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Composite polymer membranes for laser-
induced fluorescence thermometry

FRANCISCO GONZALEZ-MARTiNEz,1 OSCAR GONZALEZ-CORTEZ,1 REINHER
PIMENTEL-DOMINGUEZ, ' JUAN HERNANDEZ-CORDERO, " AND GUILLERMO
AGUILAR?

!Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de México, Ciudad
Universitaria, Coyoacan, Ciudad de México 04510, México

’Department of Mechanical Engineering, University of California Riverside, Riverside, CA 92521, USA
*ihcordero@iim.unam.mx

Abstract: We demonstrate a modified version of laser-induced fluorescence thermometry
(LIFT) for mapping temperature gradients in the vicinity of small photothermal devices. Our
approach is based on temperature sensitive fluorescent membranes fabricated with rhodamine
B and polydimethylsiloxane (PDMS). Relevant membrane features for LIFT, such as
temperature sensitivity, thermal quenching and photobleaching are presented for a range
of 25 °C to 90 °C, and their performance is evaluated upon obtaining the temperature
gradients produced in the proximity of optical fiber micro-heaters. Our results show that
temperature measurements in regions as small as 750 um x 650 pum, with a temperature
resolution of 1 °C, can be readily obtained.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
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1. Introduction

The advent of new microanalysis platforms, such as lab on a chip and microfluidic systems,
has triggered extensive research aimed at studying thermal phenomena at the micron scale
[1]. Given the size of these systems, phenomena such as heat transfer and heat loss to the
surrounding media become relevant for most practical applications (e.g., DNA replication,
electronic cooling, thermal generation of pH gradients [2]) and are of paramount interest for
characterization and optimization purposes. In addition to temperature measurements, it is
often desirable to obtain a temperature map, which could provide useful information related
to thermal phenomena occurring in the system and its vicinity [1,2]. In general, a 'micro-
thermometer' should be able to provide high spatial resolution, high acquisition rate for real-
time sampling, low thermal inertia for rapid response and adequate temperature resolution.
Among these features, measurements with high spatial resolution are perhaps the most
challenging to obtain.

Several methods have shown to provide high spatial resolution (<1 um) temperature
measurements achieving thermal resolutions of less than <0.1 °C [2]. Contact techniques,
involving the use of devices such as scanning thermal probes or micro- and nano-
thermocouples, provide an effective means to obtain local temperature measurements with
spatial resolutions of up to 0.01 um [2]. Non-contact techniques, albeit more elaborated and
expensive, can yield a two-dimensional temperature map with high spatial resolution (e.g.,
0.1 pm with infrared thermometry) and accuracy (e.g., 1 uK with laser interferometry) [2].
Among the different non-intrusive techniques available, fluorescent thermometry is one of the
most widely used owing to its relative simplicity using commercially available cameras (CCD
or CMOS); it can further be adapted to a microscope to obtain high spatial resolution
measurements [3,4]. Temperature measurements rely on a fluorophore, typically a dye whose
fluorescent intensity decreases with temperature, which can be either dissolved in a fluid or
deposited on a surface of interest [4—6]. Excitation of the fluorophore is customarily done
with laser light; hence, the technique is termed laser-induced fluorescence thermometry
(LIFT). The spatial resolution depends on the imaging optics whereas the temporal resolution
is defined by the framing rate of the camera. Successful applications of LIFT include
temperature mapping of microfluidic channels [7-9], characterization of -electrical
microheaters [10] and thermal mapping of an optical trap [11], to name a few.

Rhodamine B (RhB) is the most widely used dye for LIFT, and its fluorescence intensity
strongly depends on the solvent [3—-10]. Water and ethanol based solutions are the most
common choices for temperature measurements in liquid samples, although other solvents
such as sodium carbonate buffer solutions have also shown to perform well [5,6,11,12]. For
temperature mapping of dry surfaces, RhB can also be incorporated into polymer matrices to
fabricate temperature sensitive films [9,10,13—15]. In particular, integration of RhB into
polydimethylsiloxane (PDMS) is of interest because of its dominant role in microfluidic and
lab-on a-chip platforms [16]. In this work, we show a simple method for fabricating
temperature sensitive PDMS membranes with RhB for LIFT. The PDMS-RhB composite is
obtained by simple mixing and is subsequently molded and cured to yield large membranes



Research Article Vol. 8, No. 10 | 1 Oct 2018 | OPTICAL MATERIALS EXPRESS 3074

=
ENEIS EEXPRESS .

that can be cut down to a convenient size. The membranes can be easily placed in direct
contact with the sample or device of interest and the temperature map can then be obtained
through fluorescence image analysis. We analyze the performance of the membranes as
temperature sensitive elements for LIFT, within a range from 25 °C to 90 °C, and
demonstrate their application for characterization of photothermal devices fabricated with
standard single-mode optical fibers [17].

2. Experiments
2.1 Fabrication of PDMS-RhB membranes

The PDMS-RhB membranes were fabricated with Rhodamine B (Sigma Aldrich, R6626)
incorporated into PDMS (Dow Corning, Sylgard 184). We followed a procedure similar to
that previously reported for fabricating PDMS membranes with embedded carbon
nanoparticles [18]. Briefly, RhB was added in the base material of the PDMS with a
concentration of 0.1% in weight; the solution was mixed with chloroform (0.75 ml of
chloroform per gram of base material) using a magnetic stir bar for 120 minutes at room
temperature. The mixture was subsequently heated at 70 °C to completely evaporate the
chloroform and then further mixed by hand for 5 minutes to incorporate the PDMS curing
agent in a 1:10 ratio. The resulting PDMS-RhB composite was then poured into custom made
glass slide molds and cured at 60 °C for 24 hours. After cooling, the resulting PDMS-RhB
membranes were removed from the mold yielding samples with smooth surfaces.

2.2 Temperature control

For temperature control and calibration, we used a setup comprising a thermoelectric cooler
(Thorlabs, TEC3-6), a ceramic resistive heater (Thorlabs, HT24S) and a thermistor (Thorlabs,
TH10K). These elements were mounted on a heat sink and enclosed in a thermally insulating
material. A PID controller (Thorlabs, TED200C) was used in the setup allowing for
controlling the temperature from 15 to 120 °C with 0.1 °C precision.

Images
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Fig. 1. Setup for laser-induced fluorescence imaging: a photodetector (PD) was used for
monitoring the stability of the laser; synchronization, temperature control, image acquisition
and processing were done via a personal computer. PID: proportional-integral-derivative
controller; TEC: Thermoelectric cooler; RH: ceramic heater; TH: thermistor; BS: beam
splitter. The laser beam is expanded by a lens (not shown) to increase the illumination area.
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2.3 Laser-induced fluorescence thermometry setup

The setup for LIFT measurements comprised a CW diode-pumped solid-state green laser (532
nm, BWTEK, model BWI532-50-E, beam diameter < 1 mm) with + 3% power stability. The
illumination area is increased by a lens (10x, NA 0.25) yielding a spot size of approximately 2
cm. Images are acquired using a CMOS camera (Thorlabs, DCC1645C) with a 10x
microscope objective (see Fig. 1). A notch filter (533 nm, 17 nm FWHM, Thorlabs, NF533-
17) was further used to eliminate the green radiation in the images recorded by the camera.
As seen in Fig. 1, a 50% beam splitter was used to simultaneously excite with the laser the
fluorescence of the PDMS-RhB membranes and for monitoring power fluctuations. The latter
was done by means of an optical power meter and a thermal power sensor (Thorlabs, S302C).
Data from the sensor allowed us to account for spurious effects of laser power fluctuations
that typically require using two dyes (one of them temperature insensitive) or two cameras
[7,8]. Our modified version for LIFT allowed for minimizing these effects simply by taking
the intensity ratio of the images to that registered by the sensor. More details of this
normalization process are provided below.

For temperature calibration, the membranes were placed on the ceramic heater and the
temperature was set to a desired value. Fluorescence images were then acquired and post-
processed to yield the calibration curves (i.e., normalized intensity vs. temperature) for the
membranes. For all measurements, the camera gain was adjusted manually and kept constant.
The resulting curves were then used to obtain the temperature maps across the membranes;
with this setup, the spatial resolution of the imaging system was 2.7 um/pixel.

2.4 Temperature calibration and image processing

The calibration curves were obtained from fluorescence images of the PDMS-RhB membrane
acquired for a temperature range from 20 to 90 °C with intervals of 10 °C. Each image was
acquired after achieving a steady temperature with the controller. The average time required
to obtain an adequate thermal equilibrium for calibration purposes was approximately 10
minutes. Notice that this time constraint is due to the heater control system, and is not
inherent to the thermal and fluorescence response of the membranes.

A temperature of 25 °C was selected as the baseline reading for all measurements. The
PDMS-RhB membranes were exposed to laser excitation for 1 minute and during this time,
10 images along with their corresponding laser power were registered. In order to minimize
possible quenching or bleaching effects, the incident laser light was blocked between
measurements. The fluorescence intensity was analyzed considering an average intensity
value calculated for each image using a gray scale conversion. This allowed us to obtain a
ratio of the average fluorescence intensity (/) to the laser power (P) for each temperature; this
ratio was then normalized using the ratio of the initial intensity to the initial laser power (I, /
Py, ie.:

/P
N = : M
1,/ P,
Notice that this normalization procedure accounts for average fluctuations in the laser

power. Finally, the calibration curve was obtained plotting the normalized fluorescence
intensity as a function of temperature.

3. Results and discussion
3.1 PDMS-RhB membranes: calibration and performance

The fabrication process mentioned above allowed us to obtain large PDMS-RhB membranes
whose dimensions are limited by the size of the mold. For our experiments, we fabricated
membranes with a maximum area of 20 mm by 70 mm and a thickness of 300 pm + 30 pm.
In contrast to other methods, the process to fabricate the membranes allowed us to embed the
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dye without the need of additional functional molecules or without any special doping
procedures [9,13]. Furthermore, our method allowed for making custom size membranes that
could be subsequently cut to predetermined sizes and shapes. For our experiments, we used
square samples of 5 mm by 5 mm.

An optical microscopy image of a PDMS-RhB sample is shown in Fig. 2(a), exhibiting
the nearly homogeneous color appearance of the fabricated membranes. Using a larger
magnification, we were able to resolve clusters of RhB, which were most likely formed
during the manual mixing performed in the last step of the fabrication procedure [18].
Nonetheless, the samples presented a fairly homogeneous fluorescence when irradiated with
the laser. The optical absorption peak of the membranes was centered at around 545 nm,
while the emission peak was located at 563 nm, as seen in the spectrum shown in Fig. 2(b),
obtained with a high-resolution spectrometer (Ocean Optics, HR4000, 0.12 nm resolution).
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Fig. 2. PDMS-RhB membranes: (a) optical microscope image of the membranes; (b) typical
emission spectrum and fluorescence emission (inset); (c) photobleaching effect in the
membranes after 1 hour of laser exposure; (d) thermal bleaching after 1 hour for different
temperatures.

Before testing the PDMS-RhB membranes for temperature measurements we assessed
their stability. First, we evaluated if long exposures to laser light could cause degradation of
the RhB and/or photobleaching, which is known to yield false temperature readings [2—4].
The laser intensity was fixed at 2.8 mW/cm?® and the fluorescent signal was measured every
10 minutes during one hour. The average intensity was then analyzed in each set of images
and the procedure was repeated for two different laser intensities (4.0 mW/cm® and 5.6
mW/cm?). As shown in Fig. 2(c), the fluorescence showed only a small decay during this
period of time (<3% approximately); hence, photobleaching does not seem to affect
considerably the emission of the membranes, at least for the optical powers used for these
measurements.

We also evaluated the thermal stability of the membranes upon monitoring the
fluorescence intensity while keeping the samples at different temperatures (25 °C, 50 °C and
90 °C) during one hour. As shown in Fig. 2(d), the fluorescence intensity decayed linearly
over time for a fixed temperature. Because the fluorescence intensity of RhB depends
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strongly on temperature, a faster decay is readily observed for higher temperatures. This
behavior suggests that a slow degradation of the fluorescent dye occurs over time, which is
consistent with previous reports on thermal cycling of dry RhB [4]. From Fig. 2(d), it is
evident that the decay rate of the plots (i.e., the slopes) increases with temperature. Using the
data in Fig. 2(d), the change in the decay rate of the intensity as a function of temperature was
estimated to be 4x107 /°C. This thermal bleaching effect is evidently important in
experiments involving long exposure times, although it can be accounted for during the
calibration procedure upon increasing the temperature of the samples every 10 minutes. This
yields a correction factor that can be applied during image processing to obtain the
temperature map.
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Fig. 3. (a) Calibration curve (normalized intensity vs. temperature) for the PDMS-RhB
membrane. The insets show fluorescence images captured within the analyzed region (1.35 x
1.35 mm) for different temperatures. (b) Comparison of the temperature obtained with LIFT
analysis and the temperature measured with the thermistor.

The calibration curve for temperature measurements was obtained upon analyzing the
change in fluorescence intensity of the PDMS-RhB membrane as a function of temperature.
Data were acquired for a temperature range of 25 to 90 °C, and as shown in Fig. 3(a), the
normalized fluorescence intensity decreased in a linear fashion. This linear trend is similar to
that observed in previous reports for dry layers of RhB [4] and for thin films of PDMS-RhB
fabricated with other procedures [9,13]. The response time of the membranes was obtained
after increasing the temperature with the PID controller (Fig. 3(b)). For comparison, the plot
also shows the temperature registered by the thermistor used in the controller. The
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temperature obtained from the fluorescence of the membranes showed a similar trend as the
data from the thermistor, albeit providing a lower reading. Hence, the fluorescence can
readily track the temperature changes, however, an accurate temperature reading can only be
obtained after the emission has reached a steady state value. From Fig. 3(b), a stable
temperature reading in the thermistor occurs at approximately 200 s, while the fluorescence
reading reaches a steady value at around 350 s, yielding a settling time of 2.5 min to obtain an
accurate temperature reading. We attribute this limitation to the low thermal conductivity of
PDMS host matrix (0.15 Wm™'K™"), which is known to impose some constraints when using
PDMS in applications involving heat transfer phenomena [9,18]. Similar response times have
been reported when using PDMS functionalized with RhB [9]; in contrast, to previous
reports, our fabrication method involves only simple mixing without requiring any chemical
process to incorporate the RhB in the host matrix.

3.2 Application to micro-thermometry: characterization of optical fiber micro-heaters

Optical fiber micro-heaters (OFMHs) are devices fabricated with layers of absorbing
materials deposited on the tip of optical fibers; these photothermal devices are capable to
increase the temperature in a highly localized manner [17,19]. Because they are made with
standard optical fibers (125 pm diameter), the cross-sectional area of these heating elements
is within a few hundred microns. The absorbing layer is deposited on the output end of the
fiber and laser light (typically a laser diode) is then launched at the opposite end. Heat is
subsequently produced and dissipated in the vicinity of the tip of the device. From previous
reports, it is known that the increase in temperature in the vicinity of OFMHs is proportional
to the optical power launched into the fiber [19]. However, information of the temperature
distribution within the small area heated by these devices becomes relevant for applications
involving biological tissue [17]. We therefore explored the feasibility to obtain the
temperature maps in the surroundings of an OFMH using the PDMS-RhB membranes and
LIFT.

For our experiments, we used OFMHs based on gold nanolayers, which have been
previously reported to induce thermal damage in soft tissue [17]. The device was placed in
physical contact with one edge of a PDMS-RhB membrane (see Fig. 4(a)). We first acquired
10 reference images at 25 °C, which were averaged and used to obtain the intensity reference
ratio for each pixel. Subsequently, for each of the laser diode powers used in the test, 10
images were acquired and averaged and these were then used to estimate the intensity ratio
for each pixel. The normalized intensity was then obtained upon dividing the intensity ratio
by the reference ratio for the same pixels [3]. Finally, this normalized intensity was converted
to temperature using the calibration curve for the membrane, thus yielding an image of the
temperature distribution around the OFMH. A graphic depiction of this process is shown in
Fig. 4(b). The images shown in Fig. 4(c) were obtained directly from the PDMS-RhB
membranes for different powers of the laser diode; a decrease in fluorescence intensity is
apparent in the vicinity of the OFMH, located at the bottom of the membrane as depicted in
the images. Furthermore, as suggested by the dark areas in the images, the fluorescence
intensity seems to be lower for higher powers of the laser diode.

The temperature maps obtained after processing the fluorescence images (Fig. 4(c)) are
shown in Fig. 4(d). Clearly, the heat produced by the OFMH is dissipated around the OFMH
tip; notice also that the registered temperature increases with the optical power, as previously
reported for these devices [17,19]. Interestingly, the heated region seems to be smaller than
one millimeter. For this particular case, the OFMH reached a maximum temperature of 78 °C
and the total heated area was 750 pm x 650 pm. Using additional image processing, we can
further estimate the temperature within a defined region of interest within the image. As an
example, Fig. 4(e) shows the average temperature in a region close to the OFMH tip (80 um
X 80 pm) delimited by the red square in the temperature map shown in Fig. 4(d). As
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confirmed by the linear fitting, the average temperature was proportional to the optical power
launched into the OFMH.
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Fig. 4. Characterization of optical fiber micro-heater (OFMHs): (a) experimental setup to
obtain the temperature maps in the vicinity of an OFMH with a RhB membrane and LIFT; (b)
graphic depiction of the process used for obtaining the temperature maps; (c) fluorescence
images from the membranes for different temperatures before processing (the location of the
OFMH tip is illustrated at the bottom part of the images); (d) temperature maps obtained for
laser diode powers of: (1) 48.2 mW, (2) 108 mW, (3) 167 mW and (4) 253 mW; (e) average
temperature as a function of optical power evaluated for the region delimited by the red
rectangle shown in 4(d). The scale bar is 200 pm.

In order to discard any effects due to IR radiation exiting the OFMH on the temperature
readings, we also obtained temperature maps using pristine optical fibers (i.e., without the
gold nanolayer at the tip). For these measurements, an additional filter was used to block any
residual light from the laser diode. The temperature maps obtained for both, the pristine fiber
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and an OFMH are shown in Fig. 5. Since the PDMS and the RhB are both transparent for the
IR wavelength [9], no increase in temperature is registered for the pristine fiber. Any IR
contributions to the temperature measurements can therefore be discarded.
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Fig. 5. Temperature maps for different optical powers obtained with a pristine optical fiber
(top) and with an OFMH (bottom). The scale bar is 200 pm.

Limitations for the temperature resolution achievable with this technique are mostly
related to the gray scale conversion during image processing. Because the gray levels
available for each pixel limit the minimum intensity that can be detected, camera features
such as sensitivity and noise represent the ultimate temperature resolution that can be
achieved. In principle, with our experimental setup, the camera can provide a temperature
resolution of less than 1°C. Another limiting factor is the sensitivity of the membranes to
temperature changes. As shown in our characterization experiments, the response of the
membranes is susceptible to degradation mostly due to thermal quenching (see Fig. 2(d)).
This affects directly the sensitivity as well as the resolution of the temperature measurements.
Nonetheless, this factor can be accounted for following the calibration procedure described
before. Regarding the spatial resolution, this is limited by the microscope objective used for
image acquisition. Scattering effects within the membrane due to RhB clustering will also
play a role in limiting the spatial resolution. The noise observed in Fig. 5, for example, is
mostly due to the RhB clusters produced while fabricating the membranes (see Fig. 2(a)).
However, we believe that clustering can be avoided following simple mixing procedures such
as those previously reported for the fabrication of photothermal membranes [18].

4. Conclusions

We have demonstrated that PDMS-RhB membranes can be used to measure temperature
through LIFT. Using this technique together with the proposed membranes we were able to
analyze the fluorescence emitted by membranes and captured by a CMOS camera. The
membranes used in our experiments allowed us to determine temperature maps in the range
from 25 °C to 90 °C, with a temperature resolution of about 1 °C. The spatial resolution of
our measurements is approximately 2.7 um/px, which is adequate for acquiring temperature
maps in processes requiring micron resolution measurements. Moreover, these membranes
allow for performing temperature measurements in dried samples in a non-destructive
manner, without compromising the sample of interest. LIF thermometry performed with
PDMS-RhB membranes was used to obtain the temperature map around OFMH devices,
which are of interest for photothermal applications. Our results showed that the heat
generated by OFMH is proportional to the optical power of the laser light launched into the
fiber, and the heat generated is highly localized within a spatial region of less than one
millimeter. The use of temperature sensitive membranes may extend the use of LIFT in
applications involving the characterization of thermal devices with high spatial resolution.
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