult to solve using mathematical equations. Therefore, the Genetic 

Algorithm Neural Network (GANN) was used in our study to obtain more accurate results 

through changing connection weights, topology, and to avoid the time consuming trial-and-error 

approach, since 21 neural networks were trained. Details regarding these networks are provided 

in the following section. 

3.2 Genetic Algorithm and Neural Network (GANN) 

3.2.1 Topology in the Genetic Algorithm and Neural Network 

Essentially, the neural network used in our study was a SHLFFNN. The implementation details 

can be found on the authors’ website (Yang, 2015). However, the topology of our neural network 

did not follow the strict rules listed in Section 4.1 and was organized in a more flexible manner: 

1) the three layers were connected to each other and 2) connections between two neurons 

(connectivity) were not required to be established. Figure 3-1 shows an example of GANN 

topology. The black links represent the connections in a typical SHLFFNN; and the blue links 

represent the connections from the input to the output layers. The neurons in the three layers are 

labeled as A, B; 1 – 8; and I –III, respectively. 



 

 
 

 
Figure 3-1. Feed-forward GANN Model with Single Hidden Layer and Full Connectivity 

 

3.2.2 Connection Weights and Connectivity Encoding Scheme in the Genetic Algorithm 

Solutions to the connection weights and connectivity are usually coded as string-based schema in 

genetic algorithms. The string-based schema is designed to easily operate the crossover and 

mutate solutions. In order to update the topology, a sparse-matrix-based code scheme is 

proposed. Figure 3-2 shows the basic encoding scheme and the crossover operation. Each cell 

represents either a real-value connection weight or binary value connectivity. For example, the 

cell A-1 represents the connection weight (or connectivity) from the A neuron in the input layer 
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to the 1 neuron in the hidden layer. According to the proposed solution encoding scheme, the 

uniform crossover technique was used to complete the crossover operation. 

 
Figure 3-2.  Solution Encode Scheme and Crossover Operation Using the Uniform 

Crossover 

 

3.2.3 Error Calculation in GANN 

The traditional SHLFFNN uses the BP algorithm to minimize output error. Due to the 

requirements of the BP algorithm, the output error is calculated based on a single input and is 

reduced back to the connection weights. Equation 1 shows the error calculation if the activation 

function is based on a binary function, while Equation 2 shows the error calculation if the 
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activation function is based on the Sigmoid function. Equation 3, unlike Equations 1 and 2 which 

only consider the error of a single input, calculates the error in GANN-based models by 

summing up the errors of all inputs (Yao, 1996, p. 1425). Equation 3 also serves as the fitness 

function in the genetic algorithm. The objective of the genetic algorithm is to minimize the error 

calculated from the inputs. 

𝐸𝑟𝑟𝑜𝑟𝑂𝑖
= 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑𝑂𝑖

− 𝑇𝑎𝑟𝑔𝑒𝑡𝑂𝑖
                                                                                                     (1) 

𝐸𝑟𝑟𝑜𝑟𝑂𝑖
= (𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑𝑂𝑖

)(1 −  𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑𝑂𝑖
)(𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑𝑂𝑖

− 𝑇𝑎𝑟𝑔𝑒𝑡𝑂𝑖
)                            (2) 

𝐸𝑟𝑟𝑜𝑟 =
∑ ∑ (𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑𝑂𝑖

 − 𝑇𝑎𝑟𝑔𝑒𝑡𝑂𝑖
)

2𝑀
𝑖=1

𝑁
𝑗=1

𝑁
                                                                             (3) 

Where: 𝐸𝑟𝑟𝑜𝑟𝑂𝑖
 represents the error of the 𝑖𝑡ℎ neuron in the output layer; 

 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑𝑂𝑖
 is the calculated value of the 𝑖𝑡ℎ neuron in the output layer; 

𝑇𝑎𝑟𝑔𝑒𝑡𝑂𝑖
 is the ground truth value of the 𝑖𝑡ℎ neuron in the output layer; 

𝑁 is the number of training data samples; and 

𝑀 is the number of classifications. In our study 𝑀 = 3. 

Figure 3-3 shows the genetic algorithm flow chart used to train the sparse-matrix 

encoding schema neural network. Parallel computing was used to accelerate the model training 

procedure. With the data from our study corridor, each GANN-based model was well trained 

within five minutes using standard computers. 



 

 
 

 
Figure 3-3. Genetic Algorithm Flow Chart  

Start Genetic Algorithm

Initialization for Population with N 
solutions

Evaluation for Fitness Function

Using the Rank Selection method to 
select two potential solutions (S1, S2) 

from current population

Termination Criteria is Satisfied

NO

End Optimization

YES

Crossover (S1, S2) using the uniform 
crossover technique

Mutate (S1, S2) using the random walk 
technique

Repeat to produce a new 

population with N solutions



 

 
 

3.3 Input Selection 

Traffic performance measures, such as travel time and speed, can help identify travel modes. 

One of the measures obtained from Bluetooth-based data is travel time, which can then be used 

as the primary performance measure to identify travel modes. For example, autos usually travel 

faster than both bikes and pedestrians on arterials. However, travel time is dependent on the 

specific link, and therefore, a single model is required to identify travel mode on that link. Speed 

(normalized travel time divided by link length) is an alternative measure that can be used to 

develop link-independent mode identification models.  

First-to-first (FF) and last-to-last (LL) travel time were favored in previous studies (for 

example, Araghi et al., 2013 and Saeedi et al., 2013). Since the RSSI is unavailable, peak-to-

peak travel time (Araghi et al., 2013) was not calculated in our study. Based on the detection 

range determined in Section 3.3, the FF and LL distances for the three travel modes are listed in 

Table 3-1. Then, the FF and LL speeds were calculated. In order to examine whether the 

detection ranges could significantly affect travel mode identification, a baseline speed was also 

calculated using the intersection-to-intersection distances. 

 Table 3-1. Measured Distance by Mode 

From To* 
# of 

Links 

Autos Mode (ft) Bike Mode (ft) Pedestrian Mode 

(ft) 

Intersection-

Intersection 

(ft) FF LL FF LL FF LL 

1 2 One 1526.0 1639.1 1346.3 1456.5 1289.1 1575.1 1602.7 

1 3 Two 3234.3 3110.2 3307.3 3037.3 3256.2 3015.3 3181.8 

1 4 Three 4665.6 4804.3 4767.7 4753.0 4694.5 4536.0 4665.6 

2 1 One 1474.9 1398.3 1467.6 941.9 1598.9 798.0 1602.7 

2 3 One 1781.5 1522.2 1985.9 1584.3 2026.1 1596.0 1579.1 

2 4 Two 3205.6 3169.1 3431.9 3285.8 3548.4 3168.8 3062.9 

3 1 Two 3095.6 3132.1 2956.9 3095.6 2869.3 3183.2 3181.8 

3 2 One 1606.2 1850.8 1482.2 2161.1 1361.6 2445.9 1579.1 

3 4 One 1457.0 1599.3 1467.8 1752.5 1372.7 1566.3 1483.8 

4 1 Three 4607.0 4650.8 4468.2 4409.8 4431.8 4329.5 1483.8 

4 2 Two 3110.5 3380.7 3051.9 3548.3 3052.1 3687.0 3062.9 

4 3 One 1533.3 1486.0 1551.1 1387.4 1586.0 1241.2 1483.8 



 

 
 

* 1: Speedway Blvd. & Park Ave.; 

   2: Speedway Blvd. & Mountain Ave.; 

   3: Speedway Blvd. & Cherry Ave.; 

   4: Speedway Blvd. & Campbell Ave. 

The GANN-based model was sensitive to its inputs and could have produced greatly 

different results depending on the inputs.  Seven scenarios designed to identify the best 

collection of inputs are presented in Table 3-2. Scenarios 1a and 1b used FF speeds. Scenario 1a 

was based on measured distances between detection ranges, while Scenario 1b was based on the 

intersection-to-intersection length. Scenario 1b could be used in situations where measured 

distances were unknown or not available. Similarly, Scenarios 2a and 2b used LL speeds, and 

Scenarios 3a and 3b used both FF and LL speeds. Scenario 4 was designed based on the 

assumption that the travel mode identification accuracy is improved by adding duration data, 

which is determined as a result of multiple detections. The duration data at upstream and 

downstream locations was included in Scenario 4, while the other input parameters depended on 

the best-performing scenario among Scenarios 1-6. 

To investigate the effect of the number of links on travel mode identification, data from a 

single link, two links, and three links was collected and used in each scenario. Therefore, a total 

21 GANN-based models were developed. Note that real-value inputs in the GANN-based models 

were scaled between zero and one for computing convenience. 

Table 3-2. Input Selection Candidates Scenarios 

                                          

Input 

Scenario Name              

Input Parameters Number of Inputs 

Scenario 1a 

 

FF speeds using measured distances 

for the three travel modes 

3 

Scenario 1b 

 

FF speed using intersection-to-

intersection length 

1 

Scenario 2a LL speeds by the three travel modes 3 



 

 
 

Scenario 2b 

 

LL speed using intersection-to-

intersection length 

1 

Scenario 3a 

 

Using both FF and LL speeds by the 

three travel modes 

6 

Scenario 3b Using both FF and LL speeds based 

on intersection-to-intersection length 

2 

Scenario 4 Adding duration data to the best-

performing scenario among 

Scenarios 1-6 

Determined based on 

Scenario 1-6 results 
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Section 4 MODEL PERFORMANCE AND 

COMPARISONS 

4.1 Best Input and GANN-based Model Selection 

Low error calculated using Equation 3 indicated good performance of a particular GANN-based 

model. Figure 4-1 shows the errors of the 21 GANN-based models. Several findings are 

summarized below: 

 The training errors decreased with an increasing number of links. 

 Given a fixed corridor (regardless of the number of links), using both FF and LL speeds 

was better than using either speed type alone. 

 Detection ranges by travel mode had limited impact on travel mode identification. For 

example, the errors for the three modes in Scenario 3a were 0.127, 0.078, and 0.063, 

while the errors in Scenario 3b were 0.124, 0.077, and 0.065.  These differences were 

minor.  

 The models in Scenario 3a and Scenario 3b outperformed the models in Scenarios 1a-2b. 

Considering the minor performance differences between Scenario 3a and Scenario 3b and 

overall model complexity, Scenario 3b was identified as the best input because the 

number of input parameters (FF and LL speeds) was less than that in Scenario 3a (FF and 

LL speeds by the three travel modes). 

 Adding the duration information in Scenario 4 did not improve the accuracy of travel 

mode identification. The errors in Scenario 3b were 0.124, 0.077, and 0.065 for single 

link, two links, and three links, while the errors in Scenario 4 were 15.06%, 22.91%, and 

93.19% worse, respectively. 



 

 
 

 
Figure 4-1. Peer Comparisons among 21 GANN-based Models 

 

4.2 GANN-based Models vs. KNN 

The test data in Table 2-1 was used to examine the GANN-based models’ performance. As a 

comparison, the K-nearest neighborhood (KNN) (Altman, 1992) was also applied on the same 

dataset. Figure 4-2 compares the two models using graphs. The axes on each graph represent the 

FF and LL speed scaled from 0 to 1 based on the lowest and highest recorded speeds. Each graph 

is split into three colored regions representing the different travel modes. For example, if the 

normalized FF and LL speeds of a particular Bluetooth-enabled device were 0.8 and 0.2, 

respectively, then the device’s speed would be located in the green region of Figure 4-2(a), 

indicating that the device was most likely an auto. However, the same device would be located in 

the tan area in Figure 4-2(b), indicating the travel mode was a bike. The test data is also 

separated by number of links. 



 

 
 

 
(a) GANN-based model, single link 



 

 
 

 
(b) KNN, single link 



 

 
 

 
(c) GANN-based model, two links 



 

 
 

 
(d) KNN, two links 



 

 
 

 
(e) GANN-based model, three links 



 

 
 

 
(f) KNN, three links 

Figure 4-2. Ground Truth Data vs. Classification Areas by Modes 

 

Note that the input parameters in the GANN-based model were scaled for calculation 

convenience between zero and one. 

Figure 4-3 quantifies the performance differences between the GANN-based model based 

on Scenario 3b and the KNN.  Several findings are summarized below: Overall, the GANN-

based model outperformed the KNN. For example, in the three links case, 6.12% of autos were 

misidentified as bikes and 10.53% of bikes were misidentified as autos using the GANN-based 

model, while the corresponding misidentification rates were 22.45% and 34.21% using the KNN. 



 

 
 

The GANN-based model separated the entire graph plane into three continuous regions. Test 

data was clearly separated between the regions. 

The KNN could not adequately distinguish the pedestrian mode from other modes. 

Intuitively, pedestrians should be easily distinguishable due to their low speed (approximately 

1.5 – 3 mph). The GANN-based model successfully identified pedestrians with a 0% 

misidentification rate. However, the KNN failed to identify pedestrians in many cases. The 

failure of the KNN may account for the extensive overlap between the three modes (see Figure 

4-4), especially autos and bicyclists. The KNN searched for k nearest points with the same or 

similar attributes, and then classified the k points as a group.  Therefore, instead of separating the 

entire plane into three areas, the KNN organized data into separated groups. This KNN behavior 

resulted in test data located outside travel mode groups being assigned to the closest group, 

causing misidentification. Figure 4-4 (b), (d) and (f) depict the identified travel mode groups 

using the KNN.  

 
Figure 4-3. Performance Differences between the GANN model and KNN 



 

 
 

4.3 Discussion  

4.3.1 Similar Traffic Performance Measures on Short Corridors 

Figure 4-4 (a) shows that bike speeds overlapped with auto speeds. The inherent difficulties of 

travel mode identification may explain this effect. The speeds of autos, bikes, and pedestrians on 

Speedway were approximately 35 mph, 12 mph, and 2.5 mph, respectively. Intuitively, they 

should be distinguishable. However, several factors can significantly affect speed estimation 

using Bluetooth-based data: 

1) Short corridor length: Haghani et al. (2010) showed that estimated speed errors were 

approximately 4.5 mph for an arterial link length of 0.5 miles and speed limit of 30 mph. 

However, the link length in our study site was 0.32 miles, indicating that the estimated speed 

errors may have been greater than 4.5 mph. These speed errors could have resulted in speeds of 

different travel modes overlapping. However, our study also proved that the misidentification 

rates in the three-link corridor were lower than those in the single-link corridor, suggesting that 

speeds were more accurately estimated in the three-link corridor. 

2) Poorly coordinated traffic signals: if two consecutive traffic signals are not well 

coordinated, an auto stopped at the first signal may have to stop again at the second signal. Low 

speed travel modes, such as bikes, would have enough time to catch up to the auto as it waited at 

the second signal. In this case, both the travel time and average speed of the auto and the low 

speed mode would be similar. 

3) Traffic congestion: since bikes and pedestrians often travel on bike lanes and 

sidewalks, they are much less affected by vehicular traffic congestion. However, auto speeds 

would be lower due to the delay caused by traffic congestion. Therefore, average bike speeds 

were sometimes faster than auto speeds in our study corridor. 



 

 
 

4.3.2 Potential Applications 

Travel mode identification on arterials can assist estimation of mode-specific traffic performance 

measures (e.g. travel time and speed). In addition, a Bluetooth-based travel time outlier detection 

algorithm could be developed based on mode identification. If a Bluetooth-enabled device is 

identified as an auto during a relatively short time period, the data from this device could be used 

for further traffic measure estimation. 
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Section 5 CONCLUSION 
Under the Moving Ahead for Progress in the 21st Century Act of 2012 (MAP-21), transportation 

agencies now face greater requirements with respect to the collection and analysis of surface-

transportation data. Data-driven performance measurement is expected to play an important role 

in assisting transportation agencies with their transportation operations and planning decisions. 

The transportation world is experiencing a major shift from a “data desert” to a “data ocean”. 

With the emerging development of Intelligent Transportation Systems (ITS) technologies, 

surface-transportation data can now be collected by a wide variety of ITS traffic sensors, 

including Bluetooth sensors, automatic vehicle location (AVL) devices, inductive loop sensors, 

and radar-based detectors. In practice, ITS data are collected from multiple sources but 

individually analyzed or processed. It has been challenging to take full advantage of the ITS data 

from multiple sources by enabling them to exchange information with each other to compensate 

for their various disadvantages.  

Many previous studies have utilized Bluetooth-based data to measure traffic 

performance. However, travel time on arterials may be inaccurate because of mixed travel modes 

traveling at different speeds. Therefore, travel mode identification becomes necessary before 

further data processing. Our report proposed a genetic algorithm neural network (GANN) based 

model to identify travel modes on the study corridor in Tucson, Arizona. Twenty-one groups of 

input candidates were tested. To calibrate and verify these GANN-based models, Bluetooth-

based data with known travel modes were collected.  The Bluetooth-based infrastructure on the 

study corridor, which had been developed and maintained since 2013, facilitated data collection. 

Several important findings from our studies are summarized below: 



 

 
 

 Using both First-to-First (FF) and Last-to-Last (LL) speed as inputs performed better than 

using FF or LL speed alone. 

 The detection ranges of the travel modes had little impact on travel mode identification. 

 The travel mode misidentification rate can be decreased by considering higher numbers 

of arterial links. 

 Duration data may not improve the rate of successful travel mode identification. 

 The GANN based model outperformed the KNN. Using the KNN, even pedestrians were 

sometimes misidentified as other modes. 

It was found challenging to identify the three travel modes, pedestrians, bicyclists and 

autos successfully. However, the GANN-based model developed in our study had low 

misidentification rates, i.e. only 6.12% of autos were misidentified as bikes and 10.53% of bikes 

were misidentified as autos. The GANN-based travel mode identification model showed its 

potential to detect travel time outliers and further clean Bluetooth-based data. Future studies will 

focus on two areas: 1) development of the outlier detection algorithm based on the GANN 

model. Obtaining the percentages of bike and autos in reality could help further improve the 

GANN model. 2) Mode-specific travel time could be reported after travel modes were identified. 
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