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Abstract

The Development of WARP - A Framework for Continuous Energy Monte Carlo Neutron
Transport in General 3D Geometries on GPUs

by

Ryan Bergmann

Doctor of Philosophy in Engineering - Nuclear Engineering

University of California, Berkeley

Professor Jasmina Vujić, Chair

Graphics processing units, or GPUs, have gradually increased in computational power
from the small, job-specific boards of the early 1990s to the programmable powerhouses of
today. Compared to more common central processing units, or CPUs, GPUs have a higher
aggregate memory bandwidth, much higher floating-point operations per second (FLOPS),
and lower energy consumption per FLOP. Because one of the main obstacles in exascale
computing is power consumption, many new supercomputing platforms are gaining much of
their computational capacity by incorporating GPUs into their compute nodes. Since CPU-
optimized parallel algorithms are not directly portable to GPU architectures (or at least not
without losing substantial performance), transport codes need to be rewritten to execute
efficiently on GPUs. Unless this is done, reactor simulations cannot take full advantage of
these new supercomputers.

WARP, which can stand for “Weaving All the Random Particles,” is a three-dimensional
(3D) continuous energy Monte Carlo neutron transport code developed in this work as to
efficiently implement a continuous energy Monte Carlo neutron transport algorithm on a
GPU. WARP accelerates Monte Carlo simulations while preserving the benefits of using the
Monte Carlo Method, namely, very few physical and geometrical simplifications. WARP
is able to calculate multiplication factors, flux tallies, and fission source distributions for
time-independent problems, and can run in both criticality or fixed source modes. WARP
can transport neutrons in unrestricted arrangements of parallelepipeds, hexagonal prisms,
cylinders, and spheres.

WARP uses an event-based algorithm, but with some important differences. Moving
data is expensive, so WARP uses a remapping vector of pointer/index pairs to direct GPU
threads to the data they need to access. The remapping vector is sorted by reaction type
after every transport iteration using a high-efficiency parallel radix sort, which serves to
keep the reaction types as contiguous as possible and removes completed histories from the
transport cycle. The sort reduces the amount of divergence in GPU “thread blocks,” keeps
the SIMD units as full as possible, and eliminates using memory bandwidth to check if a
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neutron in the batch has been terminated or not. Using a remapping vector means the data
access pattern is irregular, but this is mitigated by using large batch sizes where the GPU
can effectively eliminate the high cost of irregular global memory access.

WARP modifies the standard unionized energy grid implementation to reduce memory
traffic. Instead of storing a matrix of pointers indexed by reaction type and energy, WARP
stores three matrices. The first contains cross section values, the second contains pointers to
angular distributions, and a third contains pointers to energy distributions. This linked list
type of layout increases memory usage, but lowers the number of data loads that are needed
to determine a reaction by eliminating a pointer load to find a cross section value.

Optimized, high-performance GPU code libraries are also used by WARP wherever pos-
sible. The CUDA performance primitives (CUDPP) library is used to perform the parallel
reductions, sorts and sums, the CURAND library is used to seed the linear congruential
random number generators, and the OptiX ray tracing framework is used for geometry rep-
resentation. OptiX is a highly-optimized library developed by NVIDIA that automatically
builds hierarchical acceleration structures around user-input geometry so only surfaces along
a ray line need to be queried in ray tracing. WARP also performs material and cell number
queries with OptiX by using a point-in-polygon like algorithm.

In the initial testing where 106 source neutrons per criticality batch are used, WARP is
capable of delivering results that are anywhere from 4 to 800 pcm away from MCNP 6.1
and Serpent 2.1.18, but with run times that are 11-82 times lower, depending on problem
geometry and materials. On average, WARP’s performance on a NIVIDIA K20 is equivalent
to approximately 45 AMD Opteron 6172 CPU cores. Larger batches are typically perform
better on the GPU, but memory limitations of the K20 card restricted batch size to 106

source neutrons.
WARP has shown that GPUs are an effective platform for performing Monte Carlo

neutron transport with continuous energy cross sections. Currently, WARP is the most
detailed and feature-rich program in existence for performing continuous energy Monte Carlo
neutron transport in general 3D geometries on GPUs, but compared to production codes
like Serpent and MCNP, WARP has limited capabilities. Despite WARP’s lack of features,
its novel algorithm implementations show that high performance can be achieved on a GPU
despite the inherently divergent program flow and sparse data access patterns. WARP
is not ready for everyday nuclear reactor calculations, but is a good platform for further
development of GPU-accelerated Monte Carlo neutron transport. In it’s current state, it
may be a useful tool for multiplication factor searches, i.e. determining reactivity coefficients
by perturbing material densities or temperatures, since these types of calculations typically
do not require many flux tallies.
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Chapter 1

Introduction

Nuclear reactors have the highest energy density of any energy-producing technology
currently available [1]. This is because of their ultimate source of energy - the atomic
nucleus. Compared to the atom as a whole, the nucleus is a very small, dense region that
contains most of the atom’s mass. The nucleus is made of protons and neutrons and is
held together by strongest elementary force known in nature - the strong nuclear force. The
strong force binds atomic nuclei together and keeps matter stable.

There are certain reactions that can happen to a nucleus that will cause it to become
unstable, however. When a nucleus of 235U absorbs a free neutron, there is a high probability
that the nucleus will rapidly become unstable and split. This splitting is called “fission,”
and it produces a large amount of energy. When the masses of the incident neutron, the
fragments, and neutrons that result from fission are measured, they sum to less mass than
that of the parent 235U atom and the incident neutron. Mass has actually been converted
into energy [2, 3]. This conversion also occurs in chemical reactions. If the masses of two
atoms are measured before they chemically bond and after, the bonded compound will have
a slightly smaller mass than the initial reactants. This “mass defect” is the amount of mass
that has been converted to energy in creating the new state, whether nuclear or atomic [4].
The electron has about 2 × 103 times less mass than a proton or neutron, and the forces
involved in atomic bonds are weaker than those in nuclear bonds, so the energetics of atomic
reactions are about 106 times less than that of nuclear reactions [2]. Since a nucleus must
be present in both atomic and nuclear reactions, the reactant mass is always dictated by
the nucleus, but nuclear reactions release much more energy than atomic reactions. This
is the reason nuclear fission produces so much energy from such a small mass compared to
chemical energy sources like burning natural gas or coal. 235U, for example, releases a total of
192.9±0.5 MeV per fission [3]. In chemical energy sources, the energy released per reaction
is on the order of 1 eV. The energy yielded by fission is 8 orders of magnitude larger.

Most of the energy released from fission ends up as kinetic energy of the two smaller
nuclei formed from fission, or fission fragments, and is quickly converted to heat in the
immediate vicinity of the fission site. This heat can be used to perform many tasks, but
arguably the most useful task is to drive a thermodynamic cycle to convert much of the heat
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into electricity. Since the specific energy of nuclear fuel is around six orders of magnitude
larger than chemical sources, the mass and volume of fuel needed to run a nuclear is orders
of magnitude smaller, and the power cycle produces much less waste mass, even though its
waste is very radioactive [5].

As with anything very powerful, nuclear technology must be handled with great respon-
sibility. The reactor’s behavior must be accurately predictable by designers and operators to
prevent accidents that could release radioactivity into the open environment and make sure
the power plant is a reliable source of clean, affordable electricity. To ensure this required
reliability and safety, accurate simulations are needed to predict what will happen to the
reactor if conditions within it change. Since reactors are expensive machines [6], accurate
simulations are needed in the design phase as well; accurate enough to provide confidence to
designers, regulators, and the public at large that a reactor will be safe before constructing
a demonstration plant.

A common and accurate way to conduct reactor simulations is to solve the neutron trans-
port equation using Monte Carlo methods. The Monte Carlo method requires few approxi-
mations to be made in the simulation model, and therefore can produce physically-accurate
results. However, using the Monte Carlo method is much more computationally expensive
than other methods. Typically, Monte Carlo simulations need to be run on supercomputers
to produce results in a reasonable amount of time for problems relevant to engineering.

General purpose graphical processing units (GPGPUs, referred to as GPUs henceforth)
are an emerging computational tool, sporting higher memory bandwidth and computational
throughput as well as lower power consumption per operation compared to central processing
units (CPUs), the standard type of computer processor. GPUs are touted as being “massively
parallel,” home to thousands of computational “cores,” and capable of turning a desktop into
a “personal supercomputer.” Some applications can see upwards of a hundredfold speedup by
running on GPUs [7]. These speedup factors make GPUs very attractive to use in extremely
parallel, computationally-intensive simulations like Monte Carlo neutron transport, where
trillions or more independent neutron histories are tracked.

Some argue that the speedup gains are an illusion, and multicore CPUs are more than
capable of similar performance if enough optimization is done [8]. Some think that adding
another programming paradigm is the wrong direction for computer science, and that it
would be better if more resources were invested into existing technologies instead of spreading
resources more thinly on new ones [9].

A key argument against both of these concerns is that learning a new language is not
required to program GPUs. CUDA (Compute Unified Device Architecture, NVIDIA’s par-
allel computing platform [10]) adds minimal extensions to the C programming language,
and is therefore easy to program in if a developer already knows C. Another argument is
that substantial performance gains can be seen without much detailed optimization. Getting
speedups of 100x will require thorough optimization, but getting 10x speedup of a serial code
is commonly seen with little to no algorithmic changes of CPU code. This is because GPUs
were developed to be parallel from their inception, unlike CPUs, and GPU hardware is able
to hide much of the details about how the parallel computations actually execute. CUDA



CHAPTER 1. INTRODUCTION 3

allows developers to write scalar code (as opposed to vector code), and CUDA maps this to
vectors on the hardware [10]. In addition, an empirical bandwagon argument can be made
for at least attempting to port codes to the GPU. Many developers are porting and seeing
reasonable speedups [7], which is more than enough reason to at least attempt using CUDA
for Monte Carlo neutron transport.

1.1 Why Monte Carlo?

When applied to neutron transport, the central concept of the Monte Carlo method is
to directly simulate what microscopically happens to neutrons in nature by tracking every
interaction they undergo, from birth to death. Once a sufficiently-large number of these “his-
tories” are completed, sums and/or averages are taken over certain attributes to determine
aggregate, macroscopic behavior [11]. Directly simulating what every individual neutron is
doing is a rather brute-force way of implementing a simulation since the macroscopic be-
havior is what matters in the end. The benefit of the brute-force strategy is that very few
assumptions have to be made, giving Monte Carlo the potential to be the most accurate way
to simulate nuclear reactors.

The main drawback in using the Monte Carlo method, however, is that its convergence
is governed by the central limit theorem. For many problems, obtaining sufficiently-low
statistical error is slow compared to other approaches [12, 13]. This is why any way of
accelerating Monte Carlo methods is of interest to the nuclear engineering community and
why GPUs are being studied in this work. In other words, it is a simulation method that
can greatly benefit from acceleration.

1.2 Why GPUs?

GPUs have gradually increased in computational power from the small, job-specific
boards of the early 1990s to the programmable powerhouses of today. Compared to CPUs,
they have a higher aggregate memory bandwidth, much higher floating-point operations per
second (FLOPS), and lower energy consumption per FLOP [10]. Because one of the main
obstacles in exascale computing is power consumption [14], many new supercomputing plat-
forms are gaining much of their computational capacity by incorporating GPUs into their
compute nodes. In the November 2013 Top 500 list, there are 41 GPU-accelerated super-
computers, some of which gain 50% of their computational capacity from GPU coprocessor
cards [15]. Supercomputers in the number two and six spots use GPUs as well. Since CPU-
optimized parallel algorithms are usually not directly portable to GPU architectures (or at
least not without losing substantial performance), transport codes may need to be rewrit-
ten to execute efficiently on GPUs. Unless this is done, nuclear engineers cannot take full
advantage of these new supercomputers for reactor simulations.
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Table 1.1 shows a breakdown of features of both an Intel i7 (Westmere-EP) CPU and an
NVIDIA Tesla C2075 (Fermi) GPU [16, 17]. An AMD CPU was used in this work, but the
i7 has similar enough characteristics to be representative, and the data of interest was more
readily available. The AMD processor has similar values apart from the frequency, therefore
comparisons made here are still valid.

At first glance, it may appear that the GPU completely outstrips the CPU. The GPU
has higher single precision FLOPs, which indicates that the GPU can do work faster than
the CPU. The GPU also has a higher memory bandwidth, which implies that data can be
accessed by the processors at a higher rate. Data is necessary to do calculations, and the
higher arithmetic rate of the GPU would be wasted if the processors couldn’t be fed with
data at a high rate. GPUs also have a higher concurrent thread capability. “Thread” is the
term used for the sequence of instructions given to a processor to be complete a specified
task.

Typical Monte Carlo neutron transport algorithms are “task-based.” A thread will trans-
port the neutron until it is terminated through absorption or by leaking out of the system.
The sequence of events the neutron undergoes from start to finish is called a neutron “his-
tory,” and is the basic unit of work for a thread in a task-based algorithm. Neutron histories
are independent of each other and the algorithm is parallelized by running many histories
in independent, parallel threads. Thus, having as many parallel threads as possible should
provide the greatest performance. This parallelization method requires that the threads can
execute completely independently of each other, i.e. the actions of one thread do not affect
the other parallel threads in any way. This is a MIMD (multiple instruction multiple data)
way of executing threads. In MIMD execution model, different threads can execute different
instructions on their data at a point in time. Threads appear to completely independent,
and having threads at different points in the transport algorithm is not a problem since they
are allowed to execute their own instructions.

It seems that GPU cards would be perfect for running Monte Carlo neutron transport
because they can run large numbers of concurrent threads. The concurrent thread number is
based on the width of the processor’s SIMD (single instruction multiple data) units, however.
SIMD is an execution model some processors use in order to lower the number of instructions
needed per amount of computation done, which increases both power and computational
efficiency [18]. SIMD requires the same instructions to be carried out over every element in
a concurrently-processed data vector. From a thread standpoint, SIMD requires threads to
execute the same instruction at a point in time. If a set of threads does not execute the
same instruction at the same time (the data they act on can still be different), the GPU
will serialize them. The subset of threads executing the first instruction will all execute
together, then the subset executing the second instruction will execute after them. Monte
Carlo typically breaks instruction regularity because of its conditional statements based on
random numbers. Therefore, if Monte Carlo algorithms are to be used on GPUs, they must
be implemented in a manner that carefully takes into account the limitations of the GPU.

The memory subsystems of GPUs also function in a SIMD-like way. In order to use
the full memory bandwidth of the device, more than one piece of data must be loaded and
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Table 1.1: A comparison of an NVIDIA GPU and an Intel CPU [16, 17, 19].

Processor Intel i7 NVIDIA Tesla
(Westmere-EP) C2075 (Fermi)

Processing Elements 6 cores, 2 issue, 14 cores, 2 issue,
4-way SIMD 16-way SIMD

Frequency 3.46GHz 1.15 Ghz
Resident Strands / Threads (max) 48 21,504
SP GFLOP/s 166 1030
Mem. Bandwidth 32 GB/s 144 GB/s
Global Latency ∼50 clocks 200-800 clocks
FLOPs / byte 5.2 7.2
Register File 6kB 2MB
Local Storage / L1 Cache 192 kB 896 kB
L2 Cache 1536 kB 0.75 MB
L3 Cache 12 MB -

used per transaction, and the only way multiple pieces of data can be loaded simultaneously
is if they are adjacent in memory. In other words, if a program requests a single piece of
data at location i, then requests a piece at location i + 10, these requests will be split into
two separate transactions that yield only one data element each. Two data elements in
two transactions produces an effective bandwidth of one element per transaction time. On
the other hand, if the program requests data at i, i + 1, i + 2, and i + 3, the entirety of
the requested data can be retrieved in a single transaction. Four data elements in a single
transaction yields and effective memory bandwidth of four elements per transaction time,
four times higher than the previous scenario. Having a memory subsystem that handles
requests in this way is not ideal for Monte Carlo methods, however. Data is accessed in
a very random way because of the random nature of the simulation, and requested data is
unlikely to be adjacent. This means the full memory bandwidth of the GPU will not be used
unless this problem is mitigated in some way.

Another undesirable feature of the GPU is that they have very high global memory
latency compared to a CPU. Memory latency is the number of clock cycles, or amount
of time, it takes for a data request to be fulfilled. As Table 1.1 shows, the GPU’s global
memory latency is about an order of magnitude higher than the CPU’s [17, 10]. GPUs try
to eliminate the effect of large global latency by pipelining memory access. Pipelining means
threads that have received their data can execute as other threads are waiting for their data
to load. If many requests are known, the data can be continually loaded as threads start to
execute their jobs. The hope is that the jobs take longer than the memory loads, eventually
all data arrives, and the later threads appear to have zero latency for their memory access.
This is why it is important for GPUs to have such a large number of concurrent threads. It
allows them to pipeline data access and minimize the impact of memory latency.
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Another notable feature is that the GPU has a greater FLOPs/byte of memory bandwidth
ratio than the CPU. This implies that GPUs could be used to turn a compute-bound problem
into a bandwidth-bound problem. This may seem like a deficit, but the GPU has a higher
maximum memory bandwidth, so even though a problem is bandwidth-bound on a GPU, it
may still require less execution time than on a CPU.

Table 1.2: Breakdown of the cost benefits of GPUs assuming maximum performance and
linear CPU scaling [20, 21, 22, 23, 19].

Processor 4x AMD Opteron 6172 @ 3x NVIDIA Tesla C2075
2.1 GHz (processors only) (cards only)

Approximate Price (Q2 2012) $8,000 $ 7,000
Max.TeraFLOP 0.8 3.1
Price / GigaFLOP $10 $2.26
Price / History Power $0.16 $0.11
(assuming 103 histories/s
per core and 25x GPU speedup)
Thermal Power 460 W 675 W
Yearly electricity cost $252 $96
per TeraFLOP ($.05 / kWh)

Table 1.2 shows a cost comparison of an AMD Opteron 6172 CPU and an NVIDIA Tesla
C2075 GPU [17, 10]. The prices shown are rounded values from purchases made by the UC
Berkeley Department Nuclear Engineering [20, 21]. The CPU price is for four Opteron 6172
processors, and the GPU price is for three NVIDIA Tesla C2075 cards. These numbers are
shown because the department’s computer cluster contains CPU and GPU nodes with these
configurations. The main benefit from using GPUs is the substantially lower electric cost
per FLOP, though the capital cost per amount of work can also be lower that an equivalent
CPU configuration. To put this in a nuclear engineering context, it is useful to compare cost
per rate of work done. This rate will be called “history power”: histories run per second.
Assuming a GPU speedup factor of 25 (approximately the average value of the accelerated
applications reported by NVIDIA [7]) and that CPU codes scale perfectly linearly, the price
per history power of the GPU configuration shown in Table 1.2 is about 31% lower than
that of CPU configuration. This indicates that GPUs may have lower capital costs as well
as lower power costs per history power if they are able to provide a speedup greater than 16
over serial CPU codes (this is where their cost per history powers are equal under the stated
assumptions).

1.3 Goals and Impacts

Many supercomputers are incorporating GPUs into their nodes to gain efficiency, which is
the main obstacle in exascale computing. Monte Carlo simulations are very computationally
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intensive, but their use is often required to adequately characterize nuclear reactors. To
perform Monte Carlo computations in a reasonable amount of time, supercomputers are
needed. Monte Carlo codes written for use on CPUs cannot be directly run on GPUs, and no
high-fidelity Monte Carlo neutron transport applications exist for the GPU. The goal of this
work is to develop a program, WARP, that accelerates accurate continuous energy neutron
transport simulations in general, 3D geometries by using a GPU. If the name “WARP” were
an acronym, it would stand for “weaving all the random particles,” with the word “weaving”
referring to the lock-step way in which “all the random particles”, i.e. the neutrons, are
sorted into coherent bundles and transported. Using the word “warp” is also a nod to
NVIDIA’s terminology for a group of 32 concurrent threads.

Even though GPU computing is still in its very early stages, developing WARP hedges
risk against the nuclear engineering community’s computational tools becoming under pow-
ered or even obsolete. GPUs are also common in personal computers and workstations.
Developing WARP will expose a substantial amount of computing power that couldn’t oth-
erwise be used and which could drastically reduce simulation times for people without access
to traditional supercomputers. If WARP is able to produce accurate results around 20 times
faster than a CPU code, the GPU could indeed be called a “personal supercomputer.” Many
supercomputers have nodes with around 20 CPU cores in them, and a 20x speedup with the
WARP would make having a GPU equivalent to having a supercomputer node in a personal
computer.

Running Monte Carlo simulations on GPUs is not a new idea. Ever since they became
programmable, people have been trying to take advantage of the GPU’s highly parallel, high
computational throughput features. There are several codes that perform photon transport
very well on GPUs [24, 25], and there have also been studies that ran criticality simulations
on a GPU using event-based algorithms [26, 27, 28]. In the most recent study, only three
reactions were considered, each reaction used an artificial, single-group cross section, and
only hardcoded, simple geometries were possible [26, 27]. An even earlier study attempted
to use continuous-energy cross sections to perform criticality calculations, but did not use
standard data, did not perform inelastic scattering according to the full ENDF laws, did
not incorporate a general or scalable geometry representation, and did not implement an
effective task-parallel algorithm [28]. Due to all of their various shortcomings, none of these
code were able to produce results comparable to production Monte Carlo neutron transport
codes.

WARP sets itself apart from any previous endeavors in its breath of scope and its novel
adaption of the event-based transport algorithm. Previous codes have also either used syn-
thetic, simplified, and/or incomplete nuclear data. WARP will loaded standard data files and
accurately simulate each reaction type specified in the data. WARP will also use a flexible,
scalable, and optimized geometry representation where previous studies have used simplified
and restricted geometry models. Previous works have examined event-parallel algorithms,
but have not parallelized them effectively and therefore did not see the benefits of adopting
such an algorithm on a GPU. WARP will use highly-parallelized algorithms and slightly
modify the original vision of the event-based algorithm to better suit execution on the GPU.



CHAPTER 1. INTRODUCTION 8

The previous event-based algorithms tried to implement a “shuffle” operation where neu-
tron data was actually sorted into reaction-contiguous blocks [28], similarly to vectorized
Monte Carlo Methods developed decades ago [29, 30], or used small, synthetic nuclear data
and were not able to capture the effects of loading large nuclear datasets [27]. WARP also
changes the unionized energy grid data format to reduce the number of data loads needed
to scan cross sections. In addition, an important part of WARP’s development is also to
determine if existing task-based Monte Carlo algorithms can be preserved or if they need to
be modified in order to take full advantage of GPUs.

These features aim to make WARP a competitive Monte Carlo neutron transport code
that efficiently executes on a GPU. To validate WAPR’s accuracy, it will be compared
against MCNP and Serpent, two production Monte Carlo neutron transport codes. WARP
uses standard nuclear data files, can run in fixed source and criticality modes, can calcu-
late integral parameters such as the multiplication factor, reaction rates, and fission rate
distribution and other distribution functions such as the neutron spectrum. Since WARP
should be performing the same calculations using the same data, the runtimes of WARP
compared to the reference codes can also be made. A comparison of GPU-generated results
to production Monte Carlo neutron transport codes has never been done before, and WARP
will be the first to do so.

1.4 Reference Monte Carlo Neutron Transport Codes

The main purpose in developing WARP is to accelerate Monte Carlo nuclear reactor
simulations by using the computational power of GPUs. To determine if WARP is successful
in doing this, WARP will compared against Serpent [12] and MCNP [11], two Monte Carlo
neutron transport codes that are used in the nuclear engineering community. Each code has
different features and strengths and weaknesses in different areas. Comparing against both
codes will certify that WARP is doing the correct calculations and determine if WARP’s
GPU implementations are effective in accelerating them.

MCNP

Monte Carlo simulations were one of the first applications of early computers. This is
reflected in the correspondence of John von Neumann and Robert Richtmyer in 1947. In his
letter, von Neumann outlined how to use statistical calculations to solve the neutron diffu-
sion equation. Shortly after, Enrico Fermi invented FERMIAC11 at Los Alamos National
Laboratory to track neutrons as they travelled through fissile materials by the Monte Carlo
Method [11]. With the introduction of Fortran in 1957, it became possible to write more
general neutron transport code systems than writing directly in machine code, and MCNP
has been developed (in various incarnations) at Los Alamos National Laboratory since 1963
[11].
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Despite the age of the project, MCNP tries to include all relevant advancements in the
Monte Carlo method, includes detailed and accurate physical models and data, and is the
“gold standard” of Monte Carlo neutron transport codes. MCNP has become a “repository
for physics knowledge” and “represents over 500 person-years of sustained effort” [11]. WARP
is similar to MCNP in that MCNP reads ACE-formatted nuclear data and uses ray tracing
to handle boundary crossings. Serpent is capable of reproducing the results from MCNP
very well [12], but MCNP will be included in the comparisons to further validate the results.

Serpent

“Serpent is a three-dimensional continuous-energy Monte Carlo reactor physics burnup
calculation code, developed at VTT Technical Research Centre of Finland since 2004. The
publicly available Serpent 1 has been distributed by the OECD/NEA Data Bank and RSICC
since 2009, and next version of the code, Serpent 2, is currently in a beta-testing phase and
available to registered users by request” [31]. It is written in ANSI C and makes use of MPI
and OpenMP for parallelization [12].

According to the Serpent website, Serpent is suggested for use in “spatial homogenization
and group constant generation for deterministic reactor simulator calculations; fuel cycle
studies involving detailed assembly-level burnup calculations; validation of deterministic
lattice transport codes; full-core modeling of research reactors, SMR’s, and other closely
coupled systems; coupled multi-physics applications (Serpent 2); and educational purposes
and demonstration of reactor physics phenomena” [31]. Serpent 1 has been extensively
validated against standard nuclear reactor criticality benchmarks and typically compares
very well with results given by MCNP and Keno-VI [31].

Like many Monte Carlo neutron transport codes (MCNP and Keno-VI included), Serpent
uses a universe-based combinatorial solid geometry (CSG) model that determines which
volume a neutron is in by using binary logic on second-order surfaces [11, 31]. Serpent uses
a combination of ray tracing and the Woodcock delta-tracking method to track neutron
movements, which is different from what many Monte Carlo codes do [31]. The Woodcock
method “has proven efficient and well suited for geometries where the neutron mean-free-
path is long compared to the dimensions, which is typically the case in fuel assemblies, and
especially in HTGR particle fuels” [31], and limits excess geometry sampling that can occur
when strong absorbers are present.

Serpent also brought the use of a unionized energy grid format for the cross section
and reaction data into the mainstream. The native way nuclear data is formatted gives an
isotope’s cross sections a unique energy grid. It is done this way so the minimum number of
data points are included in the cross section to achieve an accuracy level. Since each isotope’s
grid is different, a search must be done on it to determine what data points a neutron’s energy
lies between. When there are many isotopes present, doing many energy searches to look
up cross sections can become expensive. Serpent’s method is to unionize all the energy grid
for all the isotopes so they all have the same energy structure and only a single grid search
is needed [12]. This reformatting of the nuclear data regularizes the access of the data and
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increases performance, but comes at the cost of a larger memory footprint. Serpent was not
the first code to use this type of data structure [29], but is the first widely-used code to
do so. Serpent can also perform cross section preprocessing at arbitrary temperatures for
more accurate calculations with minimal computational cost. Serpent also does on-the-fly
Doppler broadening from 0 K data, so only one set of nuclear data needs to be stored in
memory (though this strategy has an additional computational cost) [31].

1.5 Outline

Chapter 2 will cover background material that was needed in the development of WARP.
It covers nuclear physics, nuclear reactor analysis, and the kinematics involved in neutron
transport. Then, the mathematics behind the governing equations is discussed, the solution
method explained, and how the required probability distributions are sampled is detailed.
After the physics and mathematics sections, the computer hardware is discussed as is the
OptiX ray tracing framework, which is the major library used in WARP. The chapter con-
cludes with an overview of the previous research of Monte Carlo neutron transport on GPUs
and how WARP fits into the landscape.

Chapter 3 discusses the actual routine implementations used on the GPU in WARP.
It first goes over the exploratory studies done in preparation for developing WARP. These
studies show the algorithmic benefits of a very important feature of WARP – remapping the
data references. It also goes over how OptiX execution is optimized for best performance
in reactor-like geometries. After the preliminary studies, the data layout for cross sections
is explained and its similarities and differences from Serpent pointed out. The last topic
discussed is the CUDA kernels written by hand for WARP. These routines process the
neutrons as they travel through the problem geometry and provide the “glue” to connect all
the important tasks that WARP requires to process the neutron data.

Chapter 4 discusses the initial results produced by WARP. Four criticality tests and
two fixed-source tests are shown, each highlighting different requirements of the transport
routines. For criticality source runs, the flux spectra, multiplication factors, and runtimes
are compared to those from Serpent and MCNP. Fission source distributions from WARP
are compared with Serpent only. The two fixed source calculations are shown to illustrate
WARP’s capabilities, and are also compared with Serpent and MCNP. In the conclusion of
the chapter, the runtimes of remapping and non-remapping versions of WARP are compared
to determine the necessity of remapping the neutron data references.

The final chapter draws conclusions from the previous chapters. In addition to drawing
conclusions about the best-performing algorithms and configurations for conducting contin-
uous energy Monte Carlo neutron transport on GPUs, the success of WARP in completing
this work’s initial goals is discussed. After these concluding remarks, a future roadmap for
WARP is proposed, and the amount of work needed to be done to make WARP fully featured
and reliable enough to gain community acceptance is enumerated.



11

Chapter 2

Background

This chapter explains the fundamental theory and mathematics that went into the de-
velopment of WARP. It covers nuclear physics, nuclear reactor analysis, and the kinematics
involved in neutron transport. Next, the mathematics behind the governing equations is
discussed, the Monte Carlo solution method explained, and how the required probability
distributions are sampled is detailed. After the physics and mathematics sections, the com-
puter hardware is discussed as is the OptiX ray tracing framework, which is the major library
used in WARP. The chapter concludes with an overview of the previous research of Monte
Carlo neutron transport on GPUs and how WARP fits into the landscape.

2.1 Nuclear Reactor Analysis

Nuclear reactors generate electricity from the heat produced by fissions induced in heavy
nuclei. Fissions are induced in nuclear reactor cores by a free neutron population present in
the core, and this free neutron population is self-sustaining if the core is maintained within
certain property ranges. The neutron density in the core is much smaller than the nuclei
density and it can change much more quickly. Reactor power is directly proportional to
the fission reaction rate, which is derived from the neutron density, and thus can change as
quickly as the neutron density. Therefore, to know a core’s most basic state, one must know
the neutron density distribution. Knowing how reactor power will change given changes in
the environment means knowing how the neutron distribution will respond to the changes.
Accurately solving the neutron transport equation is essential for characterizing reactor
behavior.

When a uranium (or other fissile heavy metal) nucleus fissions, two or more neutrons
are released. If, on average, exactly one of these neutrons goes on to induce another fission,
the system in which the fissions are occurring is critical, or able to maintain a constant
neutron population and fission reaction rate (and correspondingly constant power) without
any external neutron sources. This is a stable fission chain reaction. The fissile nucleus
rarely splits evenly, and the spectrum of lighter isotopes that are created by fission are called
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fission products [3]. Fission products accumulate in the fuel material and can inhibit the
fission chain reaction through absorption when they reach a high enough concentration.

A fissionable isotope is one that has a non-zero fission cross section, i.e. there is a
probability it will fission if it absorbs a neutron. A fissile isotope is one that can be induced
to fission by absorbing a neutron at any energy. Some isotopes, like 235U, can absorb a
neutron at low energies and fission. This is because the energy imparted to the nucleus
through the absorption reaction is enough to destabilize it to the point where it splits [3].
For some isotopes, like 238U, absorbing a low-energy neutron does not impart enough energy
to the nucleus to induce fission. It only fissions when a high-energy neutron is absorbed
and the neutron brings additional energy with it to destabilize the nucleus sufficiently for
fission to occur. Therefore, 238U is fissionable, but not fissile. 238U is also considered a fertile
isotope since when it captures a neutron, it becomes 239U which decays to 239Np and then
to 239Pu, which is fissile. When a nucleus absorbs a neutron and produces no secondary
particles (only gamma rays are produced), it is called “capture” since the neutron is added
to the nucleus of the previous isotope. Fertile isotopes are those that decay to fissile isotopes
after capturing a neutron [3].

The effective multiplication factor, keff , is the ratio of the number of neutrons in subse-
quent neutron generations. It is an integral quantity, and describes how many secondary
neutrons are induced by an average neutron in a core. In other words, it describes the change
in the neutron population between generations. If keff = 1, then subsequent neutron genera-
tions contain, on average, the same number of neutrons and the core is critical. If it is below
1, subsequent neutron generations are smaller and the core is subcritical. If keff is greater
than 1, subsequent generations are larger and the core is supercritical. Figure 2.1 shows a
schematic of the neutron generations, their size, and their relation to kkeff . The effective
multiplication factor can also describe the time rate of change of the neutron population if
the average neutron lifetime is known. The multiplication factor is an important quantity
in characterizing nuclear reactor behavior because the core power is directly proportional to
the fission rate, and the multiplication factor therefore dictates the time rate of change of
the core power.

The most common type of commercial reactors are light water reactors [32]. These
reactors use enriched uranium oxide, UO2, fuel. They are cooled and moderated with light
water, which is water containing predominately 1H with trace amounts of 2H. In the nuclear
engineering lexicon, “moderator” means a material that reduces neutron energies to thermal
levels, that is, to nearly thermal equilibrium with the moderator nuclei [3]. The most effective
moderators are light nuclei, like hydrogen, since they have a mass similar to that of a neutron
and an elastic scattering reaction can transfer a large fraction of the neutron’s energy to
the moderator nucleus. Light water reactors, or LWRs, are “thermal,” since most of their
fissions are induced by thermal neutrons. “Fast” reactors, on the other hand, are designed
to minimize the slowing-down of fission neutrons and, therefore, lack a neutron moderator
and typically use liquid metal for their coolant. [3].

Many factors influence the neutron population, and therefore must be incorporated into
the solution method. The neutron population has strong feedback mechanisms from the
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Figure 2.1: Schematic of the fission chain reaction and its relation to the multiplication
factor.

materials present in the core. Each isotope in the core may undergo several different inter-
actions with neutrons, and these reaction probabilities may have very strong dependence on
the incoming neutron energy. Using the Monte Carlo method to approximate solutions to the
neutron transport equation requires all of the neutron interactions to be explicitly modeled.
The core geometry also affects the neutron distribution, since it describes the spatial extent
of the core materials. The Monte Carlo method tracks neutrons as they move through the
core materials, sampling the reactions they can undergo along the way. These reactions dic-
tate fission chain reaction and maintain the core’s effective multiplication factor. Tracking
them allows the estimation of detailed reaction rates in the core, and allows engineers to
better understand reactor behavior and design reactors to specifications. The next section
will discuss all the possible reaction types a neutron can undergo when it collides with a
nucleus and how interaction probabilities are classified and quantified.

2.2 Nuclear Interactions

The core of a Monte Carlo simulation is explicitly modeling the individual interactions
the neutron undergoes as it moves through matter. At the highest level, these reactions can
be broken down into two broad categories - scattering and absorption. Scattering reactions
are when a neutron “bounces off” a nucleus. They change a neutron’s direction and energy,
but do not terminate its progression through matter. Absorption reactions are when the
neutron becomes part of the nucleus. This state of a nucleus plus the incoming free neutron
is called a “compound nucleus.” The neutron does not continue in a free state, and its
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progress through the material is ended.
Scattering reactions can be further broken down into elastic and inelastic types. Elastic

reactions are those where both momentum and kinetic energy are conserved, i.e. ones where
any energy the neutron loses is given to the target nucleus. Inelastic reactions are those that
conserve momentum but do not conserve kinetic energy, i.e. ones where the kinetic energy of
the particles can be converted to an internal mode of the target nucleus. In some cases, the
inelastic scattering reactions form a compound nucleus for a short time. A single neutron is
emitted from the compound nucleus, resulting in the same particles that entered the reaction,
but the nucleus is left at an excited state, making the reaction inelastic. Inelastic scattering
reactions are further divided by the energy given to the nucleus [3].

There are many types of different absorption reactions, which are categorized by how
the compound nucleus behaves, i.e. the number and type of secondary products it produces
as it de-excites. Some reactions do not produce any secondary particles, and the neutron
is “captured.” Others produce secondary neutrons, like (n,2n) reactions where the neutron
is absorbed, but the excited compound nucleus decays to a ground state by emitting two
neutrons. Fission is also classified as an absorption reaction since a compound nucleus is
formed, but in this case the compound nucleus splits instead of relaxing to another state [3].

The probabilities for individual reactions occurring are expressed in terms of cross sec-
tions. Cross sections are referred to in two ways - microscopically and macroscopically.
Microscopic cross sections, represented by Greek lowercase sigma (σ), have units of area and
describe the individual nucleus interaction probabilities in terms of the apparent “size” of
the reaction. Macroscopic cross sections, represented by Greek capital sigma (Σ), take into
account the density of nuclei, and describe the interaction probability per unit length along
a neutron’s direction of travel.

Microscopic cross sections are like geometric cross sections – they represent the “size” of
the target nucleus for a particular reaction. The classical analogy is that if neutrons and
nuclei are hard spheres, and neutrons are randomly shot through a material, more neutrons
will hit the larger targets than the smaller ones. Cross sections are also expressed in units
of area, the “barn,” which is 10−24 cm2. This unit was coined by Baker and Holloway
while performing scattering experiments with uranium since “a cross section of 10−24 cm2

for nuclear purposes was really as big as a barn”[33]. Of course, nuclear cross sections have
no literal meaning in terms of the actual sizes of the nuclei, they only represent the likelihood
of a particular reaction occurring.

Working at the macroscopic scale, which is where measurements are taken, a macroscopic
cross section is the probability of a reaction happening per unit distance a neutron travels.
With this parameter, an equation can be written that describes the survival probability of a
group, or ensemble, of particles. Describing a group is necessary since neutrons are discrete
particles, but the dimension x is continuous. Given a particle packet containing N particles
and Σ, their interaction probability per unit distance the neutrons travel, the change in the
uninteracted population over the differential distance dx is the product of the population
N and the interaction probability, as show in Eq. (2.1) [3]. N is the number of neutrons
that have not yet interacted and does not have dimensionality. When number densities are
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discussed later, they will be represented by a lowercase n, which has units of inverse volume,
typically 1/cm3. N could also be a neutron current, or the number of neutrons crossing unit
surface area perpendicular to x per unit time, which implies that the N is at steady-state
and has no time dependence. Treating N as a number of neutrons implies it is a transient
neutron pulse traveling through the material and position and time are directly related by
the neutrons’ speed.

dN

dx
= −ΣN (2.1)

Integrating Eq. (2.1) over an interval yields an expression for the number of non-interacting
particles left in a packet after crossing that interval. Dividing the surviving number by the
initial gives a dimensionless expression for the non-interaction probability, PNI, over the
interval x1 as shown in Eq. (2.2), where N0 is the initial number of particles [3]. The expres-
sions for non-interaction probability will be important later when it is necessary to sample
the distance to the next interaction for individual neutrons in the Monte Carlo method.

PNI =
N

N0

= exp (−Σx1) (2.2)

Σ =
− ln (N/N0)

x1

(2.3)

Macroscopic cross sections are simply the microscopic cross section multiplied by the
isotope’s number density [3]. When a material is composed of multiple isotopes, the total
macroscopic cross section for the material is the sum of the material’s individual macroscopic
cross sections. Compositions are commonly given in terms of atomic fraction, fi, of isotope
i, and total material mass density, ρ. It is then necessary to compute each isotope’s number
density from the average atomic mass of the isotopic combination, Mavg. The average atomic
mass is computed from the individual isotopes’ fractionally-weighted atomic masses, as shown
in Eq. (2.5). Once this is computed, the average number density of the mixture can be
calculated with Eq. (2.6). Using this value, the material’s macroscopic cross section can be
calculated with Eq. (2.7). Compositions are also often given in weight percents, and the
process of calculating macroscopic cross sections from them is very similar.

Nisotopes∑
i=1

fi = 1 (2.4)

Mavg =

Nisotopes∑
i=1

fiMi (2.5)

ni = finavg = fi
ρ

Mavg

(2.6)
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Σmaterial =

Nisotopes∑
i=1

niσi = navg

Nisotopes∑
i=1

fiσi =
ρ

Mavg

nisotopes∑
i=1

fiσi (2.7)

The above expressions do not take any energy dependence into account. The quantum
mechanical effects that are present in reality can cause cross sections to depend strongly on
the energy (or velocity) of the neutron and the target nucleus. Many nuclides have resonances
where the interaction probability spikes to very large values. This typically happens when
the incoming neutron’s energy in the CM frame is near an energy level of the resultant
compound nucleus [3]. Figure 2.2 shows the energy dependence of various reaction types in
10B and Figure 2.3 shows the dependence of some reactions in 235U.
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Figure 2.2: The energy dependence of some reactions in 6Li.

It is important to note the complexity shown in in the cross sections for 235U in the
0.1 eV to 40 keV range. This is referred to as the “resonance region” and adds much of
the complexity in accurately modeling neutron transport. There are no simple functional
representations available for such cross sections, so they must be represented in a point-wise
tabular format.

Elastic Scattering

Elastic scattering conserves both the momentum and the kinetic energy of the reacting
particles and occurs when the neutron does not enter the nucleus, but bounces off of its
potential field. Since there is only a single exiting particle, elastic scattering is a two-body
interaction and the kinematics are constrained by conservation of momentum and total
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Figure 2.3: The energy dependence of some reactions in 235U.

energy. The angle between the neutron’s incoming and outgoing directions, or scattering
angle, θ, is often represented as its cosine, µ = cos θ. The scattering angle is the only
unconstrained variable in the elastic scattering interaction, and the exiting neutron kinetic
energy can be determined if the angle between the incoming and exiting particle is known.

This problem is greatly simplified if the velocities of the interacting neutron and nucleus
are transformed into the center-of-mass (CM) frame, where net momentum before and after
the collision is zero. The velocity of the CM is defined in Eq. (2.9) where m and M are the
neutron’s and the target’s respective masses, v and V are their respective velocity vectors,
and A is the ratio of the target’s mass to the neutron’s mass (also know as the “atomic mass
ratio” or AMR). The derivation from here follows closely with that in [12].

A =
M

m
(2.8)

~vCM =
m~v +M ~V

m+M
=

~v + A~V

1 + A
(2.9)

The CM velocities of the target and the neutron are then calculated by subtracting the
CM velocity from them, as shown in Eq. (2.10). The “c” subscript will denote the CM-frame
values from now on, whereas vCM will denote the velocity of the CM frame relative to the
stationary Lab frame.

~vc = ~v − ~vCM

~Vc = ~V − ~vCM

(2.10)



CHAPTER 2. BACKGROUND 18

Once in the CM frame, the equation for conservation of momentum can be written as
Eq. (2.11), where the primed values are those after the collision. Since the net momentum is
zero, the neutron and the target must be traveling in exactly opposite directions, as shown
in Eq. (2.12).

m~vc +M ~Vc = m~v′
c

+M ~V ′
c

= 0

~vc + A~Vc = ~v′
c

+ A~V ′
c

= 0
(2.11)

~v′
c

= −A~V ′
c

~vc = −A~Vc

(2.12)

The equation for conservation of energy is shown in Eq. (2.13). Q is the amount of energy
released by the reaction and is zero for elastic scattering. It is convenient to include in this
derivation for use later in inelastic collision kinematics where it is nonzero.

mv2
c

+MV 2
c

= mv′2
c

+MV ′2
c

+ 2Q

v2
c

+ AV 2
c

= v′2
c

+ AV ′2
c

+
2Q

m

(2.13)

There are now two unknowns (the primed values) and two equations, and the final veloci-
ties of the neutron and the target can be determined. Substituting Eq. (2.12) into Eq. (2.13)
and solving for either v′

c
or V ′

c
yields either equation in Eq. (2.14). If Q is zero, as it is in

elastic scattering, the initial and final velocities are the same for both the neutron and the
target, and the interaction only causes a rotation in the CM frame.

v′
c

=

√
v2
c

+
2AQ

m(A+ 1)

V ′
c

=

√
V 2

c
+

2Q

mA(A+ 1)

(2.14)

At first glance, it seems like the interaction has been fully characterized, but Eq. (2.12)
only relates the initial state of the neutron to the initial state of the target and the final state
of neutron to the final state of the target. The initial state and final state of the neutron
still need to be related. It has been mentioned already that the interaction is only a rotation
in the CM frame, so the initial and final state of the neutron’s direction can be related by a
three-dimensional rotation formula.

An efficient algorithm is given by Eq. (2.15) [13]. In the formula, µ = cos θ, and Ω̂x, Ω̂y,

and Ω̂z are the cartesian projections of the velocity’s unit vector. It is “efficient” in the sense
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that to rotate a vector, a full 3x3 matrix does not need to be constructed and multiplied by
the vector. In other words, matrix-vector operations are not needed and the rotation can be
carried out with three scalar operations.

Ω̂′x = µΩ̂x +

√
1− µ2(Ω̂xΩ̂z cosφ− Ω̂y sinφ)√

1− µΩ̂2
z

Ω̂′y = µΩ̂y +

√
1− µ2(Ω̂yΩ̂z cosφ+ Ω̂x sinφ)√

1− µΩ̂2
z

Ω̂′z = µΩ̂z −
√

(1− µ2)(1− µΩ̂2
z) cosφ

(2.15)

If the polar and azimuthal rotation angles, θ and φ, respectively, are determined, the
initial neutron velocity vector can be rotated through these angles to its final value. After the
rotation is done, the final velocities are known in the CM frame and they can be transformed
back to the Lab frame to give the final velocities there, as shown in Eq. (2.16).

~v′ = ~v′
c + ~vCM

~V ′ = ~V ′
c + ~vCM

(2.16)

Inelastic Level Scattering

Inelastic scattering is the other type of scattering a neutron can undergo, but in this case
kinetic energy is no longer conserved. Energy is transferred to or from an internal state of
the target nucleus. This amount of energy, Q, is typically defined to be positive for reactions
where energy is given to the neutron and target nucleus, i.e. Q is positive when the sum of
the particles’ kinetic energies is greater after the reaction than before. Therefore, Q values
for inelastic scattering are negative, since energy is always lost to an internal state of the
nucleus. In neutron-nucleus collisions, the target nucleus can be excited to a higher energy
state than its ground state if the colliding neutron has a high enough energy to do so. If the
colliding neutron has enough energy and the collision excites the nucleus, a discrete amount
of energy is lost to the reaction. These excited states typically do not have long half lives,
and a gamma ray is emitted when the nucleus relaxes to its ground state. This type of
reaction is called inelastic level scattering because an excited energy level becomes occupied
by the target nucleus.

Since this reaction is still a two-body interaction, the kinematics of the reaction are
identical to elastic scattering except the Q value is nonzero and negative. These reactions
have a threshold energy (below which their cross sections are zero) since the neutron needs
to have enough energy to excite the target nucleus. Figure 2.4 shows the energy levels in
177Hf, which is often used as a thermal neutron absorber due its large thermal capture cross
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Figure 2.4: The energy levels of 177Hf [2].

section, but it could also be used as a fast neutron moderator because it has many low-lying
energy levels and large inelastic scattering cross sections.

Inelastic Continuum Scattering

At energies above the distinct levels there lies a continuum in the nuclear energy states.
This isn’t truly a “continuum” in a strict sense, but the energy levels become so close together
they effectively form a domain where energy can take near-continuous values. Unlike the
discrete Q values corresponding to a single excited state used in inelastic level scattering,
the Q value of the reaction now follows a distribution [2].

Fission

Fission literally means “the splitting of something into two parts.” This is exactly what
nuclear fission is as well. Nuclear fission is when a nucleus splits into two smaller nuclei, called
fission fragments. When heavy nuclei undergo fission, they release energy and typically emit
a few other particles, including neutrons. That this reaction releases energy is the reason
heavy fissile elements, like uranium, can be used as an energy source. Fission fragments have
higher binding energy per nucleon compared to the parent nucleus, and as a result the total
mass of the fission products plus initiating neutron is less mass than the parent, meaning



CHAPTER 2. BACKGROUND 21

there is an energy release. Figure 2.5 shows the average binding energy per nucleon for a
wide range of nuclides. Note that the peak of the curve is at 56Fe, the most tightly bound
nucleus, and that heavier nuclides are lower than it. Fission splits the parent into two lighter
nuclides, and since the fragments are more tightly bound, the excess binding energy from
the parent is released.

The released energy isn’t deposited as heat directly, however. It is released in a range of
forms, many of which are converted to heat in the immediate vicinity of the fission event.
Table 2.1 shows the fraction of this total energy that is given to each entity [3]. Note that a
5% is given to neutrinos, which is essentially lost because materials have very small neutrino
interaction cross sections. The kinetic energy of the fission fragments has the majority of the
energy, and since they are heavy and charged, their energy is deposited as heat very near to
the fission site. Other particles carry some of the fission energy further away from the fission
site, but their energy is still almost completely converted to heat.
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Figure 2.5: Average binding energy per nucleon [34].

Fission is technically considered an absorption reaction since the fission-inducing neutron
enters the nucleus and creates a compound nucleus. Even though the neutron is absorbed,
more than two new neutrons are released by each fission on average, enabling a fission
chain reaction to occur. An important parameter of the fission chain reaction is νT, the
average total number of neutrons emitted per fission. This number is called “total” since
includes prompt neutrons, which appear immediately after fission, and delayed neutrons,
which appear later. Delayed neutrons are mainly produced from fission product decay, but a
small fraction also comes from photon-induced emission. These neutrons are not “prompt” in
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Table 2.1: Average distribution of of 235U fission energy [3].

Particle
Energy

Range Time
(% of 192.9±0.5 MeV)

Fission fragment kinetic energy 80 <0.1cm prompt
Prompt neutrons 3 10-100 cm prompt
Photons 4 100 cm prompt
Fission product β decay 4 short delayed
Neutrinos 5 extremely long delayed
Nonfission reactions from n capture 4 100 cm delayed

that they are not emitted immediately from the fission itself. The processes that create these
“delayed” neutrons (decay and nuclear relaxation) take time to occur and these neutrons
can therefore appear anywhere between 0.6 to 80 seconds after a fission event [3].

The kinetics of a nuclear chain reaction depends heavily on the mean neutron lifetime,
which was touched upon in 2.1. If only prompt neutrons are considered, the mean neutron
lifetime is approximately 10−4 seconds in light water (thermal spectrum) reactors fueled
by 235U [3]. Having a reactor that is critical solely on prompt neutrons means that it’s
power can change on the order of the prompt neutron lifetime. At this speed, it would
be difficult for control systems to respond in time to suppress any power excursions before
damage occurred. This is where delayed neutrons come into play. If a reactor is not critical
with prompt neutrons, but is critical with the incorporation of the delayed neutrons, the
long appearance time of delayed neutrons shifts the mean neutron lifetime to larger values;
typically to around 0.1 seconds for light water reactors [3]. The reactor is much easier to
control with this much slower mean neutron lifetime.

Figure 2.6 shows the energy dependence of the average total number of neutrons per
fission, νT, for several fissionable isotopes. The average total number of neutrons per fission is
shown at a single target material temperature since it has very weak temperature dependence
for most incoming neutron energies. For all three isotopes shown, νT is nearly constant from
low energies up to energies in the MeV range, where it increases sharply due to the energy
the incident neutron provides being sufficient to eject additional bound neutrons.

Figure 2.7 shows the total fission cross sections for two fissile isotopes, 235U and 239Pu,
and one fertile isotope, 238U. The figure shows that 238U has a fission cross section, but it isn’t
significant until above 1 MeV. For 238U, fission is practically a threshold reaction. Simply
absorbing a neutron does not provide enough energy to split the nucleus. Additional energy
is required, which can be provided in the form of an incident neutron’s kinetic energy. 238U
isn’t fissile, but it can be a significant contributor of fission reactions in reactors where the
neutron population is fast, i.e. mainly high-energy. As mentioned before, 238U is considered
fertile because it is converted to the fissile isotope 239Pu after absorbing a neutron and
radioactively decaying [3].

WARP uses νT and fission neutron energy spectra that incorporate delayed neutron



CHAPTER 2. BACKGROUND 23

10−11 10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 100 101 102

Energy (MeV)

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

C
ro

ss
Se

ct
io

n
(b

ar
ns

)

Fission neutron yields for 235U, 238U, and 239Pu

235U
238U
239Pu

Figure 2.6: The average total number of neutrons per fission, νT, for 235U, 238U, and 239Pu.
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Figure 2.7: Fission cross sections for 235U, 238U, and 239Pu.

energies since it is more physically accurate and produces the overall effective multiplication
factor.
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Capture Reactions

Unlike scattering reactions, where the energy and direction of the neutron is changed
but continues to transport, capture reactions remove a free neutron. Typically this leaves
the daughter nucleus in an excited state, which then relaxes to ground state by emitting a
gamma ray, which is why captures are sometimes called (n,γ) reactions [2].

Other Secondary-Producing Absorption Reactions

This category encompasses all the other reactions neutrons undergo. There are two types:
reactions that produce secondary neutrons in some amount and reactions that do not. Those
that do not may still produce other particles, like alpha particles, tritons, protons, et cetera.
Since these do not produce secondary neutrons, however, they are basically equivalent to
capture reactions from a neutron transport standpoint. Even though they aren’t strictly
capture reactions, they can contribute significantly to an isotope’s absorption of neutrons.
Figure 2.2 shows that the (n,α) in 10B is by far the main component of the total cross section,
making 10B a very strong absorber of low energy neutrons. 10B is widely used in safety and
control systems in thermal-spectrum reactors.

Of the reactions that produce secondary neutrons, the (n,2n) reaction is most significant
because it has the lowest threshold energy. These reactions are called multiplicity reactions
[11]. At higher incident neutron energies, (n,3n) and even (n,4n) can become possible. Other
particle combinations are possible as well, such as (n,nα), and these reactions act like an
inelastic scatter interaction where the relationship between scattering angle and energy no
longer applies due to there being three bodies to distribute energy to instead of only two.

Bound Nuclei and Unresolved Resonances

Treating matter as a collection of free nuclei is a good approximation most of the time
since the neutron energies are much larger than the thermal energies of the nuclei and
the recoil energies imparted on the targets is typically much larger than any cohesive forces
between them [12]. This assumption is not valid for many important moderator materials like
water and graphite. In these materials, the atoms are bonded to each other and these bonds
provide another degree of freedom for energy transfer in scattering. Since the bonds are of the
same energy as a low energy neutron, a significant amount of energy can be lost to breaking
them when the neutron scatters off bound nuclei. This changes the scattering kinematics
significantly and the reactions rates can be affected from this change [12]. The kinematics
of thermal scattering are handled via the S(α,β) coupled energy-angle representation, which
replaces the free gas treatment discussed in the next section [11]. WARP does not included
the S(α,β) treatment currently. Adding it will be a point of future development.

There is also a special treatment for sampling reaction types in the unresolved resonance
region. The unresolved resonance region is the energy range above the resolved resonance
region where the resonances are so closely spaced together that the cross section appears
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to be smoothly-varying (e.g. 2.25 - 25 keV for 235U) [11]. Treating the cross sections as
smooth in this region does not account for resonance self-shielding effects, and can produce
inaccurate results in systems where the flux is large in this region. Resonance self shielding is
where the flux near a resonance becomes depressed due to strong absorption in the resonance,
and this flux depression “shields” the nuclei from neutrons at this energy [3]. Probability
tables are included in ENDF data to account for these resonances, but these tables are not
loaded by WARP. Adding the unresolved resonance treatment will be another point of future
development for WARP.

2.3 Temperature Effects

It is a good assumption that the thermal motion of the target nuclide is negligible when
neutrons are at MeV-range energies. However, when neutrons scatter and lose energy they
can come near the thermal energy of the material, which is on the order of .01 eV. When
this happens, the target nuclide no longer appears stationary, and assuming that it has zero
velocity in scattering calculations is inaccurate as discussed above.

MCNP sets the threshold above which the target nuclide can be assumed stationary at
400 kT, which corresponds to about 10 eV for materials at room temperature [11]. Below this
threshold, it is important to model thermal effects. If this wasn’t done, a neutron could keep
scattering off of zero-energy targets and its energy could approach zero, which is not physical.
Neutrons can only scatter down to a state where they are in thermal equilibrium with the
material they are traveling through. This creates a “thermal peak” at low energies where
neutrons collect, especially in materials where the absorption-to-scattering cross section ratio
is small and neutrons scatter many times before they are absorbed.

Doppler Effect

The other effect that thermal motion has is the Doppler effect. The nuclei in a ma-
terial are assumed to be in thermal equilibrium, and the velocities of the nuclei follow a
Maxwell-Boltzmann distribution with a mean value corresponding to the material’s temper-
ature. Cross section data is adjusted to preserved true reaction rates even though target
nucleus is assumed to be at rest. This adjustment basically involves convolving the cross
sections with the thermal distribution of the target velocities. When temperature rises, the
thermal velocity distribution becomes wider, and this manifests itself in the cross sections
by broadening resonances. The effect is also known as Doppler broadening for this reason.

Figure 2.8 shows the Maxwell-Boltzmann distributions at various temperatures for a
heavy nucleus and for a light nucleus. This is the distribution of speeds particles in a “gas”
have if they only interact by scattering off of one another. Most solids can be modeled as a
dense gas when there are no strong anisotropies in their structure, which is why modeling
the target velocities in this way is called the “free gas model.” Note that the broadening
effect is much more pronounced for light nuclei [3].
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Figure 2.8: Maxwell-Boltzmann distribution for the speed of heavy and light nuclides at
different temperatures.

The widening of resonances affects reactors in significant ways. The most notable is that
absorption probability in resonances increases in the resonance region as neutrons scatter
down to thermal energies. Since the number of neutrons lost to capture increases, Doppler
broadening reduces the overall multiplication factor. This effect is important for reactor
safety since it produces a negative reactivity feedback for fuel temperature increase and
helps prevent power excursions and meltdowns. If the multiplication factor is above unity,
the power starts to rise. In the short term, the fuel temperature will rise more rapidly
than any coolant mechanism can respond, so a increase in power corresponds directly to
an increase in fuel temperature. When the temperature goes up, the increased captures
causes the fission rate and thus temperature to decrease, stopping the power from increasing
further [3]. There are many different types of reactivity feedback phenomena, but the fuel
temperature feedback is generally negative because of Doppler broadening.

Capture increases most in fission products since they often have strong absorption reso-
nances and are lighter than fuel nuclides. Very light nuclides typically do not have absorption
resonances, so Doppler broadening has littler effect on their absorption rates. This is why
temperature feedback is least effective in fresh fuel where there are few fission products.
Figure 2.9 shows the effect in 155Eu, a fission product with a high capture cross section.

The way cross sections are processed assumes that the target nucleus will be treated as
being at rest. Since the cross section actually depends on the relative velocity, the total
reaction rate of a neutron at a specific energy is the sum of the reaction rates across all the
relative velocities present due to thermal motion of the targets. The accurate total reaction
rate can be preserved even if the target is assumed at rest if the thermal motion effect has
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Figure 2.9: Doppler broadening of the 1 eV fission resonance in 155Eu.

already been incorporated into the cross section. This temperature processed cross section
is a called a thermally averaged cross section, σ̄. It can be used in simulations assuming
a target at rest, and the simulation will produce the same results as one that explicitly
models the target thermal motion. The effects of thermal averaging are especially significant
at resonances since slight movements in velocity can produce very large differences in cross
section. The overall effect is that sharp resonances are effectively broadened since they start
to contribute to reaction rates, and therefore thermally averaged cross sections, once the
thermal distribution of relative velocities starts overlap them.

The expression for thermally-averaged cross sections is shown in Eq. (2.17) [13], where
vn and vn are the speed and velocity of the neutron, respectively, vt is the velocity of the
target, vrel = ||vn − vt|| is the velocity of the neutron relative to the target, and M(vt) is
the thermal distribution of target speeds.

σ̄ =
1

vn

∫
vrelσ(vrel)M(vt)dvt (2.17)

The fact that cross sections have been adjusted for a material temperature will be signifi-
cant in Section 2.6 when the target-at-rest assumption breaks down and it becomes necessary
to preserve the correct reaction rates while still using the temperature-processed cross sec-
tions.
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2.4 Nuclear Data

Cross section data compiled by the United States is distributed by the Department of
Energy in ENDF files. ENDF stands for “evaluated nuclear data file,” and can contain data
for nuclear decay, photons, atomic relaxation, fission yields, thermal neutron scattering, and
charged particle reactions as well as neutron reactions. The data files are called “evaluated”
because a group of experts decides, or evaluates, what data is included in them. The data
includes theoretical calculations of cross sections based on well developed models as well as
experimental data. They also decide how to represent regimes that haven’t been measured
yet by comparing simulation results to experiments. The first data released was ENDF/B-I
in 1968 and the latest set is ENDF/B-VII, which was released in 2006.

The data is written in a standard format that dates back to when the data was stored
on magnetic tapes, and data entries are sometimes referred to as “tapes” to this day. The
format is rather archaic and contains a lot of redundant information about record locations,
which was useful when the tape head had to physically move between points in the tape [35].
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Figure 2.10: Hierarchy in ACE formatted neutron data libraries.

Many Monte Carlo codes read ACE-formatted data rather than the original ENDF file.
ENDF files contain a lot of data so the dataset preserves the original evaluation, but most
transport codes need the data in tabular format. This is why transport codes normally use
ACE-formatted data files. [12] ACE stands for “a compact ENDF” and strips out a lot of
the extra information unnecessary for neutron transport. ENDF tapes contain information
that is valuable for charged particles and photons as well as neutrons, and this information
is discarded for neutron transport. As Figure 2.10 shows, ACE files not only contain cross
sections, but also angle and energy distributions used in scattering and fission. ENDF assigns
a number to each type of reaction called the MT number. Table B.3 in Appendix B, taken
from a LANL website, shows what these MT numbers mean [35].

It can clearly be seen that there are many reactions a neutron can undergo, most of which
have very strong energy dependence. Most of the complexity in modeling nuclear reactors
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comes from the fact that the data needed to model neutrons is very complicated. Data may
be the most important part of the simulation; it is what ties the calculations to reality.

ACE data files typically come pre-processed at different temperatures. This processing
can done by a code called NJOY [12], which Doppler broadens all the resonances in the cross
sections and adjusts the unresolved resonance tables accordingly. It can also thin the energy
grid if requested by the user, though this reduces the accuracy of the cross sections [12].
Thinning the energy grid is a computationally intensive task, and NJOY is not parallelized.
Most production codes come with their own pre-processed datasets at several temperature
intervals in order to save the user the time and effort needed to process data from ENDF
files.

2.5 Neutron Transport

Now that the events that can happen to neutrons have been outlined, we will move to
describing the neutron population itself. Since the neutron population in reactor cores is
large, on the order of 108/cm3 [3], the neutrons themselves have very small radii, about
1.75 × 10−17 cm [2], and only the average behavior matters, their discrete distribution can
be well-approximated by a continuous distribution function. We will eventually derive the
neutron transport equation, which is a linearized version of the Boltzmann transport equation.
It is linear since it is assumed that neutrons do not interact with each other. This is usually
a good assumption in normal matter since the neutron density present in reactors is many
orders of magnitude smaller than the material density and neutrons are much more likely to
interact with the nuclei than each other [3].

Other than eliminating neutron self-interaction, there are several assumptions that go
into the equation that will hold true for the rest of the derivations. The first is that neutrons
are assumed to be points in space, so even at very high densities they still will not interact
with each other. Treating neutrons as points also mean neutrons cannot be in more than one
unique volume by overlapping boundaries. The next assumption is that any relativistic effects
are negligible. The energies of importance in reactor physics are below 10 MeV, far below
the neutron rest mass, and any changes in neutron mass will be below 1%. Since neutrons
are neutral, they are assumed to move in straight lines between collisions. Materials are also
assumed to be in thermal equilibrium and to have isotropic properties [3]. As mentioned
previously, some common reactor materials, like graphite and water, do not have isotropic
properties when it comes to scattering, however, but this can be corrected with S(α,β) tables.

Neutron Balance Equation

Before the transport equation is formulated, a neutron balance equation can be written
for a differential volume. This equation describes the number of neutrons entering and
exiting an infinitesimally-small volume with the difference being equal to the rate of change
of the neutrons within the volume. The reactions that neutrons can undergo and how
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neutrons move within the material are known, so there is enough information to write such
an equation. The balance equation for the neutron density, n, is shown in Eq. (2.18), and
Figure 2.11 shows an illustration of the differential volume.

rate of change = (production and neutrons in)− (loss and neutrons out)

∂n
∂t = (movement in + source + scatter in)− (movement out + absorbtion + scatter out)

(2.18)

Neutron Distribution Function

The neutron distribution function, n(~r, Ω̂, E, t), is the number of neutrons in volume d~r
around point ~r, in dΩ̂ around angle Ω̂, dE around energy E, and dt around time t.

n(~r, Ω̂, E, t) d~r dΩ̂ dE dt (2.19)

The angle vector, Ω̂, is a unit vector that specifies direction only, not magnitude. It is
easiest to express the directional vector in spherical coordinates (θ, φ), the polar angle and
the azimuthal angle, respectively. Their Cartesian projections are given by Eq. (2.20) and
shown in Figure 2.12.

Ωx = sin θ sinφ

Ωy = sin θ cosφ

Ωz = cos θ = µ

(2.20)
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Like any continuous distribution, it must be integrated to calculate scalar or integral
quantities. If we define the ith moment of the distribution according to Eq. (2.21), then the
0th moment would be the population and the 1st moment would be the mean if divided by
the 0th moment.

Mi =

∫ ∞
−∞

n(x)xidx (2.21)

For example, if we are given a neutron distribution which has no time dependence,
n(~r, Ω̂, E), and wanted to calculate NV , the total number of neutrons present in volume V,
we would calculate this number by Eq. (2.22), whereas if we wanted to know the average
energy, Ē, we would do this by Eq. (2.23).

NV =

∫ ∞
0

dE

∫
Ω̂

dΩ̂

∫
V

d~r n(~r, Ω̂, E) (2.22)

Ē =
1

NV

∫ ∞
0

dE

∫
Ω̂

dΩ̂

∫
V

d~r En(~r, Ω̂, E) (2.23)

Reaction Rates

A reaction rate is the rate at which a certain reaction is happening in a volume [3].
Consider N particles that travel at speed v in one direction. If Σ is the interaction probability
per unit length, multiplying it by the speed gives the probability of interaction per second,
or the collision rate. Since there are N particles, multiplying the collision rate by N gives
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the overall reaction rate, NvΣ, of the particles in an infinite medium. If N is substituted
for the neutron distribution function instead of a pulse, the expression becomes the reaction
rate per distribution differential, or the reaction rate density, R(~r, Ω̂, E, t). This expression
is shown in Eq. (2.24) and is the first building block of the explicit neutron balance equation.

R(~r, Ω̂, E, t) = v(E)n(~r, Ω̂, E, t)Σ(~r, E) (2.24)

If we assume there is only one energy, E0, and one direction that the neutron distribu-
tion varies along, x̂, and integrate over the other dimensions of this equation, as shown in
Eq. (2.25), we get an expression for the reaction rate in an infinitesimal slice, dx. A is the
area perpendicular to the direction of motion where the neutron population is nonzero.

∫ ∞
0

dE

∫
Ω̂

dΩ̂

∫
V

dxdydzv(E)n(~r, Ω̂, E, t)Σ(~r, E)δ(E−E0)δ(Ω̂−x̂) = v(E0)Σ(E0)Anx̂(x)dx

(2.25)
This is effectively the loss term for a beam in the x̂ direction, and if we set it as such,

we recover the linear attenuation expression as shown in Eq. (2.26), which is equivalent to
Eq. (2.1).

dn(x) = −vΣAn(x)dx ⇒ dN(x)

dx
= −ΣN (2.26)

Angular and Scalar Flux

Since the reactions rate density is dependent on the cross section and the velocity mul-
tiplied by the neutron distribution, the product of just the velocity and the neutron dis-
tribution is often defined as the angular flux density, ψ(~r, Ω̂, E, t), as shown in Eq. (2.27).
It is called a “flux” because it represents a rate at which particles are passing through a
surface and “angular” because it is angle-dependent. Since the reaction rates depend on
this quantity, the neutron transport problem is usually written in terms of the angular flux
density, which is then solved for instead of the neutron distribution.

ψ(~r, Ω̂, E, t) = v(E)n(~r, Ω̂, E, t) (2.27)

Scattering cross sections have angular dependence, but absorption cross sections typically
do not (their angular probability distribution function is a constant), so absorption reactions
can be written in terms of the scalar flux density (or simply the flux ), which is angular flux
that has been integrated over all angles. The relation between the angular and scalar fluxes is
show in Eq. (2.28). The scalar flux is usually the most interesting quantity in reactor physics
since the reactor power profile is directly proportional to it (power comes from fission, which
is an absorption reaction). The reaction rate for a reaction i that has no angular dependence
is shown in Eq. (2.29).
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φ(~r, E, t) =

∫
Ω̂

dΩ̂ψ(~r, Ω̂, E, t) (2.28)

Ri(~r, E, t) =

∫
Ω̂

dΩ̂ Σi(~r, E)ψ(~r, Ω̂, E, t) = Σi(~r, E)

∫
Ω̂

dΩ̂ ψ(~r, Ω̂, E, t)

= Σi(~r, E)φ(~r, E, t) (2.29)

From Eq. (2.18) we can see that the time derivative is in terms of the neutron density,
not the angular flux density. Thus, the time dependent term must be transformed to angular
flux density by multiplying and dividing it by the velocity as shown in Eq. (2.30).

∂

∂t
n(~r, Ω̂, E, t) =

∂

∂t

v(E)

v(E)
n(~r, Ω̂, E, t) =

∂

∂t

ψ(~r, Ω̂, E, t)

v(E)
=

1

v(E)

∂

∂t
ψ(~r, Ω̂, E, t) (2.30)

Scattering

Scattering is highly dependent on angle in addition to energy and requires a more detailed
cross section expression than absorption reactions. Elastic scattering has a fixed relation
between incoming and outgoing energy and angle, but inelastic scattering does not. To
be completely general in order to describe either type of scattering, all scattering cross
sections are assumed to depend not only on incoming energy (like all cross sections), but
also on outgoing energy, incoming angle, and outgoing angle. Since two quantities are being
related before and after the scattering event, the scattering cross section is considered doubly
differential and is sometimes called the scattering kernel, whereas the integrated value, which
only depends on incoming energy, is called the scattering cross section. An expression for
the scattering kernel is shown in Eq. (2.31) with the outgoing values primed [12].

Σs(~r, E) =

∫
Ω̂

dΩ̂
′
∫ ∞

0

dE ′ Σs(~r, E → E ′, Ω̂→ Ω̂
′
) (2.31)

There is a practical reason for separating scattering into a cross section that describes
the likelihood of a neutron entering the reaction, and a kernel that describes how it exits. In
a Monte Carlo simulation, the cross section is used to determine whether scattering happens
rather than how it happens. The scattering kernel is used to determine exit energy and angle
only if a neutron has already been determined to scatter.

This separation is also useful in expressions for scattering in a differential volume. The
cross section is used as the removal of a neutron from a particular energy and/or angle (it
is the doubly differential scattering cross section integrated over all outgoing directions and
energies), whereas the kernel is used to determine which other energies and angles contribute
to neutrons scattering into a particular energy and/or angle. This can be seen in Eq. (2.31).
If the outgoing energy and angle are held constant, the quantity is the probability for which
other angles and energies scatter into it.
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Using these two quantities, in-scattering and out-scattering terms can be written for
the differential volume. The expression for loss uses the integrated cross section, shown in
Eq. (2.32), and the kernel is used in what is often called the scattering source term, shown
in Eq. (2.33). The source term needs to be integrated over all other energies, E ′, and angles,

Ω̂
′
, from which neutrons can scatter into energy E and angle Ω̂.

Rs,out(~r, Ω̂, E, t) = Σs(~r, E)ψ(~r, Ω̂, E, t) (2.32)

Rs,in(~r, Ω̂, E, t) =

∫ ∞
0

dE ′
∫

Ω̂

dΩ̂
′
Σs(E

′ → E, Ω̂
′ → Ω̂)ψ(~r, Ω̂

′
, E ′, t) (2.33)

Fission Source

The nuclear chain reaction is sustained by fission reactions producing neutrons, so it is
essential to model it in any material that has fissionable isotopes. There are three determining
factors for the fission source. The first is the fission reaction rate, which is represented by
the flux multiplied by the fission cross section.

The second is the fission spectrum, which is represented by χ. Neutrons born from fission
are not emitted at a single energy, and the fission spectrum describes the probability for a
neutron to be emitted at a certain energy (it is a probability distribution function). The
energy spectrum is weakly dependent of the incoming neutron energy, with higher incoming
energies producing more higher energy neutrons. This dependence only starts making a
significant difference in spectrum shape at energies above 10 MeV, higher than energies
usually seen in a reactor. This is why the fission spectrum is usually treated as being
independent of incoming neutron energy. The spectra of 235U and 239Pu for fission induced
by a 0.5 MeV neutron are shown in Figure 2.13, and it can be seen that 239Pu produces more
high energy neutrons.

The last parameter is the average number of neutrons emitted in a fission event, repre-
sented by ν, and is relatively flat until about 1 MeV, as was shown in Figure 2.6. Since 1
MeV is within the typical energy range present in nuclear reactions, it is treated as a function
of energy.

The fission source term describes the number of neutrons that are born in dE around
energy E and angle dΩ̂ around Ω̂ from fissions occurring from any other energy, so like
the in-scattering source, the fission reaction rate must be integrated over all other energies,

E ′, and angles, Ω̂
′
. Using the general differential cross section notation and integrating the

fission reaction rate over all other energies and angles yields the fission source, shown in
Eq. (2.34). Multiplying by the average number of neutrons emitted in fission, ν, scales the
source to the proper strength.

Rf (~r, Ω̂, E, t) =

∫ ∞
0

dE ′
∫

Ω̂

dΩ̂
′
νT (E ′)Σf (~r, E

′ → E, Ω̂
′ → Ω̂)ψ(~r, Ω̂

′
, E ′, t) (2.34)
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Figure 2.13: Prompt fission neutron spectra for 235U and 239Pu.

The doubly-differential cross section can be split into a total cross section and a pair of
probability distribution functions (PDFs) that describe the transfer probability, as shown
in Eq. (2.35) [36]. Fission neutrons are born isotropically, so P2 must be a constant. Since
PDFs must integrate to 1, and angles are integrated over 4π seradians, P2 must equal 1/4π.
The fission cross section has no incoming angular dependence and the fission emission energy
is very weakly dependent on incoming energy, so P1 is the total fission spectrum, χT (E),
which includes both prompt and delayed neutrons. These PDFs, shown in Eq. (2.36), are
not dependent on incoming angle or energy, and can be moved outside the integral. The
other two fission quantities, νT (E ′) and Σf (~r, E

′) , do not depend on angle, so the angular
integral over angular flux density can be be replaced with the scalar flux. The final fission
source expression is shown in Eq. (2.37).

Σf (~r, E
′ → E, Ω̂

′ → Ω̂) = Σf (~r, E
′, Ω̂

′
)P1(E → E ′)P2(Ω̂

′ → Ω̂)

= Σf (~r, E
′)P1(E → E ′)P2(Ω̂

′ → Ω̂)
(2.35)

P1(E → E ′) = χT (E) P2(Ω̂
′ → Ω̂) =

1

4π
(2.36)

Rf (~r, Ω̂, E, t) =
χT (E)

4π

∫ ∞
0

∫
Ω̂

νT (E ′)Σf (~r, E
′)ψ(~r, Ω̂

′
, E ′, t)dΩ′dE ′

=
χT (E)

4π

∫ ∞
0

νT (E ′)Σf (~r, E
′)φ(~r, E ′, t)dE ′

(2.37)
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Streaming

So far all that has been touched on is how neutrons interact within a volume and change
in angle and energy. Now we will go over how they move in space, and to do this we consider
a surface S around our differential volume. We want to find an expression for the net number
of neutrons passing through this surface, and this will be the net leakage term (incoming
minus outgoing). The angular neutron flux describes the number of neutrons crossing a
differential surface at angle Ω̂, but in order to perform any vector operations on it, we must
multiply it by the unit vector. This new quantity is called the current density, ~J , and is
shown in Eq. (2.38).

~J(~r, Ω̂, E, t) = Ω̂ψ(~r, Ω̂, E, t) (2.38)

We can then write an expression for the leakage by performing a surface integral over the
current and surface normal’s dot product, shown in Eq. (2.39).

Leakage =

∫
S

~ds · ~J(~r, Ω̂, E, t) =

∫
S

~ds · Ω̂ψ(~r, Ω̂, E, t) (2.39)

We can turn this into a volume integral by applying the divergence theorem, shown in
Eq. (2.40). If the volume of interest is shrunk to an infinitesimal volume and we switch the
order of the dot product, we come to an expression that can be used in the balance equation.
This expression, shown in Eq. (2.41), is often called the streaming term, since it describes
the net movement of neutrons into the differential volume due to their physical movement.∫

S

~ds · Ω̂ψ(~r, Ω̂, E, t) =

∫
V

dV∇ · Ω̂ψ(~r, Ω̂, E, t) (2.40)

lim
V→dV

∫
V

dV∇ · Ω̂ψ(~r, Ω̂, E, t) = Ω̂ · ∇ψ(~r, Ω̂, E, t) (2.41)

Neutron Transport Equation

Now all the terms of Eq. (2.18) have been explicitly defined. Substituting them all in
yields Eq. (2.42), the neutron transport equation, written here with the neutron sinks on
the left side and the neutron sources on the right side. An additional external source term,
Sexternal, has been added to account for any neutron sources not induced by the neutron flux
itself, i.e. external sources. This form of the equation also includes delayed neutrons. For
delayed neutron precursor group j, Cj is the concentration, χd,j is the energy spectrum (d
only signifies “delayed”), and λj is the decay constant [36, 3]. As was stated previously,
delayed neutrons are important for reactor control. Since delayed neutrons are included
explicitly in these equations, the fission spectrum, χp(E), and average fission neutron yield,
νp(E), are for prompt neutrons only. The inclusion of delayed neutrons also means an
additional six equations defining the precursor concentrations must be included (since the
concentration depends on the flux), and are shown in Eq. (2.43) [36, 3]. WARP is concerned
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with time-independent solutions, and the spectral and fission yield effects of delayed neutrons
are incorporated into the data WARP uses.

1

v(E)

∂

∂t
ψ(~r, Ω̂, E, t)+

Ω̂ · ∇ψ(~r, Ω̂, E, t)+

Σt(~r, E)ψ(~r, Ω̂, E, t)

=∫ ∞
0

dE ′
∫

Ω̂

dΩ′ Σs(E
′ → E, Ω̂

′ → Ω̂)ψ(~r, Ω̂
′
, E ′, t)

+
χp(E)

4π

∫ ∞
0

dE ′
∫

Ω̂

dΩ′ νp(E
′)Σf (~r, E

′)ψ(~r, Ω̂
′
, E ′, t)

+
6∑
j=1

χd,j(E)

4π
λjCj(r, t)

+ Sexternal

(2.42)

∂

∂t
Cj(r, t) = −λjCj(r, t) +

∫ ∞
0

dE ′
∫

Ω̂

dΩ′ νj(E
′)Σf (~r, E

′)ψ(~r, Ω̂
′
, E ′, t) (2.43)

The neutron transport equation in this form is an integro-differential equation since it
has both derivates and integrals in it. Its spatial and temporal parts are differential, whereas
its angular and energy parts are integral. It is linear and relatively easy to solve for simple
geometries and reaction parameters, but in order to capture all the relevant physics for
real-world problems, complex geometries and energy-dependent reaction parameters must
be used. Despite it’s linearity, the neutron transport equation can be difficult to solve
because of the large, heterogeneous domains over which it must be solved and the complex
energy dependence of the cross sections. The energy range of interest can span more then 12
orders of magnitude, from 1× 10−11 to 1× 101 MeV and above, and the geometries involved
can include millions of individual material regions containing many different mixtures of
materials.

Time Independent Neutron Transport Equation

In most situations, the equilibrium state of the neutron population is of interest. By set-
ting all time derivates and external sources to zero, Eq. (2.42) becomes the time-independent
neutron transport equation shown in Eq. (2.44). The equation is no longer driven by an in-
dependent source term, and the transport equation becomes homogenous, turning it into
an eigenvalue problem. There are infinitely many eigenfunction solutions to Eq. (2.44), and
each has an associated eigenvalue. There is guaranteed to be a maximum spatial eigenvalue
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that is real and positive which corresponds to a unique and non-negative eigenfunction [3].
This maximum eigenvalue has physical significance – it is equal to the multiplication factor,
keff , which is why criticality calculations are often called “eigenvalue” calculations.

Ω̂ · ∇ψ(~r, Ω̂, E)+

Σt(~r, E)ψ(~r, Ω̂, E)

=∫ ∞
0

dE ′
∫

Ω̂

dΩ′ Σs(E
′ → E, Ω̂

′ → Ω̂)ψ(~r, Ω̂
′
, E ′)

+
1

keff

χT (E)

4π

∫ ∞
0

dE ′
∫

Ω̂

dΩ′ νT (E ′)Σf (~r, E
′)ψ(~r, Ω̂

′
, E ′)

(2.44)

2.6 Monte Carlo

Deterministic methods solve the neutron transport equation directly. They treat the
neutron population as a continuous distribution and discretize the spatial, angular, energy,
and temporal dimensions that the distribution depends on and solve the transport equation
at these discrete points. The Monte Carlo method takes a different approach in solving the
transport problem on a computer. It attempts to directly simulate what happens in reality.
Instead of the neutron population being continuous and the spatial, angular, and energy
dimensions being discretized, it treats the problem dimensions as continuous and discretizes
the neutron population. This is how the neutrons actually exist. They can be very well
approximated by a continuous distribution, but it is still an approximation. Quantities of
interest are then determined by integrating over the neutron population.

This way of integrating the neutron transport equation can be thought of as integrating
“sideways.” In the Monte Carlo method, the discretized neutrons “shoot through” the
transport equation many times, sweeping out the entire phase space, effectively integrating
it when a sum is done over the individual neutron realizations, or histories. It is important
to note that the Monte Carlo Method does not actually solve the transport equation, per se,
but rather is able to estimate the solution very well.

The Monte Carlo approach makes a physically analogous “experiment” on a computer. A
computer thread “sits on top” of a neutron as it makes a random walk through the geometry.
The computer thread uses pseudo-random numbers to sample probability distributions that
describe the interactions the neutron makes as it travels. All the assumptions that went into
deriving the neutron transport equation still hold, most importantly that neutrons travel in
straight lines between interactions, that neutrons are points, and that they do not interact
with each other. The other assumption is that interactions happen instantaneously and at
a point, i.e. they do occur over a distance.

How surface crossing is detected in the simulation is very important since this is what
changes the material data that specify the probability distributions. WARP, in its current
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state, uses the traditional form of surface detection and material updates – ray tracing,
the details of which will be discussed in Section 3.1. When a neutron is sampled to cross
a surface, it is placed on the boundary, the material data is updated, and the interaction
distance is sampled again with the neutron traveling in the same direction. Figure 2.14
shows a cartoon of a random walk of a neutron born in the center of a cube. The line colors
represent a neutron sampling a specific material, the red “X” represents an absorption (walk
termination), and the green “X” represents a surface crossing.

x

y

z

Figure 2.14: The Monte Carlo random walk process.

There are advantages in using the Monte Carlo method for neutron transport, some of
which have been mentioned. The first and foremost is that very few assumptions must
be made regarding the physics and the geometry of the problem. Paraphrasing Forrest
Brown, the only reason people use Monte Carlo methods is that they are able to produce
physically accurate results and the methods are trusted to do so. Anyone developing a Monte
Carlo code should not abuse this trust and must put accuracy first and foremost in their
implementations [37].

There are considerable drawbacks to using Monte Carlo as well; primarily convergence
rates and silent inaccuracies. Since it is a statistical calculation, it is bound by statistical
laws that dictate that the error in Monte Carlo calculations reduces as 1/

√
N , discussed

in more detail in the next section, where N is the number of histories performed. The
slow convergence rate can be combated by using parallel computing, however. Requiring
that neutrons do not interact with each other was an assumption that went into deriving
the neutron transport equation, and can be exploited in Monte Carlo simulations. Since
each neutron history is completely independent, histories can be run completely in parallel
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without communication until the results are combined at the end of the simulation. This
leads to very good scaling of parallel calculations, which can be used to reduce run times of
large problems to acceptable values.

A hazard associated with the statistical requirements is that very small but very influ-
ential volumes within large geometries can be missed by the neutron random walk if the
number of histories is not large enough. The estimated statistical error may be low at N
histories, but there is a chance the entire phase space has not yet been sufficiently sampled
to produce accurate results.

Statistics

To understand how the Monte Carlo Method estimates the solution to the neutron trans-
port equation, the basics of distribution functions and statistics must be outlined. Given
a continuous random variable, x, that follows the probability distribution function (PDF),
P (x), the mean value can be calculated by taking the first moment as was shown in Eq. (2.21)
and is reproduced in Eq. (2.45). PDFs must always be positive, and their integral over all
space must equal 1.

However, we are interested in determining the mean from a set samples rather than di-
rectly from the underlying distribution. If we have N independent measurements of quantity
x, this is simply taking the arithmetic mean, as shown in Eq. (2.46). This value, computed
from a finite set of measurements, X, is called the sample mean, X̄, since it is based on sam-
ples from the underlying probability distribution P (x). The true mean is µ, and is computed
directly from P (x).

µ =

∫ ∞
−∞

xP (x)dx (2.45)

X̄ =
1

N

N∑
i

xi (2.46)

The law of large number states that the sample mean converges to the true mean in the
limit where N →∞.

Pr
(

lim
N→∞

X̄N = µ
)

= 1 (2.47)

The shape of the distribution of samples about the mean is important as well since it
quantifies the uncertainty. The variance can be computed by performing the central second
moment on P , shown in Eq. (2.48).

σ2 =

∫ ∞
−∞

x2P (x)dx− µ2 (2.48)

Var(X) =
1

N − 1

N∑
i

(xi − X̄)2 =
1

N − 1

(
N∑
i

x2
i −NX̄2

)
(2.49)
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Again, we are interested in determining the variance from a set samples rather than
directly from the underlying distribution. The discrete equation for computing the variance
of a set of independent measurements, X, is shown in Eq. (2.49). Dividing by N − 1 instead
of N is called Bessel’s Correction [13]. It is useful that the sample mean can be removed
from the sum of the sample squares since this means that only the sample sum and the sum
of sample squares need be stored. The entire sample set does not need to be stored and used
to compute the variance at the end when the sample mean is known.

The rate at which the sample mean converges to the true mean, i.e. how the uncer-
tainty scales with the number of samples, comes from the central limit theorem. Shown in
Eq. (2.50), the theorem states that the distribution of the means taken from a large set of
independent random variables will be normally distributed [13].

√
N

((
1

N

N∑
i

xi

)
− µ

)
d−→ N (0, σ2) (2.50)

We would like to know how close the mean of such an independent set of measurements
will be to the true mean. In other words, the variance of the mean is desired. Luckily, this
can be estimated with only one measurement for the mean instead of directly computing the
variance of the mean with many measurements of the mean. The Bienaymé formula, shown
in Eq. (2.51), states that the variance of a sum of uncorrelated random variables is equal to
the sum of the variances of the variables.

V ar

(
N∑
i=0

xi

)
=

N∑
i=0

V ar(xi) (2.51)

Applying the Bienaymé formula and the variance relation shown in Eq. (2.52) to the
sample mean results in an expression for the variance of the mean, V ar(X̄N), in terms of
the variance of the sample, σ2

N . This expression is shown in Eq. (2.54).

V ar (aX) = a2V ar (X) (2.52)

V ar(X̄i) = V ar

(
1

N

N∑
i=0

xi

)
=

1

N2

N∑
i=0

V ar(xi) =
Nσ2

N

N2
=
σ2
N

N
(2.53)

σ2
N

N
=

1

N(N − 1)

(
N∑
i

x2
i −NX̄2

N

)
=

1

(N − 1)

(
1

N

N∑
i

x2
i −

(
1

N

N∑
i

xi

))
(2.54)

It should be noted that Eq. (2.53) implies that the standard deviation of the mean always
scales as 1/

√
N . This is a blessing and a burden in that it means any calculation’s variance

of the mean will go to zero, i.e. the sample mean will converge to the true mean, as long
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it is run long enough and enough samples are collected, but that it will converge as 1/
√
N ,

which is slow [13].
Since the central limit theorem states that the sample mean is normally distributed, we

can make use of the well-know properties of the normal distribution, namely the confidence
interval. The normal distribution has well-defined confidence intervals: 68% of the popula-
tion will lie within a single standard deviation, σ, and 95.5% will lie within 2σ [12]. From
this knowledge, an expression for the relative error can be written. The expression for the
relative error shown in Eq. (2.55) is for the 68% confidence level, and simply needs to be
doubled for the 95% level [11].

Rel.Err. =
σ

X̄N

=
1

X̄N

√√√√ 1

(N − 1)

(
1

N

N∑
i

x2
i − X̄2

N

)
(2.55)

Sampling Schemes

In order to actually transport a neutron across the geometry in a Monte Carlo simulation,
the probability distributions of the reaction types must be sampled to reproduce accurate
distributions when the histories are aggregated. Two methods that are commonly used are
the direct inversion method and the rejection method.

The direct inversion method relies on being able to analytically integrate the probability
distribution function to create a cumulative distribution function (CDF) and then being able
to invert that CDF. The first step is to integrate the PDF to find the CDF, as shown in
Eq. (2.56).

{x | x1 ≤ x ≤ x2}

CDF (x) =

∫ x

x1

PDF (x′)dx′
(2.56)

The PDF is integrated from x1, the beginning of the PDF domain, to x. x spans the
entire domain of the PDF, i.e. that CDF(x2)−CDF(x1) = 1. Since a PDF must be positive
and normalized by definition, the CDF must range from 0 to 1 and increase monotonically.
Setting the CDF equal to a uniformly distributed random number, ξ, and solving for the
value to be sampled yields the sampling scheme.

Figure 2.15 shows this graphically. The CDF describes the probability that a value of
a random number, ξ, obeying the PDF will be less than or equal to the value x. Taking
an integral gives the probability that x will be in the interval, as shown in Eq. (2.57).
Since the width of the CDF is directly proportional to the PDF at the same value of x, as
shown in Eq. (2.58), and if ξ is uniformly distributed on [0,1], the interval ∆ξ will contain
a fraction of samples on [0,1] equal to P (x1 < xi < x2). As the interval width is reduced
to 0, P (xi) = PDF (x)dx = dξ (again, since ξ is uniformly distributed on [0,1]), leading to
the sampling scheme shown in Eq. (2.59). This method is only useful if the CDF is simple
enough to be inverted analytically.
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CDF (x2)− CDF (x1) = P (x1 < xi < x2) =

∫ x2

x1

PDF (x)dx (2.57)

CDF (x2)− CDF (x1) = ∆ξ =

∫ x2

x1

PDF (x)dx (2.58)

xi = CDF−1(ξi) (2.59)
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Figure 2.15: Sampling PDF (x) = 1
2π2 (x cosx− x) by the direct inversion method on [0, 2π].

When the CDF is not invertible, the rejection sampling method can be used. It uses a
secondary PDF, f(x), that is greater at all points in the primary PDF, g(x) to be sampled
from and whose CDF is easily inverted. Since the primary PDF is normalized, f(x) now
corresponds to probabilities greater than one. This is simply a scaling problem, and the
random numbers used to directly sample from it must be uniform on [0,

∫
domain

f(x)) instead
of [0, 1]. Then, two random numbers are generated. The first, ξ1 is sampled from a f(x)
using a scaled random number as mentioned, and the second, ξ2 is uniformly distributed on
[0, f(ξ1)]. If ξ2 < g(ξ1), the sampled value (ξ1), is added to the population, else it is rejected,
or discarded from the population. The set of accepted values of ξ2 will then follow g(x).
Figure 2.16 shows an illustration of rejection sampling. The red shaded area is the space
between the primary and auxiliary PDFs where samples are rejected (red dots), and the blue
shaded area is where they are accepted (blue dots). In this illustration, the main benefit of
choosing a line as the auxiliary function instead of a constant is that a line produces less red
shaded area and more samples will be accepted.
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Figure 2.16: Sampling PDF (x) = 1
2π2 (x cosx − x) by the rejection method on [0, 2π]. The

auxiliary function is f(x) = x/π and the random numbers used to sample from it are
uniformly distributed on [0, 2π] instead of [0, 1].

Using these two methods of sampling from probability distributions, expressions can be
found for every reaction type and transport phenomenon that a neutron undergoes in its
random walk through matter. The specific schemes are described in the following subsections.

Cross Section Interpolation

When a Monte Carlo simulation is referred to as “Continuous Energy,” it means that
the cross sections are evaluated on-the-fly at the exact energy the neutron is currently at
instead of using a fixed value for a range of energies. The cross section data is finite,
however, and only includes data at discrete points in energy. Therefore, interpolation must
be performed between the data points to get values for any specific energy. This is done
by linear interpolation. This assumes that the cross section is a straight line between the
surrounding energy points, Ei and Ei+1, and the interpolated value is calculated using the
slope of the line via Eq. (2.60).

Ei < E < Ei+1

σ(E) =
E − Ei
Ei+1 − Ei

(σ(Ei+1)− σ(Ei)) + σ(Ei)
(2.60)
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Distance To Interaction

The first step in stochastically transporting a neutron through matter is finding the
distance to the next interaction. The expression for the probability of non-interaction was
shown in Eq. (2.2). The probability of interaction in dx around x is Σtdx. Therefore the
probability of not interacting from 0 to x and then interacting at dx around x is simply
the product of these two probabilities. The resulting expression, shown in Eq. (2.61), is
commonly referred to as the first collision probability.

P (x) = Σte
−Σtx (2.61)

This expression is simple and can be inverted for direct sampling as seen in Eq. (2.62). The
sampling scheme is shown in Eq. (2.63). The expression 1− ξ can be replaced with ξ since
it is identically distributed.

CDF (x) =

∫ x

0

Σte
−Σtx′dx′ = 1− e−Σtx = ξ (2.62)

xi = CDF−1(ξ) ⇒ xi =
− ln(1− ξ)

Σt

=
− ln(ξ)

Σt

(2.63)

Isotope and Reaction Selection

Once a neutron has been determined to interact, the isotope with which it interacts must
be sampled. The discrete PDF of this process is shown in Eq. (2.64), where there are i
isotopes in the material each having a total macroscopic cross section Σt,i. The distribution
is sampled by generating a uniform random number, ξ1, on [0, 1] and performing a running
sum over the individual isotope’s total macroscopic cross sections. When CDFi > ξ1, the
neutron collision is sampled to happen in isotope i.

PDFi =
Σt,i

Σt

⇒ CDFi =
1

Σt

i∑
n=1

Σt,n (2.64)

Determining the reaction type is done in a similar fashion, except the number density of
the material is no longer a concern since the isotope has already been selected. Therefore,
the running sum of the CDF is done over isotope i’s microscopic cross sections. Another
random number is generated, and when CDFk > ξ2, the neutron is sampled to undergo
reaction k in isotope i.

PDFk =
σk
σt

⇒ CDFk =
1

σt

k∑
n=1

σn (2.65)
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Tabular Distribution Interpolation

For reactions that have exiting neutrons, like scattering and fission, the nuclear data
contains tables of CDFs that specify the probabilities for the energies and angles neutrons
will be emitted. To sample from these tabular CDFs, a random number, ξ, is generated.
Again, since the data is discrete, some type of interpolation must be performed to generate
a value between the data points.

There are two interpolation methods specified in the ENDF format. The first is histogram
interpolation, which is similar to the linear cross section interpolation shown in the previous
subsection. Histogram interpolation assumes the CDF is a line between the data points, and
the interpolated value is calculated to lie on this line. Since the CDF is the integral of the
PDF, assuming the CDF is a line is the same as assuming the PDF is a constant, i.e. the
PDF is a histogram. The data for the histogram could be obtained from using a tabulated
PDF that is typically provided to compute the CDF. Using the PDF data is unnecessary,
however, since these values can be computed from the CDF and this approach reduces the
global memory access of a GPU kernel.

An example of using histogram interpolation to determine outgoing cosine, µ′, is shown
in Eq. (2.66), where Ci is the value of the CDF at point i and Pi is the value of the PDF at
point i. µ′i represents the corresponding value of µ′ in the table at point i [13]. While this
example is for µ′, this method can be used to sampled a CDF for any quantity.

Ci < ξ < Ci+1

µ′(ξ) =
ξ − Ci

Ci+1 − Ci
(µ′i+1 − µ′i) + µ′i

(2.66)

The second method is called linear-linear interpolation. Instead of assuming the PDF
is constant between the tabular points (and CDF is linear), it assumes the PDF is linear
over the interval Ci < ξ < Ci+1. The linear expression for the PDF, shown in Eq. (2.67), is
substituted into Eq. (2.57) and integrated to µ′. Again this derivation is shown for µ′, but
is valid for any CDF [13].

Ci < ξ < Ci+1

P (µ′) =
Pi+1 − Pi
µ′i+1 − µ′i

(µ′ − µ′i) + Pi = aµ′ + b
(2.67)

Integration of Eq. (2.67) to µ′ yields Eq. (2.68). This expression for CDF (µ′) is set equal to
the random number ξ and solved for µ′ to give the interpolation function.

C(µ′) = Ci +

∫ µ′

i

P (µ′′)dµ′′ = Ci +

∫ µ′

i

(aµ′′ + b) dµ′′ = Ci +
a

2
(µ′2 − µ′2i ) + b(µ′ − µ′i) = ξ

(2.68)
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Eq. (2.68) can be solved for µ′, yielding Eq. (2.69), the final form of the linear-linear sampling
scheme [13].

a =
Pi+1 − Pi
µ′i+1 − µ′i

, b = Pi − aµ′i

µ′ = µi +
1

a

(√
P 2
i + 2a(ξ − Ci)− Pi

) (2.69)

Each tabular distribution in the ACE data file specifies if the histogram or linear-linear
method should be used to perform interpolation on it. It is not up to the user to decide what
scheme to use if results consistent with Serpent or MCNP are desired. The CDFs are tab-
ulated with the specified interpolation method in mind, and using the incorrect scheme will
produce incorrect results. The interpolation scheme must be checked for each distribution
on a case-by-case basis.

Free Gas Treatment

As stated previously, the data in the cross section libraries are Doppler broadened for
a certain material temperature. This is done to account for the effect the target nuclei’s
thermal motion has on the apparent width of resonances when the target nuclides are modeled
as stationary. However, a stationary target model would incorrectly allow a neutron to
scatter down to absolute zero. In reality, the targets follow a Maxwell-Boltzmann speed
distribution, but this cannot be sampled directly for simulation purposes because of the
Doppler broadening preprocessing done to the cross section data. Near resonances, portions
of the thermal distribution within the resonance contribute much more to the overall reaction
rate than the portions outside of it. Directly sampling a target velocity from the thermal
distribution would produce incorrect exiting neutron energies. Rather, the distribution of
target velocities that contributed to the reaction rate (and therefore the thermally averaged
cross section) must be calculated and sampled from.

Elastic scattering is the only interaction that has a neutron at thermal energies in the
exit channel, and therefore the only use for the target velocity is in its scattering kinematics.
Temperature-preprocessed cross sections are used, however, so sampling the target velocities
to reproduce an accurate thermal peak must be done in a way that preserves thermally-
averaged reaction rates. For the sake of completeness, the following derivation is included
and closely follows that in [13] and [38]. The reaction rate in terms of the target and neutron
velocities is shown in Eq. (2.70) and is equivalent to Eq. (2.17) in Section 2.3.

R(vt) = ||vn − vt||σ(||vn − vt||)M(vt) (2.70)

Since elastic scattering is the only reaction of interest, σ(vrel) can be assumed to be
constant. This assumption is good for most nuclides since the elastic cross sections are in
fact relatively constant at low energies. If there is a low-energy scattering resonance, this
approximation may produce results that skew the distribution towards lower energies [13],
but it is good for most nuclides.
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Substituting the Maxwell-Boltzmann speed distribution for M(vt), the simplified PDF
for target velocities can be written as Eq. (2.71) where C is the normalization constant
calculated from Eq. (2.70) and m is the mass of the target nucleus.

C =

∫ ∞
0

dvt R(vt)

β =

√
m

2kT

PDF (vt) = Cvrelσ

[
4√
π
β3v2

T exp(−β2v2
T )

] (2.71)

Applying the law of cosines to vrel = ||vn − vt|| yields Eq. (2.72), which has changed from
a vector equation to a scalar one. The new PDF has two unknowns, the target velocity vT
and the angle between it and the neutron velocity, µ.

β =

√
m

2kT

PDF (vt) = Cσ
√
v2
n + v2

t − 2vnvtµ

[
4√
π
β3v2

T exp(−β2v2
T )

] (2.72)

Note that there is a restriction on µ. There cannot be cases where sampled values of
µ and vT produce a negative vrel, which corresponds to the target neutron “running away”
from the incident neutron. Such a case is non-physical since it would imply that the reaction
never happened. This is the first reason why rejection sampling is needed to determine an
appropriate target velocity. The PDF in Eq. (2.72) is sampled and the velocity is rejected if
it violates the restriction on µ.

The second reason rejection sampling is used is that the PDF in Eq. (2.72) cannot be
directly inverted. However, it can be split into two PDFs, f1(vT ) and f2(vT ) as seen in
Eq. (2.73), which can be inverted. Sampling from the product of two invertible functions is
possible by rejection. The sampling scheme for this is to normalize f2(vT ) (so its integral is
one) and sample from it directly. The sample from f2(vT ) is accepted based on the probability
in Eq. (2.74) [13]. The multiplication and division by v2

n + v2
t seen in Eq. (2.73) guarantees

that f1 is bounded between 0 and 1. This is necessary since vrel is not bounded in any way.
The normalization using f2 to make “CDF (vT )” is expanded and simplified in Eq. (2.76),
where y = βvn and x = βvt. The acceptance probability of the sample is shown in Eq. (2.75)

f1(vT , µ) = Cσ

√
v2
n + v2

t − 2vnvtµ

v2
n + v2

t

f2(vT ) =
4√
π

(v2
n + v2

t )β
3v2
T exp(−β2v2

T )

(2.73)

“CDF (vT )” =
f2(vT )∫
f2(vT )

⇒ v′T (2.74)
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paccept =
f1(v′T , µ)

f1(v′T , µ = 0)
(2.75)

“CDF (vT )” =
f2(vT )∫
f2(vT )

=
(v2
n + v2

t )β
3v2
T exp(−β2v2

T )
1

4β

√
πβvn + 2

=

(
4√
π

√
πy√

πy + 2

)
x2 exp(−x2) +

(
2

2√
πy + 2

)
x3 exp(−x2)

(2.76)

Since this CDF is the weighted sum of two independent distributions, the combined PDF
can be sampled by sampling the second term with a probability of 2/(

√
πy + 2) and the

first term otherwise. While both distributions appear complicated, each can be directly
sampled via the schemes C49 and C61 provided in the Third Monte Carlo Sampler manual
[39]. Sampling scheme C49, shown in Eq. (2.77), is for sampling distributions of the form
ν2n−1e−ν

2
where n is an integer ≥ 1 and ν is a continuous random variable, i.e. for Gaussians

multiplied by variables of odd powers. This is scheme is appropriate for sampling a value of
x′ from the second term in Eq. (2.76) when n = 2, and is shown in Eq. (2.78).

ν =

√√√√− ln

(
n∏
i=1

ξi

)
(2.77)

x′ =
√
− ln (ξ1ξ2) (2.78)

Sampling scheme C61, shown in Eq. (2.79), is for expressions of the for ν2n−1e−ν
2

where
n is a half integer ≥ 1/2, i.e. for Gaussians multiplied by variables of even powers. When
n = 3/2, this is a sampling scheme for the first term in Eq. (2.76), and is shown in Eq. (2.80).

h = n− 1/2

ν =

√√√√− ln

(
h∏
i=1

ξi

)
+ τ 2

τ 2 = − ln(ξ1) cos2(
π

2
ξ2)

(2.79)

x′ =

√
− ln(ξ1)− ln(ξ2) cos2(

π

2
ξ3) (2.80)

After the first or second term of Eq. (2.76) is sampled (RHS sampled with probability
2/(
√
πy + 2)) to give x′, it can be transformed to v′T via v′T = x′/β. Once a value for v′T is

determined, it must be accepted or rejected based on the angular constraint imposed by the
rejection criterion Eq. (2.75). The rejection criterion requires a value for µ, however. Since
this is for a thermal distribution, µ is sampled isotropically as shown in Eq. (2.81). Once
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µ is sampled, f1(vT , µ) can be calculated, and the sampled values of v′T and µ are accepted
with the probability paccept as shown in Eq. (2.82), i.e. the values are accepted if random
number ξ satisfies ξ < paccept. If the sample is rejected, the whole process is repeated until
a pair of v′T and µ are accepted.

µ = 2ξ − 1 (2.81)

paccept =

√
v2
n + v2

t − 2vnvtµ

v2
n + v2

t

(2.82)

Even though this is a rejection method, it is fairly efficient, with samples being accepted
68% to 100% of the time as the neutron velocity goes from zero to values much greater than
the target velocity [11].

Stochastic Mixing

The ENDF data tables have probability distributions for reactions at discrete energy
points, but this is not physically accurate. The reactions do not abruptly transition from
one PDF to another at a single energy, they smoothly transition. This is why stochastic
mixing is prescribed in the ENDF tables. If the neutron energy, E, falls between the ENDF
data energy grid values i and i+1, the neutron will use data from table i+1 with probability
f , defined in Eq. (2.83) [13].

Ei < E < Ei+1

f =
E − Ei
Ei+1 − Ei

(2.83)

As E approaches Ei+1, the probability it will sample from the i + 1 distribution goes to 1
linearly. This ensures smooth transitions between reaction data tables.

Elastic Scattering

The kinematics of elastic scattering were outlined in Section 2.2, and even though it
seems only the velocities and masses of the target and neutron are needed, data tables
still need to be queried to carry out the interaction. At energies below the MeV range,
elastic scattering is isotropic in the CM frame, but at these energies and above, it becomes
significantly anisotropic. Figure 2.17 shows this in 16O. At high energies, the scattering is
both forward- and backward-peaked.

It is essential to model this phenomena accurately since the scattering angle factors
heavily into the energy exchange between the particles. Figure 2.18 shows what can happen
when elastic scattering is treated as isotropic for all energies. The figure shows the normalized
flux per unit lethargy in a one meter cube of water with a 2 MeV point source at its center
as calculated by WARP (red) and by Serpent (blue). The neutron flux spectra at scattering
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Figure 2.17: Elastic scattering anisotropy at high energies in 16O.
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Figure 2.18: An inaccurate flux spectrum produced by WARP compared to a correct one
from Serpent highlighting the errors caused by treating elastic scattering as isotropic for all
energies.

resonances (which are apparent at 0.32, 1.0, and 1.2 MeV from the sharp dips in the flux) is
too small, and the flux immediately below the resonances is too large.

The anisotropy shown in 2.17 at the 1 MeV resonance indicates that a neutron should
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either lose a little (forward-peaked elastic scattering) or a large (backward-peaked elastic
scattering) amount of energy in the elastic scattering event. It should not lose an intermediate
amount. The minimum fraction of energy than can be lost to 16O is zero and the maximum
is 1−((16+1)/(16−1))2 = 0.22 [3]. The errors shown in Figure 2.18 typically span 2 octaves
in the logarithmic flux plots, which is consistent with the maximum factional energy loss. In
the completely isotropic flux, the higher flux at intermediate energies indicates that neutrons
are being scattered to these energies at a higher rate than Serpent. It is low immediately on
the resonance because neutrons are leaving the energy bin faster than they should be and
are not scattering multiple times within the bin (as they would if they lost no energy in the
elastic scattering event).

The point of highlighting this phenomenon is that sampling angular dependence of the
scattering kernels is very important for obtaining correct results, especially for elastic scat-
tering where the energy exchanges are completely defined by the scattering angle and the
target momentum. The energy dependencies cannot be ignored and the distributions in the
nuclear data must be sampled. Elastic scattering is very common (and often dominant)
reaction and modeling it accurately is essential to obtaining correct results. WARP uses the
tabular CDF format to sample the outgoing CM angle of the neutron in elastic scattering,
which normally uses histogram interpolation. The process is as follows:

1. The neutron energy and direction are converted to velocity.

2. The target velocity is sampled as described in the previous subsection.

3. The center of mass velocity is calculated and the neutron and target velocities are
transformed to the CM frame.

4. The polar scattering angle is sampled from the appropriate angular distribution for
incoming neutron energy and the target isotope.

5. The azimuthal scattering angle is sampled isotropically in 2π.

6. The neutron velocity is rotated from its initial CM direction through the sampled polar
and azimuthal angles according to Eq. (2.15).

7. The neutron velocity is transformed back to the Lab frame and its new energy and
direction are calculated.

Tabular Energy Distributions

Continuous, independent energy distributions, like those specified for fission spectra,
have different CDFs for various incoming neutron energies. Stochastic mixing probability, f ,
shown in Eq. (2.83), is used to select if the lower-bounding or upper-bounding distribution
will be sampled from for Ei < E < Ei+1. After the distribution is selected, the CDF is
sampled with histogram or linear-linear interpolation, whichever is specified in the library.
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Once the sampled energy, Esampled, is calculated, it must be scaled to the bounding incoming
energy bins to preserve any thresholds. This is done via Eq. (2.84) where Ei,first and Ei,last

are the first and last energy values of the CDF in Ei; and Ei+1,first and Ei+1,last are the first
and last energy values of the CDF in Ei+1 [11].

Ea = Ei,first + f(Ei+1,first − Ei,first)

Eb = Ei,last + f(Ei+1,last − Ei,last)

if i + 1 sampled : diff = Ei+1,last − Ei+1,first Estart = Ei+1,first

else : diff = Ei,last − Ei,first Estart = Ei,first

E ′ = Ea + (Esampled − Estart)
Eb − Ea

diff

(2.84)

Inelastic Reactions

Inelastic level scattering is treated identically to elastic scattering except that the Q value
in Eq. (2.14) is now nonzero. This value is reaction-specific and must be obtained from the
data tables.

Inelastic continuum scattering is treated differently, however. Instead of having a well-
defined kinematic formula relating the scattering angle to the final neutron energy, continuum
reactions are defined by correlated scattering and energy tables. They follow ENDF “law”
number 44, the Kalbach-Mann correlated energy-angle scattering law [11] [13]. In this sam-
pling scheme, a CDF is histogram or linear-linear interpolated and sampled from just like
other reactions, except the sampled value is now a set of “precompound factors,” R, and
“angular slopes,” A, instead of µ directly. These values correspond to a secondary PDF,
shown in Eq. (2.85), which is again sampled from to find µ.

PDF =
A

2 sinh(A)
(cosh(Aµ) +R sinh(Aµ)) (2.85)

The sampling scheme for this probability distribution shown in Eq. (2.86), where ξ1 and
ξ2 are two random numbers. Since this is a correlated angle-energy distribution, there is an
energy value along with the factors A and R that corresponds to a CDF bin. This sampled
energy value is scaled via Eq. (2.84) just like those from a tabular energy distribution, which
is the topic of the next subsection [39][13].

if ξ1 > R : T = (2ξ2 − 1) sinh(A)

µ =
ln(T +

√
T 2 + 1)

A
else :

µ =
ln(ξ2 exp(A) + (1− ξ2) exp(−A))

A

(2.86)
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Flux Estimation and Tallies

MCNP uses the word “tally” and Serpent uses the word “detector” for the same measure-
ment [31, 11]. Evidently, “tally” does not translate into Finnish, which is why “detector” is
used. “Tally” will be used here for terminological consistency with the majority of neutron
transport codes.

Other than determining the multiplication factor, one of the main purposes of simulation
reactors is determining the reactions rates in the core. The reaction rates and, therefore,
power of the reactor are proportional to the flux, making the flux another very important
quantity in determining how a rector will behave. Since reactions are explicitly simulated
with the Monte Carlo method, a collision estimator can be used to estimate the neutron flux.
A collision estimator does not directly calculate the flux, but relies on the fact that the total
collision rate is the flux multiplied by the total macroscopic cross section, as was shown in
Eq. (2.24). If every collision within a volume is counted in a Monte Carlo simulation, this
corresponds directly to the total reaction rate density integrated over the volume and can be
used to estimate the volume-averaged flux in that volume per Eq. (2.29). Once the reaction
rate is known, the flux can be written in terms of it and the material’s total macroscopic
cross section as shown in Eq. (2.87).

φ(~r, E) =
Rt(~r, E)

Σt(~r, E)
(2.87)

The reaction rate is simply the number of collisions at energy E, and Eq. (2.87) can be
rewritten as a sum over all the collisions that happen at energy E, as shown in Eq. (2.88).

φ(~r, E) =

Rt(~r,E)∑
i

1

Σt(~r, E)
(2.88)

To calculate the flux a computer, a discrete set of energy bins, E1 → Eg, must be specified.
The average flux in group g, such that Eg < E < Eg+1, and in volume j is shown in
Eq. (2.89).

φ̄g,j =
1

Vj

∫
Vj

dV

∫ Eg+1

Eg

dE φ(~r, E) =
1

Vj

∫
Vj

dV

∫ Eg+1

Eg

dE

Rt(~r,E)∑
i

1

Σt(~r, E)
(2.89)

The integrals in Eq. (2.89) are carried out over Rt(~r, E) as shown in Eq. (2.90), and the
reaction rate is relabeled for clarity as Ng,j, the number of collisions in the energy group g
and volume j. ∫

Vj

dV

∫ Eg+1

Eg

dE Rt(~r, E) = Rg,j = Ng,j (2.90)
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The average flux estimator can now be written as Eq. (2.91), where Σt,j(E) is the total
macroscopic cross section of the material in volume j at energy Eg < E < Eg+1.

Eg < E < Eg+1

φ̄g,j =
1

Vj

Ng,j∑
i=1

1

Σt,j(E)

(2.91)

The expression shown in Eq. (2.91) is a collision estimator, but it is also technically an
analog estimator of the average flux. It is analog in the sense that the reactions are counted
directly. Since every collision is proportional to the flux, counting every collision gives an
estimate of the flux itself. Using an analog estimator for specific reactions, however, means
they are only scored when the reaction is sampled to happen. If a reaction has a very small
cross section, the reaction will not happen very often and its estimated reaction rate will
have a high statistical uncertainly even though the flux may be well resolved. In an extreme
case, the reaction may never happen and an analog estimate of its reaction rate would be
impossible to make.

A collision estimator can be used for estimating specific reaction rates as well as the flux.
For specific reaction rates, “collision” means they are scored for every collision, not just
ones where the reaction is sampled to happen. This total score is simply weighted by the
interaction probability for a particular reaction as shown in Eq. (2.92) [12], where Pk,m(Ei)
is the fractional interaction probability for reaction k in isotope m in the volume j and the
energy group g.

Eg < E < Eg+1

Pk,m(E) =
Σk,m(E)

Σt(E)

Rg,j,k,m =
1

Vj

Ng,j∑
i=1

Pk,m(E)

Σt(E)

(2.92)

Neutron Sources

So far, all that has been mentioned is how to handle the different reactions in a Monte
Carlo neutron transport simulation. This is important since reactions describe what hap-
pens to neutrons and where they go during their random walk, but how to handle where
neutrons come from still needs to be defined. The source terms on the right hand side of the
neutron transport equation, other than the scattering source, have not been defined yet. In
this subsection, the other two source terms, the external source and the fission source, are
discussed.
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External Source

An external, or fixed, source is simply a source that does not depend on the neutron
population itself. Physically, such a source could be from natural radioactive decay, an
accelerator source, etc. This type of source is simpler than a fission source since the source is
completely independent of the system response and the source distribution does not need to
be converged before tallies are accumulated. Transporting neutrons in materials that produce
no secondary neutrons is straight-forward – the source neutrons are initialized according to
the specified source definition and are transported until they leak out of the system or are
absorbed. Transport becomes more complicated when there are isotopes present than can
produce secondary neutrons. If a single neutron is “shot” into a multiplying material, all
the secondary particles the primary neutron induces also need to be simulated in order to
simulate the response of the system.

Materials that produce secondary neutrons are called “multiplying” materials since the
total number of neutrons needed to be transported is a multiple of the source number. The
number of secondary neutrons produced is fully defined by the multiplication factor since it
gives the ratio of subsequent neutron generations. An expression for the number of neutrons
in an infinite series based on k is shown in Eq. (2.93), where N0 is the number of primary
neutrons [3][12]. WARP gives every neutron the same weight, so all secondary neutrons are
transported. There is no differentiation between the importance of a primary neutron and
one produced by five cycles of multiplication.

Ntotal = N0 + keffN0 + k2
effN0 + · · · = N0

∞∑
i=0

kieff =
N0

1− k (2.93)

This series only converges for keff < 1, which sets a restriction for fixed-source simulations. If
the multiplication factor is greater than one it will require infinitely many secondary neutrons
to be tracked, so this situation must be avoided. The algorithmic details of how secondary
neutrons are transported will be discussed in Section 3.2.

Fission Source, k-Eigenvalue Method

When a fission source is specified, the simulation will run in a manner different from an
external source problem. The neutron source now depends on the neutron population itself,
and a method must be used that directly ties the source to the population. This is done by
using any points where neutrons experience secondary-producing reactions as source points
for future neutron histories.

When neutrons are born from these induced reactions, they must follow the emission laws
specified by the data. For fission reactions, there is usually a tabulated energy spectrum,
which is sampled and interpolated in the data-specified ways, and then scaled to the incoming
energy bins via Eq. (2.84). The angle is isotropic in the Lab frame, and this is easily sampled
via Eq. (2.94).
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φ = 2πξ1

µ = cos θ = 2ξ2 − 1
(2.94)

An important result of criticality simulations is the effective multiplication factor, keff .
It is defined by Eq. (2.95), where Ns,n is the number of source neutrons in the current gen-
eration, and Ns,n+1 is the number of neutrons in the next generation [12]. WARP calculates
Ns,n+1 as the sum of the yield of secondary particles from both fission and (n,2/3/4n) reac-
tions. Calculating this quantity in a Monte Carlo simulation is straightforward, but neutron
generation information must be preserved. Correct results cannot be obtained if yields from
source particles in different generation are used to calculate the number of sources in the
next generation. This is why criticality source simulations are usually run in a batched mode
where a pre-set number of source particles from a single generation are all transported until
termination. The secondary-producing reaction points are then used as the starting points
for the next generation. The generations are not interleaved, and therefore correct values
for the multiplication factor can be calculated. A GPU could be kept busier if generations
could be interleaved, since processors would not have to wait for all neutrons in a current
batch are complete before starting the next batch.

keff,n =
Ns,n+1

Ns,n

=
Nf,n

Ns,n

(2.95)

Modeling the fission chain reaction is simple in Monte Carlo simulations when a system
is exactly critical. In batched criticality mode, the next generation of neutrons has starting
points that are determined by the previous generation. When the system is exactly critical,
there is a one-to-one mapping of induced secondary neutrons to a pre-set number of source
particles that will be transported in the next batch. Each batch requires a fixed number of
source neutrons to be transported, but when a batch yields a number of fission neutrons not
equal to this fixed number, some method must be used to handle the difference and adjust
the source to the prescribed number of neutrons. For example, if a simulation is run with
cycles consisting of 1 × 104 source neutrons and the system has a multiplication factor of
0.73 (which is not known at this point in the simulation), the transport cycle will only yield
7, 300 fission neutrons. If these sites are to be used as the source points for the next cycle,
a method is needed to initialize the remaining 2,700 neutrons required to start the cycle.

When the system is sub- or super-critical, there is no longer a one-to-one mapping and
starting points either have to be reused or discarded, respectively. This is done by using
the k-eigenvalue method, which is used by both Serpent and MCNP [12, 11].After keff is
calculated via Eq. (2.95), it is used to renormalize the fission source of the next generation,
i.e. the secondary yield values are divided by keff . This is an analog to dividing the fission
source term in Eq. (2.44) by keff to enforce a time derivative of zero. By dividing the yield
values by keff , the multiplication factor should be 1, and a one-to-one mapping is recovered.
The spatial and energy distributions of the fission sites are unchanged, but the number of
fission sites to start the next cycle is now appropriate.
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It should be noted that WARP treats any secondary-producing reactions other than
scattering, like (n,2n) reactions, as neutron sources. MCNP calculates keff by treating these
kinds of reactions as negative absorptions, i.e. MCNP subtracts an absorption out of the
global tally instead of adding it to a fission yield tally for an (n,2n) reaction [11]. The
expression for keff that MCNP uses is shown in Eq. (2.96), and the expression that WARP
uses is shown in Eq. (2.97). Normally, reactions other than fission are rare, but this scoring
difference may be a source of disagreement when results are compared on a sub-10−2 level
as they are with multiplication factors.

keff,n =

∫
V
dV
∫∞

0
dE
∫

Ω̂
dΩ νΣfφ∫

V
dV
∫∞

0
dE
∫

Ω̂
dΩ ∇ · ~J +

∫
V
dV
∫∞

0
dE
∫

Ω̂
dΩ (Σc + Σf − Σn,2n − 2Σn,3n)φ

(2.96)

keff,n =

∫
V
dV
∫∞

0
dE
∫

Ω̂
dΩ (νΣf + Σn,2n + 2Σn,3n)φ∫

V
dV
∫∞

0
dE
∫

Ω̂
dΩ ∇ · ~J +

∫
V
dV
∫∞

0
dE
∫

Ω̂
dΩ (Σc + Σf + Σn,2n + Σn,3n)φ

(2.97)
Neutrons are discrete particles, and individual neutron yields of the fission events are

integers. Using the k-eigenvalue method to adjust the neutron yields is done by dividing
the integer yield values by keff , which is a continuous number. This division yields another
continuous number, but yields must be integers. There is no way to initialize 2.76 neutrons
in WARP since all neutrons have the same weight. Since keff is continuous, calculating an
integer value of secondary particles is done stochastically to preserve the aggregate mean.
The renormalized yield, yr, is stochastically rounded based on a random number, ξ, as
shown in Eq. (2.98). This ensures that, over a large batch size, the multiplication factor is
renormalized to be as close to one as possible. In the case where yr is slightly less than one,
the last few source points from the previous generation are simply reused. If the number is
slightly larger, the last few source points from the previous generation are simply discarded.
This should not introduce much bias in the results if the source distribution is converged.

yr =
yield

keff

if yr − floor(yr) < ξ

then : yr = ceil(yr)

else : yr = floor(yr)

(2.98)

To start a criticality simulation, a guess for the initial neutron source points is required.
As the simulation progresses, the source expands and converges to the true distribution.
The initial batches, or cycles, in which the source distribution is likely far from the correct
distribution are therefore discarded. No quantities are accumulated, and the multiplication
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factors values are not used in calculating the final value. The discarded cycles only serve
to converge the fission source so the accumulated quantities later in the simulation are not
biased by an incorrect source distribution.

One way to specify the initial source distribution is by choosing a single initial point
where all of the first generation neutrons are born; this is called the point source method.
To accelerate the source convergence process, WARP uses a method similar to that used
by Serpent to guess the initial source distribution. The materials in the geometry are all
flagged as fissile or non-fissile. Then a uniform, random distribution of source neutrons are
distributed across the geometry. If a particle lies in a fissile material, it is recorded in a
buffer. This process is repeated until the required amount of source points are accumulated
in the starting point buffer. This method is called the flat source approximation. Since the
initial distribution has spatial extent, fewer discarded cycles will be needed to push neutrons
into all geometrical regions than in the point source method [12].

When all the cycles are completed, the individual estimates of keff are averaged to make
a final estimate for the system. This is typically called the generation estimate of keff [12].
As the simulation runs, a recursion relation can be made so the values for every cycle do
not need to be stored individually. Expressions for the generation estimate are shown in
Eq. (2.99). It may be of interest to keep values for every cycle in order to perform statistical
checks to assure convergence and prevent roundoff error, however.

k̄eff,n =
1

n

n∑
i=1

keff,i

k̄eff,n =
1

n

[
keff,n + (n− 1)k̄eff,n−1

] (2.99)

2.7 GPUs

Now that the mathematical theory and simulation methods have been framed, the hard-
ware will be discussed. As mentioned in the introduction, GPUs are an emerging technology
in supercomputing. Their name, graphics processing units, tells their history. They started
as specific-use coprocessor cards on computers in the early 1990s. These cards did one job:
process graphics to be displayed on a monitor. This is a work-intensive job that could be
offloaded from the main CPU to the graphics card, freeing up CPU resources and improving
the overall performance of the computer. Most graphics computations require linear algebra
operations on large datasets (projections, transforms, shading, etc.), so GPUs were tailored
to do these jobs very well and were not able to do much else. GPUs were not programmable,
APIs had to be used to send data to them, and the subtleties of GPU execution were ab-
stracted away from the programmer. This was not a problem since the GPU/CPU system
was balanced. The CPU did the complicated jobs and the GPU took care of the large but
simple ones.
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Since the turn of the century, CPU speeds have plateaued because of power density.
Power dissipation in a processor goes as P = fCV 2, where f is frequency, C is capacitance,
and V is voltage. There is a minimum voltage needed to avoid thermally-induced errors,
and the capacitance is related to the process size of the chip. There is a maximum for
power dissipation of a processor, or power density, when discussing a single core. At some
point, it becomes impossible to remove enough heat from the chip without it becoming very
unstable from thermal noise, or in the worst case, before it becomes impossible to prevent
it from melting. This relation sets a maximum frequency of the processor and is the reason
why overclockers must use exotic cooling methods to get CPU frequencies high. This ceiling
was been reached, but CPU manufacturers continued to increase performance by including
multiple processor cores on their chips. Moore’s Law has resultantly stayed in effect, and
the number of transistors on a chip is doubling every 18 or so months [40]. These transistors
are in the form of additional cores or parallel resources, and chips are becoming wider, not
faster. This spreads out the heat created in the chips and it is possible to dissipate enough
heat while still adding more transistors. Thus, the overall power dissipation increases but
the power density does not.

GPUs had been becoming wider, not faster, for many years prior to the introduction of
a multi-core CPU. Once CPUs started widening, the similarities between CPU tasks and
GPU tasks became blurred. Previously, the CPU handled complex tasks and the GPU han-
dled simple but large tasks. With the introduction of multicore, CPU programs needed to
implement some kind of parallelism in order to gain performance instead of relying on CPUs
becoming faster. This trend led GPU manufacturers to ask the question, why not make
GPUs programmable? Supercomputing had become massively parallel, and making super-
computers was a lucrative business. GPU manufacturers had been making high performance
parallel processors for many years, and it was time to break into the supercomputing realm.

To break into the supercomputing market, manufacturers crated the first programmable,
general purpose GPU, which focused on power efficiency and parallelism. As figure 2.19
shows, the maximum theoretical computational capacity of NVIDA GPUs has been increas-
ing faster than that of CPUs [10]. The single-precision performance is much better than
the double-precision, however. The traditional role of GPUs as graphics accelerators did not
require double precision capabilities, which is why single precision performance was empha-
sized during their development. In recent years, double precision arithmetic is supported
as well, but gaming cards in the GeForce series have much poorer performance than the
high-end Tesla cards. The Tesla cards have substantially more double precision units than
the GeForce cards, which is why GeForce double precision is not shown [41]. As Figure 2.19
also shows, CPUs have nearly equivalent single and double precision performance.

The GPU executes differently than a CPU and is a separate piece of hardware. To use
GPUs for programmable computing, there needed to be an interface between the GPU and
CPU and an easy way to program them, so CUDA was created. CUDA stands for “Compute
Unified Device Architecture,” and is NVIDIA’s parallel computing platform [10]. The next
subsections will talk about the details of GPU execution and how CUDA allows them to be
programmed.
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Figure 2.19: The maximum theoretical GigaFLOPs of various NVIDIA GPUs vs. flagship
Intel processors [10].

Architecture

An NVIDIA GPU’s basic processing unit is called a multiprocessor. These multiproces-
sors house many individual computational cores and can process jobs independently of each
other. Figure 2.20 shows the architecture of a Fermi-family NVIDIA GPU. They are often
called “streaming multiprocessors,” or SMs, as well.

Part of the reason GPUs are able to perform efficiently is because they rely on single
instruction, multiple data (SIMD) execution. This execution method uses the same instruc-
tions simultaneously carried out over multiple pieces of data. This reduces the amount of
power used in control and therefore more math can be done per watt, which is the main
reason why they are being used in supercomputers [14]. There are some tradeoffs for this
power efficiency, however, such as requiring relatively simple tasks because of limited cache
and control space and requiring data parallelism for full utilization.

The GPU programming model abstracts SIMD execution by using threads, which can be
thought of in the traditional sense. Single-instruction multiple-thread (SIMT) and SIMD are
similar in the sense that identical instructions are carried out across different pieces of data,
but SIMT allows threads to act independently, albeit with a performance penalty. When a
thread in a multiprocessor executes a different instruction than the other resident threads,
the multiprocessor masks it from execution, executes the identically-executing threads, then
masks the identically-executing threads and executes the divergent thread. This effectively
serializes operations if they require different instructions. Masking and serializing makes
many empty spaces in the SIMD lanes of the multiprocessor, and thus can cause severe
performance penalties. The magnitude of the penalty depends on the rate at which data is
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Figure 2.20: The architecture of a Fermi multiprocessor [10].

Figure 2.21: Relative transistor space use in CPUs and GPUs [10].

being delivered to the multiprocessor since work can only be done if data is present. If the
multiprocessor can completes all jobs, even if it needs some serialization, before the next set
of data arrives, then the penalty will be invisible [10].

Another benefit of using SIMD is that less transistor space is needed for control and
storing instructions, and this frees up more transistors which can be used for arithmetic.
This is evident in the amount of transistor space allocated to each kind functional unit in
a CPU and a GPU. Figure 2.21 shows a cartoon of the space allocated to cache, control,
and arithmetic units on typical CPUs and GPUs [10]. The CPU has more cache and control
space since it needs to be able to execute complicated instructions quickly and to quickly
switch between many thread contexts. The GPU has more arithmetic units since it is geared
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for computational throughput on data-parallel tasks where less complicated instructions are
needed [10].

CUDA

CUDA was first released in 2006 as NVIDIA’s proprietary GPU programming platform.
It makes minimal additions to C/C++, and any C programmer would be very comfortable
programming in CUDA [10]. It was chosen over OpenCL, the open source GPU programming
platform, in this work due to CUDA’s greater feature support, stability, ease of programming,
wider community usage, and ability to use new, cutting-edge features in NVIDIA GPUs that
OpenCL is not.

The overarching theme for CUDA is that a host CPU thread directs the GPU’s operation.
Data must be transferred from the host to the GPU’s global memory over the PCIe bus,
kernels are launched to perform computations based on the transferred data, and then control
returns to the host thread. “Kernels” are CUDA’s parallel programs that each thread carries
out over the data. Kernels must specify independent tasks for each GPU thread from the
stnadpoint that thread execution order does not matter. There can be barriers where threads
will wait for all other threads to arrive, but the order in which the threads execute to get
to such a barrier is arbitrary and handled by the GPU hardware [10]. Blocks of threads
have the same interleaving requirement. The order in which they execute is unspecified, and
cannot be relied on for calculating values. Blocks of threads are executed simultaneously on
a multiprocessor. The group of all blocks is called a “grid.” The grid is analogous to the
entire GPU device, blocks are analogous to the multiprocessors, and threads are analogous
to the individual cores. Figure 2.22 shows the host-device execution and the organization of
threads into blocks and blocks into the grid [10].

Grid and block dimensions can be 1D, 2D, or 3D arrays, which simply influences how the
data is indexed. Every thread has unique variables, “threadIdx” and “blockIdx,” that are au-
tomatically generated upon kernel launch. The grid dimensions (the number of blocks in each
grid dimension) and the block dimensions (the number of threads in each block dimension)
are also broadcast to every thread. Based on these quantities, a unique thread identification
number can be computer and used to access the data. For example, if the grid is 2x2 and
blocks are 4x4, a unique thread coordinate can be computed by doing idy = blockIdx.y *
blockDim.y + threadIdx.y and idx = blockIdx.x * blockDim.x + threadIdx.x. If the grid and
blocks are both 1D, indexing is much simpler, e.g. id = blockIdx.x*blockDim.x+threadIdx.x
[10].

Even though blocks can be made of up to 1024 threads, when they are executed in a
multiprocessor they are scheduled in smaller units that are 32 threads wide. These units
are called warps. The multiprocessor executes the threads in a warp concurrently until all
the threads in the thread block are complete. It then fetches another block form the queue
and processes it. Multiple blocks can be resident in the SM if there are enough resources
(registers, etc) to accommodate it [10].
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Figure 2.22: Host-device execution in CUDA and the organization of threads into blocks and
blocks into the grid [42].

Warps are what abstract SIMD execution. Warps are like the SIMD vector that must be
processed using the same interactions carried out over all the data elements of the vector.
This is why every thread in a warp must execute the same instructions or they are split and
serialized [10]. The low level hardware uses SIMD, but CUDA relaxes SIMD requirements
since it allows threads to execute different instructions, albeit with a performance cost.

Memory

Bandwidth is the rate at which data can be read from or stored into memory by a
processor. High bandwidth is needed to get data to the arithmetic units and to maintain high
computational throughput. Most optimization work done of GPUs involves relieving memory
bottlenecks. The bandwidths of recent Intel CPUs and NVIDIA GPUs are shown in Figure
2.23, and it can be seen that GPU’s bandwidth far exceeds the CPU’s. It is important to
remember that this is maximum aggregate bandwidth, however, not the bandwidth available
to each individual multiprocessor [10].

To maximize bandwidth and take advantage of spatial locality in memory, the memory
subsystem on a GPU is also SIMD-like, as are most modern CPU subsystems. When a
thread requests a piece of data, not just the piece that is requested is delivered by the
subsystem, but rather a chunk of aligned data that contains the requested piece. If the other
loaded values are not used, memory bandwidth is wasted. For best performance, CUDA
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Figure 2.23: The total global memory bandwidth of NVIDIA GPUs vs. flagship Intel pro-
cessors [10].

requires adjacent threads to access adjacent pieces of data. This way, memory transactions
are “coalesced.” In coalesced transactions, every piece of data in the memory payload is
used and bandwidth is maximized [10]. Figure 2.24 shows this graphically [43]. If a thread
needs to load an entire array, it is better to interleave values in memory so that adjacent
memory is accessed at the same time by neighboring threads rather than loading adjacent
data sequentially by a single thread [10].
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Figure 2.24: Memory transactions of CUDA threads. Coalesced access on the left and non-
coalesced access on the right [43].

GPUs have even higher global memory latency than CPUs, from 200 clock cycles on
newer cards up to 800 clock cycles on older cards, compared to about 50 clock cycles on a
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typical CPU. CPUs, which are tailored for serial execution, want low latency memory access
and do this through multilevel cache structures and large control spaces that allow them
to do out-of-order and speculative execution. GPUs, which are geared for high throughput,
want high bandwidth memory access and can tolerate high access latency by pipelining
many threads. More transistor space is allocated for computation rather than for trying to
minimize memory latency, and instead the memory latency is hidden though parallelism.
Figure 2.25 shows how GPU threads are pipelined to hide latency whereas CPUs rely on low
latency to quickly execute different threads in series [44]. Thus, GPUs perform best when
as many threads as possible are launched [10].

GPU Stream Multiprocessor – High Throughput Processor

CPU core – Low Latency Processor

Computation Thread/Warp

Tn Processing

Waiting for data

Ready to be processed

Context switch

W1

W2

W3

W4

T1 T2 T3 T4

Figure 2.25: GPUs Pipeline many threads to hide high memory latency [44].

Even though there are fewer levels of cache in a GPU than a CPU, there are still many
different memory spaces, each of which has different properties. Figure 2.26 shows the various
memory spaces of an NVIDIA GPU. The global memory space is the largest memory space
and has the greatest latency (∼200 memory clock cycles). This is the amount of total RAM
specified for each card, which can be as small as 512 MB for very low-end cards and up to
12 GB for the largest high-end card. This memory space is accessible by all threads in all
blocks.

The next level down is the shared memory space. This acts as a user-programmable
cache and is not used unless explicitly coded. It resides on the multiprocessor and has very
low latency (on the order of 1 processor clock cycle). The data can be seen by all threads
within a block, hence the “shared” name. The shared memory space can allow intra-block
communication without incurring the high penalty of global memory transactions and can
therefore improve performance by acting as a cache, storing any data that is reused by
threads [10].

The next level down is the local memory, which is thread-specific. The local memory
serves to hold any data that cannot fit into the registers. It is not truly “local” since it is
actually stored in global memory, but in Fermi and newer architectures the local memory is
cached by an L1 cache on the multiprocessor. A cache is a small, but very fast, storage area
for data between the processor registers and global memory. Caches hold data that has been
loaded into the processor previously. If the data is required again, it can be loaded from the
cache instead of the global memory. Loading from cache is much faster than loading form
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Figure 2.26: The memory spaces in CUDA and NVIDIA GPUs [10].

global memory, and caching increases performance by taking advantage of data reuse. There
are multiple levels of cache as well, each of which are numbered. Lower numbers (e.g. L1)
are faster and closer to the registers, and larger numbers (e.g. L2/L3) are typically slower
and larger.

Registers, the lowest level of memory, are what the arithmetic units directly load their
data from. They are fast, but have a limited size, which is why local memory is used to
page them. Paging means that any data that does not fit into the registers is stored in the
local memory. When the processor requests a value that has been paged, it is fetched from
local memory and swapped for a register value. A Fermi GPU has a large register file (2
MB) compared to a typical CPU (∼6 kB), but each multiprocessor only has 128 kB of the
registers, which is further subdivided by each thread (maximum register size per thread is
63 kB) [41].

The other memory spaces are the constant memory and the texture memory, which
are both visible to all threads in all blocks. They aren’t truly separate spaces, but rather
global memory that is handled differently. Storing data in the constant space means that it
cannot be written over (hence the “constant” name), but the data is cached so data reuse by
threads can result in a cache hit and the global memory itself does not need to be queried
[10]. Constant memory is limited to 64kB, however, and is cached by 8kB caches on each
multiprocessor, so large datasets cannot be stored in constant memory. It also performs best
when values are broadcast to all threads. Texture memory is also cached, but its cache is
optimized for 2D spatial locality in the texture coordinate system instead of actual memory
locality, and it does not have a maximum size. Another feature of texture memory is that is
can perform low precision linear interpolation in the same transaction as a read [10].
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2.8 OptiX

To save time and effort, NVIDIA’s OptiX ray tracing framework is used by WARP for
the geometry representation, surface detection, and material queries on the GPU. The pro-
grammer must write all geometric intersection programs for the geometry primitives as well
as the geometry hit programs. OptiX provides the mathematical and computer science glue
between the user-programmed ray tracing elements. Besides its flexibility, OptiX provides
optimizations that would require many months for a single developer to replicate in hand-
written code. It’s main optimization is automatically producing high-quality acceleration
structures for traversing the primitives in the geometry [45]. In this section, the general
properties and workings of OptiX will be presented. Details about its implementation in
WARP will be discussed in Chapter 3.

OptiX Programs

As stated before, the developer must provide all the programs for OptiX. These various
programs are compiled to .ptx files, the paths to which are given to the OptiX API at
compile time and are loaded by the executable at run time [45]. The programs are compiled
to .ptx because it is a “virtual assembly language” that can be easily interpreted by GPU
and requires no further compilation. Figure 2.27 shows the control flow in OptiX. The launch
is just like a CUDA kernel launch. The API checks to make sure all the necessary data is
present on the card, then launches kernels internally to carry out the trace on the GPU.

Launch

Traverse Shade

Ray Generation 
Program

Miss
Program

Closest Hit 
Program

Selector Visit 
Program

Intersection
Program

Any Hit 
Program

Acceleration
Traversal

Node Graph 
Traversal

rtContextLaunch

rtTrace

Exception
Program

Figure 2.27: The program flow in a launched OptiX context [46].

The “ray generation” program is like a “main” function in the ray tracer. It initializes
rays, their starting points and directions, and specifies the data that they report. Once
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this is done, the trace is executed. The trace traverses the geometry and find intersection
points. If any geometry primitive is intersected, the “any hit” program is executed. In
graphics rendering problems this program is typically used for determining areas that are
completely occluded from the light source, therefore terminating the trace. Shadow rays
could potentially be used for an adjoint-type of calculation or variance reduction schemes to
terminate neutrons according to some criteria, but are not used by WARP. As OptiX queries
the primitives along a ray, it tightens an interval on t, the path length of the parameterized
ray [45]. The equation for a parameterized ray is shown in Eq. (2.100), where ~rP is the end
point of the ray, ~rO is the origin point of the ray, and ~rD is the directional unit vector of the
ray. Figure 2.28 shows an illustration of a ray-surface intersection.

~rP = ~rO + t~rD (2.100)

!rP

!rO

!rD

Origin

Length = t

Figure 2.28: Ray-surface intersection: a sphere and a parameterized ray.

When the t interval becomes tight enough to determine the closest hit, the “closest hit”
program is executed. This program typically returns the ray’s closest intersection point to
the ray generation program, which then uses this information to shade a pixel in an image,
or in WARP’s case, determines if a neutron travels past a surface. Miss programs tell a ray
what to do if it does not intersect any primitives [45]. In rendering, this usually maps to a
scene background image. Since a material must always be defined in WARP, a miss simply
throws an error. This is analogous to a “lost particle” in traditional Monte Carlo codes.

Geometry and Intersection Programs

Geometrical primitives in OptiX are represented by their intersection programs. Inter-
section programs have two purposes – calculating the exact intersection points between a ray
and a primitive and to providing axis-aligned bounding boxes around the primitives. These
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bounding boxes must completely contain the underlying primitive, but should be as small as
possible for best performance. Bounding boxes are queried when the acceleration structure
is built over the geometry, which is discussed in the next subsection [45].

The main purpose of an intersection program is to calculate the intersection points,
which must be reported back in terms of the t value. For example, the equation for a
sphere is r2 = x2 + y2 + z2. Substituting Eq. (2.100) into this equation and solving for t
yields Eq. (2.101). Since a sphere is a closed surface, there are two intersection points. The
smallest nonnegative value is reported back by the intersection program.

a = ~rD · ~rD = 1

b = 2~rO · ~rD = 2b2

c = ~rO · ~rO − r2

t =
−b±

√
b2 − 4ac

2a
= −b2 ±

√
b2

2 − c

(2.101)

Figure 2.29: Node graph used for geometry representation in OptiX [45].

The framework by which geometric primitives are arranged into a scene is very flexible in
OptiX. Figure 2.29 shows the node graph representation of the geometry that a ray traverses
in OptiX [45]. The node types and connections are completely specified by the user. Rays
enter the graph at the root node, or “entry point,” and it must be specified before a trace
can begin [45]. From the root node, rays start to query the geometry nodes in the rest of the
graph. Intersection programs are run when a ray visits a geometry node to determine the
t values of the geometry contained in the node. Some nodes, such as a “group” node, only
serve to contain other nodes. A group can have children of any kind, whereas a “geometry
group” can only have “geometry instance” children. A “geometry instance” is a object that
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combines a geometry primitive, which describes the geometrical object, and a “material.” A
material is another name for the closest and any hit programs, and serves to package them
into an object that they can be attached to multiple geometry primitives. OptiX can handle
different ray types, typically one for radiance and one for shadow, and a geometry primitives
can be attached to multiple materials to handle these ray types in different ways. WARP
only uses radiance rays, and using shadow rays was not considered during its development.
The way in which they traverse the graph depends on the acceleration structures attached
to the nodes. These structures allow the rays to only query objects along their line instead
of having to query all objects. How the geometry nodes are arranged in the graph greatly
affects trace performance, as will be seen in Section 3.1.

There are two special node types that can have geometry group children - a selector node
and a transform node. A selector node will decide which geometry group to send a ray down
based on some type of criterion. This criterion can be based on a global variable that is
assigned before a trace or a piece of data that is determined during the trace itself. It gives
the framework more flexibility for the types of problems it can handle and the ease at which
solutions can be implemented.

A transform node transforms the underlying geometry based on an affine transformation
matrix. This node type can be useful for specifying one geometry instance node that is then
instanced throughout the scene with different transform nodes. A transform node can also
be used to move geometry based on time. For WARP’s purposes this functionality could
potentially be used for calculating the effects of geometric perturbations or even introducing
time-dependent simulations. When transform nodes are specified, they must be attached to
a geometry group and be given an affine transformation matrix. In three dimensions, this
is a 4x4 matrix that can specify rotation, scale, translation, and shear. An example matrix
for simultaneous translation and rotation is shown in Eq. (2.102) where dx, dy, and dz are
translations in x, y, and z, respectively; and θ is a rotation around the z axis, i.e. a rotation
in the x-y plane [47].

~x =


x
y
z
1

 M =


cos θ − sin θ 0 dx
sin θ cos θ 0 dy

0 0 1 dz
0 0 0 0

 M~x = ~x′ (2.102)

The final, and arguably most important, part of the node graph is the acceleration object.
This node specifies the acceleration data structure that is attached to each group or geometry
group and must be present for rays to traverse these groups. Groups and geometry groups
can share acceleration objects, but if any underlying geometry is changed, the structure
must be rebuilt for both groups sharing the acceleration object. Simpler acceleration object
layouts typically have better performance, however, since the acceleration objects higher up
in the graph can only treat groups further down [45].



CHAPTER 2. BACKGROUND 72

Acceleration Structures

The basic idea behind acceleration structures is that they provide a way to decompose
the scene geometry into a hierarchical graph. Once this is done, parts of the scene that rays
aren’t close to intersecting can be pruned from the set of actual geometry primitives a ray
must query to find intersection points [45]. OptiX provides different types of acceleration
structures, namely, bounding volume hierarchy (BVH) trees and k-dimensional (k-d) trees.

BVH is object-centric in the sense that it places boundaries around groups of objects.
Each leaf of the tree can contain one or more objects. K-d trees are space-centric in the
sense that they partition the space objects lie in. K-d trees are binary trees that partition
each volume into two smaller volumes until the lowest leaves only contain a portion of a
single object. Figure 2.30 shows how BVH and k-d trees partition the objects and the space,
respectively. BVH trees have the benefit of being shallower, and therefore fast to traverse,
but some objects’ higher bounding volumes can overlap, leading to situation where both
subtrees must be queried.

Figure 2.30: Spatial partitioning schemes (top) with the resulting trees (bottom). A BVH
tree [48] is on the left and a k-d tree is on the right [49].

The benefit of these acceleration structures is that they can be queried in log(N) time
rather than in linear time since major portions of the geometry do not need to be queried or
intersected. OptiX automatically builds these trees over the geometry without any user input
other than to specify the type. The two different types have tradeoffs in terms of size, build
speed, and performance. Since WARP’s geometry is static and relatively simple compared to
photorealistic rendering jobs, the build speed and size have negligible impact. Determining
which structure provides the best performance is the goal of one of the preliminary studies
in Section 3.1.
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The typical geometry representation in Monte Carlo neutron transport codes is combina-
torial geometry, which uses union and intersection operations on the surface sense of a point
in relation to second-order polynomials. This kind of algorithm is linear with the number of
surfaces present in the geometry, so using OptiX in complicated geometries should provide
provide a performance boost to geometry routines compared to MCNP or Serpent. The algo-
rithms in both of these codes do use a form of acceleration, however. They use a “universe”
representation to provide a level of acceleration in determining which material and/or cell
a neutron is in. Universe “0” is typically the lowest level, i.e. what exists in the problem
geometry. Each cell in universe 0 can either contain a defined material, or it can contain
another universe. If it contains another universe, the neutron coordinates are transformed
from the global values to the new universe’s. Once the neutron is in this new universe, only
surfaces contained in it need be considered instead of all the surfaces in the problem. Of
course, cells in the new universe can contain other universes, and this cell query operation
is done recursively until the actual material the neutron is traveling in is determined [12].
Using “universes” in this way is like traversing a k-d tree. It partitions the geometry based
on their spatial relationships and allows a neutron to determine which cell it is in quicker by
eliminating far-away cells from the set of cells that need to be queried. When the runtimes
of Serpent, MCNP, and WARP are compared in Chapter 4, it will be seen how the various
geometry representations scale with object number.

2.9 Previous Works

The impetus for developing WARP was the research done by Martin and Brown in 1984
[29] and by Vujić and Martin in 1991 [30]. In the 1984 paper, a method for mapping the
Monte Carlo problem onto SIMD vector computers is described. The essential idea is to bank
the neutrons into vectors based on their required operation. If a neutron is scattering, its
data is placed in the scattering buffer. If a neutron needs to do a surface crossing calculation,
it is put in the crossing buffer, and so on. Once a buffer becomes full, it is processed in a
SIMD fashion by the vector computer. Processing the neutrons makes the buffers contain
non-uniform reactions, however, and a “shuffle” operation is done that actually moves data
back into contiguous blocks based on the reaction type.

This new approach was named “event-based” Monte Carlo, since the neutron events are
tracked and processed as a group [29]. This was a very different way of performing a Monte
Carlo simulation at the time. Almost all computers were strictly serial, and SIMD lanes were
only available in supercomputers. Therefore, the pervasive method was the “task-based”
method in which neutrons are tracked for their entire lifetime in series. Since GPUs are
massively parallel and rely on SIMD, an event-based algorithm seems to be the appropriate
approach to GPU-accelerated neutron transport.

In the 1991 paper, a vectorized approach is applied to the collision probability method
(CPM), which is a deterministic way to solve the integral form of the neutron transport
equation [30]. The paper does not directly deal with any type of Monte Carlo simulation, but
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it addresses the topics of transferring a scalar, CPU-optimized program to a vector computer
and discusses why global restructuring of CPU optimized codes is necessary to fully exploit
highly vectorized architectures. This paper served as inspiration to start WARP from scratch
instead of trying to completely restructure an establish CPU-based code.

Vectorizing the Monte Carlo algorithm should allow for efficient GPU execution, but a
paper by Zhang [50] also shows that by remapping data references, the thread divergence in
GPU warps can be minimized. This paper provides a simple way to “vectorize” the GPU
data without actually moving data itself. This method may lead to sparse data access,
but this will happen in a Monte Carlo algorithm anyway so it may be of use to reduce
thread divergence and increase the number of active warps per active cycle on the GPU.
Incorporating Zhang’s idea means that the algorithm that WARP uses in its event-based
transport algorithm differs from the methods in [29] and [30] in that WARP will use a
reference remapping vector instead of a shuffle operation. Data will not actually be moved,
rather only the references to the data.

Although there has been much research done on Monte Carlo neutron transport, there
is relatively little research about performing Monte Carlo on GPUs since GPGPUs are a
new technology. There have been two significant developments, however. One is by Adam
Gregory Nelson, who published work on a GPU accelerated Monte Carlo neutron transport
code he wrote for his Master’s research at Pennsylvania State University [28]. In his thesis,
he reports on developing a task-based Monte Carlo Neutron transport code, LADON, and
an event-based Monte Carlo Neutron transport code, CERBERUS. Both codes have CPU
versions that have the extension “c” and GPU versions that have the extension “g.”

Comparing both codes, Nelson was able to attain a 24x speedup between LADONc and
LADONg, and a 1.13x speedup between CERBERUSc and CERBERUSg. These results are
very encouraging and show that significant speedups can be realized by performing Monte
Carlo neutron transport on the GPU, but discouraging since the event-based speedup was so
poor. Nelson also states that the poor performance of CERBERUS was due to the sorting
of data was done on the CPU, and certain sections of his algorithm serialized execution
completely. As a result, he abandoned CERBERUS and most of the thesis is about LADON
[28].

There are also a handful of assumptions in his implementation that required his compar-
isons to be against a CPU code containing the same assumptions – which is why he wrote
CPU versions of his codes. LANDON and CERBERUS use point-wise cross sections, but
they are not read from ACE formatted data files, they do not perform any discrete inelastic
scattering, and ν is fixed at 2.53. Comparing these codes against production codes that
don’t use these assumptions, like MCNP and Serpent could not be done, since the source of
differences in solutions would be unclear. The codes seem to also be quite inflexible. They
can only model spheres and cuboids, cannot transform these objects, cells cannot intersect,
cell nesting must be explicitly defined and input in-order, and there is a total limit of 100
cells.

The GPU implementation may not be ideal either, since Nelson uses an array of struc-
tures (AOS) data layout instead of a structure of arrays (SOA) layout, which is not ideal
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for coalesced loads as was shown in Figure 2.24 (though Nelson acknowledges this). CER-
BERUS does not seems to employ parallel algorithms other than for transport. None of the
underlying operations necessary for implementing event-based Monte Carlo were parallelized
effectively. The cross section data was also simply left as vectors in device memory and was
not reformatted in any way to optimize the access pattern on the GPU [28].

The second major study done was that by Liu, et al. In the group’s first publication, a
GPU is used to perform a criticality calculation [26]. Very simple geometry is used, a bare
slab and a bare sphere, and one group cross sections are used. The fission source operations
and sorting are also done on the CPU rather than the GPU. Despite using the CPU to do
these tasks, Liu et al. report a speedup over an identical CPU version of 7x for the bare
sphere and 33x for the bare slab. They use a task-based algorithm for transport [26].

Further results were presented at the SNA+MC 2013 conference, where Archer, a general
purpose Monte Carlo radiation transport code developed at Rensselaer Polytechnic Institute,
was modified to run an event-based criticality simulation in a 1D slab. They found that con-
trol flow efficiency is increased, but global memory transactions are increased dramatically.
Thus, the GPU is not kept busy when the number of particles is small, and performance is
about 10x less than a task-based implementation [27]. No details about the implementation
are given other than that data references are remapped similarly to the method that was
presented at the ANS Winter Meeting in November of 2012 as a part of WARP’s preliminary
studies [51]. Single-energy cross sections were used again, which means that they can be en-
tirely stored in the GPU’s shared memory space for the task-based approach. Due to using
small cross section data, any benefits from reduced divergence of the event-based algorithm
is outweighed by the small amount of global memory transactions needed in the task-based
approach. WARP uses real cross section data, and the memory traffic created by doing so
should make the particle data traffic a small part of the problem.

Henderson implemented a GPU-accelerated algorithm for photon transport in Geant4 for
the purpose of modeling CT scans [24]. Henderson uses interpolated cross sections, which
are very smooth and small compared to those used in neutron transport. The geometry
treatment is a voxelized approach, well-suited for reading in CT scan data. Henderson also
only needed to consider water as a material since the human body is basically water. Crit-
icality was also not considered, for obvious reasons. Secondary electrons were transported,
however. Henderson uses a task-based approach, using the shared memory as a stack of
to-be-transported photons and electrons, basically transforming the SM into its own small,
independent processor (like a CPU). Henderson also emphasizes the positive effect of using
an SOA access pattern, reporting 3-4x speedup over AOS. Henderson was able to achieve a
total speedup of around 50-60x over the standard Geant4 routines [24].

A study lead by Qi Xu from Tsinghua University has investigated adding GPU acceler-
ation to their in-house Monte Carlo code, RMC [52]. RMC is being developed as a drop-in
replacement for MCNP since MCNP is export-controlled and very difficult for Chinese uni-
versities to obtain (source code might be impossible to obtain). They’ve published some of
their results, including an eigenvalue test and geometry routine test. The eigenvalue test
uses algorithms similar to those used by Liu et al. and Henderson. The Tsinghua team uses
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static geometry, single group cross sections, and a pop-stack, task-based transport algorithm.
They were able to obtain a 113x speedup over a CPU version without a flux tally and 36x
speedup with a flux tally [53]. The study offloads the geometry processing routines of RMC
to a GPU, where they were able to get 5-50x speedup over an all-CPU version of RMC when
the number of fuel rods in their geometry went from 25 to 625. When more rods are used,
geometrical processing becomes a large part of the computation time, and the GPU was able
to process this well, leading to the very large speedups in the 625 rod case. Again, one group
cross sections were used [52].

OpenMC is a “Monte Carlo particle transport simulation code focused on neutron crit-
icality calculations ... [that] was originally developed by members of the Computational
Reactor Physics Group at the Massachusetts Institute of Technology starting in 2011” [13].
It aims to be an open testing platform for novel Monte Carlo algorithms, has gained U.S.
governmental approval to be released as open source software. It is cited often in this work
due its freely available source code and thorough documentation, and the process of release
WARP as open source software will be streamlined by the efforts done in releasing OpenMC.
OpenMC is also being developed by NVIDIA to run on GPUs. Progress was presented at
the 2014 GPU Technology Conference (GTC), but mainly consisted of accelerating xsbench,
OpenMC’s synthetic cross section processing benchmark tool, and did not mention any de-
velopments on OpenMC itself [54, 13].

WARP aims to be much more general and accurate than all previous codes while em-
ploying efficient parallel algorithms in order to have a completely GPU-accelerated code.
WARP reads ACE-formatted data, performs all reaction types as prescribed by them, uses
a Serpent-like unionized energy grid to regularize data access, uses an event-based transport
algorithm with parallelized operations for sorts and sums, use OptiX for general 3D geometry
representation (without explicit nesting), use a SOA for neutron history data, and perform
all operations on the GPU unless strictly forbidden (the benefit of which will be discussed
later). WARP takes these previous works into consideration and advances the state of the
art by:

• Using an event-based transport algorithm to conduct continuous energy Monte Carlo
neutron transport on a GPU

• Using a vector of neutron references to remap data access on-the-fly, therefore mini-
mizing thread divergence and simultaneously eliminate completed histories

• Using nuclear data loaded from ACE formatted files

• Using a modified unionized energy grid data structure to minimize data traffic when
performing cross section lookups

• Treating interactions exactly as specified by the nuclear data files

• Using the NVIDIA OptiX ray tracing framework for general 3D geometry representa-
tion
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• Using the CUDPP libraries to perform parallel sorts, scans, and sums on the GPU

• Producing results (multiplication factors, fission distributions, flux spectra) comparable
to production Monte Carlo neutron transport codes
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Chapter 3

GPU Implementations

In this chapter, all GPU implementations will be explained in detail. First, the ex-
ploratory studies done in preparation for developing WARP will be discussed. These studies
show the algorithmic benefits of a very important feature of WARP - remapping the data
references. This chapter also covers how OptiX execution is optimized for best performance
in reactor-like geometries. After the preliminary studies, the data layout for cross sections is
explained and its similarities and differences from Serpent pointed out. The last topic dis-
cussed is the CUDA kernels written for WARP. These routines process the neutrons as they
travel through the problem geometry and provide the “glue” to connect all the important
tasks that WARP requires to process the neutron histories.

3.1 Preliminary Studies

Before any serious coding efforts were undertaken, a pair of smaller preliminary studies
were done to determine the feasibility of doing Monte Carlo neutron transport on GPUs. The
first study performs a simple, 2D, mono-energetic scattering game on a GPU. The second
study tests the OptiX framework to determine if it can handle randomized ray tracing while
maintaining acceptable performance. In both of the following studies and in WARP itself,
CUDA 5.0 and OptiX 3.0.1 were used.

2D Scattering Game

The goal of the 2D, mono-energetic scattering game is to determine whether a sorted or
an unsorted event-based algorithm was best for controlling thread divergence on a GPU, to
the see the relative performance of the history- and event-based GPU implementations to
an identical serial CPU version, and to determine if the performance of the CUDPP (CUDA
Parallel Primitives) library is adequate for use in WARP. A set of three GPU implementations
were written using CUDA C, and a single CPU implementation was written using C.
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Figure 3.1: The 2D geometry of the scattering test.

In the simulation, only two reaction types are possible - scattering and absorption. Scat-
tering is treated isotropically and, since it is mono-energetic, scattering only serves to change
the direction of a particle. The geometry of the game is kept simple in order to highlight how
the reaction divergence is handled rather than how geometry routines effect performance.
The geometry used in the game is shown in Figure 3.1. There are five cells, all of which are
square, and particles can only move in the x-y plane. Each cell has different reaction cross
sections, and cell 0 extends to infinity but has a nonzero absorption cross section so particles
cannot scatter forever. Particles are initialized with a uniform, random distribution in cell
1, which has no absorption cross section so that particles must cross a cell boundary at
least once. Since the cells are few and square, the “where am I?” operation that determines
the cell number each particle is in (and therefore the cross sections) is done with simple,
hard-coded logic comparisons.

As particles scatter, they start to be absorbed and their histories are terminated. This
means they are no longer transported, and their data should no longer be accessed by
threads. Here is where the GPU implementations start to differ from one another. The task-
based implementation performs the transport from a one-particle-per-thread standpoint.
When the transport kernel is launched, each thread contains a while-loop that transports
a particle until it terminates and the thread returns. If more histories are requested than
the maximum thread number, transport is split into batches. The diagram of the simple
task-based algorithm used is shown in Figure 3.2. The CPU version of the code also uses
this algorithm on a single thread that processes the histories in series.

An event-based algorithm performs the same operations on the data as the task-based
algorithm, but the operations are instead carried out over all the particle data simultaneously
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Figure 3.2: The task-based algorithm used in the 2D scattering study.

in parallel. Now, each kernel does not contain a while loop. The while loop is on the CPU
host, the drawbacks of which are discussed later. Each kernel performs a single, simple
task on the entire particle dataset in one step. Figure 3.3 shows an illustration of how the
nearest surface distance and interaction distance comparison is done in a data-parallel way.
The leftmost diagram in the figure shows a box containing blue dots, which represent the
positions of a set of neutrons. These positions are all loaded from memory in a single step.
The next diagram shows the directions are then loaded in a single step. The third diagram
shows the sampled interaction distances for each of the neutrons, represented by green dots.
After the interaction distance is know, the distance to the nearest surface, shown as red dots,
is calculated for all the neutrons. Once the surface distance is known, the next step would be
to update the neutron position to the smaller of interaction distance or the surface distance,
at which point the process repeats. Each step of a data-parallel algorithm acts this way; it
performs identical operations on the entire set of neutrons.

An analogy can be made with homework grading. A task-based algorithm is like grading
a single student’s homework in its entirety, then moving on to the next student’s. An event-
based approach is like grading a single problem for every student, then moving on to the
next problem. This makes the transport loop data parallel, which GPUs need to keep warps
coherent. Figure 3.4 shows the event-based transport loop used in the scattering game.

Two different implementations were made using an event-based algorithm, one that uses
the CUDPP compaction to remap threads to active (non-terminated) data, and one that
does not. In the non-remapping version, threads simply return and do no processing if they
access data belonging to a terminated particle. In the remapping version, the number of
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Figure 3.3: Ray tracing done in a data-parallel way.
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Figure 3.4: The event-based algorithm used in the 2D scattering study.

threads launched is equal to the number of active particles left in the dataset, not the size
of the dataset itself. The threads access a remapping vector, which transforms their thread
ID to a data index that still contains active data. Figure 3.5 shows how the remap vector
transforms the initial thread ID to an active ID.

The CUDPP compaction function does just this - it takes an input vector and a valid
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flag vector and returns a new vector containing only the valid elements, preserving the order
they are in. For this test, the input vector is the thread ID vector (tid[i]=i), and the flag
vector contains a 1 if a particle is unterminated and a 0 if it is not. The compact function
then returns a remapping vector, which is as long as the number of unterminated particles
and contains the indices of the unterminated data. Even though the neutron data access will
not be coalesced, accessing the remap vector should be coalesced (adjacent threads access
adjacent data) and should therefore be fast to load.
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Figure 3.5: Mapping thread IDs to active data through a remapping vector

NVIDIA gives each GPU card a “compute capability” number which summarizes the
features available on the card. For example, “dynamic parallelism” is a feature only sup-
ported on cards of compute capability 3.5 and above (dynamic parallelism allows kernels to
launch additional kernels). When this preliminary test was first written, Fermi cards were
the newest available, and the cards used were of compute capability 2.0. For these cards,
there is a maximum grid dimension size of 65,536 blocks [10], and this limit was hardcoded
into the applications. In other words, if the total number of particles was greater than what
could be transported with 65,536 blocks, the particles were divided into separate batches.
This limit was lifted in devices with compute capability of 3.0 and up (which includes the
K20 used in this work), where the maximum 1D grid size was increased to (1027 − 1) [10].
The hardcoded block limit was used to keep compatibility with Fermi cards of compute
capability 2.0.

Libraries currently available for the GPU carry out a single task on a dataset; they are
not coded for single-thread operation and must be launched as their own kernels. Having
threads in different states wouldn’t allow the library routines to be dropped in and used
consistently across all the active particle data. Furthermore, much of the performance from
optimized algorithms in the libraries comes from thread blocks cooperating, and using a task-
based algorithm would be like treating each SM as a separate CPU (using a stack-popping
method). The CUB library can perform sorts and scans in a per-block or per-warp fashion,
but OptiX would be incompatible with a non-global transport scheme [45].
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Figure 3.6 shows the speedup factors, Fs = tCPU/tGPU, of the GPU implementations
over the CPU implementation versus the number of particles run. This benchmark was run
on a server with an 8-core AMD Opteron 6128 CPU clocked at 2.0GHz and a Tesla K20
card. The task-parallel implementation always performs better than the non-remapping
event-based approach. The remapping event-parallel implementation starts to overtake the
non-remapping version at around 20,000 particles and overtakes the task version around
100,000 particles. No more that 108 histories could be run because of memory constraints of
the event-based implementations. At this point, the speedups of the task and non-remapping
implementations appear to be saturated around 5.9x and 4x, respectively. The remapping
implementation does not seem to be saturated, but reaches a maximum speedup of 13x
over the serial CPU implementation at the limit of this study. Why there is a noticeable
jump in the remapping speedup at 107 particles instead of a smooth transition is as of yet
unexplained.

The non-remapping approach sees a alight performance decrease at around 107 par-
ticles, the point where transport has to be broken into two batches (128 × 65, 536 =
8, 388, 608 threads in a single kernel launch possible). The finite address space affects the
non-remapping implementation with 512 threads per block at larger dataset sizes, specifically
at 512× 65, 536 = 33, 554, 432 particles. The task-based implementation also needs to break
transport into two batches at the same boundaries as the non-remapping implementation,
but is seemingly unaffected by it. The effect is likely unnoticeable since it only implies a
second kernel launch in the task-based implementation instead of the hundreds more in the
non-remapping. A similar test was done with a Tesla C2075 (Fermi) card where the perfor-
mance hit at 65,536 blocks is more accentuated. The results of the test and speculation as
to why it exhibits different behavior compared to the K20 is shown in Appendix A.

It should be noted that compiling the tests with compute capacity 2.0 (-arch sm 20
compiler flag) improved performance about 20% over compiling with compute capacity 3.0.

The most likely reasons that the task-based implementation outperforms the event-based
for small particles datasets is because of the simplicity of the problem and the communication
and setup overhead associated with many kernels being launched from the host. The task-
based implementation only launches a single kernel that houses the transportation loop
whereas the event-based implementations must launch kernels for every interaction within
the transport loop. The event-based method therefore launches hundreds of kernels in every
loop compared to the single kernel of the task-based implementation.

In addition, having only two reactions means threads only diverge when they terminate.
WARP will use real data and have many reactions types to deal with, so divergence will be a
greater problem. Only having two reaction channels also allows threads in a block to almost
always be in the same step of the transport algorithm. The only real problem in this study
is the idle threads left in the block after they terminate.

The non-remapping implementation is really just an intermediate case between the task-
based and remapping implementations. It has all the drawbacks of the event-based algorithm,
namely high kernel launch costs, but none of the benefits of breaking the transport up into
coherent steps since any threads are left idle in blocks once their particle terminates.
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Figure 3.6: Speedup factors of the GPU implementations over the CPU implementation on
a Tesla K20.

The remapping implementation shows the real benefits of an event-based algorithm in
that a sort can be inserted into the transport algorithm to convert a “particle per thread”
into “X particles shared by Y threads.” The remapping sweeps out references to terminated
particles and allows the blocks to remain full of active data. This eliminates the cost of
processing blocks with stale data, i.e. makes each block processed worth more on average.

The speedup curve highlights an important feature - that speedup plateaus at a large
number of histories. This is because of the GPU’s ability to hide memory latencies through
pipelining when there are many many active threads. It also may be related to the kernel
launch overhead in that running large datasets spreads the overhead cost over many particles,
reducing its cost per particle. Other than effecting the maximum number of threads resident
on the card, the number of threads per block seems to make little difference between the
implementations. Having fewer threads per block slightly outperforms having more for all
cases. The reason for this could be the registers spilling to local memory (which is slower)
since there are more threads resident in a multiprocessor and more variables need to be
stored in the registers. This is speculation, profiler statistics about register spilling were not
gathered.

Figure 3.7 shows the same test, but with the absorption cross section in cell 0 increased
from 0.01 to 0.1. This means the potential difference in the number of scatters a particle
undergoes before being absorbed is greatly reduced and, therefore, impact of thread diver-
gence is also reduced. Again, no more that 108 histories could be run because of memory
constraints of the event-based implementations. At saturation, the speedups of the task
and non-remapping implementations appear to be around 6.2x and 4.5x, respectively. The
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Figure 3.7: Speedup factors of the GPU implementations over the CPU implementation on
a Tesla K20 with Σa increased to 0.1 in cell 0.

remapping implementation does not seem to be saturated, but reaches a maximum speedup
of 14x over the serial CPU implementation. Again, there is a noticeable jump in the remap-
ping speedup at 107 particles; the cause of which is not known. The curves have very similar
trends as in the case with Σa = 0.01 in cell 0, but saturate at slightly higher values, most
likely due to the fact that divergence is intrinsically decreased by the material parameters.

Figure 3.8 shows the number of active histories per transport iteration for the batches and
remapping implementations. Since the remapping implementation eliminates all references
to terminated particles, the data loaded into the threads blocks is all active and no threads
return without doing work. The figure clearly shows that the blocks are kept full until the end
of the simulation when the remaining number of particles becomes less than the maximum
number of threads. It also shows how quickly particles are depleted from the blocks.

In this simple case, by far most interactions happen in cell 0, and particles are absorbed
almost identically to Eq. (3.1), where i is the iteration number and Σa/Σt is the absorption
probability in cell 0. This is expected behavior. Figure 3.8 does not reflect the time taken by
each iteration, however. The iterations with more particles take longer than those with fewer
for both implementations. More particles are transported per time in full iterations, however,
as evidenced by the greater speedups of the remapping algorithm in Figures 3.7 and 3.6. The
cycle time of a completely full iteration is approximately 0.2 seconds, whereas cycles times
of iterations contain less than 5000 particles are around 0.01 seconds. The corresponding
processing rates are 4.2× 107 particles per second for full iterations and 5× 106 particle per
second for small iterations, however.
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Figure 3.8: The number of active threads for the event-based GPU implementations.
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Actively remapping the data also reduces control flow divergence, as shown by Figure
3.9, the effect of which only manifests itself in this study as keeping threads full of active
data. Despite this, remapping will allow the blocks in WARP to remain coherent (undergoing
identical interactions) as well as full, which is another benefit of remapping. The figure shows
the amount of divergence in a kernel launch, so the task-based algorithm only reports an
average value since it only launches a single kernel.

From this preliminary, 2D, mono-energetic scattering study it can be concluded that
using an event-based algorithm with a compaction/sort algorithm to eliminate terminated
particles from being accessed by thread blocks drastically reduces control flow divergence
and keeps warps coherent. There is a cost for adopting an event-based algorithm, however,
namely the overhead of kernel launches. How these factors compete in WARP will be shown
in the results in Chapter 4. WARP will adopt the event-based algorithm in hopes that
thread coherency and its benefits (maximal load coalescing and little warp serialization) will
outweigh launch overhead when real data is used, as well as to allow library usage to perform
complicated parallel operations.

Ray Tracing with OptiX

Another preliminary study was conducted to investigate how OptiX performs when ray
tracing is done from randomized points and to find the optimal OptiX configuration for
WARP. In rendering, rays are initialized in a uniform array, but OptiX also allows for
arbitrary starting points and directions to be used. This flexibility comes from being able to
write custom ray-generation programs in OptiX. OptiX processes rays concurrently, so the
ray tracing in WARP is done in a batched way, i.e. the traces are done for all neutrons in a
single step (like that shown in Figure 3.3).

There are two types of scaling in OptiX that need to be characterized in order to ensure
optimal performance – scaling with regard to the number of concurrent rays traced and
scaling with regard to the number of geometrical objects in the scene. Determining how
OptiX scales with the number of concurrent rays is important in knowing how large neutron
batches need to be in WARP for the geometry routines to execute efficiently. Nuclear reactor
simulations can contain thousands of material zones, and knowing how OptiX scales with
the number of geometrical objects is important for choosing a configuration that will allow
WARP to perform neutron transport well in complex geometries.

The first scaling study focuses on scaling with regard to the number of concurrent rays.
Three different geometries were used in the test – an assembly-like hexagonal array of cylin-
ders, an assembly of the same size but with two interleaved arrays, and a much larger version
of the assembly-like geometry. The assembly-like configuration has 631 instances of a single
primitive type, the interleaved array has 381 instances of three different primitives types,
and the large array consists of 1801 instances of a single primitive type. These cases were
chosen to determine if there are any large differences in the ray scaling when the number
and types of objects are changed. Each array resides in a large hexagonal prism, which is in
turn nested in a large cube that defines the outer limit of the scene.
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The second scaling study focuses on how OptiX scales with regard to the number of
geometrical objects in the scene using two different primitive instancing methods. Instancing
refers to how individual geometric objects are created in the OptiX scene. The geometry
used in this study is a hexagonal lattice of cylinders identical to the assembly-like geometry
of the first scaling study. The volume, pitch to diameter ratio, and aspect ratios of the lattice
is kept constant, but the cylinder radii are halved while doubling the number of elements
on an edge. The smallest scene only has a single primitive in it, and the most complex has
42,843 primitives in it.
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Figure 3.10: The point-in-polygon-like algorithm for determining the entering cell/material
number by using ray tracing

An important job for the geometry routine in a Monte Carlo neutron transport code is to
determine the cell and material IDs of a particle based only on its coordinates. In Woodcock
tracking, surface intersections are not calculated and the material query is the only place
where geometric information enters into the simulation. In WARP and other ray-tracing
codes, material information is only updated when a sampled interaction distance is greater
than the near surface distance. The neutron is then placed on the boundary, the material
information is updated for the material the neutron is entering, and the interaction distance
is sampled again using the same direction of flight as before. WARP will use an algorithm
to determine the entering material number by using ray tracing, since all the geometric
information is stored in the OptiX context. This also means the material query will be able
to take advantage of the OptiX acceleration structures and should scale well (logarithmic).
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The material query algorithm is shown in Figure 3.10. An ordered list of surface inter-
sections is generated by iteratively ray tracing and adding the closest surface number to the
hit list. Tracing is terminated when a predefined outer cell (that contains all other cells) is
intersected. Since all surfaces are closed, the ray will intersect any cell surface twice that it
isn’t nested in. When the list is made, the double entries are removed, which yields a list of
cells the neutron is nested in. The first entry will be its current cell and the second entry
will be the cell it is entering into.

An issue with ray tracing is that mathematical cell descriptions are exact, but the numbers
representing them are not. If these numbers are treated as exact, a situation can occur where
a neutron is placed at a boundary but is actually slightly behind the boundary because of
floating-point roundoff. When the next trace is started, the ray intersects the boundary it
has already intersected instead of tracing into the next cell. This situation can be prevented
by using a scene “epsilon,” which determines the minimum intersection distance possible,
i.e. the minimum distance away from the source point at which intersections are allowed to
occur. Giving OptiX a scene epsilon helps guarantee that a trace starts after the boundary,
and accurate results are calculated. It is important to make the scene epsilon an appropriate
value for the geometry if this algorithm is to be used effectively.

Inaccurate material queries can also due to the scene epsilon. This can occur when
intersecting the extreme corner of a box, for example. If the thickness of the object is less
than the scene epsilon, the material query algorithm may only count a single intersection of
the object, thus determining the box’s material instead of skipping the box and determining
the correct material. In many cases this can be avoided by performing the surface intersection
in the neutron direction and then performing the material query in the z-direction only.
Currently, the objects in WARP are all various kinds of z-aligned prisms (or spheres) and
corner cases like this will not happen if the material query is done in the z-direction because
the ray will only encounter planes perpendicular to it.

The last problem that can result from this algorithm is when cells have coincident sur-
faces. In this case, which cell is actually intersected is undefined and the next trace iteration
will skip the intersection of the coincident cell (since it will be smaller than the scene epsilon
value). A way to avoid this would be to ensure the desired coincident surfaces are more
than a scene epsilon away from each other. In some cases, the neutron mean free path is
much larger than the introduced gap, and this approximation will not change the results.
Conversely, it could introduce errors in cases where the mean free path is smaller than the
gap (e.g. in cells next to strong absorbers). Doing this by hand would be tedious, however,
so an automatic way of doing this may be an area of future development in WARP.

This algorithm is very similar to the ray casting point-in-polygon (PIP) algorithm, which
determines whether a point is inside or outside of an arbitrary polygon by counting the
number of times it crosses a surface. An even number means it is outside and an odd number
means it is inside. This algorithm is almost the same, but keeps track of cell numbers instead
of binary logic for one surface. This way, the nesting of a neutron can be determined and
the entering cell can be found. Both of these algorithms take advantage of the cell being
closed, and in this sense are similar to Gauss’s Law or the divergence theorem, which states
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the flux integrated around a surface will be nonzero only if the surface contains a source.
This material query algorithm is like a discrete, single field line version where the neutron’s
position is the source point and the cell boundaries are the integrating surfaces.

An important consideration in the type of geometrical representation used in WARP is
that the volume of a cell is always the spatial intersection of the space inside of the cell with
space outside any cells nested inside it. For example, if two cube cells were specified to be
centered at the origin with cube 2 completely encompassed by cube 1, the space in-between
cube 1 and cube 2 would belong to cell 1 while the space inside cube 2 would all belong to
cube 2.

Instancing

Nuclear reactors can have very complicated geometries, but many rely on simple shapes
that are repeated in arrays. There are a few ways in which identical cells can be instanced in
OptiX. The first, and most convenient, is to define a single primitive in its own coordinate
system, then use a transform node (shown in Figure 2.29) in the OptiX node graph to
transform the primitive to its actual position via an affine transformation matrix. The
resulting node graph is shown in Figure 3.11 for a scene that has three boxes in it. Note, a
GeometryInstance object ties a hit program to the spatial geometry data in the geometry
primitive object, acceleration objects are attached to all group objects, and transform objects
can only have a single child that must be either a Group or GeometryGroup object. This is
why each GeometryInstance must have its own GeometryGroup.

Root

Box 1 
GeometryGroup

Box 1 
GeometryInstance

Box Geometry Primitive

Box 1 
Transform

Box 2
Transform

Box 3
Transform

Acceleration

Box 2 
GeometryGroup

Box 2 
GeometryInstance

Box 3 
GeometryGroup

Box 3 
GeometryInstance

Acceleration Acceleration Acceleration

Figure 3.11: The OptiX node graph using transform instancing
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Transform instancing is convenient since only a single primitive needs to be defined. If
another instance is needed, one can simply apply a transform matrix to it and all the work
is done by OptiX. This scheme has a lot of overhead, however, since each instance has its
own group and its own acceleration object, producing a deeper node graph than necessary.

Root

Box Geometry Primitive

Acceleration

Box 
GeometryGroup

Box 
GeometryInstance

Acceleration

Box 1 
Dimensional 

Data

Box 2 
Dimensional 

Data

Box 3 
Dimensional 

Data

Figure 3.12: The OptiX node graph using mesh primitive instancing.

An alternative instancing method uses mesh-based primitives. In this scheme, there is
still a single geometry primitive, but now the primitive is attached to an array of spatial data
(and OptiX buffer) that contains the dimensions of each individual primitive. The transform
node is no longer used since it would transform the whole group instead of a single primitive.
The transforms must be applied to the data beforehand and the results are written into the
OptiX buffer as separate elements.

This method produces a shallower node graph with only two acceleration objects and a
single GeometryGroup for all boxes. These numbers would not change if there more boxes in
the scene, only the number of data elements on the bottom of the graph would change. This
is called mesh instancing since the data structure was envisioned for the many triangular
surfaces in meshes of complex objects rather than for individual instancing of separate,
simple objects.

Test Geometries

Figure 3.13 shows the geometry for the interleaved assembly and the large assembly cases
used in the first scaling study. These figures were created by OptiX by performing a cell
number query as prescribed in the previous subsection. The interleaved assembly consists
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of three hexagonal arrays, two cylinders, and one hexagonal prism. The arrays are seven
elements on a side, which corresponds to 127 elements each for a total of 383 elements
(including the large hex cell around the arrays and the outer box cell). The large assembly
has 25 cylinders on a side, for a total of 1803 elements. The smaller assembly is 15 cylinders
on a side, for a total of 633 elements.

(a) The interleaved assembly (b) The large assembly

Figure 3.13: x-y cross sections of the geometry created by using the PIP cell/material query
algorithm

The cell numbers are mapped to colors in Figure 3.13. The images appear correct upon
visual inspection and no tracking errors were generated when creating these images, it there-
fore appears the routine is working and the algorithm can calculate the cell numbers. A
helpful feature of OptiX is that variables can be attached to each geometry primitive. In
addition to the cell ID number, the materiel ID is also attached, so the material query can
be done directly by OptiX rather than by determining the cell number and then having to
do an additional lookup or hash.

Figure 3.14: The geometries used in the scaling study from least number of objects on the
left to most on the right.

Figure 3.14 shows the geometries used in the second scaling study. The hexagonal cell
has the same dimensions as the assembly-like geometry case in the first scaling study, but
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each successive case has smaller and more numerous cylinders in a hexagonal array inside
the hexagonal cell. The most sparse scene only has a single primitive in it, shown on the left
side of Figure 3.14, and the most complex scene, shown on the right side of the figure, has
42,843 primitives in it.

Results

Both of the scaling studies were run on an NVIDIA Tesla K20 card. Cell queries were
done with the PIP algorithm from a uniformly random and isotropic distribution of source
points in addition to finding the closest intersection point. Figure 3.15 shows the ray trace
rates versus number particle starting points for the three test geometries. There are cases
for each geometry (assembly, large, and interleaved), whether the trace uses primitive or
transform instancing (prim or xfrm), and whether it uses a split bounding volume hierarchy
or regular bounding volume hierarchy (SBVH or BVH). K-d trees are not used since they
require a mesh vertex buffer be provided by the user, which implies that they only work for
triangularly-meshed objects, not ones instanced by simple geometric primitives like spheres
and cubes. Handling geometries that are meshed in such a way may be a future area of
development in WARP.

104 105 106 107 108

Particles

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

R
ay

T
ra

ce
R

at
e

(P
ar

ti
cl

es
/S

ec
on

d)

×107 Tesla K20
Interleaved - Sbvh, prim
Interleaved - Bvh, prim
Large - Sbvh, prim
Large - Bvh, prim
Assembly - Sbvh, prim
Assembly - Bvh, prim
Interleaved - Sbvh, xfrm
Interleaved - Bvh, xfrm
Large - Sbvh, xfrm
Large - Bvh, xfrm
Assembly - Sbvh, xfrm
Assembly - Bvh, xfrm

Figure 3.15: Trace rates of an NVIDIA Tesla K20 performing cell queries with the PIP
algorithm.

The trace rates are fairly constant after 106 particles, but primitive instancing is always
faster than transform instancing, and using BVH acceleration is always faster than SBVH.
The final data point at 108 starting points is missing for the transform instancing because
the card ran out of memory and these cases would not run.
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The number of source points used in the second scaling study was set to 106 and 108 to
see if the trace rate scales with object number differently if done on the extreme edges of
the trace rate plateau shown in Figure 3.15. A BVH acceleration structure was used since
it showed the best performance in all cases. Figure 3.16 shows the results of the scaling test
on an NVIDIA K20 card. It can be seen that the ray trace rates for both primitive and
transform instancing plateau after about 20 objects in the scene. Primitive instancing also
always outperforms transform instancing. It should be noted that the trace rates for the two
dataset sizes start quite far apart for one object then converge to equal performance qucikly
as more objects are included in the scene. This may be because the trace becomes more
dependent on acceleration traversal rather than output buffer access (where smaller, slower
sizes makes a difference when there are few objects).

100 101 102 103 104 105

Number of Objects

106

107

108

109

R
ay

T
ra

ce
R

at
e

(P
ar

ti
cl

es
/S

ec
on

d)

Tesla K20

BVH, 108, Prim
BVH, 108, Xfrm
BVH, 106, Prim
BVH, 106, Xfrm

Figure 3.16: Trace rate scaling on an NVIDIA Tesla K20 performing cell queries with the
PIP algorithm.

Using transform instancing fails for the 108 dataset size when somewhere between 2613
and 10,623 objects were included in the scene. This is why the transform instancing trace
stops at 2613 cells in Figure 3.16. The most likely reason is because transform instancing
requires a large amount of memory, and the card runs out of memory when a large particle
dataset is also present on the card. This is also most likely why performance of the transform
instancing method drops at the same point for the 106 dataset size. At this point, OptiX
started paging GPU memory to the host memory, and this degraded performance signifi-
cantly. Structure construction for transform instancing prior to the trace also became very
slow compared to primitive instancing, presumably due to the independent acceleration ob-
jects attached to every instance and the overhead of computing all the affine transformations
at acceleration structure build time.
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Figure 3.17 shows the trace rate versus dataset size test, but run on an NVIDIA GeForce
GT 650M (the discrete graphics card in a MacBook Pro, Mid-2012 Retina model) instead
of a Tesla K20. The same trends can be observed except that overall trace rate is much
slower, which is not surprising, considering the 650M has 1/5 of the memory and 1/7 the
number of CUDA cores as the K20. The impact of transform instancing is very pronounced
in runs with fewer particles. This study was done to compare the performance of a smaller
non-compute card compared to a larger compute card.
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Figure 3.17: Trace rates of an NVIDIA GeForce GT 650M performing cell queries with the
PIP algorithm.

From the scaling studies it can be concluded that OptiX can be used to handle the
geometry representation in a Monte Carlo neutron transport code. Using a primitive-based
geometry instancing method, a BVH acceleration structure, and running as many parallel
rays as possible provides the best performance. The OptiX ray trace rate also seems to be
insensitive to the number of objects in a scene after about ten primitives.

3.2 WARP in Detail

Thus far, no details about WARP’s transport routines have been discussed. The prelimi-
nary studies showed that thread divergence can be effectively reduced with CUDPP without
incurring prohibitive costs, that large datasets need to be run to hide memory latency,
and that a BVH acceleration structure and primitive instancing in OptiX perform best for
randomly-oriented distributions of rays. The mathematical and physical background infor-
mation relevant to the Monte Carlo method was covered in Chapter 2. This section builds
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on the previously presented information to explain the implementation details of WARP’s
neutron transport subroutines.

As stated before, WARP is designed to read ACE-formatted data, perform all reaction
types as prescribed by the data, use a Serpent-like unionized energy grid to regularize data
access, use an event-based transport algorithm with parallelized operations for sorts and
sums, use OptiX for general 3D geometry representation (without explicit nesting), use
an SOA for neutron history data, and perform all operations on the GPU unless strictly
forbidden. In terms of implementation, OptiX is used for 3D geometry representation;
physics and tally routines are written in CUDA; the CUDPP radix sort is sued to create
the remapping vector; and the CUDPP prefix sum is used to augment CUDA routines in
running criticality and fixed source simulations.

The host-side code in WARP is written in C/C++ with some Python (which will be
explained later in this section). Single precision floating point numbers are used throughout
in order to realize the full computational capacity of the GPU and to allow simulations to
be carried out on more affordable and higher clocked GeForce cards. Using single precision
numbers may be dangerous when there are very dilute isotopes or very rare reactions re-
actions present, as roundoff error may make their contributions zero. Buffer overflow and
roundoff error in the tallies may also be a problem with single precision, but this can be
mitigated by accumulating the tallies frequently in a double precision vector. Roundoff error
may also be problematic in calculating the multiplication factor, as progressively smaller and
smaller numbers are accumulated into the multiplication factor value. If double precision
data is found to be needed, WARP can easily be changed, and doing so may be an interesting
experiment in the future.

Data Layout

As described in Chapter 2, the nuclear data required in Monte Carlo simulations are very
heterogeneous and the way the data is accessed in a Monte Carlo simulation is random. This
section describes the methods used to deal with the data heterogeneity and how data access
in WARP has been optimized for the GPU.

Unionized Cross Sections

A material’s macroscopic cross sections dictate the reaction probabilities as a neutron
travels through it. In order for the reaction probabilities to be computed from the macro-
scopic cross sections, the material’s total macroscopic cross section (the sum of all the isotopic
macroscopic cross sections of a material) must be known. This value is used to normalize
the isotopic macroscopic cross sections to one, thus making them probabilities. The formula
for doing this was shown in Eq. (2.64).

The atomic densities change according to the material the neutron is traveling through,
and WARP recomputes a material’s total macroscopic cross section at every interaction. This
is done in order to not store preprocessed macroscopic cross sections for each material. If
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macroscopic cross sections are computed on-the-fly, a single set of microscopic cross sections
and a small vector of material number densities can be stored instead. Of course, recomputing
the macroscopic cross sections at every inner transport iteration adds additional work, but if
the material densities are stored in the GPU’s shared memory, they can be accessed quickly
and an equivalent number of global loads are needed for loading the microscopic cross sections
as would be need for loading the preprocessed macroscopic cross sections. If the material
total cross section is precomputed and stored, this may save global loads at the cost of
increased memory usage.

Since cross sections need to be interpolated between energy points, It is particularly
troublesome that each cross section has its own independent energy grid. Using point-
wise data for continuous energy simulations requires an interpolation be performed between
points, and to do this, the code must somehow scan the energy grid array to find the points
between which the neutron’s energy falls. If every isotope has its own grid, this search must
be done for every isotope, and can become very expensive. This is why a unionized energy
grid structure, like that implemented in Serpent, is used in WARP [55].

Unionizing the cross sections means that the energy grids of the cross sections are all
unionized into a single, larger structure that contains the energy points of every isotope.
Including every energy point ensures that no information is lost in the unionizing process.
Since the unionized grid is then used to index every isotope’s cross section vectors, there are
energy points which do not correspond to values in the original nuclear data. These holes
in the data are filled by linear interpolating between the closest two grid points that have
values. The unionization process transforms many 1D reaction cross section vectors into a
single 2D matrix indexed by incoming energy and MT reaction number. Figure 3.18 shows
the unionization process with two small, arbitrary energy grids and their corresponding
cross section vectors. The colors in the unionized energy grid represent which isotope the
grid value came from, the green cross section data blocks are interpolated values, and the
red blocks are placeholder zeros to preserve thresholds. It is clear that the resulting dataset
is larger than the sum of the individual cross sections since it contains redundant data, but
it will be much easier to search.

The interpolated data is redundant in the sense that it contains no new information. If a
cross section was required between two data points of the original grid, linear interpolation
would be performed to calculate it. The filled-in holes of the unionized dataset contains values
on a straight line which could be calculated using the original data. The tradeoff between
regularizing the data in this way, as opposed to accessing the energy grids separately, is
worthwhile because only a single grid search is needed to find the vector indices a neutron’s
energy falls in between.

Because the cross sections unionized in this way the cross section values for every isotope
can be read along a single row once the bounding energy indices, Ei < E < Ei+1, are found
for a given interaction. This format reduces the number of energy searches needed and
promotes data locality by keeping all the data points for all isotopes in a given energy range
adjacent to one another in memory (if row-major matrix format is used). On CPUs, the
data for an energy value can be read as a cache line and accessed quickly by the cores. On
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Figure 3.18: Unionizing two cross section vectors.

a GPU, since a thread needs to read the entire energy line (one energy over all isotopes) in
sequence in order to compute the macroscopic cross section on-the-fly, the memory loads are
not coalesced and memory bandwidth is wasted (adjacent threads do not access adjacent
memory at the same time).

To mitigate this inefficiency, the data can be recast to use the float4 datatype, which
is a vector type that is 16 bytes long. When requested, the entire 16 bytes will be loaded
in one transaction rather than 4 separate 4-byte transactions, maximizing bandwidth and
minimizing the number of global requests (and reducing the impact of latency). Also, since
all of the total cross sections for a material are all needed at the same time, they are stored
together in the first columns of the unionized data array. After this block of total cross section
columns, the individual reaction cross section are stored as blocks in the same material order
as the total cross section block (all the cross sections for an isotope are in a single block).
This is done so the macroscopic or microscopic kernel needs only scan a single, contiguous
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block of data in the array. Figure 3.19 shows an illustration of the unionized cross section
dataset structure used in WARP.
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Figure 3.19: The unionized cross section layout used in WARP.

Distribution Data as a Linked List

The cross section data can be regularized with the unionized grid method, but there
are other data distributions that WARP needs to conduct accurate simulations. The most
prevalent of which are scattering matrices that give tabulated probability distributions for
outgoing CM angle µ and incident neutron energy. Since these matrices have their own
incoming energy grid, these values can be unionized into the cross section dataset as well.
This transforms many 2D scattering matrices into a 3D matrix indexed by incoming energy,
outgoing µ, and reaction MT number.

Since the energy grid of the scattering matrices is often much, much coarser than the
main cross section energy grid, this operation produces a very large amount of redundant
data. It was attempted with 235U, and resulted in a 3D matrix that was 6.4 GB (30,991
energy grid points, 598 µ CDF points, 51 reactions). This is just for a single isotope’s angular
distributions of all reactions, and the dataset already cannot fit on the on-card DRAM on
most GPU cards.

After determining that unionizing with the main energy grid was an unacceptable method,
another approach was tested where the energy grids of the scattering matrices were unionized
between themselves, but not with the main energy grid. This would reduce the amount of
unnecessary data, but would require an additional search be made on the unionized scattering
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matrix energy grid. The memory usage of this method with 235U was reduced to 12 MB (103
energy grid points, 598 µ CDF points, 51 reactions). When tested with 235U and 238U, usage
for the scattering data increased to 68 MB (171 energy grid points, 1072 µ CDF points, 97
reactions). When tested with 235U, 238U, 16O, and 1H, usage became 1.1 GB (1325 energy
grid points, 1237 µ CDF points, 170 reactions). Therefore, this method was also deemed
too costly for systems with a practical number of materials. The distributions are therefore
left in their original formats for use on GPUs, where storage space is much more limited
compared to CPUs.
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Figure 3.20: Making a link to distribution data in the unionized dataset.

After these failed attempts for resolving the scattering data heterogeneity problem, a
method was formulated to eliminate the secondary energy search without having massive
data replication. This method introduces two new matrices identical in size to the unionized
cross section matrix, but instead of containing data values, they contain pointers to the
location of the appropriate distribution data for the reaction at the energy index determined
by the grid search. Two matrices are needed - one for the scattering distributions and another
for the energy distributions. This way, the unionized dataset is only replicated 3 times, the
distribution data can be copied to the card in its original format, and only a single gird
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search needs to be performed. This is similar to a linked list, where a there is a pointer at
the end of an object pointing to the next object in a list.

Structuring the arrays like this means once a reaction is sampled to occur, there is a
pointer readily available at the same index in a second matrix to the appropriate distribu-
tions, and no searching needs to be done. Since the distribution PDFs need to be read serially
by each thread, the float4 format can also be of use here. If there are no distributions for a
particular reaction or energy, a null pointer is inserted into the matrix. For fission reactions
that do not have scatting distributions (neutron emission can be assumed to be isotropic
[13]), the ν value for the grid energy is stored in the scattering pointer matrix instead of a
pointer. This way a search for the appropriate ν value does not have to be performed either.
Figure 3.20 shows a pointer matrix for the unionized cross section matrix in Figure 3.18.

Serpent stores pointers in its unionized cross section layout [12]. The pointers in Serpent’s
layout point to arrays that contain contain both cross section and distribution data. This
way, only a single unionized array needs to be stored as opposed to the three needed by
WARP. Since Serpent’s layout only contains pointers, however, the pointer needs to be
loaded before any cross section values can be loaded. This means that for every cross section
loaded, a pointer needed to be loaded as well. WARP’s layout stored the cross section values
directly in the layout, so only cross sections are loaded during the isotope and reaction
sampling routine instead of pointers and cross sections. A pair of pointers is only loaded
when when the reaction has been selected and the angular or energy distribution data is
needed. Such a layout may use more space, but reduces the amount of memory traffic
needed to sample reactions.

Embedded Python

Now that the data layout has been discussed, how the data is loaded or reformatted
from ACE-formatted data files will be explained. An initial effort was made to write an
ACE-parsing script in C from scratch, but this was abandoned in favor of using the existing
ACE module of the PyNE (Python for Nuclear Engineering) package [56] (why reinvent the
wheel?). The PyNE package “is a suite of tools to aid in computational nuclear science &
engineering. PyNE seeks to provide native implementations of common nuclear algorithms,
as well as Python bindings and I/O support for other industry standard nuclear codes.” [56].
PyNE contains a Python module that can parse ACE data files into Python objects that can
be more easily handled than flat data arrays. This module was written by Paul Romano as
a preliminary project for OpenMC, whose ACE library was later written in Fortran based
on the methods developed in this Python module [56, 13].

Some parts of PyNE have a C++ application programming interfaces (APIs) as well as
a Python API, but this is not the case for the ACE module. It was originally written in
Python, not C++, so it has no C++ API. This created a problem for WARP since WARP is
written in C/C++ and could not directly make use of the ACE module. Fortunately, there
is a very effective C API for Python! This API allows one to initialize and run a Python
instance from a C program. In WARP, this API is used to start a Python instance where
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PyNE can be used to load cross sections from ACE data files. NumPy [57] is then used to
unionize the energy grids of the requested isotopes and perform the linear interpolation to
fill in the gaps. Once this is done, the Python instance returns the NumPy array to WARP
as a C data structure. The data is copied to an internal array and the Python object is
cleared.

WARP then loops through the unionized array, requesting distribution data from the
Python instance. The scattering and energy distribution data are also copied for the re-
quested energy range in a similar fashion, and a device pointer for the distribution is written
into the scattering and energy pointer matrices. When all the needed data has been copied
over to WARP, the Python instance is terminated and its memory freed. Since the unionized
energy grid is an index of the matrix that needs to be searched before a row of the unionized
cross section matrix can be accessed, the energy grid is stored as its own contiguous array
rather than a column of the matrix. Figures 3.18, ??, and 3.20 show the energy grid as a
column simply for illustrative purposes.

The unionized cross section dataset in WARP is resident in the global memory of the
GPU. Storing it in constant memory would seem to make sense, but since it is limited to
64kB, the entire dataset simply cannot be stored here. Texture memory was also considered,
as this could possibly contain all the data, but it is optimized for 2D data locality, whereas
the dataset format is mostly accessed in a linear fashion across rows and randomly across
columns (since energy-changing reactions are sampled randomly).

Both the constant and texture memory spaces are cached, so the random access inherent
in Monte Carlo simulations may make cached access worse than non-cached because of
cache miss penalties. This effect was not studied in the initial development of WARP,
however. Nelson reports using the constant memory space in his simulations, with little-
to-no performance improvement [28]. Using the texture memory to store the cross section
matrix might benefit from the free linear interpolation that can be performed with the texture
element load, however. With all of these points considered, it was decided to store all data,
whether it be for history data or cross sections, in global memory in WARP.

In its current state, WARP does not use the thermal scattering (S(α,β)) tables or unre-
solved resonance parameters. These tables improve the physical fidelity of the simulation,
but these features can be turned off in production codes and direct comparisons can be made
without them. Their incorporation may lead to more divergent program flow and is left as
an area of future work.

Python Wrapper

Work is also underway for wrapping the WARP shared library with Python. This would
be done via SWIG [58], a piece of software that automatically wraps compiled languages like
C/C++ in high-level scripting languages. This is being done for convenience and usability
reasons. With the C++ classes exposed in Python, the main() function can be replaced
with a Python script, eliminating the need to recompile WARP applications when different
geometries or different run parameters are desired. In its current state, WARP is compiled to
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a shared library with an API. This requires a small main function to be written to make an
executable that calls the WARP library routines. The library does not need to be recompiled,
but the main function and executable does for the simulation parameters to be changed.

The Python wrapping approach deviates from the standard flat text input file structure
that most Monte Carlo codes use. Flat text input relies on keywords and adds a layer where
input files need to be parsed and data structures are then built in the application based on
the information parsed from the input. Using Python to directly access the classes and their
data removes this layer, and allows a user to build complex applications. Since the results
would also be resident in a Python session and would therefore be easily available to the user
for potting scripts or analysis tools. To process data in the same way from text-file-based
output, the output needs to be parsed with a user written function or processed by hand,
which is time consuming and can lead to human error.

CUDA Kernels and Data-Parallel Tasks

Now that it has been discussed how the necessary data is loaded and reformatted in a
GPU-friendly way, the details of the actual process of transporting neutrons will be described
in this section. Neutron transport consists of an inner and outer transport loop. The inner
loop consists of routines that are needed to process a batch of neutrons and the outer loop
consists of routines that are needed to connect neutron batches to each other. Both loops are
discussed in shallow detail here enumerate the routines that comprise them and to establish
this section’s structure. In-depth descriptions are given on each of the individual routines
later in this section.

The inner loop, shown in Figure 3.21, actually transports the neutrons through the
problem geometry and samples the reaction CDFs. The blocks in the figure represent in-
dependent kernel launches, and are executed left-to-right. The quantities listed under the
routine names are what the routine calculates. The block color corresponds to the library
used to perform the task. The first step of the inner loop is using OptiX to perform the
material query, since material information is needed to query the proper cross sections and
to determine the distance to the nearest surface along the neutron’s path of travel. Once
this is known, a kernel is launched to do a search on the unionized energy grid to determine
the grid index i that satisfies Ei < E < Ei+1. Next, the macroscopic kernel is launched.
This kernel computes the total macroscopic cross section for the material, samples the in-
teraction distance, samples which isotope the neutron interacts with, moves the neutron to
the nearer of the interaction/intersection distance, and sets the neutron’s reaction number
to the resample flag if the intersection is closer. Since the macroscopic cross section has
been computed at this point, the tally kernel is launched and scores a specified flux tally.
After the flux is scored, the microscopic kernel is launched to determine which reaction type
in the determined isotope occurs. The radix sort is done next since the reaction has been
determined, and this operation sorts the neutrons by reaction type and updates the values
in the remapping vector. The next four kernels are launched concurrently, as indicated by
being in the same horizontal position in Figure 3.21. Each of these kernels performs the
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Figure 3.21: WARP inner transport loop that is executed until all neutrons in a batch are
completed.

specific functions necessary to model their different reactions, and since a neutron cannot
undergo two reactions simultaneously, the data they access does not overlap and these ker-
nels can be launched concurrently. If a neutron’s reaction number is the resample flag, it
skips the microscopic and reaction kernels and isn’t processed again until the material query,
which resets the reaction number to zero. This loop cycles until all neutrons in a batch are
terminated through absorption or leakage.

The outer loop, shown in Figure 3.22, uses the result from the inner loop to set up the
next batch of neutrons. The inner loop serves to determine the yields of the batch’s neutrons.
The yield array is then reduced to determine the multiplication factor, keff , of the batch.
The yields are then divided by keff to make the yield as close to one as possible without
biasing the fission source distribution. Since dividing by keff is unlikely to yield an integer,
the rebased yield is sampled between the bounding integers to preserve the mean across
many neutrons.

After the yields are rebased, a prefix sum (also called a scan) is performed on the yield
array. The value for each particle’s element of the prefix sum is the total number of fission
neutrons before it. Since this is known, the “pop” routine can insert the sampled fission
neutrons into the next batch’s history vector with no risk of writing into the same element.
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Figure 3.22: WARP outer transport loop that is executed in between neutron batches for
criticality source runs.

Since the yields were rebased to make keff ≈ 1, the yield vector will contain enough secondary
neutrons to fill the next generation’s entire history vector. The pop kernel inserts neutrons
into the history vector at points where fissions occurred, but with individually sampled
energies and (isotropic) directions. After the pop completes, the inner loop transports this
newly initialized batch of neutrons.

Fixed source runs do not have an outer loop since the source is not dependent on the
flux. If there is enough memory available, the entire number of requested neutrons are
initialized based on the source definition. The neutrons are transported simultaneously, and
any secondary neutrons produced from fission or (n,2/3/4n) reactions are popped into the
history vector at the end of the inner loop to be transported with the original source particles
in the next pass of the loop.

Grid Search Kernel

Much effort has gone into ensuring that only one search on the main unionized energy
grid is required to find the index i that satisfies Ei < E < Ei+1, but an algorithm to perform
the search itself has not yet been established. It is convenient that the values in the energy
grid are monotonically increasing, but since the array is composed of floating point values
with arbitrary spacing, an inverse function cannot made to calculate an index in O(1) time.
Conversely, a näıve approach would be to scan the array from beginning to end, performing
comparisons along the way, and therefore calculating the cross section array index in O(n)
time, where n is the number of elements in the array. This method does not scale well and
will not be considered.
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An extreme method taking advantage of the space-time tradeoff would be to use a simple
lookup vector where the points are linearly spaced. In order to include all original data, the
spacing of the lookup vector, dx, would have to be smaller than the smallest found in the
data. The lookup vector index could simply be calculated by i = E/dx, and cross sections
could be searched in constant time. The spacing around resonances in the nuclear data is very
small, however, and makes this method’s memory usage unacceptably large. For uranium-
235, the smallest difference is 10−12 MeV over a range of 10−11 to 20 MeV, indicating that
the vector would need to be around 20/10−12 ≈ 1014 elements long. Logarithmic spacing
could also be used, but again assuring that all original data is included may make the regular
grid too fine, resulting in unacceptable memory use.

Another approach could be to use a high order polynomial approximation of the unionized
grid for the initial guess of an iterative method. This would be similar to the Serpent pointer
search method, but would eliminate the pointer vector and use the analytical computation
to find an initial index in the main grid instead of computing the index of the pointer vector.

The binary search is the classic search algorithm for searching irregular data. Instead
of progressing through the array from beginning to end, it is continually bisected until the
correct interval is found. In other words, the search begins at the center of the vector. If the
searched-for value is less than the middle value, the next loaded value is the middle value of
the first bisection. If the searched-for value to greater than the middle value, the next loaded
value is the middle value of the second bisection (of the first bisection). This process repeats
iteratively until the value is found. The binary search algorithm is attractive because it runs
in O(log2(n)) loads/comparisons in the worst case, and uses no storage except for the loaded
and comparing values [59]. WARP currently uses a simple binary search algorithm because
of this algorithm’s logarithmic scaling and ease of implementation. It will be determined
if the grid search is a significant portion of the simulation time, and if it is, WARP could
benefit by implementing more advanced searching algorithms in the future.

Pseudo-Random Numbers

Random numbers are the basis of the Monte Carlo method, and generating them must
be done efficiently. Since these numbers must be computed, they are not strictly random,
but rather pseudo-random since they are randomly distributed but can be deterministically
computed. NVIDIA provides a random number library called CURAND that can generate
large arrays of randomly-distributed numbers [60]. Initially, WARP precomputed all the
random numbers it would need for a single transport loop iteration. This could be done since
direct sampling methods were used everywhere (which was incorrect for the target velocity
in scattering) and there was a known maximum number of numbers required. The threads
would simply access random number values stored in this giant array (about 20 numbers were
needed per thread). This is a very bandwidth-intensive way to access random numbers since
they are always written to and read from global memory. In these early implementations,
the random number generation and access was taking about a quarter of the transport loop
time. In addition, the introduction of the correct rejection sampling method for the target
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velocity disqualifies precomputation since there was no longer a predetermined number of
numbers needed.

Taking these points into consideration, it was decided to use a linear congruential random
number generator (LCRNG) for computing random numbers in the transport kernels. It al-
lows the kernels to generate random numbers with the recursion relations shown in Eq. (3.2),
where xn−1 is the previous random number. The values a, c, and m are taken from Pierre
L’Ecuyer’s manual for configurations with a high figure of merit [61].

xn = axn−1 + c mod m

a = 116646453

m = 230

c = 7

(3.2)

OpenMC uses a similar LCRNG implementation but with different values for a, m, and
c since it uses double rather than single precision. The values were chosen close to the full
32-bit range for maximum floating point resolution. Having a modulus as a power of two is
very convenient as well since the modulus can be performed by bit truncation rather than
a full modulus operation [13]. In other words, the operation can be done by a bitwise AND
operation between axn−1 + c and 230 − 1, which in binary is all ones below the 30th bit.

Using a LCRNG keeps global access down and improves performance greatly, since a
single seed value is loaded at the start of the transport loop, stored in fast registers, then
written back at the end of the loop. CURAND is used outside of the LCRNG cycle to advance
the seed bank with the Mersenne Twister algorithm (which has a period of 219937 − 1) to
make sure no correlated numbers are used as intermediate seeds.

Macroscopic Cross Section Kernel

The macroscopic kernel in WARP computes all values related to macroscopic cross sec-
tions. These include total macroscopic cross section for the material, interaction distance,
which isotope the neutron interacts with, moving the neutron to the nearer of the interac-
tion/intersection distance, and setting the neutron’s reaction number to the resample flag if
the intersection is closer.

Since the isotopes’ total cross sections are stored together in the unionized cross section
matrix, the total macroscopic cross section can scan the contiguous row of this part of the
matrix, interpolating the value between i and i+ 1 (which has been determined by the grid
search kernel). The interpolated values are multiplied by the number density vector (in
atoms/barn-cm) and the sum is accumulated as shown in Eq. (3.3), where Mk is the number
density and Σt,k(E) is the macroscopic cross section of isotope k. When the material vector
has been completely scanned and total cross section is computed, the array is scanned again,
but this time a random number is used to determined which isotope the neutron interacts
with via Eq. (2.64).
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Σt(E) =

Nisotopes∑
k=0

Mk Σt,k(E) (3.3)

The material’s total macroscopic cross section is written to an array so the flux tally rou-
tine does not have to recompute it, which would take many more global memory transactions
than loading it from the array. Next, the interaction distance is sampled via Eq. (2.63) and is
compared against the nearest surface distance, which was computed with OptiX in the first
step of the transport loop. If the interaction distance is nearer, the neutron’s coordinates
are changed to this location. If the surface is closer, the neutron is moved to the surface
and its reaction number is changed to the resample flag value, which will cause it to skip all
other kernels until OptiX determines the new material and resets its reaction flag. As stated
in the beginning of this section, preprocessed values are not stored in memory and WARP
recomputes macroscopic cross section at every iteration of the inner transport loop.

Flux Tally Kernel

The flux tally kernel scores a collision in a predefined cell into a bin via Eq. (2.91).
Currently, WARP only allows evenly spaced logarithmic bins since their indices can be
calculated analytically (as opposed to an arbitrary input grid). The tally index, j, out of
Ntally bins for a neutron with energy E is calculated via Eq. (3.4). Since multiple threads
could be adding to the element located at j, “atomic” operations are used to perform the
sum, specifically the atomicAdd() function. Atomic functions perform the load-compute-
store operations in a single, uninterruptible transaction. This eliminates the risk of data
races occurring.

j = floor

 log
(

E
Emin

)
log
(
Emax

Emin

)(Ntally − 1)

 (3.4)

Since WARP uses single precision floats and integers, buffer overflow can be a problem
when a tally is scored frequently (or at least more of one than if double precision were used).
Because of this, the tallies are copied from the device during each outer loop iteration.
The tally values are divided by the total number of source neutrons and are accumulated
into double or long integer arrays, as appropriate, on the host. After copying, the device
arrays are zeroed. Dividing and accumulating also serves to increase the accuracy of the
arithmetic since the tally values are kept within a smaller range of values. Roundoff error is
exacerbated by adding small floating point numbers to large ones, which is more likely when
simply accumulating all of the tally data without periodically normalizing by particle count.
The required intermittent copying during transport increases the device-host communication,
but this impact is minimal and can be overlapped with other routines since it is only done
once in the outer loop.
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Microscopic Cross Section Kernel

Unlike the macroscopic kernel, the microscopic kernel only has one job - to determine
which reaction the neutron undergoes in the isotope it has been sampled to interact with.
This is done by scanning the isotope’s subrow in the unionized cross section matrix as show
in Eq. (3.5). Nstart,k is the starting index of the row for isotope k, Nend,k is the index of
the isotope’s last reaction cross section, and σt,k(E) is isotope k’s total microscopic cross
section. The starting and ending indices for an isotope are precomputed and stored in a
separate array. For most runs, this array and the material isotope density array can be
stored in fast shared memory.

m < Nend,k

PDFm =
1

σt,k(E)

z=m∑
z=Nstart,k

σi,z(E)
(3.5)

The reaction is sampled by generating a new random number and using Eq. (2.65). Once
the reaction m is sampled, the sorting routine is launched to remap data references and sweep
completed histories out, then reaction kernels can be launched to carry out the individual
reactions.

Interaction Kernels

There are only four reaction kernels since all capture reactions are taken care of in the
radix sort, leaving the three different kinds of scattering and fission ((n,2/3/4n) reactions
follow laws of continuum scattering but have yields that are taken care of in the pop rou-
tine). The scattering reactions change the direction and energy of the neutrons, and their
distributions are sampled as outlined in Section 2.6.

The implementation of these methods is where the pointer array becomes useful. Once
the row, i, and column, m, of the unionized cross section matrix have been determined,
the scattering kernels simply need to access these coordinates in the scattering and energy
pointer matrices to load the appropriate distribution data. No additional searching needs to
be done.

Concurrent Kernels

As mentioned previously, the reaction kernels should never access overlapping data so
that they can all be launched concurrently. NVIDIA cards with a compute capacity of 2.0
and higher support up to 16 concurrent kernel launches. Kernel launches are submitted to
nonzero execution streams by declaring additional streams to be present and passing the
stream objects to the kernel launches as an extra launch parameter. Kernels launched on
different streams can be executed concurrently and their blocks can be interleaved, which
is why it is very important for them to act on independent data. Launching the reaction
kernels concurrently means they are launched in parallel and they do not need to wait for
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each other to complete. If not launched concurrently, kernels must be launched sequentially,
and the inelastic scattering kernel would have to wait for the elastic scattering kernel to
complete before it could be launched, for instance.

Kernels launched without an explicit stream are launched on the default stream 0, which
are synchronous (program flow does not continue on the host until the launch is complete).
If kernel synchronization is important after execution completes (as it is here, reactions must
be carried out before the OptiX trace), the streams must be synchronized with an explicit
stream synchronization command or with a synchronous operation like a cudaMemcpy(). If
the kernels are not synchronized, control can continue to the OptiX trace, and launching
OptiX before the reaction kernels are done processing could lead to errors, incorrect results,
or program crashes.

Parallel Operations

The array-wide parallel operations in WARP are done with the CUDPP library. The
functions used are reductions for calculating keff via Eq. (2.95), prefix sums for calculating
the indices for the source pop kernels, and sorts for keeping warps coherent and full after
the microscopic kernel.

Remapping with Radix Sort

Since the reaction numbers are integers they can be sorted by very efficient algorithms
like a radix sort, which performs in O(kn), where n is the number of values to be sorted and
k is the number of significant digits of the values. The reaction numbers in WARP are four
digits or less, so k = 4. The reaction number encodings in WARP are shown in Appendix B
in Table B.1. Since reactions greater than 900 represent a terminated particle, the sort will
push all the completed history references to the end of the remapping vector.

Another benefit pushing all of the completed references to the end of the vector is that,
as neutrons start to complete, the length of the sort can be reduced and it will be computed
faster. Figure 3.23 shows how the radix sort will arrange the remap vector and how threads
will be mapped to the data. CUDPP’s radix sort conveniently sorts for key-value pairs, and
WARP uses the reaction numbers as keys and the data index as values, effectively creating
a remap vector.

There is one more piece of information that is needed to launch the reaction kernels
concurrently – the number of particles undergoing each type of reaction. This is determined
by launching a comparison kernel on the sorted array, which detects the places where the
reaction numbers change. The algorithm to do this is a simple adjacent comparison. If there
are N elements in the array, N − 1 threads are launched that load values tid and tid+1. If
the values are different, tid is the last index of a reaction type. If a transition is determined
to be valid, its thread can write to a small array and no data races should occur because
there are coarse boundaries for the reaction kernels and each boundary is unique. There are
only two boundaries for each reaction group, and writing the indices of the reaction block
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Figure 3.23: A radix key-value sort creating a remapping vector.

edges can be done without atomic operations since only one thread should ever write to an
element.

The array of reaction block boundaries needs to be read by the host in order to determine
the number of blocks that need to be launched for each reaction kernel and where the kernels
start accessing the remapping vector. Therefore, it makes sense to have this edge array as
mapped memory, where values are implicitly copied from the device. Declaring the array
as mapped allows CUDA to handle when it makes sense for the copy to happen and can
potentially hide the communication overhead. It also makes the code simpler, since explicit
copy commands are not needed.

If a launched thread lies on a boundary, it writes its index into a vector containing 11
elements, the start and end indices for the four reaction kernels (three types of scattering
kernels and the fission kernel), and the resample block. Terminated neutron data are pushed
to the end of the remapping vector and will not be accessed by active blocks, eliminating the
need for an explicit absorption kernel (which is needed in the non-remapped implementation
of WARP).

The standard MT numbers are not well suited for producing contiguous blocks of reaction
types with a single sort. Fission and other neutron-producing reactions that terminate a
primary history lie between scatter reactions, and the resample flag (MT=800) is larger
than every reaction type other than leakage (MT=999) and geometry miss (MT=997). All
disappearance reactions, like (n,γ), are greater than 102. To resolve this problem and make
clear, contiguous reaction blocks, the MT reaction numbers are slightly modified in WARP.

Any reaction over 900 signifies a terminated history, so when the cross section data is
loaded, any reaction larger than 102 has 1000 added to it to ensure it will be pushed out of the
remapping vector upon sorting. Since fission also terminates particles but needs a yield value
sampled after the microscopic kernel samples it to occur, any reactions in the MT=11-45
block have 800 added to their MT numbers. Therefore, after the sort is performed, the fission-
like reactions are already near then end of the remapping vector. After the fission kernel
processes these histories, their reaction number have 100 added to them, making them part
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of the completed history block. The reaction numbers for scattering (MT=2, 51-91) are not
changed. MT=11-45 not including the fission numbers can usually be treated as continuum
scattering (ENDF law 44), but may not be true for all isotopes. With the reactions laid
out as such, a contiguous remapping vector can be formed and the total number of active
neutrons can be calculated from a single, efficient radix sort operation.

Criticality Source

As was mentioned previously, when the simulation is run in criticality mode, the source
points for neutron batches depend on the fission points in the previous batch. But if keff is
not equal to one, each source neutron no longer corresponds to a secondary neutron. This is
the same problem in the time-independent neutron transport equation, where getting rid of
the time-dependent term causes the equation to be inconsistent if the multiplication factor
is not one. To remedy this, the fission source term is divided by the multiplication factor to
force the equations to be consistent (assuming the multiplication factor is known). Similarly,
the fission yield vector of a batch of neutrons can be renormalized to artificially make the
multiplication factor equal to unity by rearranging Eq. (2.95) as shown in Eq. (3.6), where
n is the batch number, Nd is the length of the dataset, yj is the secondary neutron yield of
particle j, and Nf is the total number of secondary neutrons.

Nd∑
j=0

yj
keff,n

=
Nf,n

keff,n

⇒ Ns,n+1 = Ns,n (3.6)

Since WARP handless all neutrons with equal weight, yields must be integers, but yj/keff

rarely will be. Stochastic rounding is used to round yj/keff to the lower integer with probabil-
ity yj/keff−floor(yj/keff). Since yields range from 2-5 neutrons, there will be many individual
instances of each yield, and yields will approach the mean yj/keff .

Once the yield vector is rebased by dividing by keff and stochastically rounding to a
nearest integer, a prefix sum is done on the yield vector. The jth value of an exclusive prefix
sum, or exclusive scan as CUDPP calls it, is sum of the array values before index j as shown
in Eq. (3.7). Such a vector can be used in the pop kernel, which writes the secondary particle
data into the next batch’s initial data based on the yield vector.

pj =

j−1∑
0

xi (3.7)

After the prefix sum is done, the source pop kernel is launched. A thread is launched
for every element of the history dataset, and if a thread encounters a yield value of zero, it
returns. If a nonzero value is encountered, the thread samples yj secondary particles and
writes them into the history data from pj to pj + yj. Since the yields have been rebased, this
should either just fall short of or slightly over the total dataset size, Nd. The yield vectors
are immediately set to zero for all particles in the next generation.
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Needing to store generational information to determine keff and the next generation’s
source distribution forces criticality calculations to use a batch-like transport approach.
Transport on the GPU becomes inefficient when few active neutrons remain in the dataset.
Formulating a way where generations did not need to be run in series could benefit the
GPU greatly. A potential way would be to associate generational information with neutrons,
transporting them as in a fixed-source problem, then post-processing the results to determine
keff , but a clever way to assure fission source distribution convergence would have to be
developed.

Fixed Source & Subcritical Multiplication

In fixed source mode, the secondary particles can be popped back into the active particle
dataset at the end of the inner loop since generational information is not needed and only
the total system response to the primary neutrons is desired. In this mode, the number of
source neutrons is given as an input and, memory allowing, a dataset of source neutrons
this size is made. These neutrons and transported, and any secondary-producing reactions
are popped back in to the actively transporting dataset. This is done by performing a
compaction operation on the completed dataset indices and a prefix sum is done on the yield
vector.

A pop routine is used in a manner similar to a criticality source run, but the threads with
a nonzero yield write into the indices where a neutron has been terminated. This is specified
by writing into indices referenced from pj to pj + yj of the compaction vector instead of pj
to pj + yj of the dataset itself. This reactivates terminated particle data for transporting
secondary neutrons. The terminated neutron data is all replaced by data appropriately
sampled for the secondary neutron reaction. As mentioned previously, it is necessary to
be subcritical in fixed source mode, or subsequent generations will grow instead of shrink
and the total number of neutrons needing to be transported to calculate the response will
diverge.

All the necessary pieces have been outlined to perform Monte Carlo neutron transport in
general 3D geometries using continuous energy cross sections. Algorithms and libraries have
been chosen so each step of neutron transport can be preformed efficiently on a GPU. The
next chapter will discuss the consequences of these choices and compare WARP’s results and
runtimes to those of Serpent and MCNP.
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Chapter 4

Results

The results of six simple tests of WARP compared to Serpent 2.1.18 and MCNP 6.1 are
presented in this section. WARP uses the same nuclear data ACE libraries that Serpent
uses. MCNP 6.1 uses the nuclear data distributed with it. Both data sets are derived
from ENDF/B-VII data. Since the library files used in Serpent and WARP are identical
but the one used in MCNP is different, the error comparisons in this section are made
against Serpent, not MCNP. WARP only uses collision estimators for flux tallies and keff

estimations, so the collision estimates from Serpent and MCNP are also used. Serpent and
MCNP are run serially, which gives them the best theoretical performance since no time is
lost to parallelization inefficiencies; both codes are then assumed to scale linearly. The GPU
card that WARP runs on can be approximated as a certain number of CPU cores, and a
conservative performance per cost comparison can be made.

All of the test cases were run on a server containing two AMD Opteron 6128 Magny-
Cours processors. These processors each contain eight cores which are clocked at 2.0 GHz
and have a 512 kB L2 cache. The server has 32 GB of DDR3 clocked at 1.333 GHz between
the two processors. The GPU used in the tests is a NVIDIA Tesla k20. It has 2496 “CUDA
cores,” a multiprocessor clock of 706 MHz, and 5 GB of 2.6 GHz GDDR5 global memory.
The Opteron 6128 was released in Q2 of 2010, whereas the k20 was released in Q4 2012 [23,
62]. This is a comparison of one of the newest Tesla cards with a older CPU, but it is a
standard CPU for many supercomputer systems currently running and is sufficient if given
every advantage in the comparison (i.e. perfect scaling linearity). WARP was built using
CUDA 5.0, OptiX 3.0.1, CUDPP 2.1, and PyNE 0.4-dev.

The multiplication factor differences are reported in “per cent mille,” which is a thou-
sandth of a percent, or 10−5. This is a standard way of reporting differences in the multipli-
cation factor, as any small deviation from unity can cause a reactor to change its power level.
The flux spectra are normalized per source neutron and per unit lethargy. Normalizing per
source neutron serves to reproduce the same results for different numbers of histories run.
The uncertainty will be lower in results with more histories, of course, but the magnitudes
should have the same mean values. “Lethargy” means the logarithm of the neutron energy,
ln(E0/E) [3]. Normalizing the flux per unit lethargy accentuates the high energy region,
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but used in conjunction with plotting on a logarithmic scale, it also yields a plot where the
area under the line gives fraction of neutrons (flux) in a specific energy bin. Plotting per
unit lethargy is a change of base where plotting the flux φ(E) to transformed to φ(u), where
u = ln(E0/E) [63]. Changing the base is shown in Eq. (4.1). In the discrete energy group
case, normalizing the flux to per unit lethargy means that the bin value is multiplied by the
average (mid-point) energy of the bin.

φ(E)dE = φ(u)du = φ(u)
dE

E
φ(u) = Eφ(E) ⇒ |φ̄g,j| = Ēφ̄g,j

(4.1)

To normalize the raw tally values (Eq. (2.91)) to per unit lethargy, the values must be
divided by the total number of source neutrons run, divided by the energy bin width, and
multiplied by the average bin energy [63]. The expression for normalizing the raw tally scores
is shown in Eq. (4.2), where φ̄g,j is the raw tally value in cell volume j and energy group
g. Since WARP does not include S(α,β) or unresolved resonance tables (yet), these features
were not activated in MCNP or Serpent in the test runs. WARP is currently only able
to handle black, or vacuum, boundary conditions, so all the test runs use black boundary
conditions as well.

Eg < Ei < Eg+1

|φ̄g,j| =
(

1

Ntotal

)(
1

Eg+1 − Eg

)(
Eg + Eg+1

2

)
φ̄g,j

(4.2)

Six test cases were considered, four that are criticality type, and two that are fixed-source
type. WARP can represent spheres, cuboids, cylinders, and hexagonal prisms, and all but the
hexagonal prism are represented in the tests. Most of the cases have very simple geometries
with few cells, but the assembly case has 632 total cells to accentuate the geometry processing
routines and the impact of the material resampling as the neutrons move into different regions
without interacting. Every material in every test case uses some combination of the reactor-
pertinent isotopes 239Pu, 238U, 235U, 16O, 10B, and 1H. This is a relatively small set of isotopes
to have in a reactor simulation. In the debugging process of WARP’s development, fixed-
source simulations were done using 27Al, 208Pb, 12C, 6Li in addition to the previous isotopes,
but the results of these short debugging simulations are not reported here. These isotopes
are only mentioned in order to fully express the amount of testing done on the data loading
routines. Currently a temperature of 300K is hardcoded into WARP, so cross sections used
in these tests are all processed at this temperature. The summary of the test geometries and
materials is shown in Table 4.1.

The “Jezebel” test is a bare plutonium sphere, and is a standard criticality test. The
fission neutron rate from 239Pu is balanced by the leakage rate from the 5.1 cm radius to
give a keff of approximately 1. Since this system is so leaky, producing results consistent
with MCNP and Serpent ensures that the boundary conditions are correctly being enforced.
The Jezebel test is a standard test used to validate neutron transport codes. It is described
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in the International Handbook of Evaluated Criticality Safety Test Experiments under the
name “Pu-MET-FAST-001” [64]. The test here uses a slightly higher density, and therefore
a slightly smaller critical radius than the handbook’s version.

The “Homogenized Block” test consists of a single cell and a single material as well, but
that material has multiple isotopes in it. This particular material is a mixture of 1% 235U
enriched UO2 and water at a 1:1 ratio. Since the single cell is entirely made up of material
containing fissile isotopes, fissions can happen anywhere and the fission source is spread over
a large volume compared to the other tests. The cell dimensions are small so the amount of
time requires to converge the fission source is not extremely long.

The “Pin Cell” test consists of a bare UO2 cylinder surrounded by a block of water. This
test now has two materials, each with multiple isotopes, and two cells. The water block
dimensions are not very large, so leakage should play a part. This test serves to highlight
that all the processing routines work simultaneously, and the effect of introducing more than
one cell, which should have a significant effect on the ray tracing rate as pointed out in the
preliminary OptiX study.

The “Hex assembly” test consists of 631 bare UO2 cylinders laid out in a hexagonal lattice
surrounded by water. The material compositions, densities, and the cylinder dimensions are
identical to the pin cell test case, but since this test has two orders of magnitude more objects,
it serves to highlight the effect of introducing many geometric objects into the problem and
will further validate that the geometry processing routines work correctly if consistent results
are obtained.

The “Fixed-source Block” refers to two separate tests where WARP is run in fixed-source
mode instead of criticality mode. The first test illustrates WARP’s capability to perform
subcritical multiplication from secondary neutrons in fixed-source mode. The geometry is
a cube that is 2 meters on a side so leakage is minimized and a thermal peak should be
produced. The materials are identical to the homogenized block test, except for the addition
of a small amount 10B to make the system more subcritical. A 1 eV isotropic point source
at the origin was chosen as to highlight the effectiveness of popping any secondary neutrons
back into the active transport cycle. Since the source is at 1 eV, it will induce fissions in 235U
which will produce neutrons in a fission spectrum that does not overlap with the source. The
second fixed-source test is a 2 meter cube of water that contains a 2 MeV point source at the
center. This test does not contain any fissile materials, so there are no secondary particles
transported. There are also no highly absorbing materials, so neutrons will scatter many
times before they are absorbed or leak out of the cube. This test serves as a counterpoint
to the first since it will be seen what effect eliminating the secondary pop routine from the
inner transport loop will have on performance.

Table 4.1 summarizes the geometry and materials used in the test cases. The numbers
in parentheses preceding the isotopes their ratios to each other (i.e. they are unnormalized
atomic fractions). The pin cell and assembly cases contain water at 3 g/cm3, but water
cannot ever have a density this high. This was an oversight when deciding on the material
parameters. Changing it to 1.0 or lower will not affect the conclusions of the simulation,
however, since the Serpent and MCNP simulations were run with these unrealistic densities
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as well. The comparison should be consistent, even if the results are unphysical.

Table 4.1: Geometry and materials used in the six test cases.

Test Number & Type of Cells Materials Isotopes Densities

Jezebel 1 sphere, r=5.1cm Fuel (1.00) 239Pu 19.816 g/cm3

Homogenized
1 cube, r=10cm Hom. Fuel.

(0.90) 238U

10 g/cm3

Block
(0.10) 235U
(3.00) 16O
(2.00) 1H

Pin Cell
1 cuboid, 10x10x50cm

Fuel
(0.90) 238U

15 g/cm3

1 cylinder, r=1cm z=40cm

(0.10) 235U
(2.00) 16O

Water
(1.00) 16O

3 g/cm3

(2.00) 1H

Hex Assembly
1 cube, 84cm3 Fuel

(0.90) 238U
15 g/cm3

631 cylinders, r=1cm z=40cm

(0.10) 235U
(2.00) 16O

Water
(1.00) 16O

3 g/cm3

(2.00) 1H

Fixed-source

1 cube, 2x2x2m Water
(1.00) 16O

1 g/cm3

Block

(2.00) 1H

1 cube, 2x2x2m
Hom. Fuel

(0.90) 238U

10 g/cm3

w/ 10B

(0.10) 235U
(0.10) 10B
(3.00) 16O
(2.00) 1H

4.1 Criticality Tests - Multiplication Factors and

Runtimes

The goal of WARP is to be the first step in creating a full-featured continuous energy
Monte Carlo neutron transport code that is accelerated by running on GPUs. The crux
of the effort is to make Monte Carlo calculations faster but still produce accurate results.
Table 4.2 shows the multiplication factor deviations and the speedup factors for the four
criticality tests compared to MCNP 6.1 and Serpent 2.1.18 when 105 neutrons per batch are
used. Table 4.3 shows the same information, but for cases where 106 neutrons per batch
are used. 106 was the maximum number of neutrons that could be run before the GPU ran
out of memory, so larger batches could not be considered. The ∆M column is for WARP’s
difference from MCNP, and the ∆S column is for WARP’s difference from Serpent. The
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differences are reported in pcm for multiplication factors, and speedup factors (t/tWARP) for
runtimes. The (y) in the ∆ columns signify if the WARP value is inside (y) or outside (n)
two standard deviations of the production code’s value. Error estimators have not yet been
implemented in WARP, so a confidence interval is not reported for WARP’s values.

Table 4.2: Summary of keff single-run results of the WARP criticality tests with 20/40
discarded/active criticality cycles and 105 histories per cycle.

Test MCNP 6.1 Serpent 2.1.18 WARP ∆ M ∆ S

Jezebel

keff 1.027509±0.0005 1.02748±0.00052 1.02789 -38.1 pcm (y) -41 pcm (y)

Runtime 2.32 m 9.50868 m 0.2752 m 8.4x 34.6x

Homogenized Block

keff 1.216842±0.0005 1.21494±0.00047 1.21463 221 pcm (n) -31 pcm (y)

Runtime 17.28 m 13.6 m 0.48 m 36.0x 28.3x

Pin Cell

keff 0.381435±0.0008 0.380511±0.00128 0.380586 84.9 pcm (n) -7.5 pcm (y)

Runtime 55.85 m 40.0035 m 2.81583 m 19.8x 14.2x

Hex Assembly

keff 1.437465±0.0004 1.44704±0.00046 1.4442 -673 pcm (n) 284 pcm (n)

Runtime 25.34 m 26.3349 m 3.2395 m 7.8x 8.1x

Table 4.3: Summary of keff single-run results of the WARP criticality tests with 20/40
discarded/active criticality cycles and 106 histories per cycle.

Test MCNP 6.1 Serpent 2.1.18 WARP ∆ M ∆ S

Jezebel

keff 1.027942±0.0002 1.02837±0.00017 1.0279 4.2 pcm (y) 47 pcm (n)

Runtime 22.75 m 95.8 m 2.0 m 11.3x 47.6x

Homogenized Block

keff 1.215533±0.0002 1.21414±0.0002 1.21346 207 pcm (n) 68 pcm (n)

Runtime 150.7 m 137.0 m 2.8 m 53.8x 48.6x

Pin Cell

keff 0.381564±0.0003 0.380624±0.00037 0.38043 113.4 pcm (n) 19.4 pcm (y)

Runtime 578.62 m 404.2 m 7.1 m 81.9x 57.2x

Hex Assembly

keff 1.437326±0.0002 1.44722±0.00014 1.4454 -807.4 pcm (n) 182 pcm (n)

Runtime 252.77 m 267.7 m 8.0 m 31.7x 33.6x

It can be seen that in the 105 neutrons per batch case, WARP performs 8 to 36 times faster
than the production codes, and the multiplication factor differences are slightly different.



CHAPTER 4. RESULTS 119

Multiplication factors are most notably different in the assembly test, where WARP’s answer
falls between MCNP and Serpent, but is still very far from either. Similar trends are shown
in the multiplication factor for the 106 runs in Table 4.3, but the speedup factors are much
higher, with WARP being 11 to 82 times faster than the production codes. The greatest
speedup is seen in the pin cell test, followed by the homogenized block, assembly, then finally
the bare sphere. The speedup factors compared to Serpent in the 106 neutrons per batch
runs are relatively constant, ranging from 33 to 56, whereas the speedup factors compared
to MCNP range from 11 to 82.

In the Jezebel test, all codes agree, but as things get more complicated, deviations start to
occur. WARP is often outside of a single standard deviation for either code. It is important
to point out that Serpent and MCNP are also often more than a standard deviation away
from each other, with WARP falling somewhere in between, or if not in between, near one
of the two codes.

It is also interesting that in the Jezebel test, MCNP is actually much faster than Serpent.
Presumably, this is due to the different methods they use for neutron tracking. Serpent uses
Woodcock tracking, and moves the neutron in small steps across the geometry, but does not
have to calculate any surface intersection points. MCNP uses ray tracing and does calculate
intersection points (as does WARP). Since the Jezebel sphere is a very leaky system, many
neutrons stream out of the sphere without interacting many times (or at all). Since MCNP
and WARP both use ray tracing, they can terminate these particles in a small number of
geometry queries. Serpent, however, needs to query the geometry many times in order to
propagate the neutrons to the edge of the sphere where they are leaked. This difference is
not seen in the homogenized block test, where leakage plays very little role in neutron loss.

Tables 4.2 and 4.3 show that the multiplication factors calculated by WARP sometimes
fall outside the uncertainty of the production codes. The exact reason for this has not been
determined, but can be speculated. The deviations are the worst in the assembly test, imply-
ing that there may be a bug error in the geometry processing routines. The fact that WARP
treats (n,2/3/4n) multiplicity reactions as neutron sources instead of negative absorptions
could also be effecting the results, as per Eq. (2.96) and Eq. (2.97). WARP also produces
spectra that have slight differences from Serpent and MCNP (shown in the next section),
indicating that the reaction rates are different at certain energies. And even though they
are small, spectral differences may point to a bug in the reaction sampling routines. WARP
also uses single precision float point numbers, and the way that keff is accumulated between
batches may also be leading to roundoff errors in the final result. Another reason could
be that the fission source distributions are not completely converged. Adding a estimator
for the fission source convergence, such as Shannon entropy [11], could be incorporated into
WARP in the future to ensure full convergence. The reproducibility of results has also not
been tested in WARP. CURAND can be seeded with the same number across runs, which
should lead to the same sequence of random numbers in the kernel LCRNGs, but exact re-
producibility has not been attempted. Reproducibility is an important feature in validating
results, and will be an area of future development for WARP.
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4.2 Criticality Tests - Flux Spectra and Fission

Distributions
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Figure 4.1: Spectrum comparison in a “Jezebel” bare 239Pu sphere.

The flux and fission source distributions for the criticality tests are shown in the following
figures. The relative difference subplots for the spectra also have the 2σ error from Serpent
shown in transparent green. The error levels shown are from Serpent since the relative
difference is calculated from the Serpent results. The green area has a black border line to
highlight where it terminates. The colors in the fission source distribution plots represent
the relative probability of a fission neutron being born at that point. The distributions are
normalized so the maximum value is one. Plots showing the relative difference compared to
the fission source distributions produced by Serpent are also shown to attest to the accuracy
of the fission source. These plots were made by dumping mesh plots produced by Serpent
and re-normalizing them to a maximum of one. The mesh plots have a resolution of 250x250
pixels for every plot. The fission points produced by WARP were binned at an identical
resolution, and the relative difference distributions calculated by simply subtracting bin-by-
bin (there is no smoothing done). The average relative difference of each distributions is
shown in the plots as ∆̄xy and ∆̄xz. The Serpent fission source mesh plots are included in
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Figure 4.2: Fission source distribution of a “Jezebel” bare 239Pu sphere calculated by WARP.
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Figure 4.3: Relative difference of the WARP fission source distribution compared to Serpent’s
for the Jezebel bare 239Pu sphere.

Figures A.2-A.5 in Appendix A as they are somewhat redundant to the information shown
by the WARP fission distributions and the relative difference distributions. To show the
most accurate and highest resolution results, the data in all these figures are from runs using
106 neutrons per batch.

Figure 4.1 shows the volume-averaged flux spectrum in the Jezebel sphere. The relative
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Figure 4.4: Spectrum comparison in a homogenized block of UO2 and water.

difference compared to the Serpent spectrum is shown in the subplot below the main spec-
trum plot. The relative difference is very low compared to Serpent, with the normalized tally
bins being less than 1% from each other in regions where the flux is large. Of course, when
the flux is small, the statistical uncertainty becomes much higher, and the relative difference
becomes noisy. For the most part, the relative difference of the WARP spectrum is within
2σ of Serpent’s, and appears to have an average of zero. The spectra produced by the three
codes lie very close together and are almost indistinguishable from each other in the plot.

The fission distribution, shown in Figure 4.2, appears very uniform with neutrons being
preferentially born near the center. The distribution is visually identical in an z-integrated
slice compared to the y-integrated slice, as it should be. The distribution is not as smooth
as that produced by Serpent, however, and the noisiness of the WARP distribution can be
seen in the relative difference plot in Figure 4.3. On a whole, the relative difference is near
zero and appears to be mostly green. The white areas are where a NaN value is produced by
dividing zero by zero, indicating that WARP and Serpent are in agreement that no fissions
occur there.

Figures 4.4 shows the volume-averaged flux spectrum in the block of homogenized fuel.
Since this material is slightly leaky and contains a strong thermal neutron absorber (235U),
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Figure 4.5: Fission source distribution of a homogenized block of UO2 and water calculated
by WARP.
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Figure 4.6: Relative difference of the WARP fission source distribution compared to Serpent’s
for the homogenized block of UO2 and water.

no substantial thermal peak is seen since neutrons do not have time to accumulate around
0.026 eV before they are absorbed or leak out of the system. Again, the relative difference
compared the Serpent spectrum is very low, at 0.5% or lower for energies 10−9-10−2 MeV
where the flux has good statistics, but has much larger variations at energies above 10−2.
In this region, the errors become much larger, which could indicate that a minor sampling
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Figure 4.7: Spectrum comparison in a single UO2 pin surrounded by a block of water.

problem is occurring or physics isn’t being handled exactly right. It could also indicate a flux
accumulation problem or roundoff error, since this is a high count rate region. The cause
will be investigated as WARP continues to develop.

The fission source distribution of the homogenized block, shown in Figure 4.5, has a
structure similar to the Jezebel sphere, with an area of high probability in the center that
drops to zero at the edges. The noise seems to be more pronounced in this test, since
the fissile volume is much larger than in the Jezebel sphere. The relative difference of the
distribution, shown in Figure 4.6, shows that edges are also more noisy, especially in the
corners, since the flux is low there. Despite the noise, the fission distribution appears to
have a fairly uniform error distribution with an approximate mean of zero as indicated by
the predominately green color.

Figures 4.7 and 4.8, show the volume-averaged flux spectrum and fission source distribu-
tion, respectively, in the UO2 pin of the pin cell test. This system is slightly leaky, and again
contains light nuclides (water), but now they are spatially separated from the fissile material.
The relative difference compared to Serpent is again low, around 3% or lower for energies
5 × 10−9-10 MeV where the flux has good statistics. The relative difference is also within
2σ of Serpent’s values on the entire energy range, except for the slight deviation around 0.2
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Figure 4.8: Fission source distribution of a single UO2 pin surrounded by a block of water
calculated by WARP.

MeV where the error exceeds this bound. This slightly increased error might be related to
the resonance at 0.6 MeV. There is a small thermal peak in the spectrum around 0.026 eV,
indicating that the target velocity sampling scheme is working correctly, as well as the vector
transformation and rotation schemes. This is expected behavior since in this geometry the
fissile material is separated from the moderator, and neutrons have a chance to accumulate
at thermal energies before they are absorbed or leak.

The fission source distribution of the pin cell, shown in Figure 4.8, appears to be very
smooth and well-converged radially and only slightly noisy axially. The effect of the fuel
having a high fission cross section at low energies can also be seen in the fission source
distribution. The high cross section manifests itself as a ring of high fission probability
around the edge of the pin. This is cause by thermalized neutrons re-entering the fuel pin
and immediately fissioning a 235U nucleus. This phenomenon is also called “spatial self-
shielding” since the uranium at the surface shields the interior uranium from resonance
neutrons and has implications in depletion and power distributions. The axial fission source
distribution follows an expected behavior of a finite cylinder as well, roughly following a
cosine with the peak at z = 0 [3]. Figure 4.9 shows the relative difference distribution of
the pin cell compared to Serpent, and is almost entirely green in both the radial and axial
directions, indicating very close agreement with Serpent.

Figures 4.10 shows the volume-averaged flux spectrum in the center pin of the hexagonal
assembly test. This problem is much more heterogeneous than any of the previous, with
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Figure 4.9: Relative difference of the WARP fission source distribution compared to Serpent’s
for the single UO2 pin surrounded by water.

300 times more objects in the domain compared to the pin cell test. The WARP spectrum
matches very well with Serpent’s, and the relative difference is with 15% of Serpent for
energies 10−8-9 MeV where the flux has good statistics. The spectrum is much noisier than
any of the other tests since the volume of the center pin is relatively small compared to the
volume of the fission source, even though this pin has the highest flux of any of the pins in
the assembly. The mean of the error appears to be close to zero, however, and the high error
is most likely due to statistics. Despite the large relative difference, the WARP spectrum is
within 2σ of Serpent’s results for the entire energy range. The MCNP spectrum is slightly
higher than both the WARP and Serpent spectra, which might be a small normalization
error or a real difference.

The fission source distribution, shown in Figure 4.11, appears as expected, with the
highest average probability in the center of the array both axially and radially. Self-shielding
is shown again, as every pin has a ring of higher probability on near its surface. The assembly
also shows some reflection effects from the thick layers of water surrounding it. The pins
at the edges have a higher fission source probability at the surfaces facing the water rather
than the interior of the assembly. This is due to neutrons that slowed-down in the water
moderator surrounding the fuel assembly eventually scattering back into an edge pin where
they are absorbed. This phenomenon is apparent in both the axial and radial directions.
The relative difference of the assembly’s fission source distribution, shown in Figure 4.12,
shows good agreement with Serpent. The radial agreement is very good, but the axial has
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Figure 4.10: Spectrum comparison in the center UO2 pin of a hexagonal pin array in water.

some noise in it due to the flux being small and the fissile volume being thin at the vertical
edges of the assembly when the source points are summed in the y-direction.

4.3 Fixed-Source Tests

WARP is also able to run simulations in fixed-source mode, where the initial neutron
energies, directions, and locations are predefined and do not incorporate any feedback from
the flux like the criticality source. This mode adds any induced secondary neutrons back
into the active particle dataset to be transported in conjunction with the source neutrons,
which is also why these problems must be subcritical. The first test is a 2x2x2 m cube of
homogenized fuel material with a 1 eV point source at its center. In this case, fissions occur
in uranium and secondary neutrons are produced and transported. A small amount of 10B
was included to ensure the system is subcritical so multiplication, and therefore runtimes,
are modest. The second test is a 2x2x2 m cube of light water with a 2 MeV point source at
its center. No secondary neutrons are produced in this case.

Table 4.4 shows the runtimes of WARP, Serpent, and MCNP for the two fixed-source
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Figure 4.11: Fission source distribution of a hexagonal array of UO2 pins in water calculated
by WARP.
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Figure 4.12: Relative difference of WARP fission source distribution compared to Serpent’s
for the hexagonal array of UO2 pins in water.

tests. WARP is able to perform the transport faster than either code on a single CPU, but
the water test performs about twice as fast as the homogenized fuel test. The runtimes of
the water test is about five times longer than the homogenized fuel test, indicating that
neutrons survive much longer and undergo many more scattering reactions in water than
the homogenized fuel before they are absorbed or leak out. The homogenized block contains
two very strong thermal neutron absorbers, and low energy neutrons are quickly absorbed.
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Table 4.4: Summary of runtimes of the fixed-source tests with 4× 107 total histories.

Test MCNP 6.1 Serpent 2.1.18 WARP ∆ M ∆ S

Water with 2 MeV point source
Runtime 748.9 m 519.7 m 15.8 m 47.4x 32.9x

Homogenized fuel with 1 eV point source
Runtime 82.3 m 71.1 m 3.4 m 24.2x 20.9x

Even though there are more neutrons transported in total in the homogenized block due to
the secondary neutrons produced, the number of scatters in water still makes the runtime
much longer.
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Figure 4.13: Volume-average flux spectra of a fixed-source simulation with a 1 eV point
source in a homogenous block of fuel, water, and boron.

Figure 4.13 shows the volume-averaged flux spectra produced by WARP, Serpent, and
MCNP for the homogenized fuel fixed-source test. The source spike extends beyond the plot
scale, but the plot is on this scale to show more structure at other energies. Even though the
height of the source flux is not shown, the error at source is still calculated with the actual
value and can still be seen in the error plots. The source spike at 1 eV is clearly visible, and
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despite the presence of very strong thermal absorbers, there is a slight population below 1
eV due to the strength of the source. Even though the absorbers are strong, some neutrons
will interact with the 1H, 16O, or 238U and will not immediately be absorbed. The difference
in magnitude of the source spike and the knee immediately below it is about a factor of 30,
attesting the strength of the absorbers since leakage is low. Subcritical multiplication is also
evident, since there is significant flux at energies higher than the source. The structure looks
very similar to that of the criticality test in Figure 4.4, as it should. The relative difference
is below 1% for most energies and within the statistical error of the Serpent results below
the source spike, but has a constant negative offset above the source. If this offset were not
there, it appears that the error would also be within the Serpent bounds. The error also
exhibits a deviation at 0.6 MeV, similar to that in the pin cell spectrum.
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Figure 4.14: Volume-average flux spectra of a fixed-source simulation with a 2 MeV point
source in a block of water.

Figure 4.14 shows the volume-averaged flux spectra produced by WARP, Serpent, and
MCNP for the water fixed-source test. Again, the source spike extends beyond the plot
scale to show more details at other energies. This spectrum is much simpler than those with
heavy nuclides. There are no resonances below about 0.6 MeV, and the reactions are almost
entirely elastic scattering. There is very little structure until the very large thermal peak
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where neutrons accumulate until they are most likely absorbed in 1H. The relative difference
is below 0.5% and within the uncertainty of Serpent’s results for most of the energy domain
except in the thermal peak and again at 0.6 MeV. The thermal peak exhibits the same large
swings as the higher energy region of the homogenized fuel criticality test. The large swings
may indicate that there is a small error in how the tallies are accumulated and there is
some roundoff error in regions where they tallies are scored frequently. Since the 0.6 MeV
deviation is present in almost all spectra and so is 16O, this may indicate that there is a
small error in handling the 0.6 MeV scattering resonance in 16O.

4.4 Comparison to Non-Remapping

To measure the benefit of sorting and remapping references in WARP, a comparison to
a non-remapping version of WARP must be made. Table 4.5 shows the runtimes and mul-
tiplications factors of the criticality benchmarks for remapping and non-remapping versions
of WARP. The remapping version performs much better than the non-remapping version
when more complexity is added to the problem. For problems where neutrons die out very
quickly, such as the Jezebel test, remapping does not benefit the simulation much because
there are very few inner loop iterations done compared to a more complex problem, such as
the assembly test.

Table 4.5: Comparison of the non-remapping and remapping versions of WARP for the four
criticality test cases. 20/40 discarded/active criticality cycles and 106 histories per cycle.

test Remapping Non-Remapping ∆k or Ratio

Jezebel
keff 1.0279 1.0279 0 pcm
Runtime 2.0147 m 1.84 m 0.91x

Homogenized Block
keff 0.9426 0.941857 74.3 pcm
Runtime 2.8 m 2.9 m 1.04x

Pin Cell
keff 0.3804 0.38063 -23 pcm
Runtime 7.0682 m 10.52 m 1.49x

Hex assembly
keff 1.4454 1.4457 -30 pcm
Runtime 7.9703 m 95.85 m 12.03x

One of main benefits of remapping is that it eliminates completed neutrons from the
GPU’s address space. If remapping is not done, the GPU does not know where the active
neutrons are and must check if each neutron is done at every kernel launch. This leads
to spending a lot of time checking already completed data. In problems where neutrons
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die out quickly, a neutron that is terminated on the first iteration may only be checked a
small number of times compared to a problem where neutrons do not die out quickly. For
example, if a problem only takes five inner loop iterations to process an entire neutron batch,
a neutron that completes in the first iteration is only checked 4 additional times and 80% of
its data loads result in no work being done. In a problem that takes one hundred iterations,
a neutron that completes in the first iteration is checked 99 additional times and 99% of its
data loads results in no work being done. Remapping results in 100% of a neutrons loads
being used for useful work, since no already completed data is ever loaded. This is a major
benefit in slowly-attenuating batches where stale data could be loaded repeatedly, resulting
in wasted time.
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Figure 4.15: Neutron processing rate of WARP in the homogenized block and assembly test
cases.

These effects of remapping are more clearly seen in the trends of Figure 4.15. This figure
shows the rate at which each version is able to process neutrons vs. the number of active
neutrons left in the batch for the homogenized block and the hex assembly. The data in the
figure was quite noisy when there are few neutrons left to process since the iteration time
is very small (∼1 ms) then. The timer used had trouble resolving times at this rate, and
the data shown in the figure has been smoothed with a window 11 data points wide,and
linearly interpolated where the timings were too close together and gave Inf or NaN results
for processing rates.
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Figure 4.16: Active neutrons per iteration in WARP in the homogenized block and assembly
test cases.

The non-remapping version is faster at large numbers of active neutrons (above ∼ 5 ×
105) since accessing the entire dataset generally yields active data anyway. Conversely, the
remapping version is faster when there few active neutrons left in the batch and accessing
the entire grid generally yields terminated data. The remapping version always has an
associated overhead. When there are few active neutrons left eliminating completed data
and reducing the grid size is beneficial enough to overcome the overhead. When there are
many active particles, the overhead dominates. Since the completed histories are pushed
to the end of the remapping vector, the sort is only done the active particles, meaning its
overhead scales with the active particle number. Since the radix sort is a very efficient
operation, the addition cost of remapping is small (about 30% slower) and the benefit at
small active neutron numbers pays for this (about 3x faster). In the non-remapping version,
the additional cost at low numbers of active neutrons is due to launching a large grid where
most of the blocks access terminated data and simply return without doing work. Compute
cycles and, more importantly, loads from global memory are wasted simply to check if a
neutron is terminated already or not. The dip in the processing curves around 8 × 105 is
most likely an artifact of the data smoothing.

It therefore makes sense that the remapping version performs much better when the
simulation spends significant time in the sub-300k active neutron region on the processing
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Table 4.6: Summary table of the fraction of total kernel time spent in each WARP subroutine
in criticality mode for each test case.

Remapping
Subroutine Jezebel Homogenized Block Pincell Hex assembly

OptiX Trace 3.8 18.5 26.5 41.1
Grid Search 0.5 6.5 5.1 4.7
Tally 0.2 1.3 0.5 0.4
Macroscopic 1.7 22.3 19.2 19.0
Microscopic 1.3 11.3 8.6 8.4
Radix Sort 1.7 5.3 8.5 10.3
Elastic Scatter 1.0 15.1 14.6 11.1
Inelastic Scatter 0.4 0.4 0.0 0.1
Continuum Scatter 0.3 0.2 0.0 0.1
Fission 0.2 0.2 0.2 0.2
Yield Reduction 0.1 0.0 0.0 0.0
Yield Rebase 0.0 0.0 0.0 0.0
Yield Prefix Sum 0.0 0.0 0.0 0.0
Pop Source 87.3 18.3 14.5 5.2

Non-Remapping
Subroutine Jezebel Homogenized Block Pincell Hex assembly

OptiX Trace 14.2 38.0 46.7 45.2
Grid Search 1.3 6.3 4.7 2.1
Tally 0.2 0.7 0.4 1.2
Macroscopic 1.3 8.8 6.6 2.8
Microscopic 1.5 5.6 2.6 1.9
Elastic Scatter 2.5 10.5 8.3 3.6
Inelastic Scatter 1.2 1.6 1.5 2.4
Continuum Scatter 1.1 1.5 1.6 2.4
Fission 0.4 0.7 0.9 1.3
Absorption 0.3 0.6 0.8 1.3
Active Reduction 3.8 7.3 11.2 20.1
Yield Reduction 3.4 6.2 9.6 17.3
Yield Rebase 0.0 0.0 0.0 0.0
Yield Prefix Sum 3.3 6.1 9.6 17.2
Pop Source 67.9 12.8 5.7 0.5

rate curve (about where the lines cross). In the Jezebel, homogenized block, pin cell, and
assembly tests, 90%, 77%, 91%, and 96% of the transport iterations occur in sub-300k region,
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respectively. It also makes sense that the relative number of iterations spent in the decades
of Figure 4.15 is vaguely constant. The particles die out exponentially, and it takes roughly
the same number of transport iterations to go from 107 to 106 active neutrons as it does
to go from 102 to 101 active neutrons. This phenomenon manifests itself as the number of
active neutrons per iteration being a straight line in Figure 4.16. The neutrons dying out
exponentially is also why Figure 4.15 is plotted logarithmically with respect to active neutron
count – to emphasize that equal spaces under the curves typically take the same number
of iterations to complete. This shouldn’t be confused for the amount of time the iterations
take to complete, however. Iterations with more active neutrons typically take more time to
complete, but have overall higher processing rates since the large neutron payload pays for
overheads and latencies.

In a high leakage problem, like Jezebel, or a highly absorbing problem, like the homog-
enized block, the neutrons die off quickly. This means that the non-remapping simulation
has a generally higher processing rate than problems where neutrons do not die off quickly.
It has been mentioned that this is due to there being fewer stale loads, but another way to
think about why this happens is that the active neutron population “leaps” down the curve
faster and can skip very slow processing regions. This effect is especially pronounced at the
end of the simulation where 10 particles can suddenly become 0, effectively skipping a large
portion of slow processing. Adding many surfaces also keeps neutrons alive longer, since
they often have to resample the materials as they cross boundaries.

Table 4.6 shows a breakdown of the amount of time spent in each subroutine in the
remapping and non-remapping versions of WARP. The values shown are average values for
an entire simulation. The values will also will not add to 100% since there are many other
kernels launched and memory copies made, but these are typically only done at problem
startup and are negligible compared to those listed. The kernels included in the table are
the compute kernels of both the inner and outer transport loops.

In the non-remapping version, WARP spends most of its time in global routines like
OptiX, macroscopic, scan, and source pop kernels, whereas the remapping version spends
most of its time in OptiX and the reaction kernels (except in the Jezebel test, where almost
all time is spent in the source pop). This is due to the fact that the non-remapping version
never knows where the active data is and must launch kernels over the entire grid at every
iteration. This makes the global operations expensive since they are always going through
106 elements. In the remapping version, the global functions access the remapping vector and
only sort or scan the active data, making them much cheaper as neutrons are terminated.
Remapping is almost always worth the effort, especially since radix is done in-place rather
than having to be done and copied, but its main benefit is eliminating stale access, and
therefore grid size, not reducing divergence in the reaction kernels.

In conclusion, WARP can produce results that are near those of Serpent and MCNP,
but there are slight deviations in both the multiplication factor and the flux spectra that
are outside of statistical error. Remapping data references is an effective way to keep GPU
execution efficient when using an event-based transport algorithm, and WARP can produce
results an order of magnitude faster than Serpent and MCNP.
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Chapter 5

Conclusions and Future Work

WARP has been tested in criticality and fixed-source modes performing continuous energy
Monte Carlo neutron transport in geometries containing 1 to 632 individual material regions.
The materials used in the tests were combinations of 239Pu, 238U, 235U, 16O, 10B, and 1H,
which were loaded from ENDF/B-VII ACE-formatted data libraries using the PyNE package.

Compared to Serpent 2.1.18 and MCNP 6.1, WARP produced the most accurate results in
a UO2 pin cell surrounded by water. In this case, 106 neutron histories were run and WARP
calculated a multiplication factor 113 pcm and 19 pcm away from ones calculated by MCNP
and Serpent, respectively, produced a flux spectrum within 2σ of Serpent’s, and computed a
fission source distribution almost identical to Serpent’s. WARP is able to compute results in
the pin cell case 82 and 57 times faster than MCNP and Serpent, respectively. Bare sphere,
homogenized cube, and hexagonal lattice geometries were also tested. Considering all these
cases, multiplication factors calculated by WARP vary between 4 and 807 pcm away from
either Serpent or MCNP, and speedup factors over these codes vary between 11 and 82. Flux
spectra compare well for most energies, as do fission source distributions.

5.1 General Conclusions

The WARP code developed in this work is currently the most detailed and feature-
rich program in existence for performing continuous energy Monte Carlo neutron transport
in general 3D geometries on GPUs. It implements a novel adaptation of an event-based
transport algorithm; loads standard data files; unionizes the nuclear data in a new, high
performance way; accurately simulates each reaction type specified in the data; and uses a
flexible, scalable, and optimized geometry representation.

The ultimate purpose for developing WARP was to accelerate accurate, continuous-
energy neutron transport simulations in general, 3D geometries by using GPUs. By that
metric it has been successful in its mission. It can produce results within fractions of a per-
cent of qualified and benchmarked production codes like MCNP and Serpent. It can produce
these results 11-80 times faster, depending on problem parameters and hardware. Along the
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way, useful information regarding the importance of thread divergence, neutron termination,
geometric acceleration structures, and dataset size has been collected and analyzed.

WARP’s secondary goal of using standard nuclear data files, running in both fixed-source
and criticality-source modes, calculating multiplication factors, and producing neutron spec-
tra has also been achieved. Despite these milestones, WARP can only handle a single tally
volume, and loading data from many isotopes has not been tested. It also does not have rou-
tines to handle thermal scattering data or unresolved resonance tables. There is still much
work to be done in testing, stabilizing WARP’s execution, adding physics and features, as
well as continuing to optimize algorithms for efficient GPU execution.

This initial development phase of WARP is the first step in creating a full-featured reactor
simulation program that runs on GPUs. Such an effort was needed to ensure the nuclear
engineering community’s codebase keeps abreast of modern programming techniques and
hardware. WARP is by no means a mature code ready to be used in everyday nuclear
reactor calculations, but rather it is a good starting point for more advanced development.

In its current state, WARP may be a good tool for multiplication factor searches, like
determining reactivity coefficients by perturbing material densities and temperatures, since
these types of calculations typically do not require many reaction rate tallies. WARP is also
useful in a workstation environment since it currently can only be run on a single GPU card
and can significantly accelerate calculations where only a few CPU cores would be available
otherwise. Conversely, it is currently not good for depletion calculations since they can
require many, many reaction rate tallies. This is not to say that GPUs couldn’t perform
depletion well, but rather that WARP is currently not suited to the task.

5.2 Specific Conclusions

The development of WARP has led to important conclusions regarding how to conduct
neutron transport on GPUs. The first is that running with large datasets, and therefore
a large number of threads, is important for good performance. It was found that in some
cases, moving from 105 to 106 neutrons per batch in criticality mode increase performance
by a factor of four or more. It is important to keep the GPU saturated with threads so it
can effectively pipeline data loads.

The second conclusion is that remapping threads to active data is an effective way of
raising the processing rate when the number of active neutrons becomes small; this also
reduces thread divergence in reaction kernels. Using a radix sort to do the remapping is
effective since it segregates reactions into contiguous blocks, efficient since it can be done in
place and in O(kN) time, and can eliminate completed data from being accessed if slight
modifications to the standard reaction number encodings are made.

Most of the performance gain in remapping data references comes from being able to
launch grids that are sized for only the active data rather than the entire dataset for both
global and reaction kernels. A non-remapping algorithm does not keep track of where active
data is, and therefore must launch a grid that covers the entire dataset. When the number
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of active neutrons drops below about 30% of the initial number, the overhead and memory
bandwidth cost of launching these extra threads, which only load a “done” bit and return,
is more than the cost of performing the radix sort and edge detection. The majority of
the transport iterations occur while there are less than 30% of the initial neutrons left, and
remapping references is usually worthwhile.

Using the NVIDIA OptiX ray tracing framework was also shown to be an effective way to
handle the geometry representation in WARP. OptiX is flexible, allows attachment of mate-
rial and cell number to individual geometric primitives, can perform surface detection with a
randomly-distributed and directed dataset, can incorporate the remapping vector created by
a radix sort, and can do so fast enough to be used in WARP. The acceleration structures that
OptiX can automatically build over the scene geometry was the initial reason for using it,
and it was determined that the BVH builder and traverser provide the best performance as
does using mesh primitive instancing rather than a transform node approach. The number
of objects present in the scenes in reactors is small compared to many rendering scenes, and
the SBVH acceleration structure does not perform as well. This is presumably due to some
additional overhead related to traversing the objects that is not offset when few objects (less
than a few hundred thousand) are present in the scene. Primitive instance provides better
performance since using transform nodes requires traversing a deeper geometry tree, which
also has more (redundant) data associated to it.

Further, assuming the capital prices for the GPU and CPU servers outlined in Table
1.2 and that CPU code scales linearly, the capital price per Monte Carlo “history power,”
or histories run per second, of a GPU is 2.8 times lower than that of a CPU on average
for the tests done in this work, indicating that GPUs are a sound hardware investment for
running Monte Carlo neutron transport.This conclusion only takes the results of WARP’s
initial development in account, i.e. simple materials and a single tally. Determining how to
maintain high performance when both the number of materials and tallies are increased will
be part of the future development of WARP.

5.3 Future Work

The initial goals of WARP have been completed, but there is much work still to be done
if it is going to be of real use to the nuclear engineering community. Basic functionality is
currently good enough to assure the GPUs can accelerate high-fidelity Monte Carlo neutron
transport calculations, which was the point of this work, but many capabilities need to be
expanded and ensured to scale well to large numbers of neutrons, isotopes, and geometrical
zones.

The geometry is currently handled by OptiX since it provides a convenient way to obtain
high-performance results, but its execution had to be coerced into providing WARP with
the information it needed, namely the material number via the point-in-polygon algorithm.
The way OptiX executes this algorithm is not efficient since it must be done iteratively
using OptiX’s native functions instead of calculating the ordered list of intersections in a
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single trace. NVIDIA is releasing “OptiX Prime” with OptiX 3.5 [65], which promises to
provide a more “to the metal” ray tracing experience, and might be leveraged to provide
more efficient single-traverse functionality. OptiX could also be replaced by Rayforce [66],
a high-performance GPU ray tracing library developed by VSL that has this functionality
built-in and is currently available free of charge for noncommercial use.

The geometry routines could also be replaced by handwritten routines that use combi-
natorial solid geometry like Serpent and MCNP. This would make writing input for WARP
more like what most nuclear engineers are already used to and, more importantly, could
provide a potential performance increase. A universe-based CSG representation may map
very well to the GPU and may even be able to fit inside of shared memory for small numbers
of surfaces. The surfaces may also be able to be bound to texture memory, which could
provide a performance boost since it automatically caches for spatial locality.

Using an efficient CSG method would further lend itself to using Woodcock delta-tracking
for the neutrons and thus getting rid of the tracing algorithms and libraries altogether.
These algorithms account for about 50% of execution time, and WARP’s performance could
be doubled by making the geometry routines more efficient. If OptiX is determined to
be the best option out of these others, however, a routine would need to be developed to
automatically space coincident surfaces appropriately without specific user input.

WARP’s execution can also be improved. The amount of memory required per neutron
was not tracked in this initial development, much less optimized, since developing a function-
ing code was the main priority. Reducing the memory needed per neutron would be highly
beneficial in the sense that more concurrent neutrons could be launched using the reclaimed
memory space. Dynamic parallelism can be implemented to minimize kernel launch overhead
and host-device communication in the inner transport loop. Dynamic parallelism is a feature
introduced into the NVIDA Kepler GPUs that allows kernels to be launched from kernels,
and could eliminate the host needing to contain the main transport loop. Neither CUDPP or
OptiX support its use, however. CUDPP could be replaced with newer, higher-performance
libraries (e.g. CUB) that do support dynamic parallelism, but OptiX would have to be re-
placed by a handwritten kernel to perform the necessary geometric tasks. Textures could be
thoroughly investigated as they might provide better performance in tasks where their free
linear interpolation and spatial caching could provide a performance boost, like in an energy
grid search on a tree structure. Alternatively, using optimized graph search libraries, such
as “gunrock,” could be used to perform the energy grid search.

WARP also currently only supports fixed-source mode in the non-remapping version as it
requires popping secondary neutrons back into the active neutron pool after every iteration
of the inner transport loop. This operation is expensive since it is a global operation that
must be done often. This algorithm could be changed to be more like a criticality run,
where the primary neutrons are all transported together, then the next (smaller) generation
of secondary particles are transported, then the next, and so on. This way, the pop routine
is only executed in the outer loop, and could produce faster results. Multi-GPU support
should also be added so that WARP can be used effectively on computers with more than a
one GPU.
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If an entire overhaul of the WARP transport algorithm is feasible, using a SM-based
algorithm might be investigated instead of current global one. This type of algorithm would
treat each SM as an independent processor, and would provide each a bank of neutrons to
transport, as is done by Liu and Henderson [26, 24]. This way, neutron data could be stored in
very fast shared memory, but using this memory space would compete with storing geometric
information there. Also, since a smaller set of neutrons could be stored, the SMs would need
to communicate to determine which of the next neutrons they would take out of the global
bank, or they would need to periodically rendezvous to shared source information and ensure
that the distributions they use are each converged. This type of transport algorithm would
also preclude using OptiX, since it does not have SM-level functionality [45].

Data access patterns are very important on the GPU, and there are a few straight forward
modifications that could be made to WARP in the future. The first is using Legendre
expansion data for the angular dependencies of anisotropic scattering instead of using tabular
data. This method uses more computation and less data than tabular distributions, and
would probably perform well on the GPU. Since global memory comes at a premium on
GPUs, an on-the-fly temperature treatment for nuclides would likely be required if more
than a handful of isotopes are desired at more than one temperature. Methods like those
used in Serpent could be adapted for use on the GPU [31]. On-the-fly methods reduce the
amount of storage needed, but they require more computation per data element loaded since
the loaded value is adjusted according to the temperature of the material. This kind of
method may work well on the GPU since GPUs have a larger FLOP/byte ratio than CPUs
and the additional work may cost little. Other than the how to represent and adjust the data,
an efficient way to handle situations where there are many different material and isotopes
present needs to be explored. The work done by Scudiero on porting OpenMC’s macroscopic
cross section processing benchmarking tool, “xsbench,” may elucidate this endeavor [13, 54].

WARP would gain usability if more features were incorporated as well. Currently, WARP
treats all neutrons equally, but adding neutron weight would allow many variance reduction
techniques to be implemented. Importance cutoffs could be used to terminate secondary
neutrons in fixed-source runs, leading to shorter runtimes; cell importances and implicit
absorption could help improve tally statistics. Developing an efficient way to include many
reaction rate tallies would also make WARP useful for performing depletion analysis. It
would also be helpful for WARP to have statistical tests like Shannon entropy to ensure the
fission source is fully converged before tallies and multiplication factors are accumulated.

WARP still has bugs, and a large part of future development will be tracking them down
to ensure that accurate results are produced. Reproducibility using the same random number
seeds will also be investigated to ensure consistent results can be produced and that there
are no systematic errors present in WARP. Ensuring reproducibility will also be necessary
in making a test suite for WARP, so future users can have confidence in their results and
future developers can know their modifications do not introduce new errors into WARP.

Releasing WARP as open source software is in progress and is pending University ap-
proval. OpenMC has opened the door for open source neutron transport codes, and WARP
will hopefully follow in its footsteps. Releasing the source openly has obvious benefits like
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providing potential users with a convenient and transparent way of obtaining the software,
as well as allowing for valuable contributions from the community.
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Appendix A

Supplementary Results

This appendix includes results that were redundant or not directly relevant to the dis-
cussions in the chapters. They are provided here as supplementary and complimentary
information.

A.1 2D Scattering on an NVIDIA Tesla C2075

As was mentioned in Section 3.1, different results were obtained in the 2D scattering
study when the GPU implementations were run on a NVIDIA Tesla C2075 card instead of
a Tesla K20. Figure A.1 shows the speedup factors, Fs = tCPU/tGPU, of the GPU implemen-
tations discussed in Section 3.1. This benchmark was run on the same server with a 8-core
AMD Opteron 6128 CPU clocked at 2.0GHz, but on a Tesla C2075 card. The task-parallel
implementation performs best, with a maximum speedup of around 29x. The remapping
implementation has the next best performance, with about a 20x speedup over the CPU.
The batched implementation’s performance departs from the remapping implementation at
105 particles and even starts to deteriorate between 106 and 107 particles. This is due to the
transport having to be done in batches at this point due to the maximum block number of
65,536.

These results are quite different than those shown in Section 3.1 where the remapping
version was decidedly faster than the others at large particle numbers. The C2075 card is
a Fermi architecture card, and has slightly different memory characteristics that the newer
K20, which is a Kepler architecture card. The likely reason that the older architecture is
faster for these applications is that an important change was made in Kepler regarding the L1
cache. The L1 cache was introduced in Fermi, and sits closest to the registers and processing
units on the SMs. “Devices of compute capability 2.x come with an L1/L2 cache hierarchy
that is used to cache local and global memory accesses [41].” In Fermi, the L1 cache acts
like a traditional CPU L1 and buffers access to the L2, which in turn buffers access to global
memory. In these simple applications, all particle data is access in global memory, but checks
the L1 first. A cache hit would increase access rate considerably, and since the history-based
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Figure A.1: Speedup factors of the GPU implementations over the CPU implementation on
a Tesla C2075.

version keeps the same particle data in it (or registers) for its entire lifetime, and the particle
does not carry much data, it most likely lives in L1 for the entire life of the particle. In
the event-based versions, multiple kernels are launched for every operation, and the caches
are cleared in between launches. This means that the particle data is fetched from global
memory every time instead of being loaded from much faster L1. This may also explain why
the task-based performance drops to that of the remapping version when the threads per
block is increased from 128 to 512. The additional pressure on the registers causes the data
to spill into L2 and the benefits of L1 caching (or always keeping the data in registers) are
lost.

In Kepler, the L1 is reserved for register spills and local data access. “L1 caching in
Kepler GPUs is reserved only for local memory accesses, such as register spills and stack
data. Global loads are cached in L2 only (or in the Read-Only Data Cache) [67].” This
means that on Kepler, the task-based version does not benefit as much from from L1 cache
hits as it did on Fermi, and must go to L2 or global memory every time particles data is
loaded or spilled from registers.

The remapping version performs better than the non-remapping version for the very same
reasons the remming version of WARP performs better than the non-remapping version.
Remapping creates more efficient, if non-coalesced, data access. Since the amount of data
required per neutron is greater in WARP than that of the particles in this preliminary study,
the L1 cache would most likely be overflown anyway, and the remapping algorithm would
be the best performing on Fermi as well as Kepler architectures.
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A.2 Serpent Fission Source Distributions

Included here are the fission source distributions of the criticality tests produced by
Serpent.
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Figure A.2: Fission source distribution from Serpent 2.1.18 of a “Jezebel” bare Pu-239
sphere.
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Figure A.3: Fission source distribution from Serpent 2.1.18 of a homogenized block of UO2

and water.
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Figure A.4: Fission source distribution from Serpent 2.1.18 of a single UO2 pin surrounded
by a block of water
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Figure A.5: Fission source distribution from Serpent 2.1.18 of a hexagonal array of UO2 pins
in water.
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Appendix B

Additional Tables

Table B.1: Reaction number encodings in WARP.

Number Description
2, 51-91 Scatter reaction

unmodified from standard MT number
800 Resample flag

History is skipped until OptiX determines the material
811-845 Secondary-producing absorption reactions

that have NOT yet been processed by the fission kernel
911-945 Secondary-producing absorption reactions

that have been processed, history terminated
997 OptiX miss (error)
999 Leakage
>1102 Capture reactions

1000 added to standard MT number

Table B.2: Geometric primitive number encodings in WARP.

Number Description
1 Axis-aligned Cuboid
2 Z-parallel finite cylinder
3 Z-parallel finite hexagonal prism
4 Sphere
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Table B.3: ENDF MT numbers and the reactions they stand for. [35]

Sum and Elastic Cross Sections
MT Reaction Description
1 (n,total) Neutron total cross section.
2 (z,z0) Elastic scattering cross section.
3 (z,nonelastic) Nonelastic cross section.
4 (z,n) Production of one neutron in the exit channel. Sum of MT=50-91.
5 (z,anything) Sum of all reactions not given explicitly in another MT number.
10 (z,continuum) Total continuum reaction; excludes all discrete reactions.
27 (z,abs) Absorption. Sum of MT=18 and MT=102-117.
101 (z,disap) Disappearance. Sum of MT=102-117.
Neutron-Producing & Continuum Reactions
11 (z,2nd) Production of two neutrons and a deuteron, plus a residual.
16 (z,2n) Production of two neutrons, plus a residual.
17 (z,2n) Production of three neutrons, plus a residual.
18 (z,fission) Total fission.
19 (z,f) First-chance fission.
20 (z,nf) Second-chance fission.
21 (z,2nf) Third-chance fission.
22 (z,na) Production of a neutron and alpha particle, plus a residual.
23 (z,n3a) Production of a neutron and three alpha particles, plus a residual.
24 (z,2na) Production of two neutrons and an alpha particle, plus a residual.
25 (z,3na) Production of three neutrons and an alpha particle, plus a residual.
28 (z,np) Production of a neutron and a proton, plus a residual.
29 (z,n2a) Production of a neutron and two alpha particles, plus a residual.
30 (z,2n2a) Production of two neutrons and two alpha particles, plus a residual.
32 (z,nd) Production of a neutron and a deuteron, plus a residual.
33 (z,nt) Production of a neutron and a triton, plus a residual.
34 (z,n3He) Production of a neutron and a 3He particle, plus a residual.
35 (z,nd2a) Production of a neutron, a deuteron, and two alpha particles, plus a residual.
36 (z,nt2a) Production of a neutron, a triton, and two alpha particles, plus a residual.
37 (z,4n) Production of four neutrons, plus a residual.
38 (z,3nf) Fourth-change fission.
41 (z,2np) Production of two neutrons and a proton, plus a residual.
42 (z,3np) Production of three neutrons and a proton, plus a residual.
44 (z,n2p) Production of a neutron and two protons, plus a residual.
45 (z,npa) Production of a neutron, a proton, and an alpha particle, plus a residual.
Neutron-Producing Discrete Reactions
51 (z,n1) Production of a neutron, nucleus in the first excited state.
52 (z,n2) Production of a neutron, nucleus in the second excited state.
...
90 (z,n40) Production of a neutron, nucleus in the 40th excited state.
91 (z,nc) Production of a neutron in the continuum.
Reactions That Do Not Produce Neutrons
102 (z,gamma) Radiative capture.
103 (z,p) Production of a proton, plus a residual.
104 (z,d) Production of a deuteron, plus a residual.
105 (z,t) Production of a triton, plus a residual.
106 (z,3He) Production of a He particles, plus a residual.
107 (z,a) Production of an alpha particle, plus a residual.
108 (z,2a) Production of two alphas, plus a residual.
109 (z,3a) Production of three alphas, plus a residual.
111 (z,2p) Production of two protons, plus a residual.
112 (z,pa) Production of a proton and an alpha particle, plus a residual.
113 (z,t2a) Production of a triton and two alphas, plus a residual.
114 (z,d2a) Production of a deuteron and two alphas, plus a residual.
115 (z,pd) Production of a proton and a deuteron, plus a residual.
116 (z,pt) Production of a proton and a triton, plus a residual.
117 (z,da) Production of a deuteron and an alpha particle, plus a residual.
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