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1 Introduction

We offer a new social approach to the theory of investor behavior in security markets. A neglected

topic in financial economics is how investment ideas are transmitted from person to person. In

most investments models, the influence of individual choices on others is mediated by price or

by quantities traded in impersonal markets. However, more direct forms of social interaction

also affect investment decisions. As Shiller (1989) put it, “...Investing in speculative assets is a

social activity. Investors spend a substantial part of their leisure time discussing investments,

reading about investments, or gossiping about others’ successes or failures in investing.” In

one survey, individual investors were asked what first drew their attention to the firm whose

stock they had most recently bought. Almost all referred to direct personal contact; personal

interaction was also important for institutional investors (Shiller and Pound 1989). Furthermore,

an empirical literature finds that social interactions affect investment decisions by individuals and

money managers, including selection of individual stocks.1

Our purpose here is to model how the process by which ideas are transmitted affects social out-

comes, with an application to active versus passive investment behavior. We view the transmission

process here as including both in-person and electronic means of conversation, and one-to-many

forms of communication such as blogging and news media. We explore here how biases in con-

versation promote superficially-appealing personal investing strategies.

Notably, individual investors trade actively and have invested in active investment funds for

decades, and thereby have on average underperformed net of costs relative to a passive strategy

such as holding a market index—the active investing puzzle.2 In addition to underperforming

relative to standard benchmarks, trading in individual stocks and investing in active funds adds

idiosyncratic portfolio volatility. For example, the idiosyncratic risk exposure of Swedish house-

holds accounts for half of the return variance for the median household (Calvet, Campbell, and

Sodini 2007). A belief that amateur investors can choose advisers to beat the market is also the

basis for perennially occurring financial scams. A further notable aspect of active investing is

that investors are attracted to stocks with high skewness (‘lottery’ stocks) and volatility (Kumar

2009; Bali, Cakici, and Whitelaw 2011; Han and Kumar 2013; Boyer and Vorkink 2014).

The leading explanations for naive active investing are based on individual-level cognitive

1Shiller (2000, 2017) discusses other indications that conversation matters for security investment decisions and
bubbles. The empirical literature includes Kelly and O’Grada (2000), Duflo and Saez (2002, 2003), Hong, Kubik,
and Stein (2004, 2005), Massa and Simonov (2005), Ivković and Weisbenner (2007), Brown et al. (2008), Cohen,
Frazzini and Malloy (2008, 2010), Shive (2010), Gray, Crawford, and Kern (2012), and Mitton, Vorkink, and Wright
(2015).

2On underperformance in individual trading, see Barber and Odean (2000a), Barber et al. (2009). Carhart
(1997) and Daniel et al. (1997) find that active funds typically do not outperform passive benchmarks. French
(2008) documents very large fees paid in the aggregate by investors to active funds.
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biases. For example, excessive individual investor trading is often attributed to investor over-

confidence (DeBondt and Thaler 1995; Barber and Odean 2000a), the tendency of investors to

overestimate their abilities. However, trading aggressiveness is greatly exacerbated by social in-

teractions.3

The leading explanations for the attraction of investors to lottery stocks have also uniformly

been based on individual-level biases—specifically, nontraditional preferences (Brunnermeier and

Parker 2005; Barberis and Huang 2008). One contribution of our paper is to describe a simple

mechanism that can lead to attraction to skewness even if investors have conventional preferences.

Also, our approach provides an explanation for why higher intensity of social interactions is

associated with stronger attraction of investors to both high volatility and high skewness stocks,

where this intensity is proxied by population density (Kumar 2009).

Furthermore, our approach offers the distinctive empirical implication that lottery stocks will

be more overpriced when there is greater intensity of social interactions. In an empirical test of

our model, Bali et al. (2018) find that this is indeed the case, where social interaction intensity

is proxied by either population density or the Social Connectedness Index from Facebook. These

tests are consistent with the lottery anomaly being at least in part a social phenomenon rather

than deriving solely from direct individual-level biases toward positive skewness.

These facts suggest that social interaction is an important part of the explanation for the

attraction to skewness that is distinct from any direct effect of nontraditional preferences. But

the sheer fact of contagion in investment choice, as documented in several empirical studies, does

not explain a tilt toward active investing strategies, since either active or passive strategies can

spread from person to person. In our model, systematic biases in the transmission process promote

active over passive investing. Our model offers a rich set of further testable implications. These

include convexity in the relation between conversion to a new strategy and its past returns, and

an attraction of investors to high variance and high skew strategies that increases with sociability.

The key features of the model are the sending schedule, which gives the probability that

the sender reports the sender’s return outcome as a function of that return; and the receiving

schedule, defined as the probability that a given reported return will convert the receiver to the

strategy of the sender. The model shows how the interplay between the probability distribution of

strategy return outcomes with the shapes of these schedules determine which investment strategies

3For example, participants in investment clubs seem to select individual stocks based on reasons that are easily
exchanged with others (Barber, Heath, and Odean 2003); select small, high-beta, growth stocks; turn over their
portfolios very frequently; and underperform the market (Barber and Odean 2000b). There is evidence (mentioned
in footnote 1) that stock picking by individuals and institutions, an active investing behavior, spreads socially, and
that stock market participation increases with measures of social connectedness (Hong, Kubik, and Stein 2004;
Kaustia and Knüpfer 2012). Furthermore, during the millennial high-tech boom, investors who switched early to
online trading subsequently began to trade more actively and speculatively, and earned reduced trading profits
(Barber and Odean 2002; Choi, Laibson, and Metrick 2002). Early internet investors probably had greater access
to and interest in online forms of social interaction, such as e-mail and investment chat rooms. Internet discussions
rooms were, according to media reports, important in stimulating day trading.

2



spread through the population. Our social framework also captures a third interpretation of active

investing (apart from high volatility and high skewness), an attraction to stocks that are engaging

to talk about with others.

As an illustration of an effect of the sending function, we find that high-volatility strategies

spread because investors like to recount to others their investment victories more than their

defeats, and that listeners do not fully discount for this. We call this sender behavior self-

enhancing transmission bias, or SET. There is considerable evidence (see the discussion at footnote

13) suggesting that self-enhancing thought processes influence financial behavior.

In the model, investors adopt either an Active (A) or Passive (P) investment strategy. We

interpret A as the riskier option, or alternatively, the more engaging one (meaning that adopters

are, all else equal, more likely to talk about it, perhaps because it is more novel, affect-laden, or

arousing). SET creates an upward selection bias in the sender’s reports to other investors about

the profitability of the chosen strategy: they hear more often about good outcomes than bad ones.

The bias increases with return variance; for example, if variance is zero the selection bias vanishes.

Listeners do not fully discount for the biased sample of return reports they receive, and naively

think that past performance is indicative of future performance. So if A has higher variance than

P, A messages tend to be much more persuasive to receivers than P messages, causing A to spread

through the investor population.

The psychological underpinning of our premises that receivers neglect selection bias in the

reports they receive, and overextrapolate performance reports, is the representativeness heuristic

of (Tversky and Kahneman 1974). The representativeness heuristic implies that investors (such

as receivers) take small samples of performance as highly representative of the underlying return

process, resulting in both overextrapolation of returns, and neglect of the selection bias wherein

high returns are disproportionately reported.

Overextrapolation has been incorporated extensively in financial models.4 There is also exten-

sive evidence in various contexts, including financial markets, that observers do not fully adjust

for selection bias in the data they observe (see footnote 14).

As an illustration of the importance of the receiving schedule, suppose that receivers attend

more to extreme outcomes. This makes the receiving function convex, so that extreme returns are

incrementally more persuasive to the receiver (relative to a linear schedule; higher returns are still

always more persuasive than lower returns). So high salience of extreme outcomes promotes the

spread of high volatility strategies, because such strategies generate extreme returns more often.

As two illustrations that the interaction of the sending and receiving schedules is crucial, first

suppose that there is both SET on the part of senders and salience of extreme returns on the part

4See, e.g., DeLong et al. (1990), Hong and Stein (1999), Barberis and Shleifer (2003), Barberis et al. (2015),
Hirshleifer, Li and Yu (2015), and Barberis et al. (2016). There is evidence that investors have extrapolative
expectations from experimental markets (Smith, Suchanek, and Williams 1988; Choi, Laibson, and Madrian 2010),
as well as surveys of return expectations and field evidence on security and fund investing.
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of receivers. This causes high skewness strategies to spread—even after controlling for volatility.

The reason is that such strategies more often generate the extreme high returns which are most

often reported, attended to, and are most influential. So A spreads through the population unless

it has a strong enough offsetting disadvantage (lower expected return).

As a second illustration of how the sending and receiving schedules interact, consider again

the more basic feature of these schedules—that a higher return encourages senders to send (SET),

and is more persuasive to receivers. (The argument here can accommodate, but does not require,

convexity of the receiving function.) Then conditioned on the sender’s return, the probability that

a receiver is transformed into the type of the sender is a convex function of the sender return.

This effect derives from the multiplicative interaction between the increasing probability of the

sender sending, and of the receiver being converted conditional upon a message being sent.

This convexity offers a new explanation for the well-known finding of convexity of fund flows

as a function of performance. Furthermore, the model offers distinctive implications about the

degree of convexity as determined by empirically measurable parameters of the social interaction

process.

Finally, returning to an effect driven primarily by the sending schedule, if A is more engaging

than P as a conversation topic (more conversable, in our terminology), then A is recommended

and its return reported to current adopters of P more often than reports about P are made to

adopters of A. This favors the spread of A.

In addition to market-wide implications, the model offers a rich set of predictions about the be-

haviors of specific investors embedded in a social network. The determinants of investor’s strategy

depends on who the investor is linked to, the performance of an investor’s neighbors’ strategies,

the volatilities and skewnesses of neighbors’ strategies, the sociability of the investor, and the in-

vestor’s homophily (tendency to be linked to investors with similar strategies). We further derive

implications for active investing of the aggregate homophily, and of aggregate connectivity in the

network.

The interplay of investor sending and receiving functions provides a unified and fundamentally

social explanation for a wide range of patterns in trading and return predictability. These include

the convexity of new participation in investment strategies as a function of past performance;5

the participation of individuals in lotteries with negative expected return; the attraction of some

investors to high variance and high skewness (‘lottery’) stocks, resulting in return anomalies;

overvaluation of lottery-like categories of stocks, such as growth stocks, distressed firms, firms

that have recently undertaken Initial Public Offerings (IPOs), and high volatility firms; and

5The convexity implication is consistent with evidence of disproportionate inflows to strongly-performing mutual
funds. Kaustia and Knüpfer (2012) provide evidence of such convexity in new stock market participation as a
function of neighbor’s recent stock return. Our model predicts this effect as a result of interactions between the
shapes of the sending and receiving functions. In particular, it predicts that the slope and convexity of flows to an
investment strategy as a function of its past return will be greater when social interactions intensify and investors
are more influenced by SET.
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heavy trading and overvaluation of firms that are attractive as topics of conversation (such as

sports, entertainment, and media firms, firms with hot consumer products, and local firms). There

are alternative theories based upon individual-level biases that offer piecemeal explanations for

subsets of these facts; our framework provides a unified explanation, as well as an extensive set

of further distinctive empirical implications.

A key set of distinctive implications of our approach holds that these effects are intensified

by social interactions, and are therefore stronger when there is higher sociability, appropriately

measured—at both the individual level and in society at large. There is evidence supporting the

hypothesis that these effects are associated with proxies for sociability.6 Our approach offers the

empirical predictions that sociability increases the slope and convexity of the schedule describing

the adoption of active investing strategies by new investors as a function of the past returns of

such strategies. Our framework also offers a distinctive set of further testable empirical impli-

cations derived from varying the parameters of sending and receiving schedules, such as SET,

the sensitivity of receivers to reported returns, and the intensity of social interactions. In sum,

our approach offers a new social approach to understanding investor optimizing behavior and

equilibrium security prices.

We are not the first to examine biases in the social transmission of behavior. The effects of

social interactions on the spread of cultural traits have been analyzed in fields such as anthro-

pology (Henrich and Boyd 1998), zoology (Lachlan, Crooks, and Laland 1998; Dodds and Watts

2005), and social psychology (Cialdini and Goldstein 2004). Economists have also modelled how

cultural evolutionary processes affect ethnic and religious traits, and altruistic preferences (Bisin

and Verdier 2000; Bisin and Verdier 2001). The focus here is on understanding investment and

risk-taking behavior. Financial models have examined how social interactions affect information

aggregation, and potentially can generate financial crises.7 This paper differs from this literature

in examining how social transmission biases such as SET affect the evolutionary outcome.

DeMarzo, Vayanos, and Zwiebel (2003) show that persuasion bias, the failure of receivers to

account for possible repetition in the messages they hear from others, plays an important role

in the process of social opinion formation. They find that network position is a key determinant

of how influential an individual is, and that an individual’s opinions across different issues will

be highly correlated. Our paper differs in focusing on other transmission biases originating from

both senders and receivers, and in exploring the spread of active investing.

6See, e.g., Hong, Kubik, and Stein (2004) and Kaustia and Knüpfer (2012) for stock market participation, and
Kumar (2009) for preference for high skewness stocks and high volatility stocks.

7Such models address how information flows in social networks affect asset markets (DeMarzo, Vayanos, and
Zwiebel 2001), crises and herd behavior (Cipriani and Guarino 2002; Cipriani and Guarino 2008), and IPO alloca-
tions and pricing (Welch 1992). Brunnermeier (2001) and Hirshleifer and Teoh (2009) review the theory of herding
in financial markets. Recent models of social networks explore information acquisition, cost of capital, liquidity,
and trading volume (Özsöylev and Walden 2011; Han and Yang 2013). Burnside, Eichenbaum, and Rebelo (2016)
apply an epidemic model to explain booms and busts in the housing market; they do not examine transmission bias
in conversation, which is the focus of our paper.
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Hong, Kubik, and Stein (2004) provide evidence of social influence in stock market participa-

tion. In their motivating model, it is assumed that social interaction causes participation, rather

than nonparticipation, to spread from person to person. It follows that more social individu-

als participate more. However, contagion of nonparticipation is also possible. People who fear

the market or view it as an unsavory gambling casino can spread negative attitudes to others.

Our paper differs in modeling explicitly whether it is favorable or unfavorable information that

is transmitted and used by others; and in studying the more general topic of whether active or

passive investing strategies spread.8

2 The Model

2.1 Social Interactions in Network of Investors

The three key components of our approach are that investors prefer to communicate to other

investors about high returns, that message receivers are more likely to listen when they hear

about extreme returns, and that receiving investors do not fully adjust for these effects when

determining how to invest. For tractability and presentational convenience we make quite strong

simplifying model assumptions, but as we discuss below, qualitatively similar results hold more

generally in other settings with these key features.

Consider a population consisting of an even number of investors, N , who adopt either an Active

(A) or Passive (P) type of investment strategy, with returns RA and RP . In this section the return

distributions of these strategies are exogenously given. Section 3 derives return distributions

endogenously.

The Social Network

Investors are connected in an undirected social network represented by the graph G = (N , E),

where N is the set of investors and E is the set of edges connecting them. The set of investors

N = {1, . . . , N}, and (m,n) ∈ E ⊂ N × N if investors m and n are connected through a social

tie. By convention, the network is undirected, i.e., (m,n) ∈ E ⇔ (n,m) ∈ E , and investors are not

connected to themselves ((n, n) /∈ N ). Collectively, the investment strategies of all investors are

summarized by the vector z = (z1, z2, . . . , zN ) ∈ {A,P}N , where zm ∈ Z = {A,P} is investor m’s

strategy. For now, we develop the model in a static (two-date) setting. We subsequently analyze

a dynamic market with multiple dates t = 0, 1, 2, . . ., added as a superscript to these variables.

In the model, social ties could represent friendship, professional collaboration, membership in

the same country club, or involvement with the same online community. If (m,n) ∈ E , there is a

8Also, in Hong, Kubik, and Stein (2004), the knowledge and practices that social investors disproportionately
acquire are useful. If socials are more sophisticated than others, they may be less prone to undesirable active
investing strategies. In contrast, our approach implies that more social investors will make better decisions in
some ways (participation) but worse decisions other ways (e.g., buying high-expense mutual funds, engaging in day
trading, or trying to pick the best IPOs).
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chance that investor m tells n his investment strategy and performance. The set of investors that

n is socially linked to is Dn = {m : (n,m) ∈ E} ⊂ N\{n}, and n’s degree (number of connections)

is |Dn|. An investor with a higher degree is said to be more connected. We view degree as a proxy

for how sociable investor n is.

We assume a standard simple network formation process between investors, according to

the Erdös-Rényi-Gilbert random graph model (see Erdös and Rényi (1959), Erdös and Rényi

(1960), and Gilbert (1959)). In this model, links between investors are formed randomly and

independently. We adopt the Erdös and Rényi (1959) version of the model, in which the number

of connections is fixed. Specifically, M connections out of theQ = N(N−1)/2 possible connections

are randomly chosen sequentially without replacement. Here, M measures social connectivity in

the economy. For tractability, we assume that a new network is independently formed in each

time period.9

Senders and Receivers

In each period (generation), a pair of investors (m,n) is randomly selected, m being the

potential sender and n being the potential receiver, with associated strategies (zm, zn) ∈ Z×Z =

{AA,AP, PA, PP}. If the investors are connected, (m,n) ∈ E which occurs with probability

M/Q, the sender with some probability reports his return to the receiver. Let 0 ≤ h < 1

represent homophily, the tendency to associate with similar individuals. If h > 0, then a link

between investors of opposite type is sometimes inoperative. Specifically, a receiver who is sent a

message from a sender of different type only considers the message with probability 1− h.

When an AA or PP pair is selected (i.e., zm = zn), population frequencies remain unchanged.

When A and P meet (i.e., zm 6= zn, and the sender and receiver are linked), the probability

that sender of type i ∈ {A,P} reports his return performance to the receiver is s(Ri), which is

increasing in the sender’s return.10 Upon being sent this message, the receiver then converts to

the type of the sender with probability (1−h)r(Ri), where the function r is also increasing in the

sender’s return. It is convenient to also define g = M(1− h)/Q, which combines the probabilities

that an actual link is chosen among potential links (probability M/Q) and that the sender’s

message is not disallowed owing to homophily (probability 1− h).

We have assumed that for given sender return, the sending and receiving functions s and r

are independent of whether the sender or receiver are A or P. Nevertheless, transformations do

depend indirectly on the sender’s type, as this affects the distribution of the sender’s return.

We further assume that investors sometimes spontaneously switch their investment strategies

even in the absence of conversations with others. Allowing for this ensures that there is a unique

9A similar, albeit less tractable, approach would be to assume that connections between investors are gradually
and randomly severed and added over time.

10In actual conversations, often both parties recount their experiences. The model’s sharp distinction between
being a sender and a receiver in a given conversation is stylized, but since either type can become the sender, is
unlikely to be misleading.
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long-term distribution of A’s in the dynamic version of the model. For simplicity, we capture this

by assuming that with probability q � 1, a complete reset of strategies occurs such that N/2 of

the investors randomly choose to be active and the other N/2 choose to be passive in the next

period.11 If the reset probability were zero, the states with 0 or N active investors would be

absorbing, since the only way an investor can be persuaded by another to switch is if there is at

least one investor of the opposite type.

Let NA be the number of A’s and f be the population frequency of A’s at the start of a period

before the meeting,

f ≡ NA

N
. (1)

The probability that an A sender is paired with a P receiver in that period, given that the sender

and receiver are actually connected and that there are NA type A investors, is then χNA , where

χNA =
NA

N
× N −NA

N − 1
. (2)

This is also the probability that a P sender is paired with an A receiver. It follows that χNA =

f(1− f)N/(N − 1), so the probability of a mixed pairing is low when the fraction of A’s is close

to zero or one. Finally, the probability that an A sender who is paired with a P receiver converts

that receiver is TA(RA), and the probability that a P sender converts an A partner is TP (RP ).

The Sequence of Events

The overall sequence of events that determines how the number of A’s at time t, N t
A, changes

to N t+1
A at t + 1 is shown in Figure 1. Our initial focus is not on resets and homophily, and

we therefore assume for now that q = 0 and h = 0. We later show that almost all the results

discussed here extend to q, h > 0. Allowing for resets results in a unique long-term distribution of

A’s and P’s, regardless of their initial numbers (Proposition 2). The effects of homophily will be

discussed in Section 2.8. The network formation process is ex ante symmetric; before the network

is formed, the probability that any two given investors are paired is the same.

To derive the transformation probability function, in the next two subsections we describe the

sending function and then the receiving function in more detail. These transition probabilities are

not conditioned on the realized social network, E . Such probabilities are relevant for many empir-

ical settings in which the network is unobservable. However, we also derive network-conditioned

empirical implications.

2.2 Self-Enhancement and the Sending Function

Self-enhancing transmission bias is reflected in s′(Ri) > 0; the probability that sender of type i

sends a message describing the sender’s strategy and performance is increasing in the sender’s

11This is for tractability. The reset can be viewed as a simplification of a model where each investor switches
independently of the others.
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Figure 1: Sequence of events: At time t there are N t
A active investors. First, the network of connections,

G, and returns RA and RP are realized. With probability q there is then a reset so that N t+1
A = N/2. If no

reset occurs (probability 1− q), a sender (m) and a receiver (n) are chosen, and if (1) they are connected

(probability M/Q), (2) they have different strategies, and (3) the pairing is not disallowed by homophily

(probability 1− h), the sender converts the receiver to the sender’s style with probability Tzm(Rzm). The

next period’s number of active investors is then N t+1
A .

return, Ri. A sender may, of course, exaggerate or simply fabricate a story of high return. But

if senders do not always fabricate, the probability of sending will still depend upon the actual

return, and the reported return will tend to be increasing in the actual return.

We derive a linear upward-sloping sending function endogenously in Appendix A.2, based on

senders balancing the utility derived from reporting high returns (SET) against the utility derived

from reporting return when and only when doing so is conversationally appropriate. We therefore

use the linear specification

s(Ri) = βRi + γ, β, γ > 0, (3)

where i is the type of the sender. The sending function is type-independent, so β and γ have no

subscripts. To ensure that 0 ≤ s(Ri) ≤ 1, we require that −(γ/β) ≤ Ri ≤ (1 − γ)/β with high

probability, which can hold under reasonable parameter values for β and γ. Realistically, the edge

case in which the sending probability is close to one is unlikely to be empirically relevant, since in

practice investors talk about their investment strategy and performance in only a modest fraction

of their meetings with others. In particular, we can view a time period as being short, implying

low return variance, so that the probability of getting close to the edge of S(Ri) ≈ 0, 1 is very

small.

The more tightly bound is the sender’s self-esteem or reputation to return performance, the

stronger is SET, and therefore the higher is β. The constant γ reflects the conversability of the

investment choice. When the investment is an attractive topic for conversation, the sender raises
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the topic more often. The sender also raises the topic more often when conversations are more

extensive, as occurs when investors are more sociable (how much they talk and share information

with each other). So γ also reflects investor sociability.

In this specification, sending is stochastic and smoothly increasing. This reflects the fact

that raising a topic in a conversation depends on both social context and on what topics the

conversation partner happens to raise. High return encourages reporting of return, but sending

is still uncertain, as senders are constrained by conversational norms against bragging. Similarly,

conversational norms for responsiveness will sometimes lead to reporting of a low return.12

The positive slope of the sending schedule, reflecting SET, can be driven by either internal

biases or by incentives for positive self-presentation. In a review of the impression management

field, Leary and Kowalski (1990) discuss how people tend to avoid lying, but, consistent with

SET, selectively omit information “. . . to put the best parts of oneself into public view” (pp.

40-1). There is also substantial evidence of SET in financial settings.13 For example, consistent

with SET, in a database from a Facebook-style social network for individual investors, Simon and

Heimer (2015) report that the frequency with which an investor contacts other traders in a given

week is increasing in the investor’s short-term return.

Both a rational concern for reputation and psychological bias can contribute to SET. Research

on self-presentation and impression management finds that people seek to report positively about

themselves, as constrained by the need to be plausible and to satisfy norms for modesty (Goffman

1961; Schlenker 1980). Self-enhancing impression management strategies often have a degree of

success, to the benefit of the impression manager. There is also extensive evidence of internal self-

enhancing thought processes, such as the tendency of people to attribute successes to their own

virtues, and failures to external circumstances or luck (Bem 1972; Langer and Roth 1975). Such

processes encourage people to think more about their successes than their failures, as in the model

of Benabou and Tirole (2002). Such self-enhancing thinking is likely to result in self-enhancing

bias in conversation.

12Reporting favorably about one’s achievements and competence when doing so is not in response to a specific
question often leads to negative reactions in observers (Holtgraves and Srull 1989). So owing to conversational
norms, in some contexts a sender with high return may not get a graceful chance to raise the topic, and in others
even a reluctant sender with poor return will feel pressured to report his performance.

13Karlsson, Loewenstein, and Seppi (2009) and Sicherman et al. (2012) find that Scandinavian and U.S. investors
reexamine their portfolios more frequently when the market has risen than when it has declined. Consistent with
SET, for a wide set of consumer products, positive word-of-mouth discussion of user experiences tends to pre-
dominate over negative discussion (see the review of East, Hammond, and Wright (2007)), perhaps because users
want to persuade others that they are expert at product choice (Wojnicki and Godes 2008). Using cross-industry
stock-financed acquisitions as an instrument to establish causality, Huang, Hwang, and Lou (2016) provide evidence
of SET in investor communication about firms in different industries. Using spatial proximity as a proxy for social
linkage and amount of trading in the acquirer industry (excluding the acquirer) as proxies for investor communi-
cation, they find that target investors are about twice as likely to communicate views about firms in the acquirer
industry with their neighbors after experiencing above-median rather than below-median target announcement-day
returns. Also potentially consistent with SET, Shiller (1990) provides survey evidence that people talked more
about real estate in U.S. cities that have experienced rising real estate prices than those that have not.
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2.3 The Receiving Function

For notational convenience, we continue to focus on the case with no homophily, h = 0, which

allows us to introduce the receiving function most simply. All results in this section and Section

3 still hold when h > 0, as shown in Internet Appendix I. For a mixed pair of investors, consider

now the probability that a receiver of type j is converted to the sender’s type i. Conditional

upon a sender return Ri being communicated to the receiver, the probability that the receiver is

converted is denoted r(Ri).

We derive an increasing and convex quadratic receiving function (for the relevant range of Ri)

endogenously in Appendix A.2. This is based on the premises that, owing to the representativeness

heuristic, investors extrapolate past returns, and therefore, other things equal, find higher sender

returns more persuasive; and that more extreme returns are more salient, so that investors are

especially likely to be persuaded by extreme high returns (even after controlling for the basic fact

that high returns are more persuasive). This leads to the quadratic receiving function

r(Ri) = a(Ri)
2 + bRi + c, a, b, c > 0, (4)

where under appropriate parameter constraints ensuring that with probability close to 1, r is

monotonically increasing and takes value between 0 and 1. The quadratic receiving function

reflects attention to extremes. Relative to a linear function of Ri, the quadratic receiving function

which passes through the same points as the line at two values of Ri, R and R, is, owing to

convexity, below the line on (R,R), and above the line both to the left of R (low returns) and to

the right of R (high returns). The monotonicity and convexity of this functional reflects greater

receiver attention to extreme return outcomes, and, conditional upon paying attention, greater

persuasiveness of higher return.

As is the case for the sending function, this form of the receiving function cannot hold for

extremely high returns, since the probability of conversion is bounded above by 1, but, the edge

region in which the probability of conversion is close to 1 is outside the relevant range of returns.

Again, in practice, investors who hear about even a high return strategy from another investor

often do not adopt that strategy, and we view one period in the model as a sufficiently short time

period that very extreme returns are very unlikely.

The positive parameter b captures the tendency for higher sender returns to be more per-

suasive. So b reflects the degree to which the receiver tends to naively extrapolate past strategy

returns. The positive quadratic parameter a reflects convexity (attention to extremes). The

parameter c captures a return-independent susceptibility of receivers to influence of the sender’s

report. This can derive, for example, from the receiver learning about the existence of the sender’s

strategy from the sender, or from the receiver thinking that the sender probably had a good reason

for the sender’s adopted strategy. This explains why the receiving function is positive even when
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the sender has a negative return. Also, the receiver may have experienced an even lower return

from the receiver’s current strategy.

A key psychological consideration motivating the derived shape of the receiving schedule is the

representativeness heuristic. This is reflected in the receiving schedule in two ways. The first is

incomplete discounting by receivers for the selection bias in the messages they receive—selection

neglect.14 Selection neglect is to be expected when individuals with limited processing power

automatically process data in fast intuitive ways rather than taking the effortful cognitive step of

adjusting for selection bias.

Also based upon the representativeness heuristic, we assume that the receiver perceives the

sender return to be substantially informative about the desirability of the sender’s strategy. Re-

gardless of whether this conclusion is correct, it is tempting, as reflected in the need for the

boilerplate warning to investors that “past performance is no guarantee of future results.” One

or a few recent observations of the performance of a trading strategy generally convey little in-

formation about its future prospects. But according to the representativeness heuristic, investors

treat small samples as highly informative, consistent with r′(Ri) > 0 (with nontrivial slope).15

Furthermore, other things equal we expect extreme returns to be more attention-grabbing,

and therefore more persuasive. There is much evidence that extreme cues tend to be more salient

than moderate cues, and therefore are more often noticed and encoded for later retrieval (Fiske

1980; Moskowitz 2004; Morewedge, Gilbert, and Wilson 2005).16 The assumption a > 0 is

mainly needed for the model’s skewness predictions, but also reinforces the variance predictions.

When cognitive processing power is limited, a focus on extremes is a useful heuristic, as extreme

news tends to be highly informative. This implies the convex shape for the receiving function,

r′′(Ri) > 0 (subject to an upper boundary constraint that receiving probability cannot exceed

one).

In our specification of the receiving function, conversion is a function only of the sender’s

reported return. More generally receivers may sometimes compare the returns of the sender and

the receiver. Such a specification of the receiving function makes the model algebraically more

complex, but generates similar results since, in the model, every investor has a chance of being

either a sender or receiver. As a robustness check, we have verified that similar results apply when

the receiver’s switch decision depends on the difference in return between sender and receiver.

14Evidence of selection neglect is provided, e.g., by Nisbett and Ross (1980) and Brenner, Koehler, and Tversky
(1996). Koehler and Mercer (2009) find that mutual fund families advertise their better-performing funds, and that
both novice investors and financial professionals suffer from selection neglect.

15Also, our assumptions of increasing sending and receiving functions are compatible with the possibility of sender
lying and exaggeration, and a degree of receiver skepticism about such behavior.

16High salience of extremes is consistent with the finding that individual investors are net buyers of stocks that
experience extreme one-day returns of either sign (Barber and Odean 2008), and the finding that extreme gains or
losses at other time horizons are associated with higher probability of both selling and of buying additional shares
of stocks that investors currently hold (Ben-David and Hirshleifer 2012). It is also consistent with the salience
theory of choice under risk of Bordalo, Gennaioli, and Shleifer (2012, 2013), wherein individuals’ attention focuses
upon atypical payoffs.
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Also, in the model, investors decide whether to switch strategy based only on the most recent

period’s return. In principle, fully rational investors might eventually converge to the best action

by observing a long history of returns. However, this can be slow since return realizations are

noisy indicators about which strategy is better, and there is continual generational transition from

experienced to inexperienced investors. Our model captures this by allowing investors to retain

return messages for only single period.

2.4 Transformation Probabilities

The transformation probability that a sender of type A with return RA converts a receiver of

type P that he is paired to is TA(RA) = r(RA)s(RA), and the probability that a sender of

type P converts a receiver of type A is TP (RP ) = r(RP )s(RP ). By assumption, r′, s′ > 0, so

T ′A(RA), T ′P (RP ) > 0.

We have assumed that each investors invests fully and exclusively in only one of the active or

passive strategies. In practice, we expect investors to allocate capital to both strategies, though

with a tilt toward the favored strategy as influenced by social transmission biases. Our exclusivity

assumption, which we make for tractability, can be thought of as a case where the investors are

very sensitive to favorable signals about a strategy. We have also explored a setting in which all

investors are free to combine a risky and riskfree asset, and in which, owing to different beliefs,

A investors hold more of the risk asset than do P investors. This setting, though less tractable,

yields generally similar results.

2.5 Evolution of Types Conditional on Realized Return

We first derive the relationship between the spread in active investing in the population and past

returns. We examine both the expected net shift in the fraction of A’s—the difference between

inflows and outflows—and the expected unidirectional rate of conversion of P ’s to A’s, such as

the rate at which investors who have never participated in the stock market start to participate.

Given returns RP and RA, we calculate the expected change in the fraction of type A in the

population after one social interaction between two randomly selected connected investors. In the

four possible sender-receiver pairings AA, PP , AP , or PA, the change in the frequency of type

A given AA or PP is zero. The expected changes in the frequency of type A given a meeting AP

or PA and realized returns are

E[∆f |AP,RA] =

[
TA(RA)× 1

N

]
+ [(1− TA(RA))× 0] =

TA(RA)

N

E[∆f |PA,RP ] =

[
TP (RP )×

(
− 1

N

)]
+ [(1− TP (RP ))× 0] = −TP (RP )

N
. (5)

Taking the expectation across the different possible combinations of sender and receiver types
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(AA, PP , AP , PA), by (2) and (5),

E[∆f |RA, RP ] =
χNA
N

[TA(RA)− TP (RP )] , (6)

where as defined earlier, χNA is the probability of pairing of P sender with a A receiver. So for

given returns, the fraction of type A increases on average if and only if TA(RA) > TP (RP ).

Recalling that TA(RA) = s(RA)r(RA), we derive some basic predictions from the features of

the sending and receiving functions. If RA and RP are not perfectly correlated, we can calculate

the effect of increasing RA for given RP , which gives the following proposition.

Proposition 1 Suppose that the returns to A and P are not perfectly correlated. Then:

1. The one-way expected rate of transformation from P to A and the expected change in fre-

quency of A are increasing in return RA.

2. The one-way expected rate of transformation from P to A and the expected change in fre-

quency of A are strictly convex in return RA.

3. The sensitivity of the expected transformation rate of investors to A as a function of past RA,

and the convexity of this relationship, are increasing with SET as reflected in β, sociability as

reflected in γ, attention of receivers to extremes as reflected in a, and the extrapolativeness

of receivers b.

4. The sensitivity of the expected transformation rate of investors to A as a function of past RA

(but not the convexity of this relationship) is increasing with the susceptibility of receivers c.

Part 1 does not require our parametric specifications of the sending and receiving functions, only

that these be monotonic and that the receiving function be linear or convex (in the relevant

range).

This is a rich set of empirical implications, several as yet untested. The predictions of Parts

3-4 are distinctive to our model. For example, since past literature has provided empirical proxies

for sociability, it will be valuable to test whether greater sociability is associated with greater

slope and convexity of the transformation of investors to active investing as a function of past

returns on active strategies.

It will also be valuable to test for the effects of variation in SET as reflected in β, which can be

measured using psychometric testing, or by exploiting findings from cross-cultural psychology to

test for differences in investment behaviors across countries or ethnic groups. These predictions

help further distinguish our model from possible alternative hypotheses. For example, it is possible

that in a nonsocial setting with extrapolation, adoption of a strategy may be more sensitive to

performance in the gain region than in the loss region. However, a basic extrapolation setting

would not share the rich set of predictions of Parts 3 and 4 of Proposition 1.
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Some important existing evidence is consistent with the first two empirical predictions. Cheva-

lier and Ellison (1997) and Sirri and Tufano (1998) find that investor funds flow into mutual funds

with better performance. This is a non-obvious effect since evidence of persistence in fund per-

formance is very limited. Furthermore, the flow-performance relationship is convex; flows are

disproportionately into the best-performing funds.

Lu and Tang (2015) find that 401(k) plan participants place a greater share of their retirement

portfolios in risky investments (equity rather than fixed income) when their coworkers earned

higher equity returns in the preceding period. Kaustia and Knüpfer (2012) report a strong

relation between returns and new participation in the stock market in Finland in the range of

positive returns. Specifically, in this range, a higher monthly return on the aggregate portfolio of

stocks held by individuals in a zip code neighborhood is associated with increased stock market

participation by potential new investors living in that neighborhood during the next month.17

Their study also provides evidence that supports a prediction of Part 3 in Proposition 1 that the

sensitivity of the one-way expected rate of transformation from P to A (stock market entry in

their setting) increases with the intensity of social interaction.

The greater strength of the effect in the positive range is consistent with the convexity predic-

tion. Our model does not imply a literally zero effect in the negative range, but a weaker effect

within this range (as predicted by Proposition 1) would be statistically harder to detect.

In our setting, an increasing conversion of nonparticipants to participation derives from the

combination of SET and overextrapolation of others’ past returns. Part 1 of Proposition 1 captures

SET by s′(RA) > 0, and the greater willingness of receivers to convert when return is higher by

r′(RA) > 0.

Part 2 of the proposition delivers a more subtle effect, the convexity of the conversion-return

relation. This effect arises naturally from the interaction of sending and receiving functions in

our model. By (B.1) in the Appendix, s′ > 0 and r′ > 0 together contribute to convexity of

expected transformation as a function of RA. Intuitively, multiplying two increasing functions

generates rising marginal effects as the argument increases. A further contributor is the convexity

of the receiving function, r′′(RA), reflecting high salience of extreme outcomes (where very low

outcomes, even though salient, are not very persuasive, whereas extreme high outcomes are).18

17Their test focuses on the conversion of new investors to stock market investing, i.e., the conversion of P’s to
A’s. Their study does not test predictions in Proposition 1 about change in net shift from P to A, which accounts
for possible shifts from A to P as well.

18This discussion makes clear that Parts 1 and 2 rely only on first and second derivative conditions rather than
the specific polynomial specifications of the sending and receiving functions. Also, an examination of appendix
equations (B.3) and (B.4) clarifies the drivers of the basic findings (Parts 1 and 2). Part 1 holds even without SET
(i.e., even if β = 0). Intuitively, a higher return is simply more persuasive to receivers, which causes conversion.
SET provides another channel for the prediction in Part 1 by causing sending to increase after positive returns. For
Part 2, attention to extremes (a > 0) promotes convexity, because as past returns increase, at first the marginal
effect is weak (because of lack of attention to very low returns), and then becomes stronger (because of increasing
attention to very high returns). But attention to extremes is not required for convexity. Even if a = 0, SET induces
convexity, because when β > 0, the persuasive effect of higher return on receivers is reinforced multiplicatively by
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If we interpret A as active trading in the market for individual stocks, with a preponderance

of long positions, then a high market return implies high average returns to A’s. Proposition 1

therefore implies that when the stock market rises, volume of trade in individual stocks increases.

This implication is consistent with episodes such as the rise of day trading, investment clubs, and

stock market chat rooms during the millennial internet boom, and with evidence from 46 countries

including the U.S. that investors trade more when the stock market has performed well (Statman,

Thorley, and Vorkink 2006; Griffin, Nardari, and Stulz 2007). In Appendix C, we formally model

market equilibrium with trading volume to verify that evolution toward A is associated with high

trading volume.

2.6 Strategy Return Components and the Meaning of Active Investing

We now make exogenous assumptions about the distributions of strategy returns to derive impli-

cations about the spread of active investing. This partial equilibrium approach lets us interpret

‘active investing’ broadly as referring either to static actions such as holding a given risky asset,

or to dynamic strategies such as day trading, margin investing, stock picking, market timing,

sector rotation, dollar cost averaging, technical analysis, and so forth. We endogenize returns in

Section 3.

Let r be the common component of returns shared by A and P (e.g., the market portfolio),

where E[r] = 0, and let εi be the strategy-specific component, E[εi] = 0, i = A,P . We assume

that r, εA and εP are independent, and write the returns to the two strategies as

RA = βAr + εA −D,

RP = βP r + εP , (7)

where βi is the sensitivity of strategy return to the common return component. We assume that

the active strategy has higher systematic risk, βA > βP ≥ 0. We further assume that σ2A > σ2P ,

γ1A > 0, γ1P ≈ 0, and γ1r ≥ 0, where σ2A, σ2P are the variances of εA and εP , γ1r is the skewness

of r, and γ1A, γ1P are the skewnesses of εA and εP . We also let σr denote standard deviation of

the common factor r.

To summarize, active investing means choosing strategies with return distributions that have

higher volatility and possibly also higher skewness. This corresponds fairly well with common

parlance, but there are possible exceptions. For example, a long-short strategy that achieved low

risk, or a dynamic hedging strategy that generated a riskfree payoff, would not be active in the

sense we are using.

Since E[r] = E[εi] = 0, (7) implies that E[RP ] = 0, and D is the return penalty to active

trading. We call D the return penalty rather than the ‘cost’ of active trading, because a major part

a stronger tendency of senders to send.
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of the welfare loss may come from lack of diversification and excessive idiosyncratic risk-bearing.

So even when D < 0, the A’s may be worse off than P’s.19

2.7 The Unconditional Evolution of Investment Types

In our model, the evolution of types, as captured by the aggregate number and fraction of active

investors over time, N t
A and f t, follows a Markov chain, as shown in Figure 2. When q > 0,

0 1 N-1 NN/2 N/2+1N/2-1

gTPχ
1

gTPχ
N/2-1

gTPχ
N/2

gTPχ
N/2+1

gTPχ
N-1

gΤΑχ
1

gΤΑχ
N/2-1

gΤΑχ
N/2

gΤΑχ
N/2+1

gΤΑχ
N-1

... ...

Figure 2: Markov chain: Dynamics of N t
A when q = 0.

there is also a chance that N t+1
A = N/2 regardless of N t

A, because of a reset event. Given the

initial number of active investors, N0
A = n, the expected fraction of future A’s is defined as

φt = E[f t|f0 = n/N ].

Let the unconditional expected transformation probabilities given that two investors of oppo-

site type meet be denoted

TA = E[TA(RA)], and TP = E[TP (RP )]. (8)

Then when q = 0, the unconditional evolution of ∆f t+1 = f t+1 − f t is

Et[∆f
t+1] =

χNt
A

N
g(TA − TP ). (9)

where as defined earlier, g is the probability that an existing link out of all possible links is

selected and is not disallowed by homophily, g = M(1 − h)/Q. The expression above combines

the probabilities that investors of different type are chosen, which occurs with probability 2χ, and

that they choose to switch (probability TA and TP , from P to A and from A to P, respectively).

It follows from (9) that when q = 0, the expected fraction of A’s, φt, increases on average if

and only if TA > TP . It turns out that this condition is sufficient for φt to increase over time

19Even when D < 0, if A’s overvalue the risky asset and P’s are rational, being an A rather than a P decreases an
investor’s true expected utility (owing to excessive risk-taking, and an insufficient reward for bearing risk). So the
return penalty to active trading D underestimates the welfare loss from active trading. Greater transaction costs
of active trading (not modeled here) would also be reflected in D.
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also when q > 0. In this case, the long-term distribution of f is independent of the initial number

of A’s.20 Intuitively, the presence of a reset pulls the expected number of A’s downward toward

N/2, and thereby weakens the expected upward drift of ∆f t+1 without completely eliminating it.

The following proposition summarizes the result.

Proposition 2 When q > 0, there is a unique long-term distribution of the fraction of A’s, f∗,

and an associated long-term expected fraction, φ∗ = limt→∞ φ
t = E[f∗] < 1, that does not depend

on N0
A, the initial number of A’s. Moreover, if TA > TP , and N0

A = N/2 so that φ0 = 1/2,

then φt is strictly increasing in t, and P(f t ≥ 1/2) > 1/2 for all t ≥ 1. The reverse obtains if

TA < TP .

The uniqueness of the long term distribution when q > 0 follows from the Perron-Frobenius

theorem for stochastic processes, as discussed in the proof of the proposition.

To determine how the return distributions of A versus P affect the relative survival of these

strategies, we therefore need to see how these distributions affect whether TA > TP . For the

remainder of the paper, we assume that half of the investors initially choose A, N0
A = N/2,

f0 = 1/2. An example of the evolution of the distribution of the fraction of A’s is shown in

Figure 3.

Since the only random variable that the r and s functions depend upon is the sender return,

the expected change in relative frequency of A versus P is driven by how these strategies affect

the distribution of sender returns R, as reflected in mean, variance, and skewness. By (7), direct

calculation, and taking the expectation over r, εA and εP , the expected change in frequency over

one period satisfies(
2N

gχNt
A

)
E[∆f ] = TA − TP

= aβ[(β3A − β3P )γ1rσ
3
r + γ1Aσ

3
A − γ1Pσ3P ] + B[(β2A − β2P )σ2r + (σ2A − σ2P )]

+ Daβ(−3σ2A −D2 − 3σ2rβ
2
A) +D2B −DC, (10)

where σ denotes standard deviation, γ1· denotes skewness, and B = aγ + bβ, C = bγ + cβ.

We now describe conditions under which evolution favors A or P. The next proposition follows

immediately by (10), the parameter constraints of the model (βA > βP ≥ 0, σ2A > σ2P , γ1A > 0,

γ1P ≈ 0, and γ1r ≥ 0), and Proposition 2.

Proposition 3 If the return penalty to active trading D is sufficiently close to zero, then under

the parameter constraints of the model, φt is increasing in t, i.e., on average the fraction of active

investors increases over time toward its steady state value.

20In contrast, when q = 0, the long-term distribution, f∗, depends on the initial number of A’s.
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Figure 3: Distribution of number of active investors. Dynamics of distribution and expectation of

fractions of A’s, f and φ in economy with N = 1000 investors. Dotted (blue) curve shows distribution at

t = 200. Solid (black) line shows long-term distribution. Expected fraction of A’s are φ200 = 503.6/1000 =

0.5036 and φ∗ = 537.0/1000 = 0.537. Parameter values: q = 0.0005, h = 0, TA = 0.25, TP = 0.175,

M/Q = 0.5.

The fraction of As fluctuates, since return realizations of the strategies are stochastic. However,

Proposition 3 indicates that on average the fraction of As grows, reflecting the attractiveness of

active investing.

This comes from reinforcing effects. Owing to SET, the spread of A over P is favored by

parameter values that increase the volatility of A relative to P: higher factor loading βi and

idiosyncratic volatility σi. A strategy that is more volatile (either because of greater loading on

a factor or because of idiosyncratic risk) magnifies the effect of SET in persuading receivers to

the strategy. Furthermore, the greater idiosyncratic skewness of A (γ1A ≥ γ1P ), promotes the

spread of A. Owing to greater attention to extremes (a > 0), skewness (which generates salient

and influential high returns) further reinforces the success of A, but SET promotes the spread of

A even if a = 0.

An additional direct effect which does not rely on SET further promotes the spread of A. This

effect only operates if a > 0 (salience of extreme news). Starting as benchmark with the case of

a = 0, in the absence of SET (β = 0), and if the expected returns of the two strategies are the

same, the transformation of P investors to A resulting from overextrapolation by receivers of high
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A returns is exactly offset by transformations in the other direction when returns are low. So the

expected change in the fraction of A’s from a meeting is zero.21

If instead a > 0, the receiving function is convex, so that high returns have a stronger effect

on the upside than low returns have on the downside. Owing to its higher variance, A generates

extreme returns more often, which intensifies this favorable effect.

To see this algebraically, eliminate SET in the model by setting β = 0. Then the expected

change in frequency of A is, up to a multiplicative constant,

TA − TP = aγ[(β2A − β2P )σ2r + (σ2A − σ2P )] +D2aγ −Dbγ. (11)

Setting aside last two terms involving the mean return term D (which vanish when D ≈ 0), we

see that even without SET, there tends to be growth in the frequency of A if there is attention to

extremes (a > 0). However, there is no inherent tendency for high skewness strategies to spread.

This can also be seen from the comparatives statics of equations (B.6) and (B.7), in which the

effects of skewness are eliminated when β = 0.

In summary, SET promotes A owing to its higher variance and (if a > 0), its higher skewness;

without SET, the attention to extremes effect (in combination with extrapolation) also promotes

A solely via a variance effect.

2.7.1 Comparative Statics

To gain insights into the determinants of the reproductive success of A versus P strategies, we

describe comparative statics effects on the growth in the active population fraction.

Proposition 4 If D ≈ 0, then under the parameter constraints of the model, the expected change

in the fraction of A, Et[∆f
t+1]:

1. Decreases with the return penalty to active trading D;

2. (a) Increases with factor skewness, γ1r;

(b) Increases with active idiosyncratic skewness, γ1A;

(c) The above effects are intensified by the salience of extreme returns as reflected in a,

and SET as reflected in β.

3. (a) Increases with active idiosyncratic volatility, σA;

(b) Increases with the factor loading of the active strategy, βA;

(c) Increases with the variance of the common factor, σ2r ;

21More generally, whichever strategy has higher mean return will, all else equal, tend to spread owing to the
persuasiveness of higher returns. However, in an equilibrium setting, growing popularity is self-limiting, as it drives
the price of the A strategy up and its expected return down.

20



(d) The above effects are intensified by greater sociability/conversability, as reflected in

γ, and by the following other characteristics of the sending and receiving functions:

salience of extreme returns as reflected in a, SET as reflected in β, and the extrapola-

tiveness of receivers as reflected in b.

4. Increases with SET, β;

5. Increases with the extrapolativeness of receivers, b;

6. Increases with attention of receivers to extremes, a;

7. Increases with the sociability/conversability, γ.;

8. Can either increase or decrease with the susceptibility of receivers, c; the relation is increas-

ing when D < 0 and decreasing if D > 0.

The proof of these claims follows directly by differentiation, and is provided in Appendix B.4.

The predictions in Proposition 4 about conversion of types translate into predictions about the

popularity of active trading strategies. Based upon a simple assumption about pricing—that the

higher the demand for a security, the higher its price and therefore the lower its expected long-run

future return, we can interpret the comparative statics from Proposition 4 as comparative statics

on the expected returns of active investors. The negative relation between number of A’s and

expected returns holds in the equilibrium model in Section 3. We provide intuitions for the effects

in the rest of this subsection.

Part 1 makes the fairly obvious point that if the average return penalty D to active trading

is larger, A will be less successful in spreading through the population. Part 2a asserts that the

advantage of A over P is increasing with factor skewness. Intuitively, extreme high returns are

especially likely to be sent, to be noticed, and to convert the receiver when noticed. More positive

skewness for the common factor implies that it is more likely to observe high realized return for

the common factor. Because of the larger factor loading for active strategy, such high factor

return is magnified in A relative to P, making A more contagious.

Part 2b on the effect of varying active idiosyncratic skewness, γ1A, implies that conversation

especially encourages demand for securities with high skewness. Mitton and Vorkink (2007) and

Goetzmann and Kumar (2008) document that underdiversified individual investors (presumably

naive investors—whom we would expect to be most subject to social influence) tend to choose

stocks with high skewness—especially idiosyncratic skewness. Examples of skewed securities in-

clude options, and ‘lottery stocks’, such as real option firms that have a small chance of a jackpot

outcome. As more investors favor positively skewed stocks, the expected returns of such stocks in

the future would be depressed. This is consistent with the empirical finding that ex ante return

21



skewness is a negative predictor of future stock returns (Conrad, Dittmar, and Ghysels 2013;

Eraker and Ready 2015).22

The implications of the theory for the attraction of individual investors to lottery stocks are

among this paper’s key contributions. Existing explanations for this phenomenon have focused

solely on an inherent individual characteristic—nontraditional preferences. In Brunnermeier and

Parker (2005), agents who optimize over beliefs prefer skewed payoff distributions. In Barberis

and Huang (2008), prospect theory with probability weighting creates a preference over portfolio

skewness, which induces a demand for ‘lottery’ (high idiosyncratic skewness) stocks that contribute

to portfolio skewness. Surprisingly, we find that attraction to lottery stocks can instead derive

from biases in the process of social interaction.

Existing preference-based theories are highly plausible, but there are indications that the

tendency to favor lottery stocks does not derive solely from hard-wired psychological biases.

Consistent with a possible effect of social contagion, individuals who live in urban areas buy

lottery tickets more frequently than individuals who live in rural areas (Kallick et al. (1979)).

Furthermore, there is evidence suggesting that the preference for high skewness stocks is greater

among urban investors, after controlling for demographic, geographic, and personal investing

characteristics (Kumar 2009).23 Furthermore, as discussed in the introduction, an empirical test

of our model finds that lottery-like features (skewness and volatility) negatively predict returns

more strongly when the intensity of social interaction is higher, as proxied by either population

density or the Social Connectedness Index from Facebook (Bali et al. (2018)).

A key difference of our approach from approaches based upon inherent preferences over beliefs

or over portfolio skewness, as in the theories just mentioned, is that biases in the transmission

process cause the purchase of lottery stocks to be contagious. This can help explain the empirical

association of high social interaction with gambling and lottery behaviors. In our setting, greater

social interaction increases contagion, thereby increasing the holdings of lottery stocks.24 For

example, investors with greater social connection (as proxied, for example, by population density,

participation in investment clubs, or self-reports of interactions with neighbors or regular church-

going) will favor such investments more.

Barber and Odean (2008) find that individual investors are net buyers of stocks following

extreme price moves, with institutional investors on the opposite side. So if naive individual

investors are more affected by the salience of extreme returns, the attraction of individual investors

22There is also evidence from initial public offerings (Green and Hwang 2012) and general samples (Bali, Cakici,
and Whitelaw 2011) that lottery stocks are overpriced, and that being distressed (a characteristic that leads to a
lottery payoff distribution) on average predicts negative abnormal returns (Campbell, Hilscher, and Szilagyi 2008).
Boyer and Vorkink (2014) find that the ex ante skewness of equity options is a negative cross-sectional predictor of
option abnormal returns.

23Kumar (2009) empirically defines lottery stocks as stocks with high skewness, high volatility, and low price, so
his findings do not distinguish the effects of skewness versus volatility.

24The effect is formalized in Section 2.8, Proposition 9, in which it is shown that the expected number of active
investors—in this context investing in lottery stocks—increases with investors’ social connectivity, M .
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to high skewness, as implied by Part 2c, is stronger than the attraction of institutional investors.

Part 3a implies that there is greater investor demand for more volatile stocks. Consistent with

Part 3a, Goetzmann and Kumar (2008) document that underdiversified investors prefer stocks

that are more volatile. A further empirical implication of Part 3a is that in periods in which

individual stocks have high idiosyncratic volatility, all else equal there will be greater holding of

and volume of trade in individual stocks. Intuitively, during such periods A’s have higher returns

to report selectively. This implication is in sharp contrast with the prediction of portfolio theory,

which suggests that in periods of high idiosyncratic volatility, the gains to holding a diversified

portfolio rather than trading individual stocks is especially large. There are theories of bubbles

in which high return volatility might be associated with high stock trading because investors

are experiencing especially strong sentiment or misperceptions. A distinctive implication of the

prediction here is that when an increase in the volatility of fundamentals is the driver of an

increase in return volatility, there will still be an increase in stock holding and trading volume.

The greater demand of investors for a higher-volatility stock implies that it will have a higher

price, depressing its expected return. This is consistent with the idiosyncratic volatility puzzle that

stocks with high idiosyncratic risk earn low subsequent returns (Ang et al. (2006, 2009)). This

apparent overpricing is stronger for firms held or traded more heavily by retail investors (Jiang,

Xu, and Yao 2009; Han and Kumar 2013), for whom we would expect conversational biases to be

strong. Thus, the theory offers a new social explanation for the idiosyncratic volatility puzzle:

the high returns generated by volatile stocks are heavily discussed, which increases the demand

for such stocks, driving up their prices.

A plausible nonsocial explanation for these findings is that realization utility or prospect

theory with probability weighting creates a preference for volatile portfolios and stocks (Barberis

and Huang 2008; Boyer, Mitton, and Vorkink 2010). A distinctive implication of our approach is

that the effect derives from social interaction. Consistent with social contagion playing a role, in

tests using extensive controls, the preference for high volatility is greater among urban investors

(Kumar (2009); see also footnote 23).

Part 3b implies that there is higher demand for high-beta stocks, pushing their price upward

(and thereby depressing their expected returns). This is consistent with the anomaly that high

beta stocks underperform and low beta stocks overperform (Baker, Bradley, and Wurgler 2011;

Frazzini and Pedersen 2014). Frazzini and Pedersen (2014) propose a rational explanation of this

effect based on leverage constraints. Our model provides a new social explanation for investor

attraction to lottery-like stocks.

Part 3c indicates that greater volatility, σr of the common factor favors the spread of A.

Greater factor volatility encourages the spread of the strategy with the greater loading, A, by

creating greater scope for SET to operate. This implies that all else equal, there will be greater

stock market participation in time periods and countries with more volatile stock markets. This
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contrasts with the conventional theory, in which greater risk, ceteris paribus reduces the benefit

to participation.

Part 3d highlights a distinctive set of empirical implications, that demand for stocks with high

beta or high idiosyncratic volatility will be strengthened by greater sociability as reflected in γ,

and by other social psychological factors reflected in other parameters of the sending and receiving

functions. These include the salience of extreme returns as reflected in a, SET as reflected in β,

and the extrapolativeness of receivers as reflected in b. Such parameters can be measured, so

these predictions are empirically testable.25

Proposition 4 also suggests direct effects of various characteristics of the social transmission

process and the evolution toward A. First, in the Part 4 comparative statics on β, greater SET

increases the evolution toward A, because SET causes greater reporting of the high returns that

make A enticing for receivers. A generates extreme returns for SET to operate upon through

higher factor loading, idiosyncratic volatility, or more positive idiosyncratic skewness. The link

between performance and self-esteem could be estimated empirically using psychometric testing.

Second, in the Part 5 comparative statics on b, greater extrapolativeness of receivers helps

A spread by magnifying the effect of SET. This suggests that active investing will be more

popular when extrapolative beliefs are stronger (past returns are perceived to be more informative

about the future); as mentioned above, extrapolativeness can be estimated empirically to test this

hypothesis.

Third, in the Part 6 comparative statics on a, greater attention by receivers to extreme

outcomes promotes the spread of A over P. This is because A generates more of the extreme

returns which, when a is high, are especially noticed and more likely to persuade receivers. This

effect is reinforced by SET, which causes greater reporting of extreme high returns.

Fourth, in the Part 7 comparative statics on γ, greater conversability can help the active

strategy spread because of the greater attention paid by receivers to extreme returns (a > 0),

which are more often generated by the A strategy. This is consistent with active trading becoming

more popular when people become more talkative about their investment performance. Examples

include the rise of communication technologies, media, and such social phenomena as ubiquitous

computing, stock market chat rooms, investment clubs, and blogging. This raises the possibility

that the rise of these phenomena—to the extent that this occurred for reasons other than a rising

stock market, such as technological change—contributed to the internet bubble.

Also, trading outcomes are a trigger for conversation about trading, so over time as markets

become more liquid and trading becomes more frequent, we expect conversation about outcomes

to become more frequent. The trend toward greater availability of real-time reporting and discus-

25For example, Barber and Odean (2008) estimate the effects of investor attention to extreme returns, and several
papers estimate the extrapolativeness of return expectations using both survey approaches (Case and Shiller 1988;
DeBondt 1993; Vissing-Jorgensen 2003) and field evidence (Greenwood and Shleifer 2014; Hoffmann, Post, and
Pennings 2015).
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sion of financial markets on television and through the internet therefore can induce more rapid

evolution toward more active investing.

If greater general sociability is associated with greater comfort in discussing performance

information, then in any given conversation it increases the unconditional probability that the

sender will discuss returns; i.e., it increases γ. So again, if the expected return of A is not

too low, this will increase evolution toward active trading. Empirically, participation in online

communities has been found to be associated with riskier financial decisions (Zhu et al. (2012)).

Using field studies, the authors found greater risk-taking in bidding decisions and lending decisions

by participants in discussion forums (Prosper.com) and in discussion boards and chat rooms

(eBay.de), and that risk-taking increases with how active the participants are in the community.

There is also survey evidence that greater household involvement in social activities is asso-

ciated with greater stock market participation both in the U.S. (Hong, Kubik, and Stein 2004)

and in ten European countries (Georgarakos and Pasini 2011). Furthermore, Heimer (2014) doc-

uments that social interaction is more prevalent amongst active investors who buy and/or sell

stocks than passive investors who hold U.S. savings bonds, thereby supporting our explanation

for the active investing puzzle in which informal communication tends to promote active rather

than passive strategies.

As discussed earlier, another reasonable way to interpret the active versus passive distinction

is that active strategies are more conversable (less conventional, more affect-triggering, or more

arousing). As documented by Berger and Milkman (2012), more arousing online content is more

viral. This distinction could be incorporated formally by replacing γ in the sending function

with γA and γP , where γA > γP . However, the model generates a survival advantage for A even

without a conversability advantage. It is immediately evident that γA > γP favors the spread of

A (as we have verified), since a receiver cannot be converted unless he receives a message from the

sender. Intuitively, γA > γP , ceteris paribus, causes adopters of A to evangelize to P’s more often

than the other way of around, which favors evolution of the population toward A. So we simply

assert this conclusion while maintaining the simplicity of a single γ for the remaining analysis.

Since strategy A is more overpriced when the frequency of A in the population is higher, with

γA > γP , the model further implies that overvaluation of stocks with ‘glamour’ characteristics

that make them attractive topics of conversation. Investing in strategies that are more conversable

is our third possible interpretation of ‘active investing,’ as mentioned in the introduction. Such

glamour characteristics include growth, recent IPO, sports, entertainment, media, and innovative

consumer products (on growth, see Lakonishok, Shleifer, and Vishny (1994); underperformance

of IPO and small growth firms, see Loughran and Ritter (1995) and Fama and French (1993)).

In contrast, there will be neglect and underpricing of unglamourous firms that are less attractive

topics of conversation, such as business-to-business vendors or suppliers of infrastructure. The

attraction to conversable strategies can therefore help explain several well-known empirical puzzles
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about investor trading and asset pricing.

Related predictions about the effects of investor attention have been made before (Merton

1987). A distinctive feature of our theory is that the effects derive from social interaction, and

should therefore be stronger in times and places with greater sociability. This point provides

additional empirical predictions about the effects on trading and return anomalies of population

density, urban versus rural localities, pre- and post-internet periods, differences in self-reported

degrees of social engagement, and popularity of investment clubs and chat rooms.

Lastly, the comparative statics on c in Part 8 of Proposition 4 implies that when there is a

stronger preference for conformity (hence, greater susceptibility of receivers), there is a stronger

tendency for the population to evolve toward A. Different ethnic and religious groups differ greatly

in their exclusivity and the extent to which they place conformist pressures upon members (as

reflected, for example, in the theory of club goods and religion; Iyer (2015)). The degree of

ethnic or religious homogeneity is also likely to affect conformist pressures. So this implication is

empirically testable using demographic data.

Proposition 4 provides implications about the expected change in the fraction of active in-

vestors over the next period. We perform comparative statics for the level of expected frequency

of active investors in the population at any given future time in Proposition 5.

Proposition 5 Under the parameter constraints of the model, for D sufficiently close to zero,

for any given time t > 0, the expected population frequency of A, φt:

1. Decreases with the return penalty to active trading D;

2. Increases with active idiosyncratic skewness, γ1A;

3. Increases with active idiosyncratic volatility, σA;

4. Increases with attention of receivers to extremes, a, when
(
βA
βP

)3
≥
(
σA
σP

)2
or β3Pγ1rσ

3
r ≤

γ2c
β2b

;26

5. Increases with SET, β, when
(
βA
βP

)3
≥
(
σA
σP

)2
or β3Pγ1rσ

3
r ≤ bc

a2
.

Since these results are similar to those of Proposition 4, we refer the reader there for discussion

of intuition and empirical implications.

26Under our standing parameter restrictions, the additional condition that
(
βA
βP

)3

≥
(
σA
σP

)2

ensures that the

ratio of the third moment of the A return to its second moment is larger than the same ratio for the return of
P, which is similar to saying that the skewness of RA is bigger than skewness of RP . The alternative sufficient
conditions in Parts 4 and 5 are not very restrictive. For example, they hold when factor volatility or skewness is
close to zero, when the passive strategy has low sensitivity to the factor, or when susceptibility is high.
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2.8 Investor Behavior in the Social Network

The model has strong empirical implications for how social connections and investor and network

neighbor characteristics influence investor behavior.

First, investor transformation to the types of network neighbors are directly related to their

strategies and performance in the intuitive directions.

Proposition 6 Given a social network, E, the probability that investor n changes to the opposite

type is increasing in

1. The number of n’s connections to investors of the opposite type, and

2. The performance of n’s connections that are of the opposite type.

Second, convexity in the transition dynamics, as described in aggregate in Proposition 1, also

holds at the investor level.

Proposition 7 Given a social network, E, the probability that investor n changes type is strictly

convex in each of the returns of the opposite-type investors that n is connected to.

Third, related to Proposition 4, conversion to A tends to be encouraged by the skewness and

volatility of the strategies of the investor’s neighbors.

Proposition 8 Given a social network, E, the probability that investor n converts to A is in-

creasing in the skewnesses of the portfolio returns of each of n’s network neighbors, m ∈ Dn. If

the return penalty is small, D ≈ 0, then the probability that n converts is also increasing in the

return volatilities of each of n’s neighbors, m ∈ Dn.

Finally, there is a rich set of testable empirical implications about the relationship between

network connectedness properties, such as being more well-connected or more homophilous, per-

sonal characteristics, such as attention to extremes and susceptibility, and the tendency for A

to predominate in the population. In the following proposition, we extend the model to allow

for individual differences in homophily, attention to extremes, extrapolativeness, SET, and con-

versability, in addition to differences in network connectedness.

Proposition 9

1. The probability that investor n is an A at any time t ≥ 1 increases in the investor’s number

of connections at time 0, |D0
n|.

2. The expected fraction of A’s, E[f t], at any time t ≥ 1 increases in the aggregate connectivity

of investors, M (i.e., the total number of connections in the population).

3. The expected fraction of A’s, E[f t], at any time t ≥ 1 decreases in aggregate homophily, h.
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4. The probability that investor n is an A at t = 1 decreases in that investor’s homophily, hn.

5. If D ≈ 0, the probability that investor n is an A at t = 1 increases with that investor’s

attention to extremes, an, and extrapolativeness, bn.

6. If D ≈ 0, the probability that investor n is an A at t = 1 increases with each of that investor’s

neighbors’ SET, βm, and conversability, γm, m ∈ D0
n.

7. The sensitivity of the probability that a passive investor n switches to A between t = 0 and

t = 1, as a function of RA, and the convexity of this relationship, are increasing in that

investor’s attention to extremes, an, and extrapolativeness, bn.

8. The sensitivity of the probability that passive investor n switches to A between t = 0 and

t = 1, as a function of RA, and the convexity of this relationship, are increasing in each of

that investor’s neighbors’ SET, βm, as well as their conversability, γm, m ∈ D0
n.

As compared with investment professionals, individual investors are almost surely more strongly

influenced by casual social communication of performance anecdotes relative to independent anal-

ysis and investigation. This suggests that the predictions of Propositions 6-9 that social interaction

favors active investing will apply more strongly to individual investors than to professionals.

These implications are empirically testable. Part 1 of Proposition 9 predicts that more sociable

investors tend to be A’s. This could be tested by relating social interaction proxies with a variety

of active investing behaviors.

Parts 2 and 3 indicate that the expected prevalence of A is increasing with aggregate gregar-

iousness and decreasing with homophily.

Part 4 turns to individual homophily of an investor, which decreases the investor’s probability

of being an A. Specifically, it is straightforward to allow for individual variation in homophily

in the sequence of events described in Figure 1. Investors with higher homophily more often

reject pairings with those of opposite types, and are therefore less prone to switch investment

strategy. The effect goes both ways, i.e., there is less switching of P to A and less from A to P.

However, owing to the asymmetry in conversion probabilities, homophily more strongly hampers

conversion from P to A than in the reverse direction, leading to the result. Similarly, Part 5 shows

that investors with higher individual attention to extremes and/or extrapolativeness have higher

probability of becoming A’s.

Part 6 indicates that the conversion probability of a P switching to A increases with the SET

and conversability of each of that investor’s neighbors.

Parts 7 and 8 are the direct network extensions of Proposition 1 Part 3. Part 7 indicates

that the sensitivity of the probability of transformation of a receiving P investor who is linked

to an A is increasing with key parameters of that investor’s receiving schedule: attention to

28



extremes, an, and extrapolativeness, bn. Furthermore, these parameters increase the convexity of

this relationship.

Finally, Part 8 indicates that the sensitivity and convexity of the conversion probability of a

P to A as a function of RA increases with those characteristics of the neighbor’s sending-function

which, as we know from before, encourage (biased) message sending: the neighbor’s SET, βm, and

sociability, γm. Empirically, the self-enhancement parameter βm can be identified by psychometric

testing, or based on other features of self-enhancing behavior. For example, the literature on self-

enhancement finds that self-enhancing motives are especially strong when people feel threatened,

or after failures or other challenges to self-esteem (Dunning, Leuenberger, and Sherman (1995).

So we expect higher βm for individuals with adverse personal experiences.

3 Optimal Investing Decisions and Equilibrium Expected Re-
turns

So far, we have modeled the economy in a partial equilibrium setting with exogenous return

distributions for A and P, along with informal arguments that when there are more A’s in the in-

vestor population, demand for this strategy increases, decreasing future returns. In practice, after

extensive inflow of investors into active strategies, we expect the equilibrium price of acquiring

strategy positions to rise, reducing expected future returns. So evolution toward A is self-limiting.

We now extend the model to capture such equilibrium effects.

The Investment Technology

We model the supply-side of the economy as a set of short-term investment opportunities with

diminishing returns to scale, which implies imperfectly elastic supply. We assume that the output

elasticity is lower for investments associated with active than for passive strategies, reflecting

the idea that active strategies may be less scalable. For simplicity, we assume that investments

associated with P’s are perfectly elastic, whereas investments associated with A’s are not. As a

special case, the passive investment could, for example, represent a low-risk storage technology.

In contrast to the constant return distributions in (7), the one-period returns in this case

depend on total active investments, X, as

RA(NA) = (βAr + εA + κ)× (ρX)−1/2 − κ, (12)

RP = βP r + εP , (13)

where the κ > 0, ρ > 0 are parameters, and X in equilibrium will depend on NA.27

27The return specification in (12) corresponds to a concave production function where input X leads to stochastic

production (βAr + εA + κ) ×
(
X
ρ

)1/2

− κX. The parameters are such that a higher ρ is associated with a lower

expected output, and a higher κ corresponds to a more concave production function.

29



The Investor Objective

The objective of investors is to maximize the mean-variance expected utility function

U = E[R]− ζ

2
V ar(R), (14)

where for simplicity we set the risk aversion coefficient ζ = 1. The riskfree asset has return rf .

Here, since we have normalized such that E[r] = E[εA] = E[εP ] = 0, we assume that rf < 0. The

negative riskfree rate could, for example, represent a storage technology with some depreciation.

This assumption could easily be modified, at the cost of greater algebraic complexity, by allowing

for additional intercept components of returns in (12) and (13).

By assumption, the P’s maximize expected utility of investing in a portfolio consisting of a

risky investment alternative that is available to P investors, and the riskfree asset. Similarly, A’s

optimize a portfolio of a risky investment alternative that is available to A investors, and the

riskfree asset. Investors optimize rationally, but do not consider including both passive and active

assets in their portfolios at the same time. In equilibrium, active investors’ total demand is X,

where they optimize expected utility given the return distribution in (12).

Joint Determination of Strategy Popularity and Asset Returns

In this specification, the return penalty, DNA , depends on NA, the number of A’s. We choose a

specific value for the ρ parameter,

ρ =
2(β2Aσ

2
r + σ2A)

N |rf |
,

which in equilibrium implies an initial return penalty of zero, DN/2 = 0. The case of a zero

return penalty to active investing is a simple benchmark case that is useful for identifying what

influences the spread of competing investment strategies when the obvious effect of expected

return differences is neutralized. In contrast with (8) in the partial equilibrium setting, it follows

from the dependence here of equilibrium return on the number of A’s that the transformation

probability also depends on NA,

TANA = E[TA(RA(NA))]. (15)

The following proposition provides conditions under which the results from Section 2 generalize

to the equilibrium setting.

Proposition 10 Under the parameter restrictions that |rf | is small, κ ≥ |rf |, γ1P ≈ 0, γ1r ≥ 0,

and

βA > 2βP (16)

σA > 2σP , (17)
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the equilibrium return penalty, DNA, is small, and Propositions 1-3, Proposition 4.2-4.8, Propo-

sition 5.2 and 5.3, and Propositions 7-9, continue to hold in equilibrium. Moreover, under the

additional condition (
βA
βP

)3

≥ 2

(
σA
σP

)2

, (18)

Proposition 5.4 and 5.5 also continue to hold. Finally, P(DNt
A
≥ 0) > 1/2 for all t ≥ 1, and the

expected returns an agent receives from active investments is nonpositive and strictly decreasing

over time.

The equilibrium return penalty is positive most of the time, since the number of A’s tends to

be greater than half the size of the population (see Proposition 2). The positive return penalty

is thus an equilibrium outcome in this setting. The A’s bear higher risk to achieve lower returns,

thereby doing worse on average. Intuitively, transmission bias causes A to spread, putting a

downward pressure on the returns to the A strategy, and thereby inducing a return penalty to

active investing. In other words, owing to transmission bias, A investing persists despite needing

to climb uphill against a return penalty.

The sufficient conditions on βA and σA are stricter in the equilibrium setting, as seen by the

extra factor 2 in (16) and (17). This factor arises because the restriction TANA depends on the

number of active investors, NA, and TANA > TPNA needs to be satisfied for all 1 ≤ NA ≤ N . Of

course, these are just sufficient conditions.

The only results that do not extend to the equilibrium setting (Proposition 4 Part 1, and

Proposition 5 Part 1) are the comparative statics with respect to the return penalty. Such com-

parative statics are not defined in the equilibrium model because the return penalty is endogenous.

We do not wish to overemphasize the implication that in equilibrium A has lower expected

return than P (and associated comparative statics), because under a reasonable alternative as-

sumption, this implication can be reversed. The model has assumed that the susceptibility of

receivers, c, is the same regardless of whether the sender was an A or a P, so that for given

reported return, the probability that a receiver is converted does not depend on sender identity.

However, a receiver who recognizes that A is riskier than P may be less willing to convert, for

any given return, if the report comes from an A. For example, a report of a 4% annual return

might be much more attractive if it is about a riskfree asset than about a risky tech IPO. So we

would expect receivers to be less susceptible to messages that come from an A. This would be

reflected by having the receiver susceptibility parameter c in the receiving function be lower if the

sender was an A than a P, cA < cP . This would weaken the spread of the A strategy relative to

P, reducing its price, so that in equilibrium the expected return of A could be higher than P.

In summary, the comparative statics in the equilibrium setting are similar to those derived in

the partial equilibrium setting.

31



4 Concluding Remarks

We offer a new social approach to investment decision-making and asset prices. We argue that

success in the struggle for survival between investment strategies is determined by the sending

function, which describes the probability that a sender communicates a strategy and its perfor-

mance, and the receiving function, which describes the probability that this information converts

the receiver to that strategy.

In the model, owing to self-enhancing transmission, senders’ propensity to communicate their

returns is increasing in sender return. The propensity of naive receivers to be converted is also

increasing in sender return. Owing to the salience of extremes, the propensity of receivers to

attend to and be converted by the sender is convex in sender return. These shapes of the sending

and receiving functions, together with the structure of the social network and the intensity of

social interactions describe the social transmission process. The parameters of the sending and

receiving function capture how a sender’s return performance is communicated and how hearing

it influences a receiver. The psychological traits of investors determine the parameters of this

communication process.

We find that active strategies—those with high volatility, skewness, and personal engagement,

spread after they experience high returns, and, more surprisingly, that this relationship is con-

vex. We further find that active strategies on average tend to spread through the population (as

constrained by equilibrium price effects). The model therefore implies that investors will be at-

tracted to strategies with high variance and skewness even when they have no inherent preference

over these characteristics. The model therefore provides a new, social approach to understanding

investor behavior. Also, since this attraction to variance and skewness derives from investor re-

sponses to past realizations, unlike some past models it does not require that investors understand

the statistical concepts of variance, skewness, or coskewness.

In particular, the optimizing behavior of investors who adopt active strategies provides a

social explanation for anomalies such as the lottery, volatility, beta, and IPO effects in capital

market equilibrium. These effects depend on empirically observable parameters of the sending and

receiving functions and the social network, leading to a rich set of additional empirical implications

about investor trading and return anomalies.

More generally, we suggest that a fruitful direction for understanding how social interactions

affect financial decisions is to study the factors that shape the sending and receiving functions,

i.e., that cause an investor to talk about an investment idea, or to be receptive to such an idea

upon hearing about it. Conversations are influenced by chance circumstances, subtle cues, and

even trifling costs and benefits to the transactors. This suggests that small variations in social

environment can have large effects on economic outcomes. For example, the model suggests

that a shift in the social acceptability of talking about one’s successes, or of discussing personal
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investments more generally, can have large effects on risk taking and active investing. This

suggests a possible explanation for both secular and higher-frequency shifts in investor behavior.

Much of the empirical literature on social interactions focuses on whether information or

behaviors are transmitted, and on what affects the strength of social contagion. Our approach

suggests that it is valuable to understand how biases in the transmission process affect decision

making and economic outcomes.

Our approach also offers a microfoundation for research on fluctuations in investor sentiment

toward different kinds of investment strategies. For example, observers have often argued that

social interactions contribute to bubbles (e.g., Shiller (2000)). If the sending and the receiving

functions of our model depend on the sender’s return over multiple periods (rather than just

the most recent period return), there can be overshooting and correction. Alternatively, if a

higher frequency of active investors makes it more socially acceptable to discuss one’s investment

successes, the popularity of active strategies will be self-reinforcing. So our model, and more

generally the social finance approach, offers a possible framework for modeling how the spread of

investment ideas cause bubbles and crashes.
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Appendices

A Endogenizing the Receiving and Sending Functions

We model here the determinants of the sending and receiving functions, and derive their functional

forms.

A.1 The Sending Function

To derive a sending function that reflects the desire to self-enhance, we assume that the utility

derived from sending is increasing with own-return. Conversation is an occasion for an investor

to try to raise the topic of return performance if it is good, or to avoid the topic if it is bad.

Suppressing i subscripts, let π(R, x) be the utility to the sender of discussing his return R,

π(R, x) = R+
x

β′
, (A.1)

where β′ is a positive constant that measures the relative weight in the individual’s utility on

conversational context versus the desire to communicate higher returns. The more tightly the

investor’s self-esteem is tied to return performance, the higher is β′. The random variable x

measures whether, in the particular social and conversational context, raising the topic of own-

performance is appropriate or even obligatory.

The sender sends if and only if π > 0, so

s(R) = Pr
(
x > −β′R|R

)
= 1− F (−β′R), (A.2)

where F is the distribution function of x. If x ∼ U [τ1, τ2], where τ1 < 0, τ2 > 0, then

s(R) =
τ2 + β′R

τ2 − τ1
=

τ2
τ2 − τ1

+ βR, (A.3)

where β ≡ β′/(τ2− τ1), and where we restrict the domain of R to satisfy −τ2/β′ < R < −τ1/β′ to

ensure that the sending probability lies between 0 and 1. This will hold almost surely if |τ1|, |τ2|
are sufficiently large. Equation (A.3) is identical to the sending function (3) in Subsection 2.2

with

γ ≡ τ2
τ2 − τ1

.

In the sender’s utility π(R, x) of discussing return R, the parameter β′ captures the value

placed on mentioning one’s high return experience, versus the appropriateness of doing so. The

more tightly bound is the sender’s self-esteem or reputation to return performance, the larger is

the parameter β′, and hence the stronger is SET, as measured by β in the sending function (3)

which is proportional to β′.
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The constant γ in the sending function (3) reflects the conversability of the investment choice.

When investment is a more attractive topic for conversation or when conversations are more

extensive, as occurs when investors are more sociable, higher γ shifts the distribution of x to the

right (i.e., an increase in τ2, for given τ2 − τ1, implies higher γ).

A.2 The Receiving Function

We derive an increasing convex increasing shape for the receiving function as in equation (4)

in Section 2 from the combination of two effects: greater receiver attention to extreme return

outcomes, and, conditional upon paying attention, and, owing to the representativeness heuristic,

greater persuasiveness of higher return.

The return on a sender or receiver strategy has unknown mean µi, i = s, r, where Ri = µi+εi,

where for tractability the receiver perceives the distribution of the means as µi ∼ N(µi0, σ
2
µi),

εi ∼ N(0, σ2εi). Assume all RHS random variables are independent.

The receiver is exposed to a realization of (Rs, Rr) and to the sender’s type. A receiver can,

at cost ∼ U(0, c1), pay attention, in which case, the receiver learns the direct cost of switching

strategies, c2 ∼ U(c2, c2), and optimizes over whether to switch. A non-attending receiver incurs

no cost, and never switches. The costs of paying attention and of switching depends on situation-

specific circumstances not observed by the econometrician.

We assume that c2 < 0 < c2. The possibility that the ‘cost’ of switching is negative reflects a

possible favorable inference by the receiver about the sender’s adoption of the sender’s strategy.

(It could alternatively reflect conformist preferences.)

The quasi-Bayesian update of µi, i = s, r given observed returns

E[µi|Ri] = µi0 + βi(Ri − µi0), (A.4)

where

βi =
σ2µi

σ2µi + σ2εi
.

Here we capture representativeness/overextrapolation taking the form of βi being an overestimate

of the true relationship, i.e., the receiver regards past returns as being more indicative of future

performance than they really are.28

We assume for simplicity that an attending receiver switches to the sender’s strategy based

on whether the difference in updated means µs − µr exceeds the switch cost c2.
29

28Algebraically this could arise from overestimation of σ2
µi and/or underestimation of σ2

εi . The form of the
receiving function that we derive here does not actually require this overextrapolation, but for realistic parameter
values σ2

µi/σ
2
εi would be low, since most of the variance in strategy performance comes from chance rather than

differences in means. This would lead to very weak updating, implying a very small slope of the receiving function.
29It would not be hard to allow for the effect of risk aversion via an adjustment for the difference in variances of

the two strategies. Since prior variances are known, observation reduces posterior variances deterministically, i.e.,
by the same amount regardless of the signal.
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So conditional upon attending and the observed returns, the probability of switching strategies

is

P (E[µs|Rs]− E[µr|Rr]− c2 ≥ 0) =

∫ βsRs−βrRr

c2=c2

dc2
c̄2 − c2

=
βsRs − βrRr − c2

c̄2 − c2
(A.5)

when this quantity lies between 0 and 1, and is at the relevant probability boundary otherwise.

We endogenize the investor’s attention heuristic by solving for the optimal decision of whether

to pay attention, taking into account (Rs, Rr) and what this implies about (µs, µr). Owing to

cognitive processing constraints, in general we expect this decision to be heuristic. However, a

wide set of heuristics are possible, and the result we derive are not driven by bias in this decision.

So as a benchmark case that is neutral with respect to bias in the attention decision, we model the

attention decision as fully rational, i.e., making full use of Rs, Rr, and c1, but not c2 which is only

observed after paying attention.30 The approach of assuming rationality in attention allocation

is also applied in the large literature on rational inattention (Sims 2003), and in other work on

limited attention such as Peng and Xiong (2006).

The receiver’s attention heuristic is tuned to pay attention if the expected improvement in

portfolio expected returns, net of switch costs, and given the observed past returns, exceeds the

cost of attention. Let 1E[µs|Rs]−E[µr|Rr]−c2≥0 be an indicator function for the receiver switching to

the sender’s strategy after attending and observing returns. The receiver attends iff the expected

gain exceeds c1,

E[(µs − µr − c2)1E[µs|Rs]−E[µr|Rr]−c2≥0|R
s, Rr]− c1 ≥ 0, (A.6)

so substituting out expectations of µ’s by (A.4), the condition becomes

(βsRs − βrRr)(βsRs − βrRr − c2)
c̄2 − c2

− E[c21µs−µr−c2≥0|Rs, Rr]− c1 ≥ 0. (A.7)

Now the expectation above is

E[c21E[µs|Rs]−E[µr|Rr]−c2≥0|R
s, Rr] =

(βsRs − βrRr)2 − c22
2(c̄2 − c2)

So the receiver attends iff

(βsRs − βrRr − c2)2

2(c̄2 − c2)
− c1 ≥ 0. (A.8)

30Modelling the attention choice as fully rational may seem paradoxical, since it can take more calculations
to allocate attention optimally than to simply solve the decision problem at hand. However, again, we view
full rationality of the attention decision as merely the most convenient benchmark case. Furthermore, it is not
necessary to view our benchmark case as involving full conscious rationality in the attention allocation decision.
The calculations needed to allocate attention correctly do not necessarily use cognitive resources at the time of each
attentional decision. Attention heuristics can be viewed as having been designed in human evolutionary prehistory
to balance the cost of paying attention against the benefits achieving better decision outcomes. Alternatively, the
attention mechanism can be viewed as a rule-of-thumb heuristic that the investor has learned through previous
experience over the investor’s lifetime.
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Since c1 is uniformly distributed,

P (Attend|Rs, Rr) = P

(
c1 ≤

(βsRs − βrRr − c2)2

2(c̄2 − c2)

)
=

(βsRs − βrRr − c2)2

2c̄1(c̄2 − c2)
, (A.9)

which is quadratically increasing in the weighted return difference βsRs − βrRr.
The probability that the receiver switches conditional upon the returns is the product

P (Attend|Rs, Rr)P (Switch|Attend, Rs, Rr).

The first probability is given in (A.9), and the second in (A.5).

So the probability of switching, i.e., the receiving function, is

r(Rs, Rr) =
(βsRs − βrRr − c2)3

2(c̄2 − c2)2c̄1

when this quantity lies between 0 and 1. This is a cubic function of βsRs − βrRr with all

nonnegative coefficients since c2 ≤ 0.

A special case of this development is when βr << βs, in which case the expression approxi-

mately simplifies to

r(Rs) =
1

2(c̄2 − c2)2c̄1
[(βsRs)3 − 3c2(β

sRs)2 + 3(c2)
2βsRs − (c2)

3]

when this quantity lies between 0 and 1.

A quadratic Taylor approximation leads to a quadratic expression for r(Rs, Rr) or, when βr

small, for r(Rs), as in equation (4) in Section 2, where we assume that most of the probability

mass of R is in the range where the coefficients of this quadratic approximation are positive,

consistent with a convex increasing shape for the receiving function. Specifically, performing

this Taylor expansion around Rs = 0 yields the quadratic receiving function coefficients a =

−3c2(β
s)2/[2(c̄2− c2)2c̄1], b = 3(c2)

2βs/[2(c̄2− c2)2c̄1], and c = −(c2)
3/[2(c̄2− c2)2c̄1]. By varying

the free parameters, any positive vector of values of (a, b, c) is feasible.

B Proofs

B.1 Proof of Proposition 1:

Partially differentiating (6) with respect toRA twice and using the earlier conditions that r′(RA), s′(RA) >

0, that s′′(RA) = 0 by (3), and that r′′(RA) > 0 by (4), gives(
N

χNA

)
∂E[∆f |RA, RP ]

∂RA
=

∂TA(RA)

∂RA
= r′(RA)s(RA) + r(RA)s′(RA) > 0 (B.1)(

N

χNA

)
∂2E[∆f |RA, RP ]

∂(RA)2
=

∂2TA(RA)

∂(RA)2
= r′′(RA)s(RA) + 2r′(RA)s′(RA) > 0. (B.2)
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Since RA affects TA but not TP , these formulas describe how active return affects both the

expected net shift in the fraction of A’s, and the expected unidirectional rate of conversion from

P to A.

Furthermore, substituting for the sending function s(RA) from (3) and the receiving function

r(RA) from (4) into (B.1) and (B.2) gives(
N

χNA

)
∂E[∆f |RA, RP ]

∂RA
= (2aRA + b)(βRA + γ) + β(aR2

A + bRA + c) (B.3)(
N

χNA

)
∂2E[∆f |RA, RP ]

∂(RA)2
= 2a(βRA + γ) + 2β(2aRA + b). (B.4)

The fact that sending and receiving functions and their first and second derivatives are all positive

signs some of the terms in parentheses, so by it follows immediately from (B.3) that the sensitivity

of the transformation rate of investors to A as a function of past active return is increasing with

the parameters of the sending and receiving functions, β, γ, a, b, and c. By (B.4), a similar point

follows immediately for convexity as well, with the exception that c does not enter into convexity.

B.2 Markov Properties Useful for Remaining Proofs

The remaining proofs in this section depend heavily on work-horse Markov chain models that

we analyze in the Internet Appendix I. Specifically, in the Internet Appendix, we consider the

variable wt = wt(a, b) ∈ {0, 1, 2, . . . , N}, t ≥ 0, which evolves according to an N + 1 state Markov

model with transition matrix Φ = Φ(a, b) ∈ R(N+1)×(N+1).

In the base model, a = (a1, a2, . . . , aN−1)
′, and b = (b1, b2, . . . , bN−1) are (N − 1)-dimensional

vectors, such that 0 < an ≤ bn < 1
2 , n = 1, . . . , N−1, and Φ is a tri-diagonal matrix with elements

Φ =



1 0 0 · · ·
a1 1− a1 − b1 b1 0 · · · 0
0 a2 1− a2 − b2 b2 · · · 0

. . .
. . .

. . .
. . .

· · · 0 aN−1 1− aN−1 − bN−1 bN−1
0 1


. (B.5)

The model in the main part of the paper with q = 0, h = 0, and M = Q, corresponds to Φ(a, b),

with an = χnT
P and bn = χnT

A.

First modification: For 0 < α ≤ 1, we define the modified transition matrix

Θ(a, b, α) = (1− α)I + αΦ,

where I is the (N + 1) × (N + 1) identity matrix, and the associated modified Markov process.

When α = 1, the model reduces to the previous one, Θ(a, b, 1) = Φ(a, b, 1). The case α < 1

corresponds to the model in the main part of the paper with q = 0, but allowing for general M

and h, corresponds to setting an = χnT
P , bn = χnT

A, and α = g = M
Q (1− h).
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Second modification: For 0 ≤ q < 1, define the modified transition matrix

Ψ = Ψ(a, b, α, q) = (1− q)Θ + qR,

where R ∈ R(N+1)×(N+1), with elements Rij = 1 when i = N/2 + 1, and Rij = 0 otherwise. This

stochastic matrix, R, represents a degenerate Markov chain which immediately moves to state

N/2 in the next period. The modified model is thus one in which, with probability q, such a

reset occurs, and with probability (1 − q) the model propagates according to the Θ transition

matrix. The general model in the main part of the paper with, allowing for arbitrary q, M and

h, corresponds to Ψ(a, b, α, q), with an = χnT
P , bn = χnT

A, and α = g = M
Q (1 − h). The

Internet Appendix provides several useful results for these stochastic matrices, which we use in

the subsequent proofs.

B.3 Proof of Proposition 2

The result follows from the Perron-Frobenius theorem for stochastic processes and the fact that

the stochastic matrix Ψ is irreducible and aperiodic when q > 0. Specifically, it is easy to verify

that for k ≥ N/2 + 1, Ψk
i,j > 0 for all i, j, corresponding to the process starting at i, resetting

to N/2 in the next period, moving to j over the next |N/2 − j| periods, and then staying at j

from there on. This implies that Ψ is irreducible and aperiodic. It follows that there is a unique

long-term distribution for N t
A, and thus also for f t.

That φt is strictly increasing follows from Proposition I.1 in the Internet Appendix, and

its extensions under the second modification, as discussed in Appendix I, and it follows from

Proposition I.3 that P(φt > 1/2) > 1/2 for all t ≥ 1.

B.4 Proof of Proposition 4

To show Part 1, we differentiate (10) with respect to D to obtain that if D < 0 or D is positive

but not too large,31(
N

gχNA

)
∂E[∆f ]

∂D
= −3aβ(β2Aσ

2
r + σ2A) +D(−3aDβ + 2B)− C < 0.

For Part 2a, differentiating with respect to factor skewness γ1r gives(
N

gχNA

)
∂E[∆f ]

∂γ1r
= aβσ3r (β

3
A − β3P )

> 0, (B.6)

since βA > βP . Thus, the advantage of A over P is increasing with factor skewness.

31The ambiguity for large D results from a spurious effect: for sufficiently large negative R, the slope of the
quadratic receiving function turns negative. In consequence, a larger return penalty to active trading, D, can,
perversely, help convert P’s to A’s by inducing larger losses.
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For Part 2b, differentiating with respect to active idiosyncratic skewness γ1A gives(
N

gχNA

)
∂E[∆f ]

∂γ1A
= aβσ3A

> 0. (B.7)

Thus, the advantage of A over P is increasing with the idiosyncratic skewness of A.

For Part 2c, it suffices to note that the right hand sides of (B.6) and (B.7) both increase with

SET in the sending function as reflected in β and salience of extreme returns in the receiving

function as reflected in a.

For Part 3a, differentiating with respect to active idiosyncratic volatility σA gives(
N

gχNA

)
∂E[∆f ]

∂σA
= 3aβγ1Aσ

2
A + 2(B − 3aDβ)σA

> 0 (B.8)

if D ≈ 0 or D < 0. Thus, if D is sufficiently small, the growth of A increases with active

idiosyncratic volatility σA. Greater return variance increases the effect of SET on the part of the

sender. Although high salience to receivers of extreme returns (a > 0) is not required for the

result, it reinforces this effect. Indeed, even if there were no SET (β = 0), since a > 0 implies

that B > 0, the result would still hold. Intuitively, high volatility generates the extreme outcomes

which receive high attention.

For Part 3b, differentiating with respect to the factor loading of the active strategy, βA, gives(
N

gχNA

)
∂E[∆f ]

∂βA
= 3aββ2Aγ1rσ

3
r + 2βAσ

2
rB − 6aββAσ

2
rD

> 0 (B.9)

if D < 0 or D ≈ 0. So a greater factor loading for A increases the spread of A, since the greater

dispersion of return outcomes encourages the sending of high, influential messages.

For Part 3c, differentiating with respect to the variance of the common factor, σ2r gives(
N

gχNA

)
∂E[∆f ]

∂σ2r
= 1.5aβ(β3A − β3P )γ1rσr +B(β2A − β2P )− 3Daββ2A

> 0 (B.10)

if D < 0 or D ≈ 0. So greater volatility of the common factor favors the spread of A. Greater

factor volatility outcomes encourages the spread of the strategy with the greater loading, A, by

creating greater scope for SET to operate.

For Part 3d, note that the right hand sides of equations (B.8), (B.9), and (B.10) increase with

B = aγ + bβ (which is in turn positively related to γ by definition) as well as SET in the sending

function as reflected in β and salience of extreme returns in the receiving function as reflected in

a.
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For Part 4, we differentiate with respect to β, the strength of SET. This reflects how tight

the link is between the sender’s self-esteem and performance. By (B.24) in the appendix, B is an

increasing function of β, gives(
N

gχNA

)
∂E[∆f ]

∂β
= a(γ1Aσ

3
A − γ1Pσ3P ) + aσ3r (β

3
A − β3P )γ1r + b[(β2A − β2P )σ2r + σ2A − σ2P ]

+ Da(−3σ2A − 3β2Aσ
2
r −D2) +D2b−Dc

> 0 (B.11)

if D ≈ 0 or D < 0. So greater SET increases the evolution toward A, because SET causes greater

reporting of the high returns that make A enticing for receivers. A generates extreme returns

for SET to operate upon through higher factor loading, idiosyncratic volatility, or more positive

idiosyncratic skewness.

For Part 5, differentiating with respect to how prone receivers are to extrapolating returns, b,

gives (
N

gχNA

)
∂E[∆f ]

∂b
= β[(β2A − β2P )σ2r + σ2A − σ2P ] +D(Dβ − γ)

> 0 (B.12)

if D ≈ 0 or D < 0. Greater extrapolativeness of receivers helps A spread by magnifying the effect

of SET (reflected in β), which spreads A because of the higher volatility of A returns.

For Part 6, recall that the quadratic term of the receiving function a reflects greater attention

on the part of the receiver to extreme profit outcomes communicated by the sender. Differentiating

with respect to a gives(
N

gχNA

)
∂E[∆f ]

∂a
= βσ3rγ1r(β

3
A − β3P ) + β[γ1Aσ

3
A − γ1Pσ3P ] + γ[(β2A − β2P )σ2r + σ2A − σ2P ]

− 3Dβ(β2Aσ
2
r + σ2A) +D2γ −D3β

> 0 (B.13)

if D ≈ 0 or D < 0. So greater attention by receivers to extreme outcomes, a, promotes the

spread of A over P because A generates more of the extreme returns which, when a is high, are

especially noticed and more likely to persuade receivers. This effect is reinforced by SET, which

causes greater reporting of extreme high returns.

For Part 7, differentiating with respect to conversability γ gives(
N

gχNA

)
∂E[∆f ]

∂γ
= a[(β2A − β2P )σ2r + σ2A − σ2P ]− bD + aD2

> 0 (B.14)

if D ≈ 0 or if D < 0. Greater conversability γ can help the active strategy spread because of the

greater attention paid by receivers to extreme returns (a > 0), which are more often generated
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by the A strategy. When D < 0, this effect is reinforced by the higher mean return of A. In this

case an unconditional increase in the propensity to report returns tends to promote the spread

of the sender’s type more when the sender is A. On the other hand, if D > 0 is sufficiently large,

A earns lower return than P on average, so greater conversability incrementally produces more

reporting of lower returns when the sender is A than P, which opposes the spread of A.

Lastly, for Part 8 of the Proposition 4, differentiating with respect to the susceptibility of

receivers c gives (
N

gχNA

)
∂E[∆f ]

∂c
= −Dβ

> 0 (B.15)

if D < 0; the inequality is reversed if D > 0. Greater susceptibility increases the likelihood that

the receiver is transformed given that the sender sends. Owing to SET (as reflected in the β term

above) the probability that A sends is increased relative to the probability that P sends when

the returns of A are higher in the sense of first order stochastic dominance, i.e., D < 0. This

condition will hold if there is a risk premium for the active strategy, even if the premium is not

fully commensurate with the risk.

B.5 Proof of Proposition 5

We first show the result for the case with no reset, q = 0. From the definition of the sending and

receiving functions it follows that

TA = E[TA(RA)] = aβ[β3Aγ1rσ
3
r + γ1Aσ

3
A] + B[β2Aσ

2
r + σ2A] (B.16)

+ Daβ(−3σ2A −D2 − 3σ2rβ
2
A) +D2B −DC + cγ,

TP = E[TP (RP )] = aβ[β3Pγ1rσ
3
r + γ1Pσ

3
P ] + B[β2Pσ

2
r + σ2P ] + cγ, (B.17)

B = aγ + bβ, C = bγ + cβ. The transition matrix, Φ, as described in Figure 2 now has the same

structure as in the Markov model in Appendix I, see (I.1), with ai = χigT
P , bi = χigT

A.

1. For small D, it follows from (B.16,B.17) that TP is decreasing in D, whereas TA does not

depend on D, so the result follows from Proposition I.4:2.

2. It follows from (B.16,B.17) that TA is increasing in γ1A, whereas TP does not depend on

γ1A, so the result follows from Proposition I.4:2.

3. It follows from (B.16,B.17) that TA is increasing in σ1A, whereas TP does not depend on

σ1A, so the result follows from Proposition I.4:2.
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4. It follows from (B.16,B.17) that Φ’s coefficients are of the form

1

gχi
bi = a

[
β(β3Aγ1rσ

3
r + γ1Aσ

3
A) + γ(β2Aσ

2
r + σ2A)

]
+ βb(β2Aσ

2
r + σ2A) + cγ,

def
= aqA + rA,

1

gχi
ai = a

[
β(β3Pγ1rσ

3
r + γ1Pσ

3
P ) + γ(β2Pσ

2
r + σ2P )

]
+ βb(β2Pσ

2
r + σ2P ) + cγ,

def
= aqP + rP .

It is straightforward to verify that if
(
βA
βP

)3
≥
(
σA
σP

)2
, then qA

qP
≥ rA

rP
. The result follows

from the following standard Lemma.

Lemma 1 Consider strictly positive x, y, s, s0, t, t0, and assume that s
s0
> t

t0
. Then

t

t0
<

xs+ yt

xs0 + yt0
<

s

s0
.

Proof : We note that s
t >

s0
t0

and t
s <

t0
s0

, which leads to

t

t0
<

t

t0
×
x st + y

x s0t0 + y
=

xs+ yt

xs0 + yt0
=

s

s0
×
x+ y ts
x+ y t0s0

<
s

s0
.

Define vA
def
= β2Aσ

2
r + σ2A, and vP

def
= β2Pσ

2
r + σ2P . It follows from Lemma 1 that

vA
vP
≤ max

{
β2A
β2P

,
σ2A
σ2P

}
,

which, since βA > βP , under the assumption that
(
βA
βP

)3
≥
(
σA
σP

)2
in turn implies that(

βA
βP

)3
≥ vA

vP
. Now, since γ1P ≈ 0, and γ1A >≥ 0, and qA is increasing in γ1A, a sufficient

condition for qA
qP
≥ rA

rP
is that

ββ3Aγ1rσ
3
r + γvA

ββ3Pγ1rσ
3
r + γvP

≥ βbvA + cγ

βbvP + cγ
. (B.18)

An application of Lemma 1, with s = β3A, s0 = β3P , t = vA, t0 = vP , x = βγ1rσ
3
r , y = γ,

implies that
ββ3Aγ1rσ

3
r + γvA

ββ3Pγ1rσ
3
r + γvP

≥ vA
vP
,

and another application with s = vA, s0 = vP , t = 1, t0 = 1, x = βb, y = cγ implies that

βbvA + cγ

βbvP + cγ
≤ vA
vP
.
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So, it follows that qA
qP
≥ rA

rP
, which by Proposition I.6 immediately implies the result for Φ.

For the alternative sufficient condition, QP
def
= β3Pγ1rσ

3
r ≤

γ2c
β2b

, we argue as follows. Define

QA
def
= β3Aγ1rσ

3
r , and note that QA ≥ QP , and vA ≥ vP . A reformulation of (B.18), then

yields that a sufficient condition for qA
qP
≥ rA

rP
is that

βQA + γvA
βQP + γvP

≥ βbvA + cγ

βbvP + cγ
,

which is equivalent to

(βQA + γvA)(βbvP + cγ) ≥ (βQP + γvP )(βbvA + cγ),

and in turn to

vP (β2bQA − γ2c) + βcγ(QA −Qp) ≥ vA(β2bQP − γ2c) (B.19)

Now, the second term on the left-hand-side of (B.19) is positive. Moreover, under the

condition that QP ≤ γ2c
β2b

, the right-hand-side is negative. If β2bQA − γ2c ≥ 0, (B.19)

therefore follows immediately. Moreover, under the complimentary scenario, when β2bQA−
γ2c < 0, then 0 < γ2c−β2bQA ≤ γ2c−β2bQP (because QA ≥ QP ), and since 0 < vP ≤ vA,

it follows that vP (γ2c − β2bQA) ≤ vA(γ2c − β2bQP ), and thus again that (B.19). By

Proposition I.6 the result is again implied for Φ. This completes the proof of part 4 of

Proposition 5.

5. It follows from (B.16,B.17) that Φ’s coefficients are of the form

1

gχi
bi = β

[
a(β3Aγ1rσ

3
r + γ1Aσ

3
A) + b(β2Aσ

2
r + σ2A)

]
+ γa(β2Aσ

2
r + σ2A) + cγ,

def
= βq̂A + r̂A,

1

gχi
ai = β

[
a(β3Pγ1rσ

3
r + γ1Pσ

3
P ) + b(β2Pσ

2
r + σ2P )

]
+ γa(β2Pσ

2
r + σ2P ) + cγ,

def
= βq̂P + r̂P .

A similar argument as in 4. above, with application of Lemma 1, implies that under the

assumption
(
βA
βP

)3
≥
(
σA
σP

)2
,

aQA + bvA
aQP + bvP

≥ vA
vP
≥ aγvA + cγ

aγvP + cγ
,

which implies that q̂A
q̂P
≥ r̂A

r̂P
, again by Proposition I.6 leading to the result for Φ. Moreover,

a similar argument as in 4. also implies that when QP ≤ bc
a2

, then

aQA + bvA
aQP + bvP

≥ aγvA + cγ

aγvP + cγ
,

and another application of Proposition I.6 leads to the result.

Finally, it follows from the extension to the second modification in Appendix I, that these

results also hold in case when q > 0.
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B.6 Proof of Proposition 6

We focus on the case with q = 0, h = 0. The proof in the general case is very similar, the only

difference being that it contains extra parameters. Consider investor n, who has adopted a passive

investment strategy. Given return realizations, RA and RP , the transition probability for a sender

from A to P is TA(RA). Denote the subset of neighbors of investor n that are type A (resp. P)

by DAn (resp. DPn ).

We prove the result for a more general case than our base model in which, even within the

same class of investment strategies (A or P), investors may have different returns. Specifically,

the return of an A investor m ∈ DA
n is assumed to be RAm. The main body considers the special

case of in which RAm ≡ RA (is the same) for all active investors.

For a type P investor n to convert to A, he must (i) be selected for communication, which

occurs with probability dn/Q, (ii) be selected to be receiver, which occurs with probability 1/2,

(iii) communicate with an A, m ∈ DAn , and finally (iv) be converted, which occurs with probability

TA(RAm). So the probability C that investor n switches from P to A is therefore

C =
1

2
× |Dn|

Q
× |D

A
n |
|Dn|

∑
m∈DAn

TA(RAm). (B.20)

Clearly, this probability is increasing in the number of A connections, |DAn |, in that if a new connec-

tion is added, all else equal, the probability for conversion increases; and also in the performance

of these connections, since TA is an increasing function of RAm.

B.7 Proof of Proposition 7

By (B.20),
∂2C
∂R2

Am

=
1

2
× |Dn|

Q
× |D

A
n |
|Dn|

∂2TA
∂R2

Am

> 0, (B.21)

for m ∈ DA
n , since TA is a convex function, and

∂2C
∂R2

Am

= 0, (B.22)

for m ∈ DP
n . So the probability is indeed (weakly) convex in the returns of all the investors that

n is connected to, and strictly convex for a type A connection.
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B.8 Proof of Proposition 8

Assume that RA = r − D, where E[r] = 0, V ar[r] = σ2A, E[r3/σ3A] = γ1. The transformation

function satisfies

TA(RA) = r(RA)s(RA)

= (aR2
A + bRA + c)(βRA + γ)

= aβR3
A +BR2

A + CRA + cγ, (B.23)

where

B = aγ + bβ

C = bγ + cβ. (B.24)

It follows from (B.23) that

TA = γ1σ
3
Aαβ + aγσ2A + σ2Abβ − 3Dσ2Aαβ −D3αβ + c(γ −Dβ) + b(D2β −Dγ),

which when D = 0 simplifies to

TA = σ2A(bβ + aγ) + σ3Aγ1αβ + cγ.

The first expression is increasing in γ1, and the second is also increasing in σA > 0.

From (B.20) and the law of iterated expectations, it follows that

C =
1

2
× |Dn|

Q
× |D

A
n |
|Dn|

∑
m∈DAn

E[TA(RAm)],

and therefore also that the probability, C, is strictly increasing in the skewnesses of the A portfolios,

as well as in their volatility when D ≈ 0. Moreover, the probability is nondecreasing (flat) in the

volatility of the P connections of n, and the result thus follows.

B.9 Proof of Proposition 9

1.: We prove this claim by induction. From the proof of Proposition 6 (equation B.20), it follows

that the more connected the agent is at t = 0, the higher the probability that he is an A at t = 1.

Assume that the probability at time t for the agent to be an A is pA. The probability that he is

also A at time t+ 1 is then

q

(
1

2

)
+ (1− q)

[
NA

N(N − 1)
gTA + pA

(
1− g

N

(
NA

N − 1
TP +

(
1− NA

N − 1

)
TA
))]

,

NA = 1, . . . , N − 1,
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which is increasing in pA. Thus, the higher the probability that the investor is A at time t, the

higher is the probability that he will be A at t+1, regardless of the number NA of active investors

at t, and by induction the higher the probability at all later points in time.

2. and 3.: From Proposition I.5 it follows that φt is strictly increasing in g, and since g = M
Q (1−h),

both the results follow.

4.: The investor’s probability of rejecting a message is increasing in hn. The same argument as in

Proposition 6, applied at the individual level, implies that his probability of being an A at t = 1

is lower the higher is hn.

5. and 6.: The proofs follow from the same argument as in Proposition 4, but applied to the specific

investor, n, and his neighbors, m ∈ D0
n, respectively. Specifically, given a network realization and

a sender-receiver pair, (m,n), m ∈ D0
n, the partial derivatives of the probability that n switches

to A is proportional to (B.11-B.14), respectively, and the results therefore follow.

B.10 Proof of Proposition 10

As shown in Appendix I, the results in Section 2 do not rely on TA and TP being the same

regardless of NA, but rather on TA > TP regardless of NA. In the equilibrium formulation, TP

does not depend on NA. However, TA must be determined by market clearing.

The total demand of NA active investors, given a risky investment opportunity with expected

return E[RA] and return variance V ar(RA) is X = NA
E[RA]−rf
V ar(RA)

, and market clearance, by (12),

leads to

X =
ρκ2N2

A

(ρκNA − ρNA|rf |+ (β2Aσ
2
r + σ2A))2

. (B.25)

We note that X is increasing in NA, i.e., that total active investment demand increases with

the number of active investors. Since output is concave in demand, this implies that returns are

decreasing in the number of A’s.

Substituting ρ =
2(β2

Aσ
2
r+σ

2
A)

N |rf | yields

RA = (βAr + εA + κ)FNA − κ,

where

FNA = 1 +
|rf |
κ

(
N

2NA
− 1

)
.

It is easy to verify that FNA is decreasing in NA, that FN/2 = 1, and that FN ≥ 1/2. The
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equilibrium values of the variance factors and the return penalty are:

βA(NA) = βAFNA ,

σA(NA) = σAFNA ,

γ1A(NA) = γ1A,

D(NA) = κ(1− FNA) = |rf |
(

1− N

2NA

)
.

We note that |D(NA)| is small when |rf | is small.

We first note that Proposition 1 does not depend on the return distributions of active and

passive investments, but only on return realizations. It is therefore immediate that it also holds in

the equilibrium setting. Moreover, it follows that if βA > 2βP , and σA > 2βA, then βA(NA) > βP ,

and σA(NA) > σP for all 1 ≤ NA ≤ N . An identical argument as that following (10) in the main

paper therefore implies that TA(n) > TP (n) for all 1 ≤ n ≤ N . Thus, the condition for increasing

φt over time in Proposition 2 is satisfied, and Proposition 3 therefore also holds.

The equilibrium version of Proposition 4 also follows immediately, being based on (10) where

βA is replaced by βA(NA) and σA by σA(NA). The only exception is the comparative static

with respect to D, which is not defined since D is determined endogenously in equilibrium.

Identical arguments can also be used for Proposition 5: 2.-3., whereas for 4. and 5., the condition(
βA(n)
βP

)3
>
(
σA(n)
σP

)2
leads to the stronger condition F 3

n

(
βA
βP

)3
> F 2

n

(
σA
σP

)2
, which—since Fn ≥

1
2—is satisfied when (

βA
βP

)3

> 2

(
σA
σP

)2

.

The extension of Propositions 6-9 to the equilibrium version go through with identical arguments

as in the partial equilibrium setting.

It also follows that DN/2 = 0, and Dn > 0 for n > N/2. That P(DNt
A
≥ 0) > 1/2 therefore

follows from the fact that P(f t ≥ 1/2) > 1/2, see Proposition 2. Finally, the expected return

agents make from the active investment strategy at time t, taking into account that an agent is

likely to be active when there are many other agents that are also active and expected returns

are therefore low, is

E
[
−DNt

A
f t
]

= |rf |
(

1

2
− E[f t]

)
.

Since E[f0] = 1/2, and E[f t] is strictly increasing over time, the expected return is therefore

nonpositive and decreasing over time.
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C Trading Volume

Total active demand is given by (B.25). When an investor switches from P to A, he liquidates

his passive portfolio position of
|rf |
σ2P

,

the number of active investors increases from NA to NA + 1, and he invests

1

NA + 1
XNA+1

in the active investment. Here, in equilibrium,

XNA =
2κ2NN2

A|rf |
(2NA(κ− |rf |) +N |rf |)2(β2Aσ2r + σ2A)

. (C.1)

Moreover, the NA investors that are already active rebalance from a total position of XNA to
NA
NA+1XNA+1. The total trading volume is thus:

|rf |
σ2
P

+ ZNA , where

ZNA
def
=

1

NA + 1
XNA+1 +NA

∣∣∣∣XNA

NA
− XNA+1

NA + 1

∣∣∣∣ .
It is easy to verify that when κ+rf ≈ 0, i.e., when |rf | is of similar size as κ, then Xn

n is increasing

in n, and therefore

ZNA = XNA+1 −XNA .

Moreover, when κ = −rf ,

ZNA =
2κ

N(β2Aσ
2
r + σ2A)

(1 + 2NA), (C.2)

which is strictly increasing in NA. Therefore, by continuity, for κ+ rf ≈ 0, total trading volume,

is also strictly increasing in NA.

An identical argument applies to the situation when an investor switches from A to P. Specif-

ically, if there are initially NA + 1 investors, and an investor switches from A to P, that investor

invests
|rf |
σ2
P

in the passive strategy, sells 1
NA+1

XNA+1
in the active investment, whereas the other NA

investors in total rebalance from NA
XNA+1

NA+1
to XNA . Again, the total trading volume is described

by
|rf |
σ2
P

+ ZNA .
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I Internet Appendix — Markov Chain Model

We introduce a work-horse Markov chains model. The technical developments here are used in the

proof of several of the results in the paper. Consider the variable wt = wt(a, b) ∈ {0, 1, 2, . . . , N},
t ≥ 0, which evolves according to an N + 1 state Markov model with transition matrix Φ =

Φ(a, b) ∈ R(N+1)×(N+1). Here, a = (a1, a2, . . . , aN−1)
′, and b = (b1, b2, . . . , bN−1) are (N − 1)-

dimensional vectors, such that 0 < an ≤ bn < 1
2 , n = 1, . . . , N − 1, and Φ is a tri-diagonal matrix

with elements

Φ =



1 0 0 · · ·
a1 1− a1 − b1 b1 0 · · · 0
0 a2 1− a2 − b2 b2 · · · 0

. . .
. . .

. . .
. . .

· · · 0 aN−1 1− aN−1 − bN−1 bN−1
0 1


. (I.1)

The model in the main part of the paper with q = 0, h = 0, and M = Q, corresponds to Φ(a, b),

with an = χnT
P and bn = χnT

A.

Define the set of probability vectors P = {p ∈ RN+1 :
∑

k pk = 1, pn ≥ 0, n = 1, . . . , N + 1},
P0 = {p ∈ P : p1 + pN+1 < 1}, and P00 ⊂ P0 = {p ∈ P0 : pn > 0, n = 1, . . . , N + 1}.

For some p0 ∈ P0, interpret p0 as the probability vector for the value of w0, i.e., P(w0 =

n− 1) = pn, n = 1, . . . , N + 1. It then follows that when the probability vector pt is defined such

that ptn = P(wt = n− 1|p0), then (pt)′ = (p0)′Φt. Moreover, define the sequence z0, z1, . . ., where

zt = zt(p0, a, b) = E[wt|p0] ≤ N . It then follows that

zt = (pt)′v = (p0)′Φtv,

where v ∈ RN+1 is the counting vector, v = (0, 1, 2, . . . , N)′. Also, let z∗ = limt→∞ z
t, a limit

which we will show to always exist.

We introduce the following partial orders on general vectors, c ∈ RN+1, d ∈ RN+1:

• c ≥ d if cn ≥ dn for all n,

• c > d if cn ≥ dn for all n, and cn > dn for some n,

• c >> d if cn > dn for all n.

• c >>0 d if c ≥ d and cn > dn for n = 2, . . . , N .

We also introduce first order stochastic dominance ordering between probability vectors p, r ∈ P:

• p � r if
∑n

k=1 pk ≤
∑n

k=1 rk, n = 1, . . . , N .

• p � r if p � r and the inequality above is strict for some n.
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Intuitively, p first order stochastically dominates r, p � r, if the p-probability for w to be higher

than n is at least as large as the r probability, for all n.

The following result holds:

Proposition I.1

1. zt is nondecreasing in t, z∗ exists and is less than N .

2. If b = a, then zt = z0 for all t, i.e., zt is a martingale.

3. If b >> a, then zt is strictly increasing in t.

4. If b > a, then zt is strictly increasing in t for t ≥ N .

Proof:

1. It is easy to check that u
def
= Φv has u1 = v1, uN+1 = vN+1, un = vn + bn − an ≥ vn and thus

Φv ≥ v. Consequently, p′Φv ≥ p′v for any probability vector, p ∈ P, leading to

zt+1 = p′0Φ
t+1v = p′0Φ

tΦv = (pt)′Φv ≥ (pt)′v = zt.

Since zt is nondecreasing and bounded above by N , it follows from the least upper bound

property that z∗ exists. Moreover, since an > 0, and p ∈ P0, there is always a strictly positive

probability that w reaches the absorbing state w = 0 within N steps, i.e., P(wN = 0) = ε > 0,

and thus z∗ ≤ N(1− ε) < N .

2. It is straightforward to verify that when a = b, Φv = v, so p′Φtv = p′v = z0 for all t.

3. The argument is identical to 1., but with strict inequalities. Specifically, pt ∈ P0 for all t, and

(Φv)n > vn for n = 2, . . . , N . Thus,

zt+1 = (pt)′Φv > (pt)′v = zt.

4. The argument is similar to that in 1. Since an > 0, bn > 0, for n = 1, . . . , N − 1, and p0 ∈ P0,
it follows that pt ∈ P00 whenever t ≥ N , that is since there is always a positive probability for

w to either increase or decrease by one in each period, from N periods and forward there is a

strictly positive probability for each state that w is in that state.

Pick a k such that bk > ak. Then,

zt+1 = (pt)′Φv ≥ (pt)′v + ptk(bk − ak) = zt + ptk(bk − ak) > zt.

This completes the proof.

Define the class of (weakly) increasing vectors, V = {u ∈ RN+1 : un+1 ≥ un, n = 1, . . . , N},
and V0 ⊂ V for the subset of u’s such that the inequality is strict for all n. Moreover, given
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the vectors, a and b used in the definition of Φ, define Va,b0 = {u ∈ V0 : bi(ui+2 − ui+1) >

ai(ui+1−ui), i = 1, . . . , N−1}. Thus, V a,b
0 consists of increasing vectors with additional restrictions

on how their elements grow. If b = a, the growth is strictly increasing, corresponding to convexity.

When b >> a, the growth does not have to be strictly increasing—it is for example easy to check

that v ∈ Va,b0 in this case. Instead, the necessary growth rate is bounded below by ai
bi

.

Proposition I.2

1. If u ∈ V, then Φu ∈ V,

2. If u ∈ V0, then Φu ∈ V0.

3. If u ∈ Va,b0 , then Φu ∈ Va,b0 .

Proof:

1. Define ∆un = un+1 − un, and note that

(Φu)1 = u1 ≤ (Φu)2 = a1u1 + (1− a1 − b1)(u1 + ∆u1) + b1(u1 + ∆u1 + ∆u2).

Also, note that

(Φu)N+1 = uN+1

≥ (Φu)N

= aN−1(uN+1 −∆uN −∆uN−1) + (1− aN−1 − bN−1)(uN+1 −∆uN ) + bN−1uN+1,

and for n = 2, . . . , N − 1,

(Φu)n = an(un −∆un−1) + (1− an − bn)un + bn(un + ∆un)

= un−1 + (1− an)∆un−1 + bn∆un, n = 1, . . . , N − 1,

(Φu)n+1 = un−1 + ∆un−1 + (1− an+1)∆un + bn+1∆un+1,

and since 1 > 1−an, and 1−an+1 > bn, it follows that (Φu)n+1 ≥ (Φu)n. Thus V is closed under

composition with Φ.

2. An identical argument as in 1 shows that V0 is also closed under composition with Φ.

3. Define f = Φu. Of course, f1 = u1, fN+1 = uN+1, and for i = 2, . . . , N it follows that

fi = ui − ai−1(ui − ui−1) + bi(ui+1 − ui).
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It is easy to verify that for i = 2, . . . , N − 2

bi(fi+2 − fi+1)− ai(fi+1 − fi) = (1− bi − ai)(bi(ui+2 − ui+1)− ai(ui+1 − ui))

+ bi(bi+1(ui+3 − ui+2)− ai+1(ui+2 − ui+1))

+ ai(bi−1(ui+1 − ui)− ai−1(ui − ui−1))

> 0.

Moreover,

b1(f3 − f2)− a1(f2 − f1) = (1− b1 − a1)(b1(u3 − u2)− a1(u2 − u1))

+ b1(b2(u4 − u3)− a2(u3 − u2))

> 0,

and

bN−1(fN+1 − fN )− aN−1(fN − fN−1) = (1− bN−1 − aN−1)(bN−1(uN+1 − uN )− aN−1(uN − uN−1))

+ aN−1(bN−2(uN − uN−1)− aN−2(uN−1 − uN−2))

> 0,

altogether implying that f ∈ Va,b0 . This completes the proof.

Now, it is a standard result that if p and r are probability vectors such that p � r, and u ∈ V,

then p′u ≥ r′u. This can, for example, be seen from the following summation-by-parts result:

p′u =
N+1∑
n=1

pnun = FN+1uN+1 −
N∑
n=1

Fn∆un,

where Fn =
∑n

k=1 pn, and Gn =
∑n

k=1 rn. Since FN+1 = GN+1 = 1, and Fn ≤ Gn, for n =

1, . . . , N , the result follows. Moreover, for p � r and u ∈ V0, the inequality is strict, p′u > r′u. It

is also easy to check that if c >> b, p ∈ P0, such that p � r, then (p′Φ(a, c))′ � (r′Φ(a, c))′, and

by induction (p′Φ(a, c)s)′ � (r′Φ(a, c)s)′, s ≥ 1.

Define the vector ζ ∈ V, with ζm = −1, m = 1, . . . N/2, ζN/2+1 = 0, and ζm = 1, m = N/2 +

2, . . . , N+1, and νt = νt(a, b) = p′Φt(a, b)ζ. It then follows that νt = P(wt > N/2)−P(wt < N/2),

i.e., that νt is the difference between the probabilities that wt is greater than and less than N/2,

respectively. The previous argument implies that if c >> b, then νt(a, c) > νt(a, b), and as a

direct consequence:

Proposition I.3 P(wt ≥ N/2) > 1/2 for all t ≥ 1.

Proof : Because of symmetry it follows that ηt(a, a) = 0, and therefore, since b >> a, that

ηt(a, b) > 0. Now, 1 = P(wt > N/2)+P(wt < N/2)+P(wt = N/2) = 2P(wt < N/2)+ηt+P(wt =

N/2), so P(wt < N/2) < 1/2, and the result therefore follows.

We also have
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Proposition I.4

1. If p � r, then zt(p, a, b) > zt(r, a, b) for all t ≥ 0.

2. If c >> b, then zt(p, a, c) > zt(p, a, b) for all t > 0.

3. If c >> a, then zt(p, c, b) < zt(p, a, b) for all t > 0.

Proof: 1. From Proposition I.2, it follows that u = Φtv ∈ V0 for all t, and therefore that

p′u > r′u.

2. First, note that Φ(a, c)v >>0 Φ(a, b)v, since (Φ(a, c)−Φ(a, b))v)n = (cn−1−bn−1), n = 2, . . . , N .

Moreover, from the results above it follows that Φ(a, c)tv ∈ V0, Φ(a, b)tv ∈ V0 for all t.

Now, for general u >>0 r, u ∈ V0, r ∈ V0, define h = u − r and g = c − b. It follows for

n = 1, . . . , N − 1, that

(Φ(a, b)r)n+1 = anrn + (1− an − bn)rn+1 + bnrn+2,

(Φ(a, c)u)n+1 = an(rn + hn) + (1− an − bn − gn)(rn+1 + hn+1) + (bn + gn)(rn+2 + hn+2),

and thus that

(Φ(a, c)u− Φ(a, b)r)n+1 = anhn + (1− an − cn)hn+1 + gn(rn+2 − rn+1) + (bn + gn)hn+2 > 0.

So Φ(a, c)u >>0 Φ(a, b)r, and by induction therefore Φ(a, c)tv >>0 Φ(a, b)tv. It follows that

zt(p, a, c) > zt(p, a, b).

3. The result follows from an identical argument is in 2. The proof is complete.

First modification. For 0 < α ≤ 1, now define the modified transition matrix

Θ(a, b, α) = (1− α)I + αΦ,

where I is the (N + 1) × (N + 1) identity matrix, and the associated modified Markov process.

Also, define

xt = xt(p0, a, b, α) = (p0)′Θ(a, b, α)v = (pt)′v,

where pt = ((p0)′Θt)′, as the expected value of the modified Markov process at time t, and

x∗ = limt→∞ x
t. When α = 1, the model reduces to the previous one, Θ(a, b, 1) = Φ(a, b, 1).

We note that the model in the main part of the paper with q = 0, but allowing for general M

and h, corresponds to setting an = χnT
P , bn = χnT

A, and α = g = M
Q (1− h).

It follows immediately for t ≥ 1, that

xt = (1− α)xt−1 + α(pt−1)′Φv (I.2)

=
t∑

k=0

(
t

k

)
αk(1− α)t−kzk. (I.3)
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From these relationships, it moreover follows that the results in the previous section carry

over to the modified model. Especially, for a fixed α, Propositions I.1, I.3 and I.4 immediately

carry over with xt replacing zt. This can easiest be seen by noting that the adjusted model is

equivalent to the base model, but replacing a and b with αa and αb, respectively.

In addition, the following result shows how xt depends on α.

Proposition I.5 If β > α and b >> a, then xt(p, a, b, β) > xt(p, a, b, α), for t ≥ 1.

Proof: The result follows from (I.3), and the fact that zt is strictly increasing in t. Specifically,

note that ri+1 =
∑i

k=0

(
t
k

)
αk(1−α)t−k is the cumulative distribution function of a Binomial(α, t)

distributed random variable, which for each 0 ≤ i < t is decreasing in α. In other words, the

higher α is, the more probability weight is put on high states, as defined by first order stochastic

dominance. Thus, if r is viewed as a t + 1 vector with elements r1, . . . , rt+1, then r(β) � r(α).

It follows that xt(p, a, b, β) = r(β)′(z0, . . . , zt)′ > xt(p, a, b, α) = r(α)′(z0, . . . , zt)′, from the strict

monotonicity of z over time. This completes the proof.

To allow for further comparative statics, we study the case when a and b are smooth, increasing

functions of some underlying parameter, k. Specifically, we assume that ai = ai(k), bi = bi(k),

where bi(k) > ai(k) > 0, b′i(k) > a′i(k) > 0, i = 1, . . . , N − 1. The transition matrix is then a

function of k, Φ(k), k > 0. Note that Θ is obtained, with α = k, when ai(k) = aik, bi(k) = bik

are chosen. The k-dependent time-t expectation is now xt(k) = p′Φ(k)tv. We are interested in

the comparative static xt(k)′ = dxt/dk. We have

Proposition I.6 If b′n(k)
bn(k)

≥ a′n(k)
an(k)

, n = 1, . . . , N − 1, then xt(k)′ > 0 for all t ≥ 1.

Proof: Using algebra for matrix differentiation, and defining ci = a′i(k), di = b′i(k), we get

xt(k)′ = p′Xv, where

X =
t∑

s=1

Φ(k)s−1Y Φ(k)t−s,

and

Y ∈ R(N+1)×(N+1) =
dΦ

dk
=



0 0 0 · · ·
c1 −c1 − d1 d1 0 · · · 0
0 c2 −c2 − d2 d2 · · · 0

. . .
. . .

. . .
. . .

· · · 0 cN−1 −cN−1 − dN−1 dN−1
0 0 0


.

Now, from Proposition I.2 it follows that Φ(k)sv ∈ Va,b0 . For a general u ∈ Va,b0 , consider g = Y u.
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Obviously g1 = gN+1 = 0. We also have for 2 ≤ n ≤ N

gn = dn(un+2 − un+1)− cn(un+1 − un)

=

(
dn
bn

)
bn(un+2 − un+1)−

(
cn
an

)
an(un+1 − un)

≥
(
cn
an

)
(bn(un+2 − un+1)− an(un+1 − un))

> 0,

where the second to last inequality follows from the fact that dn
bn
> cn

an
, and the last inequality from

the fact that u ∈ Va,b0 . Therefore r′Y u > 0 for any r ∈ P0, and thus p′Φ(k)s−1Y Φ(k)t−sv > 0,

and also p′Xv > 0. This completes the proof.

Second modification. We introduce a second modification: For 0 ≤ q < 1, define the

modified transition matrix

Ψ = Ψ(a, b, α, q) = (1− q)Θ + qR,

where R ∈ R(N+1)×(N+1), with elements Rij = 1 when j = N/2 + 1, and Rij = 0 otherwise. This

stochastic matrix, R, represents a degenerate Markov chain which immediately moves to state

N/2 in the next period. The modified model is thus one in which, with probability q, such a

reset occurs, and with probability (1 − q) the model propagates according to the Θ transition

matrix. Also, let probability vector δk ∈ RN+1, with (δk)k = 1, and (δk)n = 0, n 6= k. The vector

d = δN/2+1, represents the initial distribution of 100% chance that the state is N/2.

We note that the model in the main part of the paper with, allowing for general q, M and h,

corresponds to Ψ(a, b, α, q), with an = χnT
P , bn = χnT

A, and α = g = M
Q (1− h).

Define φt = φt(a, b, α, q) = d′Ψtv, so that φt represents the expected value of the process

(under the second modification) at time t, φ∗ = limt→∞ φ
t, and xt = d′Θtv. Obviously, φ0 = x0.

Now, for any stochastic matrix, Ξ, ΞR = R, and therefore ΘsR = R for all s ≥ 0. In words, the

dynamics of w up until s is irrelevant when there is a reset at time s + 1. Also, it is easily seen

that d′R = d′. It therefore immediately follows that

Ψt = ((1− q)Θ + qR)t

= (1− q)tΘt + q

t−1∑
s=0

(1− q)sRΘs,

so for t ≥ 1,

φt = (1− q)txt + q

t−1∑
k=0

(1− q)sxs, (I.4)

= φt−1 + (1− q)t(xt − xt−1). (I.5)

From (I.5), and the fact that the sequence xt is increasing as previously shown, it follows that

the sequence φt is increasing in t. Moreover, from (I.4), it follows that Propositions I.1, I.3, I.4, I.5,
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and I.6 carry over to the second modified Markov process, since they hold term-by-term for all

xs.

Finally, we have the following result for how the sequence φt depends on q.

Proposition I.7 If q′ < q and b >> a, then φt(a, b, α, q′) > φt(a, b, α, q), t ≥ 1, and φ∗(a, b, α, q′) >

φ∗(a, b, α, q).

Proof : Note that

(1− q)t + q
t−1∑
k=0

(1− q)s = (1− q)t + q
1− (1− q)t

1− (1− q)
= 1,

so φt is a weighted average of x0, x1, . . . , xt. Define the vector r(q) ∈ Rt+1 = (q, q(1 − q), q(1 −
q)2, . . . , q(1− q)t−1, (1− q)t)′, representing the weights in the average on different xs terms. Note

that r(q), having positive elements and summing to one, can be thought of as a probability vector,

and since
∑k

i=1 r(q)i = 1−(1−q)k (for k ≤ t), which is increasing in q, it follows that r(q′) � r(q).
Since xs is increasing in s, it then follows that φt(a, b, α, q′) = r(q′)′(x0, . . . , xt)′ > φt(a, b, α, q) =

r(q)′(x0, . . . , xt)′. Finally, φ∗ = q
∑∞

k=0(1 − q)sxs. Where xs is a strictly increasing, bounded

series. It is therefore easily verified that dφ∗

dq < 0, since term-wise differentiation is allowed. This

completes the proof.
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