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Identification of Conditional Interventional Distribution s

Ilya Shpitser and Judea Pearl
Cognitive Systems Laboratory

Department of Computer Science
University of California, Los Angeles

Los Angeles, CA. 90095
{ilyas, judea}@cs.ucla.edu

Abstract

The subject of this paper is the elucidation of ef-
fects of actions from causal assumptions repre-
sented as a directed graph, and statistical knowl-
edge given as a probability distribution. In par-
ticular, we are interested in predicting distribu-
tions on post-action outcomes given a set of mea-
surements. We provide a necessary and sufficient
graphical condition for the cases where such dis-
tributions can be uniquely computed from the
available information, as well as an algorithm
which performs this computation whenever the
condition holds. Furthermore, we use our re-
sults to prove completeness ofdo-calculus[Pearl,
1995] for the same identification problem, and
show applications to sequential decision making.

1 Introduction

This paper deals with computing effects of actions in do-
mains represented ascausal diagrams, or graphs with di-
rected and bidirected arcs. Such diagrams contain vertices
corresponding to variables of interest, directed arcs repre-
senting potential direct causal relationships, and bidirected
arcs which are spurious correlations or ’hidden common
causes’[Pearl, 1995], [Pearl, 2000]. Aside from this kind
of causal knowledge represented by the graph, we also have
statistical knowledge about the variables in the model, rep-
resented by a joint probability distributionP .

An action on a set of variablesX consists of forcing the
variables to particular valuesx regardless of the valueX
would have otherwise attained. This action, denoted by
do(x) in [Pearl, 2000], transforms the original distribution
P into aninterventional distribution denoted byPx. We
quantify the effect of the actiondo(x) on a setY by con-
sideringPx(y). In this paper, we also consider conditional
effects of the formPx(y|z), which correspond to the effect
of do(x) onY in a situation where it is known thatz holds.

The problem ofcausal effect identifiability consists
of finding graphs in which effects represented byPx(y)
or Px(y|z) can be uniquely determined from the original
distribution P . It is well known that in causal diagrams
with no bidirected arcs, corresponding to Markovian mod-
els, all effects are identifiable[Pearl, 2000]. The situation is
more complicated in causal diagrams containing bidirected
arcs, and the corresponding models which are called semi-
Markovian. Consider the graphs in Fig. 1. HerePx(y) is
not identifiable inG in Fig. 1 (a), but identifiable and equal
to P (y) in G′ in Fig. 1 (b).

Conditioning can both help and hinder identifiability. In the
graphG, conditioning onZ rendersY independent of any
changes toX , makingPx(y|z) equal toP (y|z). On the
other hand, inG′, conditioning onZ makesX andY de-
pendent, resulting inPx(y|z) becoming non-identifiable.

The past decade has yielded several sufficient conditions
for identifiability in the semi-Markovian case[Spirtes, Gly-
mour, & Scheines, 1993], [Pearl & Robins, 1995], [Pearl,
1995], [Kuroki & Miyakawa, 1999]. An overview of this
work can be found in[Pearl, 2000]. Generally, sufficiency
results for this problem rely on the causal and probabilis-
tic assumptions embedded in the graph, and are phrased as
graphical criteria. For example, it is known that whenever
a setZ of non-descendants ofX blocks certain paths in the
graph fromX to Y, thenPx(y) =

∑
z P (y|z, x)P (z) [Pearl,

2000].

Identification of causal effects can also be deduced by
algebraic methods.[Pearl, 1995] provided 3 rules of
do-calculus, which systematically use properties of the
graph to manipulate interventional distribution expres-
sions. These manipulations can be applied until the effect
is reduced to something computable fromP . Similarly,
[Halpern, 2000] constructed a system of axioms and infer-
ence rules which can frame the identification problem as
one of theorem proving. The axiom set was then shown to
be complete. Algebraic methods such as these have the dis-
advantage of requiring the user to come up with a proof
strategy to show identifiability in any given case, rather
than giving an explicit graphical criterion.
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Figure 1: (a) GraphG. (b) GraphG′. (c) GraphG′′.

A number of necessity results have recently been derived
as well. One such result[Tian & Pearl, 2002] states thatPx

is identifiable if and only if there is no path consisting en-
tirely of bidirected arcs fromX to a child ofX . A recent
paper[Shpitser & Pearl, 2006] constructed a complete al-
gorithm for identifyingPx(y), and showeddo-calculus and
a version of Tian’s algorithm[Tian, 2002] to be complete
for the same identification problem. The last result is also
shown in[Huang & Valtorta, 2006]. A general algorithm
for identifyingPx(y|z) has been proposed in[Tian, 2004].
Unfortunately, as we will later show, the algorithm has its
limitations.

In this paper, we use the above necessity results to solve the
problem of identifyingconditional distributionsPx(y|z).
We show a way to reduce this problem to identifying
unconditional distributions of the formPx′(y′), for which
complete criteria and algorithms are already known. We
then use this reduction to give a complete graphical crite-
rion for identification of conditional effects, and a complete
algorithm which returns an expression for such an effect in
terms ofP whenever the criterion holds. We use our re-
sults to prove completeness ofdo-calculus[Pearl, 1995] for
identifying conditional effects.

2 Motivation: Sequential Decisions

Our interest in conditional interventional distributionscan
be motivated by their relationship to sequential decision
problems that arise in many domains[Pearl & Robins,
1995]. We will use an example from treatment manage-
ment in medicine. A patient comes in, complaining of a set
of symptomsZ0. After administering some testsZ1 of his
own, the doctor prescribes a treatmentX1 = g1(Z0, Z1).
After a time, additional testsZ2 are done to check for med-
ication side effects, patient improvement, complications,
and so on. Possibly a followup treatmentX2 = g2(Z2, X1)
is prescribed. In general, the treatmentX i at time i is
a function of treatment historyX<i and observation his-
tory Z<i. The treatment process continues until the patient
gets well or dies – represented by the state ofoutcome
variables Y. Note that in this situation, the doctor per-
forms interventionsdo(xi), but the specific values of the
treatment variables are not known in advance, but instead
depend on symptoms and test results performed ’on the fly’
via policy functionsgi.

The effect of this kind of conditional policyg = {gi|i =
1, ..., K} is represented as the probability distribution onY
given that the treatment variablesX = {X i|i = 1, ..., K}
are fixed according tog. We write this isP (YXg). To eval-
uate the efficacy ofg, it would be useful to determine
P (YXg) from statistical data available to the hospital re-
garding similar cases in the past, rather than resorting to
testing the policy on the patient. Note that this effect is a
complex counterfactual quantity because observation his-
tory Z<i and treatment historyX<i are mutually depen-
dent (by eitherg, or the normal causative mechanisms in
the model). Nevertheless it can be shown that by doing
case analysis onZ =

⋃
i Zi, we can obtainP (yXg

) =
∑

z Pxz(y|z)Pxz(z), wherexz is the treatment prescribed
given thatZ is observed to bez. The key observation is
that since the policyg is known in advance, fixingz deter-
minesxz in advance as well. Thus, the effect of sequential
conditional plans can be identified from data if we can find
a way of identifying conditional distributions of the form
Px(y|z).

3 Notation and Definitions

In this section we reproduce the technical definitions
needed for the rest of the paper. We will denote variables
by capital letters, and their values by small letters. Simi-
larly, sets of variables will be denoted by bold capital let-
ters, and sets of values by bold small letters. We will use
some graph-theoretic abbreviations:Pa(Y)G, An(Y)G,
and De(Y)G will denote the set of (observable) parents,
ancestors, and descendants of the node setY in G, re-
spectively. We will omit the graph subscript if the graph
in question is assumed or obvious. We will denote the set
{X ∈ G|De(X)G = ∅} as the root set ofG. Finally, fol-
lowing [Pearl, 2000], we will denoteGxy to be an edge
subgraph ofG where all incoming arrows intoX and all
outgoing arrows fromY are deleted.

Having fixed our notation, we can proceed to formalize the
notions discussed in the previous section. A probabilistic
causal model is a tupleM = 〈U, V, F, P (U)〉, whereV
is a set of observable variables,U is a set of unobservable
variables distributed according toP (U), andF is a set of
functions. Each variableV ∈ V has a corresponding func-
tion fV ∈ F that determines the value ofV in terms of
other variables inV andU. The distribution onV induced
by P (U) andF will be denotedP (V).

Sometimes it is assumedP (V) is a positive distribution.
In this paper we do not make this assumption. Thus, we
must make sure that for every distributionP (W|Z) that we
consider,P (Z) is positive. This can be achieved by mak-
ing sure to sum over events with positive probability only,
and by only considering observations with positive proba-
bility. Furthermore, for any actiondo(x) that we consider,
it must be the case thatP (x|Pa(X)G \ X) > 0 otherwise



the distributionPx(V) is not well defined[Pearl, 2000]. Fi-
nally, becausePx(y|z) = Px(y, z)/Px(z), we must make
sure thatPx(z) > 0.

The induced graphG of a causal modelM contains a node
for every element inV, a directed edge between nodesX
andY if fY possibly uses the values ofX directly to deter-
mine the value ofY , and a bidirected edge between nodes
X andY if fX andfY both possibly use the value of some
variable inU to determine their respective values. In this
paper we considerrecursive causal models, those models
which induce acyclic graphs.

In any causal model there is a relationship between
its induced graphG and P , where P (x1, ..., xn) =∏

i P (xi|pa∗(Xi)G), and Pa∗(.)G also includes unob-
servable parents[Pearl, 2000]. Whenever this relationship
holds, we say thatG is an I-map (independence map) of
P . The I-map relationship allows us to link independence
properties ofP to G by using the following well-known
notion of path separation[Pearl, 1988].

Definition 1 (d-separation) A pathp in G is said to be d-
separated by a setZ if and only if either

1 p contains a chainI →M → J or fork I ←M → J ,
such thatM ∈ Z, or

2 p contains an inverted forkI → M ← J such that
De(M)G ∩ Z = ∅.

Two setsX, Y are said to be d-separated givenZ in G if all
paths fromX to Y in G are d-separated byZ. The following
well-known theorem links d-separation of vertex sets in an
I-mapG with the independence of corresponding variable
sets inP .

Theorem 1 If setsX andY are d-separated byZ in G, then
X ⊥⊥ Y|Z in everyP for whichG is an I-map.

A path that is not d-separated is said to bed− connected.
A d-connected path starting from a nodeX with an arrow
pointing toX is called aback − door path from X .

In the framework of causal models, actions are modi-
fications of functional relationships. Each actiondo(x)
on a causal modelM produces a new modelMx =
〈U, V, Fx, P (U)〉, whereFx, is obtained by replacingfX ∈
F for everyX ∈ X with a new function that outputs a con-
stant valuex given bydo(x). Note thatMx inducesG \ X.
Since subscripts are used to denote submodels, we will use
numeric superscripts to enumerate models and their associ-
ated probability distributions (e.g.M1, P 1).

We can now define formally the notion of identifiability of
conditional effects from observational distributions.

Definition 2 (Causal Effect Identifiability) The causal
effect of an actiondo(x) on a set of variablesY in a given

contextz such thatY, X, Z are disjoint is said to be identifi-
able fromP in G if Px(y|z) is (uniquely) computable from
P in any causal model which inducesG.

Note that becauseZ can be empty, conditional effects gen-
eralize the more commonly used notion of effect asPx(y).
The following lemma establishes the conventional tech-
nique used to prove non-identifiability in a givenG.

Lemma 1 Let X, Y, Z be sets of variables. Assume there
exist two causal modelsM1 andM2 with the same induced
graphG such thatP 1(V) = P 2(V), P 1(x|Pa(X)G \X) >
0, P 1

x (z) > 0, P 2
x (z) > 0, andP 1

x (Y|z) 6= P 2
x (Y|z). Then

Px(y|z) is not identifiable inG.

Throughout the paper, we will make use of 3 rules ofdo-
calculus[Pearl, 1995]. These identities, derived from The-
orem 1, are known to hold for interventional distributions:

Rule 1:Px(y|z, w) = Px(y|w) if (Y ⊥⊥ Z|X, W)GX

Rule 2:Px,z(y|w) = Px(y|z, w) if (Y ⊥⊥ Z|X, W)GX,Z

Rule 3:Px,z(y|w) = Px(y|w) if (Y ⊥⊥ Z|X, W)G
X,Z∗

whereZ∗ = Z \An(W)GX
.

Note that one way to restate rule 2 is to say that it holds for
a setZ whenever there are no back-door paths fromZ to Y
given the actiondo(x) and observationsw.

4 Hedges and Unconditional Effects

A previous paper[Shpitser & Pearl, 2006] provided a com-
plete algorithm, and a corresponding graphical condition
for identification of all effects of the formPx(y). In this sec-
tion, we will provide an overview of these results. We first
consider a set of nodes mutually interconnected by bidi-
rected arcs.

Definition 3 (C-component) Let G be a semi-Markovian
graph such that a subset of its bidirected arcs forms a span-
ning tree over all vertices inG. ThenG is a C-component
(confounded component).

Any causal diagram is either a C-component, or can
be uniquely partitioned into a setC(G) of maximal C-
components. C-components are an important notion for
identifiability and were studied at length in[Tian, 2002].
The importance of this structure stems from the fact that
the distributionP factorizes into a set of interventional
distributions according toC(G). For example the graph
in Fig. 1 (a) has two C-components,{X, Z} and {Y },
soP (x, y, z) = Px,z(y)Py(x, z). Furthermore, each term



functionID (y, x, P, G)
INPUT: x,y value assignments, P a probability distribution,
G a causal diagram (an I-map of P).
OUTPUT: Expression forPx(y) in terms of P or
FAIL (F,F’).

1 if x = ∅, return
∑

v\y P (v).

2 if V 6= An(Y)G,
returnID(y, x ∩An(Y)G, P (An(Y)), An(Y)G).

3 let W = (V \ X) \An(Y)Gx .
if W 6= ∅, returnID(y, x ∪ w, P, G).

4 if C(G \ X) = {S1, ..., Sk},
return

∑
v\(y∪x)

∏
i ID (si, v \ si, P, G).

if C(G \ X) = {S},

5 if C(G) = {G}, throwFAIL (G, S).

6 if S ∈ C(G), return
∑

s\y

∏
Vi∈S P (vi|v

(i−1)
π ).

7 if (∃S′)S ⊂ S′ ∈ C(G), returnID (y, x ∩ S′,
∏

Vi∈S′ P (Vi|V
(i−1)
π ∩ S′, v

(i−1)
π \ S′), S′).

Figure 2: A complete identification algorithm.FAIL prop-
agates through recursive calls like an exception, and re-
turns F, F ′ which form the hedge which witnesses non-
identifiability of Px(y). π is some topological ordering of
nodes inG.

in this factorization is identifiable. These observations al-
low one to decompose the identification problem into a set
of subproblems. We use C-components to define a graph
structure which turns out to be a key presence in all uniden-
tifiable effects.

Definition 4 (C-forest) LetG be a semi-Markovian graph,
whereY is the root set. ThenG is aY-rootedC-forest if all
nodes inG form a C-component, and all observable nodes
have at most one child.

If two C-forests share the same root set, and only one of
them contains any nodes inX, then the resulting graph
structure witnesses the non-identifiability of certain effects
of do(x). The structure in question is called a hedge.

Definition 5 (hedge) LetX, Y be sets of variables inG. Let
F, F ′ beR-rooted C-forests such thatF ∩X 6= ∅, F ′∩X =
∅, F ′ ⊆ F , and R ⊂ An(Y)Gx . ThenF and F ′ form a
hedge forPx(y).

Hedges precisely characterize non-identifiability of inter-
ventional joint distributions, as the following results show.

Theorem 2 Assume there existR-rooted C-forestsF, F ′

that form a hedge forPx(y) in G. ThenPx(y) is not identi-
fiable inG.

Proof: Consider the graphH = An(Y)G ∩ De(F )G, and
two modelsM1, M2 which induceH . All variables in both
models are binary. InM1 every variable is equal to the
bit parity of its parents. InM2 the same is true, except all
nodes inF ′ disregard the parent values inF \F ′. All U are
fair coins in both models. It has been shown in[Shpitser
& Pearl, 2006] that M1 andM2 satisfy the conditions in
Lemma 1 forPx(y). 2

Theorem 3 (hedge criterion) Px(y) is identifiable fromP
in G if and only if there does not exist a hedge forPx′(y′)
in G, for anyX′ ⊆ X andY′ ⊆ Y.

The proof can be found in[Shpitser & Pearl, 2006]. When-
everPx(y) is identifiable, we say thatPx(y) does not con-
tain any hedges. In such a case, theID algorithm (pictured
in Fig. 2) computes the expression forPx(y) in terms of
P . It has also been shown in[Shpitser & Pearl, 2006] that
wheneverPx(y) is not identifiable,ID returns the witness-
ing hedge, which entails the following result.

Theorem 4 ID is complete.

The previous results were also used to derive a complete-
ness result fordo-calculus

Theorem 5 The rules ofdo-calculus, together with stan-
dard probability manipulations are complete for determin-
ing identifiability of all effects of the formPx(y).

Proof: The proof, which reduces steps of theID algorithm
to sequences of applications ofdo-calculus, can be found
in [Shpitser & Pearl, 2006]. 2

Armed with a complete criterion and corresponding algo-
rithm for identifyingPx(y), we tackle the conditional ver-
sion of the problem in the next section.

5 Identifiability of Conditional
Interventional Distributions

We now consider the problem of identifying distributions
of the formPx(y|w), whereX, Y, W are arbitrary disjoint
sets of variables. Our approach will be to reduce this prob-
lem to a solved case where the setW is empty. One way to
accomplish this is to use rule 2 ofdo-calculus to transform
conditioning onW into interventions. Recall that when-
ever rule 2 applies to a setZ ⊆ W in G for Px(y|w) then
Px(y|w) = Px,z(y|w \ z). We want to use rule 2 in the most
efficient way possible and remove as many conditioning
variables as we can. The next lemma shows an application
of rule 2 onany set does not influence future applications
of the rule on other sets elsewhere in the graph.

Lemma 2 If rule 2 of do-calculus applies to a setZ in G
for Px(y|w) then there are no d-connected paths toY that



pass throughZ in neitherG1 = G \ X givenZ, W nor in
G2 = G \ (X ∪ Z) givenW.

Proof: Clearly, there are no d-connected paths throughZ in
G2 givenW. Consider a d-connected path throughZ ∈ Z
to Y in G1, given Z, W. Note that this path must either
form a collider atZ or a collider which is an ancestor ofZ.
But this must mean there is a back-door path fromZ to Y,
which is impossible, since rule 2 is applicable toZ in G for
Px(y|w). Contradiction. 2

The following is immediate.

Corollary 1 For anyG and any conditional effectPx(y|w)
there exists a unique maximal setZ = {Z ∈ W|Px(y|w) =
Px,z(y|w \ {z})} such that rule 2 applies toZ in G for
Px(y|w).

Proof: Fix two maximal setsZ1, Z2 ⊆ W such that rule 2
applies toZ1, Z2 in G for Px(y|w). If Z1 6= Z2, fix Z ∈
Z1 \Z2. By Lemma 2, rule 2 applies for{Z}∪Z2 in G for
Px(y|w), contradicting our assumption.

Thus if we fixG andPx(y|w), any set to which rule 2 ap-
plies must be a subset of the unique maximal setZ. It fol-
lows thatZ = {Z ∈W|Px(y|w) = Px,z(y|w \ {z})}. 2

This corollary states, in particular, that for anyPx(y|w), we
can find a unique maximal setZ ⊆W such that there are no
back-door paths fromZ to Y given the context of the effect,
but there is such a back-door path from everyW ∈ W \ Z
to Y.

However, even after a maximal number of nodes is re-
moved from behind the conditioning bar using this corol-
lary, we might still be left with a problem involving con-
ditional distributions. The following key theorem helps us
relate this problem to the previously solved case.

Theorem 6 Let Z ⊆ W be the maximal set such that
Px(y|w) = Px,z(y|w \ z). ThenPx(y|w) is identifiable in
G if and only ifPx,z(y, w \ z) is identifiable inG.

Proof: See Appendix. 2

We can now put the results obtained so far together to con-
struct a simple algorithm for identifiability of conditional
effects, shown in Fig. 3.

Theorem 7 (soundness)IDC is sound.

Proof: The soundness of the first line follows by rule 2
of do-calculus. The second line is just a standard condi-
tional distribution calculation, coupled with an invocation
of an algorithm known to be sound from[Shpitser & Pearl,
2006]. 2

We illustrate the operation of the algorithm by considering
the problem of identifyingPx(y|z) in the graphG shown in
Fig. 1 (a). BecauseY ⊥⊥ Z|X, Z in Gx,z, rule 2 applies and

functionIDC (y, x, z, P, G)
INPUT: x,y,z value assignments, P a probability
distribution, G a causal diagram (an I-map of P).
OUTPUT: Expression forPx(y|z) in terms of P or
FAIL (F,F’).

1 if (∃Z ∈ Z)(Y ⊥⊥ Z|X, Z \ {Z})Gx,z ,
returnIDC(y, x ∪ {z}, z\ {z}, P, G).

2 else letP ′ = ID (y ∪ z, x, P, G).
returnP ′/

∑
y P ′.

Figure 3: A complete identification algorithm for condi-
tional effects.

we call the algorithm again with the expressionPx,z(Y ).
This expression is an unconditional effect, so we callID
as a subroutine.ID , in turn, succeeds immediately on line
6, returning the expressionP (y|x, z), which we know is
equal toP (y|z) in G. Our results so far imply thatIDC
will succeed on all identifiable conditional effects.

Theorem 8 (completeness)IDC is complete.

Proof: This follows from Theorem 4, Corollary 1 and The-
orem 6. 2

With a complete algorithm for conditional effects, we can
graphically characterize all cases when such effects are
identifiable. To do this, we combine Theorem 6 to reduce
our problem to one of identifying unconditional effects, and
the hedge criterion, which is a complete graphical condi-
tion for such effects.

Corollary 2 (back-door hedge criterion) Let Z ⊆ W be
the unique maximal set such thatPx(y|w) = Px,z(y|w \ z).
ThenPx(y|w) is identifiable fromP if and only if there does
not exist a hedge forPx′(y′), for anyY′ ⊆ (Y ∪ W) \ Z,
X′ ⊆ X ∪ Z.

Proof: This follows from the hedge criterion and Theorem
6. 2

The name ’back-door hedge’ comes from the fact that both
back-door paths and hedge structures are key for identifia-
bility of conditional effects. In particular,Px(y|w) is iden-
tifiable if and only if Px,z(y, w \ z) does not contain any
hedges and everyW ∈ W \ Z has a back-door path to
someY ∈ Y in the context of the effect.

6 Connections to Existing Algorithms

In this section, we explore the connection of our results
to existing identification algorithms for conditional effects.
One existing approach to identifyingPx(y|w) consists of
repeatedly using probability manipulations and 3 rules of
do-calculus until the resulting expression does not involve



functionc-identify(C, T, Q[T])
INPUT: T, C ⊆ T are both are C-components,
Q[T ] a probability distribution
OUTPUT: Expression forQ[C] in terms ofQ[T ] or FAIL

let A = An(C)GT

1 if A = C, return
∑

T\C P

2 if A = T , returnFAIL

3 if C ⊂ A ⊂ T , there exists a C-componentT ′ such
thatC ⊂ T ′ ⊂ A. returnc-identify(C, T ′, Q[T ′])
(Q[T ′] is known to be computable from

∑
T\A Q[T ])

Figure 4: A C-component identification algorithm from
[Tian, 2004].

any interventional distributions. Our results imply that any
identifiable conditional effect can be identified in this way.

Theorem 9 The rules ofdo-calculus, together with stan-
dard probability manipulations are complete for determin-
ing all effects of the formPx(y|z).

Proof: The IDC algorithm consists of two stages, the
first corresponds to repeated applications of rule 2 ofdo-
calculus, and the second to identifying the effect of the
form Px(y). The result follows by Theorem 5. 2

We next consider an algorithm proposed in[Tian, 2004].
See Fig. 5. This algorithm generalizes an earlier algorithm
for unconditional effects[Tian, 2002] which was proven
complete in[Shpitser & Pearl, 2006], [Huang & Valtorta,
2006]. Unfortunately, as we now show, the version of the
algorithm for conditional effects is not sound.

Lemma 3 cond-identify is not sound.

Proof: Consider the graphG′′ in Fig. 1 (c). We will con-
sider the conditional effectPx(w|z) in this graph. Note that
by the back-door hedge criterion this effect is not identifi-
able inG′′.

We now trace through the execution of the algorithm for
Px(w|z). In this case,D = {Y, Z, W}, F = {Y }, C(G) =
{{X, Z}, {Y }{W}}, C(D) = {{Z}, {Y }, {W}}. Now
identification ofQ[{Y }] and Q[{W}] trivially succeeds,
while identification of Q[{Z}] from Q[{Z, X}] fails.
Therefore,I = {{Y }, {W}}, N = {{Z}}, F0 = F . Be-
cause{Y } is not a parent of any identifiable C-component,
line 6 does nothing. BecauseF0 = F , line 8 does nothing.
However,{W}∩{Y } = ∅, so the algorithm succeeds. This
implies the result. 2

functioncond-identify(y, x, z, P, G)
INPUT: x,y,z value assignments, P a probability
distribution, G a causal diagram (an I-map of P).
OUTPUT: Expression forPx(y|z) in terms of P orFAIL .

1 letD = An(Y ∪ Z)GX , F = D \ (Y ∪ Z)

2 assumeC(D) = {D1, ..., Dk}

3 letN = {Di|c-identify(Di, CDi
, Q[CDi

]) = FAIL }

4 if N = ∅, return
P

f

Q

i Q[Di]
P

y,f

Q

i Q[Di]

5 letF0 = F ∩ (
⋃

Di∈N Pa(Di)), I = C(D) \N

6 remove the set{Di|Pa(Di) ∩ F0 6= ∅} from I and
add it toI0 (which is initially empty)

7 letB = (F \ F0) ∩
⋃

Di∈I0
Pa(Di)

8 if B 6= ∅, add all nodes inB to F0, and go to line 6

9 if Y ∩ (
⋃

Di∈(N∪I0)
Pa(Di)) 6= ∅, returnFAIL ,

else return
P

f1

Q

Di∈I1
Q[Di]

P

y,f1

Q

Di∈I1
Q[Di]

Figure 5: An identification algorithm from[Tian, 2004].
For eachDi, we denoteCDi

∈ C(G) such thatDi ⊆ CDi
.

7 Conclusions

We have presented a complete graphical criterion for
identification of conditional interventional distributions in
semi-Markovian causal models. We used this criterion to
construct a sound and complete identification algorithm for
such distributions, and prove completeness of ado-calculus
for the same identification problem.

This work closes long standing questions about identifi-
ability of interventional distributions, but much more re-
mains to be done. Certain kinds of causal effects or coun-
terfactual statements of interest cannot be expressed as an
interventional distribution. For instance, certain kindsof
direct and indirect effects[Pearl, 2001], and path-specific
effects are represented instead as a probability of a for-
mula in a certain modal logic[Avin, Shpitser, & Pearl,
2005]. Questions about identifiability of such effects in
semi-Markovian models are an open problem for future
work.
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Appendix

We first prove two utility lemmas.

Lemma 4 Let M be a causal model. AssumeP (y) > 0.
Then for anyX disjoint from Y, there existsx such that
Px(y) > 0.

Proof: Let U be the set of unobservable variables inM . We
know thatP (y) =

∑
Y(u)=y P (u). Fix u such thatY(u) =

y. We know such au exists becauseP (y) > 0. We also
know u rendersM deterministic. Letx be the valueX(u)
assumes. Our conclusion now follows. 2

Lemma 5 Let F, F ′ form a hedge forPx(y). ThenF ⊆
F ′ ∪ X.

Proof: It has been shown thatID fails onPx(y) in G and re-
turns a hedge if and only ifPx(y) is not identifiable inG. In
particular, edge subgraphs of the graphsG andS returned

Y’

Y

H

(a)

W W’

Y’

H

(b)

W W’

Y

p
p

X X

Figure 6: Inductive cases for proving non-identifiability of
Px(y|w, w′).

by line 5 ofID form the C-forests of the hedge in question.
It is easy to check that a subset ofX andS partitionG. 2

Next, we rephrase the statement of the theorem slightly to
reduce ’algebraic clutter.’

Theorem 6 Let Px(y|w) be such that everyW ∈ W
has a back-door path toY in G \ X given W \ {W}.
ThenPx(y|w) is identifiable inG if and only ifPx(y, w) is
identifiable inG.

Proof: If Px(y, w) is identifiable in G, then we can
certainly identify Px(y|w) by marginalization and divi-
sion. The difficult part is to prove that ifPx(y, w) is not
identifiable then neither isPx(y|w).

AssumePx(w) is identifiable. Then ifPx(y|w) were identi-
fiable, we would be able to computePx(y, w) by the chain
rule. Thus our conclusion follows.

AssumePx(w) is not identifiable. We also know that every
W ∈W contains a back-door path to someY ∈ Y in G\X
givenW\{W}. Fix suchW andY , along with a subgraphp
of G which forms the witnessing back-door path. Consider
also the hedgeF, F ′ which witnesses the non-identifiability
of Px′(w′), whereX′ ⊆ X, W′ ⊆W.

Let H = De(F )G ∪ An(W′)G. We will attempt to show
thatPx′(Y |w) is not identifiable inH ∪ p. Without loss of
generality, we make the following three assumptions. First,
we restrict our attention toW′′ ⊆ W that occurs inH ∪ p.
Second, we assume all observable nodes inH have at most
one child. Finally, we assumep is a path segment which
starts atH and ends atY , and does not intersectH . This
assumesY 6∈ H . We will handle the case whenY ∈ H in
one of the base cases.

Consider the modelsM1, M2 from the proof of Theorem 2
which induceH . We extend the models by adding to them
binary variables inp. Each variableX ∈ p is set to the bit
parity of its parents, if it has any. If not,X behaves as a fair
coin. If Y ∈ H has a parentX ∈ p, the value ofY is set to
the bit parity of all parents ofY , includingX .
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Figure 7: Inductive cases for proving non-identifiability of
Px(y|w, w′).

Call the resulting modelsM1
∗ , M2

∗ . BecauseM1, M2

agreed onP (H), and variables and functions inp are the
same in both models,P 1

∗ = P 2
∗ . It has already been shown

thatP 1(x|Pa(X)G\X) > 0, which implies the same is true
for P 1

∗ . We will assumew′′ assigns0 to every variable in
W′′. Note that inM1

∗ , w′′ is equal to the bit parity of all the
U nodes inH and all parent-less nodes inp. Similarly, in
M2

∗ w′′ is equal to the bit parity of all theU nodes inF ′ and
all parent-less nodes inp. It’s easy to see thatP 1

∗ (w′′) > 0
andP 2

∗ (w′′) > 0. Now by Lemma 4,P 1
∗x(w

′′) > 0 and
P 2
∗x(w

′′) > 0.

What remains to be shown is thatP 1
∗x(y|w

′′) 6= P 2
∗x(y|w

′′).
We will prove this by induction on the path structure of
p. We handle the inductive cases first. In all these cases,
we fix a nodeY ′ that is betweenY andH on the pathp,
and prove that ifPx′(y

′|w′′) is not identifiable, then neither
is Px′(y|w′′). Note that despite the fact that we represent
variable marginalization as a multiplication by a matrix as
a matter of convenience, we make sure to only sum over
values with positive probability of occurrence in the given
context.

Assume neitherY nor Y ′ have descendants inW′′. If
Y ′ is a parent ofY as in Fig. 6 (a), thenPx′(y|w′′) =∑

y′ P (y|y′)Px′(y
′|w′′). If Y is a parent ofY ′, as in Fig.

6 (b) then the next node inp must be a child ofY ′. There-
fore,Px′(y|w′′) =

∑
y′ P (y|y′)Px′(y

′|w′′). In either case,
by constructionP (Y |Y ′) is a 2 by 2 identity matrix. This
implies that the mapping fromPx′(y

′|w′′) to Px′(y|w′′) is
one to one. IfY ′ andY share a hidden common parentU
as in Fig. 7 (b), then our result follows by combining the
previous two cases.

The next case is ifY andY have a common childC which
is either inW′′ or has a descendant inW′′, as in Fig. 7 (a).
Now Px′(y|w′′) =

∑
y′ P (y|y′, c)Px′(y′|w′′). Because all

nodes inW′′ were observed to be 0,P (y|y′, c) is again a 2
by 2 identity matrix.

Finally, we handle the base cases of our induction. In all
such cases,Y is the first node not inH on the pathp. Let
Y ′ be the last node inH on the pathp.
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Figure 8: Base cases for proving non-identifiability of
Px(y|w, w′).

AssumeY is a parent ofY ′, as shown in Fig. 8 (a). By
Lemma 5, we can assumeY 6∈ An(F \ F ′)H . By con-
struction,(

∑
W′′ = Y + 2 ∗

∑
U) (mod 2) in M1

∗ , and
(
∑

W′′ = Y + 2 ∗
∑

(U ∩ F ′)) (mod 2) in M2
∗ . If every

variable inW′′ is observed to be 0, thenY = (2 ∗
∑

U)
(mod 2) in M1

∗ , and Y = (2 ∗
∑

(U ∩ F ′)) (mod 2)
in M2

∗ . If an interventiondo(x) is performed,(
∑

W′′ =
Y +2∗

∑
(U∩F ′)) (mod 2) in M2

∗x, by construction. Thus
if W′′ are all observed to be zero,Y = 0 with probability
1. It was shown in[Shpitser & Pearl, 2006] that in M1

x ,
(
∑

w′′ = x +
∑

U′) (mod 2), whereU′ ⊆ U consists
of unobservable nodes with one child inAn(X)F and one
child in F \An(X)F . BecauseY 6∈ An(F \ F ′)H , we can
conclude that ifW′′ are observed to be 0,Y = (x +

∑
U′)

(mod 2) in M1
∗x′ . Thus,Y = 0 with probability less than

1. Therefore,P 1
∗x′(y|w

′′) 6= P 2
∗x′(y|w′′) in this case.

AssumeY is a child ofY ′. Now consider a graphG′ which
is obtained fromH ∪ p by removing the (unique) outgo-
ing arrow fromY ′ in H . If Px′(y|w′′) is not identifiable in
G′, we are done. AssumePx′(y|w′′) is identifiable inG′. If
Y ′ ∈ F , andR is the root set ofF , then removing theY ′-
outgoing directed arrow fromF results in a new C-forest,
with a root setR∪{Y ′}. BecauseY is a child ofY ′, the new
C-forests form a hedge forPx′(y, w′′). If Y ′ ∈ H \F , then
removing theY ′-outgoing directed arrow results in substi-
tutingY for W ∈W′′ ∩De(Y ′)H . Thus inG′, F, F ′ form
a hedge forPx′(y, w′′ \ {w}). In either case,Px′(y, w′′) is
not identifiable inG′.

Now if Px′(w′′) is identifiable inG′, we are done. If not,
consider a smaller hedgeH ′ ⊂ H witnessing this fact.
Now consider the segmentp′ of p betweenY andH ′. We
can repeat the inductive argument forH ′, p′ andY . See
Fig. 8 (b). Note that this base case also handles the case
whenY ∈ H . We just letY = Y ′, and apply the previous
reasoning.

If Y andY ′ have a hidden common parent, as is the case in
Fig. 8 (c), we can combine the first inductive case, and the
first base case to prove our result.

This completes the proof. 2




