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Abstract 

The approximate number system (ANS) is frequently 
considered to be a foundation for the acquisition of uniquely 
human symbolic numerical capabilities.  However, the 
mechanism by which the ANS influences symbolic number 
representations and mathematical thought remains poorly 
understood. Here, we tested the relation between ANS acuity, 
cardinal number knowledge, approximate arithmetic, and 
symbolic math achievement in a one-year longitudinal 
investigation of preschoolers’ early math abilities. Our results 
suggest that cardinal number knowledge is an intermediary 
factor in the relation between ANS acuity and symbolic math 
achievement. Furthermore, approximate arithmetic 
performance contributes unique variance to math achievement 
that is not accounted for by ANS acuity. These findings 
suggest that there are multiple routes by which the ANS 
influences math achievement. Therefore, interventions 
targeting both the precision and manipulability of the ANS 
may prove to be more beneficial for improving mathematical 
reasoning compared to interventions targeting only one of 
these factors. 

Keywords: approximate number representations; numerical 
cognition; math cognition 

Introduction 
In our information-driven society, math ability is essential 
for success, particularly in the STEM fields that drive the 
modern economy. However, within the population there 
exists large variance in math ability, and low math 
proficiency is associated with poor health and occupational 
outcomes (e.g., Parsons & Bynner, 2006). Critically, math 
ability when a child first enters schooling is the strongest 
predictor of later math and overall academic achievement 
(e.g., Duncan, Dowsett, & Claessens, 2007). Many 
cognitive and socioeconomic factors are known to 
contribute to individual differences in math achievement 
(e.g., Bull & Scerif, 2001; Jordan, Kaplan, Ramineni, & 
Locuniak, 2009; Klibanoff, Levine, Huttenlocher, 
Vasilyeva, & Hedges, 2006). One of these factors is an 
evolutionarily ancient system for representing approximate 
quantities. Although educated humans typically think about 
number using language, we also possess a system for 
representing number in an approximate, nonsymbolic 
fashion. This system, termed the approximate number 
system (ANS), is not dependent on language or formal 
schooling and is present in a wide variety of nonhuman 

species (e.g., Dehaene, 1997; Gallistel & Gelman, 1992; 
Hubbard et al., 2008).  

The ANS is frequently hypothesized to be a cognitive 
foundation for symbolic math abilities. Lending support to 
this view is the pervasive finding that the acuity of the ANS, 
typically measured by an individual’s ability to compare 
two arrays of dots, correlates with symbolic math 
achievement throughout the lifespan (see Chen & Li, 2013 
for review, including failures to find this relation). 
Importantly, ANS acuity prior to the beginning of formal 
math instruction is predictive of later math achievement 
(Libertus, Feigenson, & Halberda, 2013; Mazzocco, 
Feigenson, & Halberda, 2011; Starr, Libertus, & Brannon, 
2013; vanMarle, Chu, Li, & Geary, 2014). These studies 
suggest that the precision of approximate number 
representations may contribute to children’s acquisition of 
symbolic math principles and influence symbolic math 
performance throughout the lifespan. 

Despite the many studies documenting a link between 
ANS acuity and symbolic math, the mechanism underlying 
this relation remains unclear. One possibility is that the 
precision of the ANS influences children’s acquisition of 
symbolic number representations. Before children can begin 
learning symbolic arithmetic and other mathematical 
operations, they must first learn the meaning of number 
words and Arabic numerals.  While there is debate over the 
nature of the nonverbal representations that first ground the 
meaning of number words (e.g., Carey, 2004; Gallistel & 
Gelman, 1992), it is clear that sometime in early childhood, 
children map number words onto approximate number 
representations (Siegler & Opfer, 2003).  Perhaps children 
with more precise internal representations of numerical 
quantities are at an advantage for forming these mappings, 
which enables them to master the count list and counting 
principles earlier than their peers with less precise internal 
quantity representations (Starr et al., 2013; vanMarle et al., 
2014). In support of this view, preschoolers’ competence 
with numerical symbols, and particularly their 
understanding of cardinality, has been shown to mediate the 
relation between their ANS acuity and math achievement 
(vanMarle et al., 2014). Thus, the precision of the ANS may 
influence the rate and fidelity with which children learn the 
meaning of numerical symbols. Under this scenario, the 
ANS may influence math achievement indirectly through its 
connection to symbolic number representations – the ANS 
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may be influential for grounding the meaning of numerical 
symbols, but may not directly contribute to symbolic 
mathematics (see also Lyons & Beilock, 2011). 

A second hypothesis is that the manipulability of ANS 
representations serves as an intuitive basis for symbolic 
arithmetic (Barth, La Mont, Lipton, & Spelke, 2005). The 
ANS enables human infants (McCrink & Wynn, 2004), 
preschoolers (Barth et al., 2005; Gilmore, McCarthy, & 
Spelke, 2010), and monkeys (Cantlon & Brannon, 2007) to 
perform approximate arithmetic operations without the use 
of symbols. Therefore, the ANS supports both quantity 
representation and quantity manipulation. Children’s 
approximate arithmetic performance at the beginning of 
kindergarten is predictive of their symbolic math 
achievement at the end of the academic year (Gilmore et al., 
2010). In addition, approximate arithmetic performance has 
been found to mediate the relation between ANS acuity and 
symbolic math achievement in grade-school children 
(Pinheiro-Chagas et al., 2014). Furthermore, training 
nonsymbolic arithmetic in adults leads to improvements in 
their symbolic arithmetic performance (Park & Brannon, 
2013; 2014). Thus, it may not be the precision of ANS 
representations but instead the manipulability of ANS 
representations that influences symbolic math achievement. 
As a result, children who are more adept at manipulating 
approximate quantities in arithmetic operations may also be 
more adept at symbolic arithmetic because of the overlap in 
cognitive processes required by both forms of arithmetic.  

Critically, the above hypotheses need not be mutually 
exclusive – it is possible that the ANS contributes to 
symbolic math through multiple routes, including other 
possibilities not listed above. For example, the ANS may 
also influence symbolic math abilities through its 
representation of numerical order (Lyons & Beilock, 2011), 
or it may serve as an on-line error detection system, 
enabling erroneous answers to be rejected in favor of more 
plausible solutions (Lourenco, Bonny, Fernandez, & Rao, 
2012). In addition, the relation between the ANS and 
symbolic math is not necessarily static, and it is possible 
that the ANS may contribute to symbolic math abilities in 
different ways throughout development depending on the 
child’s current level of math knowledge. 

In the present research, we tested two possible pathways 
through which the ANS may influence math abilities in a 
longitudinal investigation of preschoolers’ math 
achievement. Children were tested at 3.5 years of age with a 
nonsymbolic numerical comparison task, cardinal number 
knowledge task, symbolic math test, and general IQ test. 
One year later, when the same children were approximately 
4.5 years of age, we tested them with a nonsymbolic 
numerical comparison task, nonsymbolic approximate 
arithmetic task, symbolic math test, and general IQ test. 
Here we report how each of these measures contributes to 
math achievement at 4.5 years of age, with a specific focus 
on whether both the precision and manipulability of the 
ANS influence math ability via number word knowledge 
and approximate arithmetic. 

Methods 

Participants 
Data from 97 children were included in the 3.5-year 
analyses (mean age: 3.61 years, range: 3.50-3.89 years, 49 
female). Data from 161 children were included in the 4.5-
year analyses (mean age: 4.56 years, range: 4.48-4.85 years, 
86 female). Data from an additional 56 children at the 3.5-
year visit and 10 children at the 4.5-year visit were excluded 
due to missing data points. Note that although the same 
children were tested at 3.5 and 4.5 years of age, a greater 
proportion of children had missing data points at 3.5 years, 
resulting in a smaller sample size for analyses that involved 
both the 3.5- and 4.5-year visit compared to analyses that 
involved only the 4.5-year visit. The most common cause of 
missing data points was an inability of our model to settle 
on a value for w, and this affected a greater number of 3.5-
year-olds than 4.5-year-olds. 

Procedure 
Children came into the lab for two visits each lasting less 
than one hour at 3.5 and 4.5 years of age. At the first 3.5-
year visit, children completed a symbolic math assessment 
and one session of the nonsymbolic number comparison 
task. During the second visit, 3.5-year-olds completed an IQ 
assessment, the counting knowledge task, and a second 
session of the nonsymbolic number comparison task. The 
order of the tasks within each session was counterbalanced 
across participants. At 4.5 years, during the first visit 
children completed the symbolic math assessment, and one 
session of the nonsymbolic number comparison task. During 
the second visit, 4.5-year-olds completed the IQ assessment, 
a second session of the nonsymbolic number comparison 
task, and the nonsymbolic approximate arithmetic task. The 
counting knowledge task was only administered at 3.5 years 
because the majority of 4.5-year-olds perform at ceiling on 
this task. The approximate arithmetic task was administered 
only at 4.5 years because 3.5-year-olds were unable to 
successfully perform the task. At each visit, parents gave 
written consent to a protocol approved by the local 
Institutional Review Board and were compensated 
monetarily and with a small gift for the child. 
 
Nonsymbolic Numerical Comparison Task On each trial, 
a touchscreen computer displayed two bounded boxes (8 x 
9.5 cm) containing arrays of dots. Children were instructed 
to touch the box that contained more dots and to make this 
choice without counting. Arrays contained between 4 and 14 
dots, and the numerical ratio between the arrays was 1:2, 
2:3, 3:4, or 6:7. To control for non-numerical perceptual 
cues, the parameters of the arrays varied such that the 
smaller and larger numerical array each had the larger 
cumulative surface area on 50% of trials. All of the dots 
within a single array were homogenous in element size and 
color, and the color of each array varied randomly from trial 
to trial. Differential audio-visual feedback was provided 
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after each trial, and children received a small sticker for 
each correct response to keep them engaged. Children 
performed practice trials until they made three consecutive 
correct responses or completed a maximum of ten trials. 
Children performed 60 test trials in each test session for a 
total of 120 trials each time point. 

To estimate each child’s ANS acuity, we used a 
psychophysical modeling technique (e.g., Halberda & 
Feigenson, 2008; Piazza et al., 2010) to calculate a Weber 
fraction (w) based on performance in the nonsymbolic 
numerical comparison task. The resulting value of w 
represents the noise in each participant’s internal ANS 
representations, such that lower values of w correspond to 
less noise (i.e. higher ANS acuity). 
 
Nonsymbolic Approximate Addition Task On each trial, 
children viewed an animation that consisted of an array of 
dots moving behind an occluder box, followed by a second 
array moving behind the same occluder. This animated 
arithmetic sequence lasted a total of 2000 ms. Children then 
saw two boxes containing arrays of dots and were instructed 
to touch the array that contained the same number of dots as 
had moved behind the occluder box. Answer choices 
remained on the screen until a decision was made. Correct 
and incorrect answer choices differed by a 1:2 or 1:4 ratio, 
and all choice arrays contained 2, 4, or 8 dots. Individual dot 
size varied across arrays but was homogenous within each 
array. Differential audiovisual feedback was provided after 
each trial, and children were rewarded with a small sticker 
for correct responses. Children performed practice trials 
until they made three consecutive correct responses or 
completed a maximum of ten trials. Children then 
completed a total of 42 test trials. 
 
Counting Knowledge Task This task was modeled after 
the Give-a-Number task (Wynn, 1992). The experimenter 
introduced the child to a dinosaur puppet and asked the 
child to give the dinosaur a certain number of fish by 
placing them on a plate in front of the puppet. If the child 
provided the correct number of fish, the trials progressed in 
the order 1-3-5-6-6. If the child provided an incorrect 
number of fish on any trial, the child was asked for N-1 fish. 
The trials proceeded until the child answered correctly at 
least twice for N and failed at least twice for N+1, or until 
the child successfully provided six fish twice. The child’s 
score was equal to this final value of N. 
 
Standardized Assessments Children’s mathematical ability 
was assessed with the Test of Early Mathematics Ability 
(TEMA-3) (Ginsburg & Baroody, 2003), which consists of 
a series of verbally administered questions that assess age-
appropriate counting ability, number-comparison facility, 
numeral literacy, and basic calculation skills. To assess 
general intelligence, children completed two verbal and two 
nonverbal subtests of the Reynolds Intellectual Assessment 
Scales (RIAS) (Reynolds & Kamphaus, 2003). A composite 
IQ score was calculated for each child. 

Results 
The first series of analyses examined the relation between 
ANS acuity, as indexed by w, counting knowledge, and 
future symbolic math achievement. First we confirmed that 
ANS acuity at 3.5 years predicted symbolic math 
achievement one year later at 4.5 years after controlling for 
IQ (Figure 1). We performed a linear regression analysis 
with w and IQ at 3.5 years entered as possible predictors of 
math achievement at 4.5 years. Both w and IQ emerged as 
significant predictors of math achievement (Table 1). In a 
second regression model, we added counting knowledge as 
an additional predictor. Consistent with the hypothesis that 
counting knowledge may mediate the relation between w 
and math achievement, when we added counting knowledge 
to the model its contribution to TEMA was significant, 
whereas w was no longer a significant predictor. In addition, 
this model captured a larger proportion of variance than the 
model without counting knowledge (F = 22.103, p < .001). 
Further, when counting knowledge and IQ were used to 
predict TEMA, the residuals did not account for significant 
variation in w (F(1, 82) = 2.998, p = .09). This suggests that 
ANS acuity is not directly impacting math performance but 
instead may be acting via its influence on counting 
proficiency.  
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Figure 1. Scatterplots illustrating the relation between w at 
3.5 years and math achievement at 4.5 years controlling for 
IQ (left) and between counting knowledge at 3.5 years and 

math achievement at 4.5 years controlling for both w and IQ 
(right). 

 
Table 1: Regression models predicting math achievement 

at 4.5 years using measures collected at 3.5 years. 
 

 
 

 Model 1 Model 2 
R2 .108 

F(2, 81) = 6.00 
p < .004 

.292 
F-statistics F(3, 80) = 12.41 
p-statistics p < .001 
     
Predictor βAdjusted p βAdjusted p 
ANS Acuity -.245 .024 -.170 .079 
IQ .216 .045 .097 .322 
Cardinal 
knowledge 

-- -- .460 < .001 
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The next series of analyses examined the relation between 
w, approximate arithmetic performance, and symbolic math 
achievement all at 4.5 years of age (Figure 2). We began by 
performing a linear regression analysis to confirm that w 
predicts math performance after controlling for IQ (Table 
2). In the next regression model, we added approximate 
arithmetic performance as another possible predictor. In this 
model, all predictors contributed significant unique 
variance, and this model explained significantly more 
variance in math ability than the model without approximate 
arithmetic (F = 9.438, p = .003). However, when 
approximate arithmetic performance and IQ were regressed 
on symbolic math achievement, these residuals were 
significantly correlated with w (F(1, 141) = 4.674, p = .03). 
Therefore, it appears that approximate arithmetic and ANS 
acuity each contribute unique variance to symbolic math 
performance at 4.5 years of age.  
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Figure 2. Scatterplots illustrating the relation between w and 
math achievement at 4.5 years controlling for IQ (left) and 
the relation between approximate arithmetic performance 
and math achievement at 4.5 years controlling for both w 

and IQ (right). 
 
Table 2: Regression models predicting math achievement 

using measures collected at 4.5 years of age. 
 

 
In a final combined model, we asked whether cardinal 

number knowledge and approximate arithmetic performance 
each contribute variance to children’s math achievement1. 

                                                             
1 w values from the 4.5-year visit were used because the values 

at 3.5 and 4.5 years of age were significantly correlated (r = .31, p 
< .01) and using the 4.5-year values enabled us to include a larger 
proportion of our sample. 

 

This model revealed that both factors make unique 
contributions math achievement (F(4, 104) = 17.74, R2 = 
.383, p < .001; Cardinal knowledge: β = .419, p < .001; 
Approximate arithmetic: β = .196, p = .019; ANS acuity: β 
= -.141, p = .082; IQ: β = .129, p = .116), which suggests 
that both the precision of children’s ANS and their ability to 
manipulate the ANS each impact symbolic math 
achievement.  

Discussion 
The goal of the present research was to investigate the 
mechanisms by which approximate number representations 
contribute to preschoolers’ emerging symbolic math 
capabilities. We first replicated previous findings (e.g., 
Libertus, Feigenson, & Halberda, 2011; Starr et al., 2013; 
vanMarle et al., 2014) that individual differences in the 
precision of the ANS are related to symbolic math 
achievement in preschool-aged children. We found that 
ANS acuity at age 3.5 was predictive of math achievement 
one year later after controlling for general IQ. Next we 
turned to quantitative abilities that may serve as 
intermediary steps between the ANS and symbolic math. 
We focused on cardinal number knowledge and 
nonsymbolic approximate arithmetic, which are abilities that 
have been previously found to correlate with symbolic math 
performance in young children. Our results suggest that 
there may be multiple routes by which the ANS contributes 
to symbolic math achievement. With regards to the 
precision of the ANS, it appears that ANS acuity may 
indirectly influence math achievement via children’s 
acquisition of numerical symbols and the cardinality 
principle. In addition, nonsymbolic approximate addition 
performance contributes unique variance above and beyond 
that contributed by ANS precision. Together, these results 
suggest that both the acuity and manipulability of the ANS 
influence children’s early math performance.   

Our finding that cardinal knowledge is an intermediary 
step between the ANS and symbolic math is consistent with 
prior work that has identified cardinal knowledge as a key 
mediator of the relation between ANS acuity and math 
achievement in preschool-aged children (Chu, vanMarle, & 
Geary, 2015; vanMarle et al., 2014; see Schneider, Beeres, 
Coban, & Merz, 2016 for meta-analysis). In this light, the 
finding that symbolic numerical comparison is a stronger 
predictor of symbolic math achievement than nonsymbolic 
numerical comparison (Schneider et al., 2016) is not 
necessarily a refutation of the idea that the ANS contributes 
to symbolic math. Rather, cardinal representations of 
symbolic numbers may serve as stepping-stones between 
approximate number representations and symbolic 
mathematical operations. When children begin to form 
mappings between numerical symbols and approximate 
quantities, the ease with which these mappings are formed 
and the quality of these mappings may be influenced by the 
precision of children’s ANS. Once this mapping is formed 
and children become proficient with numerical symbols, the 

 Model 1 Model 2 
R2 .197 .243 
F-statistics F(2, 140) = 18.42 F(3, 139) = 16.16 
p-statistics p < .001 p < .001 
     
Predictor βAdjusted p βAdjusted p 
ANS Acuity -.219 .005 -.171 .03 
IQ .357 < .001 .321 < .001 
Approximate 
Arithmetic 

-- -- .234 .003 
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precision of the ANS itself may not directly impact math 
achievement.  

In the present study we focused on children’s 
understanding of cardinality. Therefore, although our results 
point towards the importance of cardinal number knowledge 
for early math proficiency, it remains to be seen how other 
forms of symbolic number knowledge, including ordinality, 
may relate to math ability. Indeed, symbolic numerical 
ordering ability has been found to mediate the relation 
between ANS acuity and symbolic math achievement in 
adults (Lyons & Beilock, 2011). However, a recent training 
study with adults found that training adults on a symbolic 
numeral ordering task did not produce gains in symbolic 
arithmetic ability (Park & Brannon, 2014). Additional work 
is therefore needed to investigate how the ANS supports 
symbolic number representations throughout the lifespan, 
particularly after children have mastered cardinality, and 
how this relation contributes to symbolic math achievement.  

The present results also provide support for a second 
route by which the ANS influences math ability. Beyond 
basic quantity representation, the ANS also supports 
arithmetic operations in infants, preschool children, and 
monkeys, all of whom have no understanding of symbolic 
arithmetic (Barth et al., 2005; Cantlon & Brannon, 2007; 
McCrink & Wynn, 2004). This capacity may provide an 
intuitive basis for the acquisition of symbolic arithmetic 
principles. Consistent with this view, we found that 
approximate arithmetic ability in 4.5-year-olds was a 
significant predictor of performance on the TEMA, which is 
primarily composed of symbolic numerical problems. 
Further, approximate arithmetic ability predicted unique 
variance in TEMA scores that was not accounted for by 
ANS acuity. As evidenced by a recent series of training 
studies, the link between approximate and symbolic 
arithmetic extends into adulthood: training adults on a 
nonsymbolic arithmetic task similar to that employed here 
led to significant gains in their symbolic arithmetic 
performance. (Park & Brannon, 2013; 2014). Critically, 
training on other types of tasks, including nonsymbolic 
numerical comparison, did not transfer to symbolic 
arithmetic. Although both nonsymbolic numerical 
comparison and approximate arithmetic tasks require 
representing approximate numerical quantities, approximate 
arithmetic additionally requires the manipulation of those 
quantities. This manipulation component appears to be a 
critical factor in the relation between the ANS and symbolic 
math.  

The majority of studies relating the approximate number 
system to symbolic math have focused on individual 
differences in the acuity of approximate number 
representations. However, the manipulability of these 
representations may be a second mechanism by which the 
ANS influences symbolic math. Approximate arithmetic 
may share a cognitive foundation with symbolic arithmetic, 
making it an attractive target for potential interventions to 
remediate deficits in math proficiency. A priority for future 
studies should therefore be to adapt these training paradigms 

for children and determine if improving children’s 
approximate arithmetic abilities also produces benefits for 
symbolic math. In addition, the relation between the 
precision and manipulability of the ANS remains relatively 
unexplored and is deserving of further study. 

The ANS endows young children with a robust sense of 
quantity prior to beginning formal mathematics training. 
Although many studies have provided evidence for a 
correlation between the fidelity of the ANS and symbolic 
math achievement, there remain key open questions 
concerning the mechanisms underlying this relation and 
whether this correlation is indicative of a causal relation. In 
the present study, we identified two potential pathways 
through which the ANS influences preschoolers’ early math 
proficiency. The first role for the ANS may occur when 
children are beginning to learn the meaning of number 
words, at which point approximate number representations 
may serve as an anchor for acquiring symbolic number 
representations. Therefore, the precision of the ANS may 
influence children’s facility with mapping numerical 
symbols to approximate magnitudes. A second role for the 
ANS may stem from its ability to support arithmetic 
operations. The shared demand for manipulating quantities 
may form a conceptual bridge between nonsymbolic and 
symbolic arithmetic. The present results therefore suggest a 
nuanced relation between approximate number 
representations and symbolic math achievement in which 
multiple features of the ANS contribute to the emergence of 
symbolic math ability in young children. In light of these 
results, interventions designed to target one or both of these 
pathways may be differentially beneficial for children 
depending on their level of symbolic number knowledge 
and mathematical proficiency. 
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