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Abstract.
The rapid evolution of high performance computing technology has allowed for

the development of extremely detailed models of the urban and natural environment.
Although models can now represent sub-meter-scale variability in environmental
geometry, model users are often unable to specify the geometry of real domains
at this scale given available measurements. An emerging technology in this field
has been the use of terrestrial LiDAR scanning data to rapidly measure the three-
dimensional geometry of trees such as the distribution of leaf area. However, current
LiDAR methods su↵er from the limitation that they require detailed knowledge of leaf
orientation in order to translate projected leaf area into actual leaf area. Common
methods for measuring leaf orientation are often tedious or inaccurate, which places
constraints on the LiDAR measurement technique. This work presents a new method
to simultaneously measure leaf orientation and leaf area within an arbitrarily defined
volume using terrestrial LiDAR data. The novelty of the method lies in the direct
measurement of the fraction of projected leaf area G from the LiDAR data which
is required to relate projected leaf area to total leaf area, and in the new way in
which radiation transfer theory was used to calculate leaf area from the LiDAR data.
The method was validated by comparing LiDAR-measured leaf area to 1) ‘synthetic’
or computer-generated LiDAR data where the exact area was known, and 2) direct
measurements of leaf area in the field using destructive sampling. Overall, agreement
between the LiDAR and reference measurements was very good, showing a normalized
root-mean-squared-error of about 15% for the synthetic tests, and 13% in the field.
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Table 1: List of primary symbols used throughout the

text

Symbol Description Units

A One-sided surface area m2

a

L

One-sided leaf area per unit volume (i.e., leaf

area density)

m�1

d Index of agreement (Willmott, 1981) -

G Fraction of leaf area projected in a given

direciton

-

N Total number of scan rays that traversed a

voxel without intersecting a leaf

-

~n

L

Unit vector normal to the leaf surface -

nRMSE Normalized root-mean-squared-error -

N

r

Total number of scan rays that traversed a

voxel

-

N

t

Total number of triangles in a voxel -

P Probability that a ray is not intercepted -

r Length of a segment along ray path m

~r Unit vector in the direction of radiation

propagation

t Parametric distance along ray path relative to

the scan origin

m

 Attenuation coe�cient m�1

✓ Ray zenith angle rad

' Ray azimuth angle rad

1. Introduction

With the continued improvement of high-performance computing technology, high-

resolution models are becoming an increasingly prevalent means for understanding

complex, multi-scale processes in the environment. Applications of such models include
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weather prediction (Skamarock et al., 2005; Kerr, 2012), understanding greenhouse gas

exchanges and their contributions to the global climate (Searchinger et al., 2008), and

urban design and planning (Fong et al., 2009; Wu et al., 2010). These environmental

models have seen radical improvements in their ability to represent fine-scale details

associated with various transport processes of interest. However, increasingly detailed

models inevitably require increasingly detailed measurements of model inputs. Among

the most important of these inputs is the accurate measurement and specification of

object geometry.

Within environmental models (e.g., Lindberg and Grimmond, 2011; Lemonsu et al.,

2012; Krayenho↵ et al., 2014; Bailey and Stoll, 2016), plants often create heterogeneous

geometry that is di�cult to specify. Since it is usually not feasible to represent individual

leaves in models, plant leaves are commonly represented statistically by specifying an

e↵ective volume of leaves with a given leaf area density (LAD) and probability density

function (p.d.f.) of leaf orientation (Ross, 1981; Bailey et al., 2014).

Recent environmental transport models are able to represent variability in LAD

and the leaf orientation p.d.f. over meter-scales or smaller (e.g., Sinoquet et al., 2001;

Olchev et al., 2009; Kobayashi et al., 2012; Bailey et al., 2014, 2016). However, obtaining

measurements of these model inputs at such fine scales is a formidable challenge.

Manual measurement is the most straightforward method for measuring the LAD and

leaf orientation p.d.f. Leaf area can be measured directly by removing all leaves in

a designated volume and summing their surface area (Jonckheere et al., 2004). The

leaf orientation p.d.f. can be populated using a compass and protractor to measure

the orientation of many leaves (Ross, 1981; Norman and Campbell, 1989). Finally, the

overall size and shape of a given plant can be directly measured, or inferred based on

its shadow.

While these direct methods provide a straightforward means of obtaining geometric

inputs for plant-related environmental models, they are typically far too time consuming

to provide data that describes meter-scale variability (Norman and Campbell, 1989),

which modern models can e↵ectively utilize. To provide more e�cient measurements

of geometric inputs, workers have attempted to use indirect methods that more rapidly

infer geometry. These methods include but are not limited to gap fraction analysis

(Norman and Campbell, 1989; Welles and Norman, 1991; Bréda, 2003), inclined point

quadrats (Warren Wilson, 1960; Caldwell et al., 1983), and spectral analysis of remotely

sensed data (Olchev et al., 2009; Jones and Vaughan, 2010). While these methods are

typically much more e�cient and less destructive than manual measurements, they all

make compromises between accuracy, e↵ort, and level of spatial description.

Terrestrial or ground-based LiDAR scanning is a relatively new measurement tech-

nology that shows much potential for rapidly providing sub-meter-scale measurements

of plant geometry. The LiDAR instrument is able to accurately measure the distance

to millions of points surrounding the scanner location, which has been successfully used

to measure leaf area contained within an arbitrary volume (Henning and Radtke, 2006;

Hosoi and Omasa, 2006; Rosell et al., 2009; Yang et al., 2013; Béland et al., 2014). By
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subdividing a plant into many sub-volumes, the method can resolve meter-scale vari-

ability in leaf area. As a byproduct, the method also specifies the size and shape of the

plant, since volumes outside of the plant will have a leaf area of zero (Béland et al.,

2014).

The accuracy and utility of terrestrial LiDAR measurement of leaf area has been

limited by several necessary assumptions. First, is that the sub-volumes of leaves for

which LAD is calculated must be su�ciently small that the amount of occluded or

hidden leaf area within a volume is minimal (Béland et al., 2014). Second, in order

to infer LAD, the leaf orientation distribution p.d.f. must be known, which means

that it must either be measured independently or a simplifying assumption must be

made. Performing such measurements has traditionally involved manual sampling of

leaf orientations to generate the p.d.f., which can be time consuming. To avoid the need

for collecting such measurements, it is common to assume that leaves are randomly

oriented, but such a leaf angle distribution is rarely present in nature (Pisek et al.,

2013). Bailey and Maha↵ee (2017) introduced a method that can directly estimate the

leaf orientation p.d.f. from LiDAR scanning, which has the potential to improve LiDAR

leaf area measurements.

The present work overcomes the above limitations associated with LiDAR leaf area

measurement by 1) developing new theory for LAD inversion consistent with radiation

transfer theory that reduces required theoretical assumptions, and 2) rapidly measuring

the leaf orientation p.d.f. directly from the LiDAR scan and coupling it with the

LAD inversion procedure. The resulting method provides a means for rapidly and

simultaneously measuring the leaf area and leaf orientation p.d.f. for an arbitrary volume

of leaves.

2. Materials and Methods

2.1. Terrestrial LiDAR scanning

Terrestrial or ground-based LiDAR scanners emit a very large number of concentrated

radiation pulses in the spherical space surrounding the scanner. In the event that

the pulses intersect an object, some fraction of the radiation is scattered back to the

scanner which is detected by an on-board sensor. LiDAR scanners use various techniques

to determine the distance to the object that was hit by the pulse, including ‘time-of-

flight’, which uses the time that it takes for the pulse to scatter and return to the

sensor to determine the distance. Other scanners analyze the spectral signature of the

scattered radiation to infer distance. Typical scans generate millions of ray-vegetation

intersection points in a timeframe of several minutes that give the three-dimensional

Cartesian coordinate to objects surrounding the scanner.
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2.2. Measurement methodology overview

The overall strategy used in this work to measure leaf area using LiDAR scans was to

invert the Beer-Lambert law for the attenuation coe�cient, which can be related to

the leaf area density. The Beer-Lambert law for the attenuation of radiation through a

participating medium can be written as (Modest, 2013)

P = exp (�r) , (1)

where P is the probability that a beam of radiation can travel a distance r without

being intercepted, and  is the attenuation coe�cient of the medium. For a medium

of leaves,  can be interpreted as the one-sided surface area of leaves projected in the

direction of radiation propagation per unit volume (Ross, 1981), or

 = a

L

G, (2)

where a
L

is the one-sided leaf area per unit volume (i.e., leaf area density, LAD), and G

is the fraction of leaf area projected in the direction of radiation propagation (i.e., the so-

called G-function; Ross, 1981). Note that LAD can be converted to total one-sided leaf

area within a voxel by multiplying a

L

by the voxel volume. The G-function ranges from

0 in the case of all leaves oriented parallel to the direction of propagation to 1 when all

leaves are projected in the direction of propagation. If leaves have no preferred direction

(randomly oriented), G = 0.5 regardless of the direction of propagation, meaning that

exactly half of the total leaf area is projected in any direction. An assumption of G = 0.5

is commonly used in the literature for simplicity, but in reality G is a strong function

of direction and location within plants (Pisek et al., 2013; Bailey and Maha↵ee, 2017),

and thus such an assumption was not made in this work.

Our goal is to apply Eq. 1 to an arbitrary volume or ‘voxel’ of leaves that has been

interrogated by a LiDAR scan (Fig. 1), and invert this equation to give a

L

. In order to

do so, we must develop a method to apply Eq. 1, which is only valid for a single ray on

average, to that of many rays traversing a given voxel with LAD of a
L

. Additionally,

we also must properly calculate P , G, and r in a manner consistent with the method.

2.3. Calculation of the G-function

Application of Eq. 1 along a ray path has the potential to yield , the projected leaf area

density in the direction of ray propagation ~r (Fig. 2). In order to separate the total leaf

area from , the fraction of total leaf area projected in the direction of ~r (denoted as G

or G-function) must be calculated.

Traditionally the average G-function for a volume of leaves is calculated by first

forming a p.d.f. of leaf orientation, and integrating the product of the p.d.f. and the dot

product of the ray direction and the leaf normal (~r ·~n
L

) over all possible leaf normals (see

Ross, 1981). Below, we present a method that bypasses the need to explicitly calculate

the leaf angle p.d.f., and instead calculates the average G-function directly from the

LiDAR data.
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Figure 1. Schematic sketch depicting a simplified LiDAR scan in two dimensions.
Rays originate from the scanner (filled black circle), which intersect a voxel containing
randomly oriented leaves (green bars). Beams that intersect a leaf within the volume
are coloured red, while beams that pass through the volume without intersecting any
leaves are coloured black. The total intersection length between the voxel and a ray of
infinite length is denoted by r

i

. For the example illustrated, the probability of no ray
intersection is P = 2

4 = 0.5.

Figure 2. Schematic of the spherical coordinate system used.
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Figure 3. Schematic sketch depicting the calculation of the projected area of a
triangle.

Leaf orientations can be measured using LiDAR data and the triangulation

algorithm developed by (Bailey and Maha↵ee, 2017). To summarize, adjacent ray-

leaf intersection points are connected to form triangles, from which leaf normals ~n

L

can be easily calculated (Fig. 3). The algorithm produces continuous triangles that

approximately reconstruct leaf surfaces. Each triangle is associated with three ray-leaf

intersection points that make up its vertices as shown in Fig. 3.

These triangles are used along with the following approach to calculate G. A unit

vector pointing in the direction of each of the three rays ~r making up the vertices of a

triangle is given by subtracting the (x, y, z) coordinate of the scan origin (i.e., location

of scanner) from the triangle vertex (and normalizing by the magnitude). Although ~r

varies slightly for each triangle vertex, it is assumed that ~r is equal across the whole

triangle given that the solid angle subtended by the triangle with respect to the scanner

is extremely small. Thus, each triangle is associated with one ray direction ~r. The

approximate fraction of the i

th triangle area A projected in the i

th ray direction ~r

i

is

given by

G

i

=
���~r

i

· ~n
L,i

���. (3)

The average G-function G for a voxel can be calculated by averaging G
i

over all triangles

within the voxel. However, it is critical that the proper weighting be applied to each G

i

value in the average. Firstly, G
i

should be weighted by the triangle area to avoid biasing

toward triangles with normals ~n
L,i

closer to parallel with ~r

i

(Bailey and Maha↵ee, 2017).

Secondly, G
i

should be weighted by sin ✓
i

to avoid biasing toward ray directions closer

to vertical (Bailey and Maha↵ee, 2017), where ✓
i

is the zenith angle of the ray direction

(i.e., cos�1
r

z

, where r

z

is the vertical component of ~r). With these considerations in
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mind, the average G-function for a volume is given by

G = N

t

8
>><

>>:

NtP
i=1

G

i

A

i

sin ✓
i

✓
NtP
i=1

A

i

◆✓
NtP
i=1

sin ✓
i

◆

9
>>=

>>;
, (4)

where N

t

is the total number of triangles in the voxel.

2.4. Calculation intersection probability P

The remaining terms in Eq. 1 to be calculated are the probability that a ray is not

intercepted in the volume P , and the volume traversal distance r. From a given ray it

can be directly determined whether a leaf-ray intersection occurs after some distance r,

which gives a binary value. To form a probability of intersection, the ensemble of all

rays traversing a given voxel can be considered. The average probability that a ray will

not intersect a leaf within a voxel can be estimated by the ratio of the number of rays

traversing the voxel with no intersection (Fig. 1, black rays), to the total number of rays

traversing the voxel (Fig. 1, all rays). Because of the scanning pattern of the LiDAR,

one must avoid biasing toward rays with small zenith angles by weighting each ray by

sin ✓
i

. Thus, the probability of a ray traversing a voxel without intersecting a leaf, P ,

is given by

P =

NP
j=1

sin ✓
j

NrP
k=1

sin ✓
k

, (5)

where the sequence j = 1,N corresponds to rays that traversed the voxel without

intersecting a leaf, the sequence k = 1, N
r

corresponds to all rays traversing the voxel.

To determine whether a given ray intersects a voxel, methods commonly used in

ray-tracing can be used. Su↵ern (2007) provides an excellent description of ray-voxel

intersection testing for axis-aligned voxels, along with example C++ code. For non-axis

aligned voxels, an inverse transformation can be applied to the ray, which is also detailed

in Su↵ern (2007).

The ray-voxel intersection tests and calculation of P proceeds as follows:

(i) For a given LiDAR ray direction ~r

i

, calculate the parametric distance t along the

ray path between the scanner and the ray intersection point (if the ray intersected

the sky, t ! 1).

(ii) Intersect the ray direction and all leaf voxels. If the ray intersects a voxel, calculate

the parametric t-distance to the point where the ray enters the voxel (t0) and the

point where the ray exits the voxel (t1).

• If t < t0, the ray intersected a leaf before entering the voxel (ignore the

intersection).
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• If t > t1, the ray passed through the voxel without intersecting a leaf. Calculate

sin ✓
i

(for weighting) and the intersection distance t1 � t0 = r (to be used in

Sect. 2.5).

• If t � t0 and t  t1, the ray intersection occurred with in the voxel. Calculate

sin ✓
i

(for weighting) and the intersection distance t1 � t0 = r (to be used in

Sect. 2.5).

(iii) Given the previous intersection tests, Eq. 5 can be used to calculate P .

For many voxels and a high number of scan points (e.g., millions), these ray-

voxel intersection tests can become quite computationally expensive. To accelerate

computations, we performed ray-voxel intersection tests on the machine’s graphics

processing unit (GPU). The algorithms were implemented using NVIDIA’s compute

unified device architecture (CUDA) framework. The intersection tests are what may

be termed ‘embarrassingly parallel’, meaning that rays are completely independent. In

our implementation, each ray corresponded to a single CUDA thread, which performed

intersection tests for each voxel. In the event of an intersection, sin ✓
i

was accumulated

in one of two bu↵ers (depending on whether the intersection was inside or beyond the

voxel) using an atomic addition operation. Using this approach, ray-voxel intersection

tests for ⇠100 million rays (a typical dataset size, see below) took on the order of a few

seconds to run.

2.5. Inversion to calculate leaf area

2.5.1. Point quadrat analogy method: The typical method for calculating a

L

based on

estimations of P , G, and r is to use an analogy to inclined point quadrat sampling

(Radtke and Bolstad, 2001; Hosoi and Omasa, 2006; Béland et al., 2011). Using this

analogy, one can write

P = 1� a

L

rG, (6)

which can be solved algebraically for a
L

a

L

=
1� P

rG

. (7)

It is known that this approach is limited by the assumption that there are no occluded

leaves within a given voxel, or that a probe extending through the voxel is most likely

to only intersect one leaf (Béland et al., 2014). This is because a ray can only intersect

a single leaf, whereas a true point quadrat can continue on and intersect multiple leaves.

Thus, most previous LiDAR measurements of leaf area have been limited to relatively

small voxels (e.g., Radtke and Bolstad, 2001; Hosoi and Omasa, 2006; Béland et al.,

2011, 2014).
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2.5.2. Beer’s law inversion method: As noted previously, the use of Eq. 1 to calculate

a

L

overcomes many of the limitations associated with the ‘point quadrat’ approach

described in Sect. 2.5.1. Although for a single ray Eq. 1 represents a scalar equation,

this equation applied to an ensemble of rays intersecting a volume is a vector equation.

Some type of aggregation or averaging must be applied to allow for inversion. The

simplest of which is the following

P = exp
�
�a

L

Gr

�
, (8)

where, here r is the average ray-voxel intersection distance for all rays passing through

a given volume. This equation can be solved algebraically for a
L

a

L

=
�lnP

rG

. (9)

Note that even for rays that intersected leaves within a voxel, the traversal distance r

should be the total distance from voxel entrance to exit as calculated in the previous

section (i.e., r = t1 � t0). This is because Eq. 8 should be interpreted as follows: P is

the probability of a ray traversing a distance of r through a projected leaf area density

of a
L

G without intersecting a leaf.

If P is near 1, such as when the voxel size or leaf area is small, Eq. 9 is nearly the

same as Eq. 7. Equation 7 should always give a lower value of a
L

than Eq. 9 since 1-P

is always less than �lnP given that 0  P  1.

Although Eq. 8 is a practical way of aggregating all rays intersecting a voxel, the

averaging methodology presents problems if r varies substantially over a given voxel. In

this case, r should be exponentially weighted in terms of the average, i.e.,

P = exp
�
�a

L

Gr

�
=

1

N

r

NrX

k=1

exp
�
�a

L

Gr

k

�
, (10)

This di�culty with this equation is that an explicit solution for a

L

is not possible,

and thus an iterative solution is required. Any number of standard iterative equation

solvers could be used for this task (e.g., the secant method, which was used in our

implementation; Press et al., 2007), each of which essentially involves substituting

‘guesses’ for a
L

into Eq. 10 until the equation balances.

It is expected that Eq. 8 will always give a smaller value of a
L

than Eq. 10, since

the average of r in Eq. 8 biases toward larger values of r
i

. Both averaging methodologies

will be tested in the following section.

3. Validation and Discussion

3.1. Synthetic scan data

Validating LiDAR measurements in the field is a considerable challenge. Firstly,

collecting manual measurements for comparison is very time consuming and requires

destructive measurements, which limits the number of replicate experiments that can
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be performed. Secondly, there are numerous sources of compounding errors, making

it impossible to accurately separate errors in the LiDAR measurements and manual

measurements. Thus, there is no ‘gold standard’ against which to compare. In an

attempt to remedy these di�culties, we present a novel validation technique in which we

use ‘synthetic’ or computer-generated LiDAR data that replicates actual LiDAR scans

that would be performed in the field. The advantage of using synthetic data, is that

we know the exact geometry being scanned, which means that all errors lie in the data

processing algorithm. Clearly, the geometry is artificial and does not represent reality,

but it is a useful first check before performing validation against field data (Sect. 3.2).

The synthetic scanning methodology involved launching simulated rays from a given

point and intersecting them with virtual leaves of known orientation and area. Circular

disks were chosen as a model for actual leaves because simple ray-object intersection

tests could be performed (cf. Su↵ern, 2007). Rays were launched in the same pattern

as is done by the LiDAR instrument described above, which were intersected with each

circular disk to determine the closest hit point (or that no hit occurred). The disk area

density was then calculated from the data in the manner described above.

A 1⇥1⇥1 m3 volume of 10 cm diameter disks was considered, which was 3 m away

from the simulated scanner and situated on the ground (Fig. 4). The scanner location

was 0.5 m above the ground. Disks were inserted into the volume with a uniform random

position. The elevation and azimuthal angles of the disks were chosen by also drawing

from a uniform distribution. A uniform distribution was chosen so that equal weights

are given to all orientations to avoid favoring certain orientations. Cases were simulated

that had 33, 43, 53, and 63 disks in the volume. Given the size of the volume (1⇥ 1⇥ 1

m3) and the area of the disks (⇡(0.05)2 m2), the one-sided area density of the cases were

0.021, 0.50, 0.98, and 1.70 m2/m3. Since the random component introduces variation

for each realization, 20 independent realizations were generated for each disk density.

The scan density was chosen such that it was the same as the field scans described below

in Sect. 3.2. As in Bailey and Maha↵ee (2017), the triangulation parameter L
max

was

chosen to be 0.05 m throughout this paper.

3.1.1. G-function Box-and-whisker plots are shown in Fig. 5, which give the normalized

error in the synthetic LiDAR measurement of G for the four densities considered. The

average error in the prediction of G was relatively consistent for the range of densities

considered, with the average error across all realizations and densities being about a 14%

over prediction. It is expected that the method will slightly over predict G, given that

disks with normals nearly perpendicular to the ray path may not be fully triangulated.

As the disk density increases, the variance between individual realizations tends to

decrease, which is likely due to the fact that with a su�cient number of disks the

random influence becomes less significant. When the number of disks is low, relatively

rare cases when the triangulation fails may have a significant impact on G. Or there

may be cases in which we are ‘lucky’ and the triangulation is almost always successful.

For a high number of disks, this random variation decreases, and triangulation failure
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Figure 4. Visual depiction of the simulated scan with 64 circular disks. The red
sphere denotes the scanner location, and the gray shaded cube denotes the interrogation
volume. Disks are visualized using the hit point triangulation.

Figure 5. Box-and-whisker plots of normalized error in the predicted G-function for
synthetic LiDAR data. The normalized error is defined as (G

meas

�G
exact

)/(G
exact

),
where G

meas

and G
exact

are respectively the measured and exact average G-functions.
The red horizontal line denotes the median value of 20 realizations, the box denotes
±1 standard deviation, and dashed brackets encompass the full range of values.

is more consistent and predictable.

3.1.2. Leaf Area Box-and-whisker plots are shown in Fig. 6, which give the normalized

error in the synthetic LiDAR measurement of disk area. For all disk densities considered

in this study, the radiative transfer theory approach (Eq. 10) consistently under

predicted the disk density by roughly 15% on average. This under prediction error

is roughly the same as the over prediction error in G. An over prediction in G is likely

to result in an under prediction in disk area, since the two are inversely related. For

low disk area, G and disk area are approximately inversely proportional, and thus it

is probable that most of the error in the disk area prediction is caused by error in the

prediction of G.

For both the point quadrat analogy (Eq. 6) and simple averaging scheme (Eq. 8),

the normalized error continuously increased as the disk density was increased. For the
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Figure 6. Box-and-whisker plots of normalized error in predicted leaf area for
synthetic LiDAR data. The normalized error is defined as (A

meas

�A
exact

)/(A
exact

),
where A

meas

and A
exact

are respectively the measured and exact disk areas. Di↵erent
subplots correspond to di↵erent methodologies for calculating leaf area: (a) Eq. 6,
(b) Eq. 8, and (c) Eq. 10. The red horizontal line denotes the median value of 20
realizations, the box denotes ±1 standard deviation, and dashed brackets encompass
the full range of values.

point quadrat analogy, the negative bias was as large as 35% on average for the highest

disk density. These tests confirm the expected result that Eqs. 6 and 8 tend to under

predict leaf area compared to Eq. 10, an e↵ect that becomes increasingly significant as

disk (or leaf) area density increases.

3.2. Experimental data

To test the method for measuring leaf orientation and leaf area in the field, a validation

experiment was conducted that focused on an isolated 6 m tall broad-leafed black

cottonwood tree (Poplus balsamifera) in Oregon (44� 34’ 11.11” N, 123� 14’ 47.53”

W). This tree was chosen because it represented the range of possible leaf inclination

classes, it has relatively dense leaves (a challenge for LiDAR measurement), and because

it was small enough to allow for the collection of direct measurements without the use

of special equipment such as sca↵olding.

In this study, the Focus3D X 330 (FARO Technologies, Lake Mary, FL, USA)

portable laser scanner was used to map the structure of vegetation. The scanner emits
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laser pulses with a wavelength of 1550 nm in a uniformly gridded pattern over a field

of view of 300� in the vertical and 360� in the horizontal (i.e., ✓ = 0 to 150� and ' =

0 to 360�, see Fig. 2). The beam diameter at exit is roughly 2.25 mm and diverges at

a typical half angle of about 0.011�. Upon intersection with an object (range from 0.6

m up to 330 m), the three-dimensional coordinates of the intersection are calculated

and recorded, with a typical distance accuracy of ±2 mm. In the event that the beam

intersects multiple objects (because of its non-negligibly small diameter), the scanner

records only one distance measurement, which is e↵ectively a weighted average of the

distance to all objects that were hit. The scanner also collects a large number of color

digital photographs during the scan. This allows a mapping of the 3D hit point onto

the 2D photographs, which gives an RGB color value associated with each hit point.

In the experiment, vegetation was first scanned with the LiDAR at a density

of 3415⇥8120 points (zenith⇥azimuth), which represents a moderate density for this

instrument (this is 1/5 of the highest possible density). The scanner was placed

approximately 2 m from the nearest vegetation, such that it was as close as possible

to the tree while still having a direct line of sight to the majority of the upper crown

and being within the minimum range of the instrument (0.6 m). At this scan density

and range, adjacent hit points had a spacing that were approximately in the range of

1mm to 10 mm. The characteristic leaf dimension was on the order of 10 cm, with some

leaves as large as 15-20 cm. A total of four scans were performed with the scanner at

each of the four cardinal directions (see Fig. 7b), which took roughly 15 minutes each.

To combine the four scans, they were first co-registered to a common coordinate system

using the on-board GPS and inclinometer and using common objects in the scene, then

the points were combined in the leaf area calculations by simply adding additional scans

to the running sums in Eqs. 8 and 10.

Vegetation was divided into 12 discrete zones of size 2 ⇥ 2 ⇥ 1.1 m3, which were

marked using high visibility tape. The tree was divided into three vertical levels, with

four azimuthal zones at each level that faced the scan locations (Fig. 7). The first vertical

level began at 0.76 m from the ground to avoid interference from grass and weeds. This

left approximately 2 m of vegetation at the top of the tree that was not sampled because

it could not be easily reached using available equipment. For future reference, volumes

were numbered starting from North and moving clockwise, with voxels 1-4 being closest

to the ground and voxels 9-12 furthest from the ground. By combining the four scans,

this ensured that all volumes had a very large number of hit points, which avoided the

need to establish a hit count threshold (Béland et al., 2014).

To reduce e↵ort, destructive measurements were collected for leaf area in only 6 of

the 12 zones (zones 1, 3, 6, 8, 9, 11), which were chosen in an alternating pattern. Leaves

were stripped and bagged according to zone, then immediately transported back to the

lab and refrigerated to minimize changes in shape/area. An LI-3100C area meter (LI-

COR, Lincoln, NE, USA) was used to measure the total leaf area for each zone. All leaf

area measurements were performed within a week of leaf stripping, which meant that

changes in leaf area before measurement was minimal. The accuracy of the LI-3100C
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Figure 7. North-facing view of LiDAR scan point cloud. Tree is divided into 12 zones,
and intersection points are coloured according to the voxel in which they reside (points
falling outside of all voxels are coloured grey). Each of the scan locations are denoted
by red spheres (Northern sphere is obstructed).

instrument is expected to be roughly ±5%. It is also important to note that the area of

woody plant material was not included in the direct measurements, although the woody

area is technically included in the LiDAR measurement. For the tree considered in this

study, it seemed reasonable to neglect the contributions of woody material, although

they could be included using, e.g., the method of Béland et al. (2014) if necessary.

Agreement between manual and LiDAR measurements was quantified using three

statistical parameters: the index of agreement d, the normalized root-mean-squared-

error (nRMSE), and mean bias. The index of agreement was used in lieu of more

traditional indices (e.g., coe�cient of determination R

2, Pearson correlation coe�cient

r) because it is expected to be a more robust indicator of agreement between two

variables (Willmott, 1981, 1982), and was calculated as

d = 1�

NP
i=1

(M
i

� L

i

)2

NP
i=1

⇣���M
i

�M

���+
���L

i

�M

���
⌘2

, (11)

whereM
i

and L

i

are respectively the ith manual and LiDAR measurements, with N total

measurements (here, N = 6), and an overbar denotes an average over all measurements.



Measurement of leaf area and leaf orientation using terrestrial LiDAR data 16

The nRMSE and mean bias are respectively calculated as

nRMSE =


1
N

NP
i=1

(M
i

� L

i

)2
�1/2

1
N

NP
i=1

M

i

, (12)

and

bias =
1

N

NX

i=1

(L
i

�M

i

) . (13)

3.2.1. Leaf area distribution Figure 8 shows a comparison between the manual and

LiDAR measurements of leaf area for the six zones considered in the experiment. Table 2

presents the data in tabular form, and gives corresponding average parameter values

used to calculate a

L

. Overall, agreement was very good, with the calculated index of

agreement having a value of 98% and nRMSE having a value of 13%. There was a slight

positive bias in the LiDAR measurement, with the LiDAR giving a leaf area that was on

average 0.3 m2 larger than that of the manual measurement. Given the available data,

we cannot conclude that there is in fact a true bias in the LiDAR measurement, as there

are numerous sources of error in the manual measurements. There are small sources of

error in defining the tree zones in the field, stripping and transporting the leaves, and

in the optical leaf area measurement device. Given the results of Sect. 3.1, one would

expect, if anything, a negative bias in the LiDAR measurement. Since the overall bias is

quite small, we speculate that the error between the LiDAR and manual measurements is

likely within the error bounds for either the LiDAR or manual measurement techniques

themselves, although this cannot be conclusively demonstrated given the available data.

Equations 6 (point quadrat theory) and 8 (simplified averaging scheme) were also

used to calculate the leaf area from the LiDAR data (Fig. 9, Table 3). Both approaches

consistently resulted in lower predictions of leaf area compared to Eq. 10, with the point

quadrat approach always giving the lowest value. It is also notable that the di↵erence

in the prediction of Eq. 6 and Eq. 10 tends to increase as leaf area density is increased.

Both of these results are expected for the reasons discussed above in Sect. 2.5, and based

on the results shown in Sect. 3.1.

Given the error metrics listed in Table 3, all methods perform very well and

di↵erences in error metrics are minimal. Based purely on the values in Table 3, one

may be led to conclude that Eq. 8 is preferable and gives the best performance. Given

the theoretical arguments in Sect. 2.5 and the synthetic tests in Sect. 3.1, we find this

conclusion to be questionable and suspect that this is partially due to a slight over

prediction by the LiDAR measurement (due to the combined error of all measurements

involved), which is coincidentally cancelled to some degree by the consistent negative

bias introduced by Eqns. 6 and 8.
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Figure 8. Comparison of the manual leaf area measurements with the LiDAR
measurements. Points correspond to the measured leaf area within a voxel and are
labeled by the voxel number. The solid diagonal line corresponds to 1:1 or perfect
agreement. Agreement is quantified by the index of agreement (d), the normalized root-
mean squared error (nRMSE), and mean bias. Note that for the LiDAR measurement
leaf area is the product of a

L

and the volume of the voxel.

Voxel P r G LiDAR

leaf area

(m2)

manual

leaf area

(m2)

1 0.72 1.15 0.20 6.76 6.29

4 0.74 1.05 0.19 6.96 6.09

6 0.90 1.16 0.24 1.68 1.66

7 0.81 1.11 0.23 3.84 4.12

9 0.78 1.02 0.33 3.31 2.57

12 0.79 1.06 0.31 3.16 3.20

Table 2. Parameter values associated with leaf area calculations for experimental
data validation study. Note that leaf area can be converted to leaf area density a

L

by
dividing by the voxel volume (4.4 m3).
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Figure 9. Comparison of the manual leaf area measurements with the LiDAR
measurements of leaf area for three di↵erent methods of inversion used to calculate
leaf area.

Method d nRMSE bias (m2)

Eq. 6 0.97 0.14 -0.37

Eq. 8 0.99 0.09 0.13

Eq. 10 0.98 0.13 0.30

Table 3. Agreement metrics between three di↵erent methods for inversion of leaf
area from LiDAR data, which correspond to the points plotted in Fig. 9. Agreement
is quantified by the index of agreement (d), the normalized root-mean-squared-error
(nRMSE), and mean bias.

4. Summary

A method was developed that uses terrestrial LiDAR scanning data to rapidly and

simultaneously measure the leaf area and leaf orientation p.d.f. for an arbitrary volume

of leaves. The method uses the triangulation algorithm of Bailey and Maha↵ee (2017)

to calculate leaf orientations from the scan data, and uses a new technique to directly

calculate the fraction of projected leaf area G. The formulation used to calculate leaf

area from LiDAR data di↵ers from previous approaches in that it is based on more

generalized radiation transfer theory rather than ‘point quadrat’ theory, which is the

method commonly used in previous work (e.g., Radtke and Bolstad, 2001; Hosoi and

Omasa, 2006; Béland et al., 2011).

The measurement technique was validated by comparing LiDAR-measured leaf area
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against 1) ‘synthetic’ or computer-generated LiDAR data, and 2) to manually measured

leaf area in the field. Agreement between LiDAR and reference measurements was very

good. The average normalized root-mean-squared-error for the synthetic data for all

densities considered was 15%, and was 13% for the measurements in the field. Leaf

area was also calculated from the LiDAR data using ‘point quadrat’ theory, which

consistently predicted lower leaf area compared to when radiation transfer theory was

used, an under prediction that continuously increased with increasing leaf area density.

For the synthetic data this under prediction was as large as 35% on average for the

highest leaf density considered.
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