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We present a measurement of D°-D° mixing parameters using the ratios of lifetimes extracted from a
sample of D° mesons produced through the process D** — D%z, which decay to K~ 7", K" K%, or
7~ 7. The lifetimes of the CP-even, Cabibbo-suppressed modes K~ K+ and 77~ 7" are compared with
that of the CP-mixed, Cabibbo-favored mode K~ 7 to obtain a measurement of y.p, which in the limit of
CP conservation corresponds to the mixing parameter y. The analysis is based on a data sample of
384 fb~! collected by the BABAR detector at the PEP-II asymmetric-energy e e collider. We obtain
yep = [1.24 + 0.39(stat) + 0.13(syst)]%, which is evidence for D°-D° mixing at the 3¢ level, and AY =
[—0.26 * 0.36(stat) == 0.08(syst)]%, where AY constrains possible CP violation. Combining this result
with a previous BABAR measurement of y.p obtained from a separate sample of D° — K~ K* events, we

obtain ycp = [1.03 = 0.33(stat) = 0.19(syst)]%.

DOI: 10.1103/PhysRevD.78.011105

Several recent studies have shown evidence for mixing
in the D%-DP system at the 1% level [1-3]. The measured
values can be accommodated by the standard model (SM)
[4], where the largest predictions for y are of O(1072).
These measurements provide strong constraints on new
physics models [5]. One consequence of D°-D® mixing is
that the D° decay-time distribution can be different for
decays to different CP eigenstates [6]. An observation of
CP violation in D°-D° mixing with the present experimen-
tal sensitivity would provide evidence for physics beyond
the SM [7]. We present a measurement of this lifetime
difference and the results of a search for CP violation in
D°-D° mixing.

The two neutral D mass eigenstates |D;) and |D,) can be
represented as

|Dy) = pID°) + qID°),

|D,) = p|D°) — ¢|DY), (1)

where |p|> + |q|> = 1. We characterize the rate of D°-D°
mixing with the parameters x = Am/I" and y = AT'/2T,
where Am = m; — m, and AT =T'| — T, are the differ-
ences between the mass and width eigenvalues of the states
in Eq. (1), respectively, and I' = (I'; + I';)/2 is the aver-
age width. If either x or y is nonzero, mixing will occur.

The effects of CP violation in D°-D° mixing can be
parameterized in terms of the quantities

T, = 2| and = ar (zﬁ), 2
m |p ¢f g p Af ( )
where A E_{fl.?'[DID(]) (A; = (f1H p|D®)) is the ampli-
tude for D°(DP) to decay into a final state f, and H , is the
Hamiltonian for the decay. A value of r,, # 1 would in-
dicate CP violation in mixing. A nonzero value of ¢
would indicate CP violation in the interference between
mixing and decay. Within the SM, CP violation in decay is
expected to be small in the D°-D° system [7] and a search
for this effect using these decay modes is considered else-
where [8].

D°-D° mixing will alter the decay-time distribution of
D and D mesons that decay into final states of specific

PACS numbers: 13.25.Ft, 11.30.Er, 12.15.Ff

CP. To a good approximation, these decay-time distribu-
tions can be treated as exponential with effective lifetimes
71, and 7, given by [9]

Tin = Tkall + rp(ycosey — xsing,)]™! )
T = Tkxl1 T 1y (ycose, + xsing )],

where 7, is the lifetime for the Cabibbo-favored decays
D°— K 7" and D° — K* 7, and 7;,(7,) is the life-
time for the Cabibbo-suppressed decays of the D°(D°) into
CP-even final states (such as K~ K" and 7= 7). These
effective lifetimes can be combined into the quantities ycp
and AY

TK7T 1

Ycp = — 1,

P <Thh>

Ay = K74 )
(Thh>

where (7)) = (77, + 7;,)/2 and A, = (7}, —1,,)/
(7, + 7). Both ycp and AY are zero if there is no D°-D°
mixing. In the limit of CP conservation, ycp =y and
AY = 0, with the convention that cosg, > 0.

We measure the D° lifetime in the three different D°
decay modes, K~ 7", K"K*, and 7~ 7*. We use D°
mesons coming from D** — D%zt decays [10]; the re-
quirement of a D** parent strongly suppresses the back-
grounds. We use the charge of the D** to split the K~ K™
and 7~ 7" samples into those originating from D° and
from D° mesons for measuring the CP-violating parame-
ters. To avoid potential bias, we finalize our data selection
criteria, the procedures for fitting and for extracting the
statistical limits, and determine the systematic errors, prior
to examining the mixing results.

Most systematic errors related to signal events are
expected to cancel in the lifetime ratios. Background
events can contain effects that differ in each decay mode,
making them difficult to characterize. Therefore, the event
selection is chosen to produce very pure samples. The
decay-time distribution of signal candidates is fit to an
exponential convolved with a resolution function that
uses event-by-event decay-time errors. The decay-time

011105-4
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resolution parameters are allowed to vary in the fit.
Residual background components are modeled using
Monte Carlo (MC) simulated events and control samples
obtained from the data.

We use 384 fb~! of e* e~ colliding-beam data recorded
near /s = 10.6 GeV with the BABAR detector [11] at the
PEP-II asymmetric-energy storage rings. We begin by
reconstructing candidate D° decays into the final states
K at, =~ o*, and K~ K. We require tracks to satisfy
particle identification criteria based upon dE/dx ionization
energy loss and Cherenkov angle measurements. We fit
pairs of tracks with the appropriate mass hypotheses to a
common vertex. We require the invariant mass of a candi-
date track pair to be within the range 1.78-1.94 GeV/c?.
To further reduce backgrounds, we require the helicity
angle 6y, defined as the angle between the positively
charged track in the D° rest frame and the D° direction
in the lab frame, to satisfy | cosfy| < 0.7. This is particu-
larly helpful for rejecting combinatorial background, es-
pecially in the 7~ 7" mode.

We reconstruct D** candidates by combining a D°
candidate with a slow pion track (denoted 7)), requiring
them to originate from a common vertex constrained to the
et e interaction region. We require the 7" momentum to
be greater than 0.1 GeV/c in the laboratory frame and less
than 0.45 GeV/c in the e* e~ center-of-mass frame. We
perform a vertex-constrained combined fit to the D pro-
duction and decay vertices, requiring the y?-based proba-
bility P(x?) to be at least 0.1%. The decay time ¢ and
its estimated uncertainty o, for each D° candidate are
determined by this fit. We reject slow electrons that fake
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7y candidates using dE/dx measurements in the tracking
volume and further veto any 77; candidate that may have
originated from a reconstructed gamma conversion or 77°
Dalitz decay.

To reduce contributions from D°s produced via
B-meson decay to a negligible amount, we require each
D’ to have a momentum in the center-of-mass frame
greater than 2.5 GeV/c. We also require —2 <1 <4 ps
and o, < 0.5 ps. The most probable value of o, for signal
events is 0.16 ps. For cases where multiple D** candidates
in an event share one or more tracks, we retain only the
candidate with the highest P(y?).

The distribution of the difference in the reconstructed
D** and D° masses (8m) peaks near 0.1455 GeV/c?.
Backgrounds are suppressed by retaining only those
D*" candidates within the interval 0.1447 < dm <
0.1463 GeV/c?. The reconstructed invariant mass (M),)
distributions for the selected D° candidates are shown in
Fig. 1. When determining the D° lifetime, we only use D°
candidates with M}, within the interval 1.8495 < M, <
1.8795 GeV/c? around the D signal peak (shaded regions
in Fig. 1); the sample yields and purities within this signal
region are also given.

The DO lifetime is determined from an unbinned maxi-
mum likelihood fit to the reconstructed decay time and its
estimated error for events in the signal region. The fit has
18 free parameters and is performed simultaneously to all
five decay samples (D° — K~ K*; D’ - K*K~; D° —
77t D> a7, DK #7 and D' — K 7~
combined). The D° candidates in the signal region can be
divided into three components: D signal events, combi-
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FIG. 1.

The reconstructed D° mass distributions for the three D° samples, within =0.0008 GeV/c? of the peak of 8m. The shaded

regions indicate the mass distributions of the D° candidates used in the lifetime fit. (The structures appearing above 1.92 GeV/c? in
the K~ K" decay mode, and below 1.81 GeV/c? inthe 7~ 7" decay mode, are mainly due to candidates with misidentified kaons or
pions.) Also shown are the yield and purity for each of the three D° samples as determined in the DO lifetime fit.
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natorial background, and mis-reconstructed charm events.
Each component is described by its own probability den-
sity function (PDF), which also depends upon the D° or D°
decay mode. Approximately 0.4% of the D° signal events
consists of a correctly reconstructed D° candidate com-
bined with an unrelated 7; this yield is estimated from
MC and verified in data. These candidates have the same
resolution and lifetime behavior as those from correctly
reconstructed D** decays, but about half of them will
be tagged as the wrong flavor. We therefore include a
0.2% component in the signal PDF that uses the lifetime
of the opposite flavor state. These events are included in the
signal sample in Fig. 1.

The measured decay-time distribution of signal events is
described by an exponential convolved with a resolution
function. The resolution function is the sum of three Gauss-
ian functions with widths proportional to o,. The three
Gaussian functions share a common mean, which is al-
lowed to be offset from zero in order to take detector
misalignment effects into account. The effect of the offset
is studied as part of the cross-checks and taken into account
as a systematic uncertainty. The resolution function pa-
rameters are all permitted to vary in the fit. Up to an overall
scale factor in the width, the resolution function is ob-
served to have the same shape for all modes, including
the offset. To account for the small (1.5%) differences in
width, we introduce two parameters Sg-g+ and S,-,+ to
scale the overall width of the K~ K™ and 77~ 7" resolution
functions relative to the width of the K~ 7" resolution
function. All other resolution function parameters are
shared among the different modes and are determined by
a simultaneous fit to all modes together.

The decay-time distribution of the combinatorial back-
ground is described by a sum of a Gaussian and a modified
Gaussian with a power-law tail to account for a small num-
ber of events with large reconstructed lifetimes. The means
of these functions are allowed to vary in the fit. Each of the
three decay modes has its own shape for the combinatorial
background. These shapes are determined from fits to the
events in the sideband region defined by 1.89 < M, <
1.92 GeV/c? and 0.151 < 6m < 0.159 GeV/c?>. We de-
termine the amount of combinatorial background using
MC samples scaled to the same luminosity as the data,
modeling all known, relevant physics processes. The frac-
tion of combinatorial background in the K~ 7+ mode is
estimated to be (0.032 = 0.003)%, in the K~ K+ mode
(0.16 + 0.02)%, and in the 7~ 7" mode (1.8 * 0.2)%.
The uncertainties are determined by comparing data and
MC events in the (M}, §m) sideband where the combina-
torial background is dominant.

Mis-reconstructed charm background events have one
or more of the charm decay products either not recon-
structed or reconstructed with the wrong particle hypothe-
sis. Most are D° mesons from a D** — D%z, decay with a
correctly reconstructed 7. For the K~ 77t mode, most of

PHYSICAL REVIEW D 78, 011105(R) (2008)

the charm background arises from semi-leptonic decays
D° — K~ {" v, where the charged lepton is misidentified
as a pion. The semi-leptonic decays also contribute to the
K~ K™ final state, but the dominant contribution is from
D’ — K~ 7" 7% in which the 7° is not reconstructed and
the 77" is misidentified as a kaon. There is also a small
contribution from D* — K~ 7" 7" decays. In the 7~ 7"
mode, the charm background is almost exclusively due to
mis-reconstructed D® — K~ 7" decays in which the kaon
has been misidentified as a pion. The decay-time distribu-
tions of the charm backgrounds are described by an ex-
ponential convolved with a Gaussian. The parameters are
fixed to values obtained in a fit to MC events. The fraction
of charm background events in the signal region is esti-
mated from MC simulation and cross-checked by compar-
ing data and MC events in a (M,,,, 6m) sideband region
defined by 1.78 < M,,;, < 1.80 GeV/c? and 0.14 < §m <
0.16 GeV/c?, where the charm background is the domi-
nant contribution. We estimate the charm background to be
(0.009 = 0.002)% of events in the signal region for K~ 7+,
(0.2 +0.1)% for K~ K%, and (0.15 = 0.15)% for w~ 7™

The results of the lifetime fits are shown in Fig. 2. The
fited D° lifetime 7g, is found to be 409.33 = 0.70
(stat) fs, consistent with the world-average lifetime [12].
From the fit results we calculate y-p and AY for the K~ K™
mode, the 7~ 7+ mode, and the two modes combined,
taking into account any correlations between the fitted
lifetimes. The dominant correlation between lifetimes,
11%, arises because the decay-time resolution offset is
shared between the decay modes. The y.p and AY results
are listed in Table I. The combined result is obtained by
fitting the data with common lifetimes for the K~ K* and
7~ 7" modes, and assuming the same value of ¢ ¢ for the
K~ K" and #~ 7" decay modes.

Various cross-checks have been performed to ensure that
the fit is unbiased and the assumptions in the fit model are
well-founded. An offset in the resolution function is mea-
sured in the fit to be —4.75 £ 0.51 fs. This offset was seen
in our recent K~ 77 mixing analysis [1] and has also been
observed in other BABAR measurements of charm decays.
Because we measure ratios of lifetimes, the presence of a
common offset has minimal impact on the values y-p and
AY. However, differences in the offset between the three
decay modes, or between the D° and DY, could introduce a
bias. No resolution offset is found in the MC samples.
However, we are able to introduce offsets in the fits to
the MC sample of up to twice the size of the offset in data
by misaligning the silicon vertex tracker (SVT). In all
cases, the offsets are found to be consistent between all
modes.

The fitting procedure has been validated with generic
MC samples weighted to the luminosity of the data sam-
ple and with dedicated signal MC samples. The signal
efficiency is found to be independent of the true decay
time, and the fitted lifetimes are consistent with the gen-
erated value.
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Decay-time distribution in the data samples with the combined fit overlaid. The top left plot is the tagged

K~ 7" sample, the middle plots are the D** (left) and D*~ (right) tagged K~ K™ samples, and the bottom plots are the tagged 7~ 7"
samples. The shaded and black distributions represent the charm and combinatorial background in the fit, respectively. The normalized
residuals for each fit are shown as a separate histogram for each sample. The top right plot shows a summary of the measured lifetimes.

The assumption that the resolution function is the same
for all decay modes except for a scale factor is tested by
fitting each sample independently. This gives mixing pa-
rameters and resolution offsets consistent with the nominal
fit, but with significantly larger statistical uncertainties.
The lifetime has also been extracted in independent fits
to the flavor-separated samples of D° — K~ 7" and D° —
K* 7~ decays. The fitted lifetimes and resolution functions
in these two samples are consistent with each other.

To cross-check the effect of the resolution offset, we
performed further studies by dividing the data sample into
subsamples with different sensitivities to detector effects
and fitting each subsample independently. Besides the D*
tagged samples used for this mixing measurement, we also
use a control sample of D° — K~ 7+ decays, where the D°
is not required to come from a D* decay. This untagged
sample has about 5 times as many D° decays as the D*
tagged samples combined, allowing us to divide the sample

TABLE I. The mixing parameters extracted from the fit to data, where the first error is
statistical and the second is systematic.

Sample Ycp AY

K K* (1.60 = 0.46 + 0.17)% (—=0.40 = 0.44 £ 0.12)%
Tt (0.46 = 0.65 + 0.25)% (0.05 = 0.64 £ 0.32)%
Combined (1.24 = 0.39 £0.13)% (—0.26 = 0.36 = 0.08)%
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more finely. The quantities used to divide the data into
subsamples for these tests include the run period, the
azimuthal and polar angle of the D° meson, the opening
angle between the D° daughter tracks, and the orientation
of the D° decay plane with respect to the X-Y (bending)
plane of the detector. In all of the variables mentioned,
the resolution offset is observed to have a large variation
(typically between —10 fs and O fs), but the fitted lifetimes
are consistent among samples. Furthermore, the weighted
average of the mixing parameters from the subdivided
data samples is in almost all cases nearly identical to that
obtained by fitting the full data sample with one common
lifetime and resolution function as described previously.
We find no evidence of variation in the fitted lifetime
between the five BABAR running periods (x> probability
for consistency of 57%). The largest variation is observed
with the polar angle of the D° meson in the laboratory
frame, where decays perpendicular to the beam line are
found to have almost no resolution offset, while decays
into the forward region of the detector have a large offset.
Since the acceptance for D° — K~ K* decays is lower in
the forward region than for D — K~ 7" or D° — 7~ 7"
decays, the polar angle dependence in the offset could
potentially introduce a different average offset for each
of the three modes. This is accounted for in the systematic
erTorS.

The systematic uncertainties on the mixing parameters
are small, since most uncertainties in the lifetimes cancel in
the ratios. We have considered variations in the signal and
background fit models, changes to the event selection and
detector effects that could introduce biases in the lifetime.
Table II summarizes the various systematic uncertainties.
The evaluation of each of these is described below. The
systematic uncertainty on y-p and AY averaged over the
two CP modes is occasionally smaller than the individual
uncertainties because of anti-correlations.

We vary the signal PDF shape, and the size and position
of the signal region. As part of the PDF shape variations,
we perform a fit without a resolution offset. The effect of
the polar angle dependence in the resolution offset is
evaluated by performing the fit with separate, floating off-
sets in seven bins of polar angle, but sharing all other
resolution parameters and lifetimes across all polar angle
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bins. The difference in the mixing parameters between this
fit and the nominal fit is found to be small ( < 0.02%).
The largest systematic contribution to yXX (0.12%) is due
to changing the M,;, requirement to 1.8395 <M, <
1.8895 GeV/c?. The choice of signal region determines
the level of mis-reconstructed signal events included in
the fit.

The mis-reconstructed charm background is a very small
component in the lifetime fit and is determined using MC
events. Varying the charm background fraction (depending
on the mode) and the effective lifetime, both within their
associated uncertainties, yields a minor contribution to the
systematic uncertainty.

Because of the high purity, the results have little sensi-
tivity to the modeling of the combinatorial background,
except in the 7~ 77" mode where varying the fraction of
combinatorial background by 10% yields a systematic un-
certainty in yZ7 of 0.14%. We also alter the fit procedure by
using a different sideband region and by substituting the
MC decay-time distribution for that obtained from fitting
the data. Neither variation contributes a large systematic
uncertainty.

We have studied the effect of varying the event selection
criteria, which could potentially affect the lifetime mea-
surement. Changing the treatment of events where multiple
D** candidates share one or more tracks (either keeping all
of them or throwing them all out) has little effect, while
changing the upper bound on the decay-time uncertainty
from 0.5 to 0.4 ps yields the largest individual systematic
uncertainty on yZZ of 0.172%. As with the D° mass win-
dow, the choice of the o, range affects the level of mis-
reconstructed events.

To evaluate the effect of possible misalignments in the
SVT on the mixing parameters, signal MC events are
reconstructed with different alignment parameters, and
the analysis is repeated. The misalignments introduce
resolution offsets in the MC of up to 10 fs, and the
corresponding fitted lifetimes change by up to 3 fs. Since
the same MC sample is reconstructed for each set of align-
ment parameters, the variations are dominated by system-
atic effects. We therefore assign 100% of each variation as
a systematic uncertainty, combining them in quadrature.
Since the lifetimes of all decay modes change by similar

TABLE II.  Summary of systematic uncertainties on ycp and AY, separately for K~ K" and 7~ 7" and averaged over the two CP
modes, in percent.
Oy, (%) o ay (%)

Systematic K K* Tt Av. K K* Tt Av.
Signal model 0.130 0.059 0.085 0.072 0.265 0.062
Charm bkg. 0.062 0.037 0.043 0.001 0.002 0.001
Combinatoric bkg. 0.019 0.142 0.045 0.001 0.005 0.002
Selection criteria 0.068 0.178 0.046 0.083 0.172 0.011
Detector model 0.064 0.080 0.064 0.054 0.040 0.054
Quadrature sum 0.172 0.251 0.132 0.122 0.318 0.083
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amounts, the effect on yc-p and AY is small. We also
changed the energy loss correction applied in the tracking
by 20%, since a previous analysis has shown that the
energy loss is underestimated in the reconstruction of data
events [13]. This changes the fitted lifetimes by about 0.5 fs
but has little effect on the mixing parameters.

We combine the results shown in Table I, with those
from a previous BABAR study [14], based on 91 fb~! of
data, that does not require a D** parent to identify the D°
decays. In this earlier analysis, tagged D° decays have been
removed. Therefore, the data sample of the earlier analysis
is essentially disjoint from the present sample and its re-
sults statistically independent. The systematic uncertain-
ties in the previous analysis were dominated by the limited
number of simulated events. Since the MC samples in
the present study are entirely independent, these uncertain-
ties are not correlated with those of the new results.
Conservatively assuming the remaining systematic un-
certainties to be 100% correlated, we combine the two
results using the BLUE method [15] and obtain ycp =
[1.03 = 0.33 (stat) * 0.19 (syst))]%.

In summary, we have obtained a value of y.p =
[1.24 +0.39 (stat) = 0.13 (syst))]%, which is evidence of
DO-D° mixing at the 3o level. It is compatible with our
previous result [14] and the recent lifetime ratio measure-
ment from Belle of yqp =[1.31 = 0.32 (stat) = 0.25
(syst)]% [2]. We find no evidence for CP violation and
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determine AY to be [—0.26 * 0.36 (stat) * 0.08 (syst)]%.
The result is consistent with SM estimates for mixing.

We are grateful for the extraordinary contributions of
our PEP-II colleagues in achieving the excellent lumi-
nosity and machine conditions that have made this work
possible. The success of this project also relies critically
on the expertise and dedication of the computing organ-
izations that support BABAR. The collaborating institutions
wish to thank SLAC for its support and the kind hospitality
extended to them. This work is supported by the U.S.
Department of Energy and National Science Foundation,
the Natural Sciences and Engineering Research Council
(Canada), the Commissariat a 1’Energie Atomique and
Institut National de Physique Nucléaire et de Physique
des Particules (France), the Bundesministerium fiir
Bildung und Forschung and Deutsche Forschungsgemein-
schaft (Germany), the Istituto Nazionale di Fisica Nucleare
(Italy), the Foundation for Fundamental Research on
Matter (The Netherlands), the Research Council of
Norway, the Ministry of Education and Science of the
Russian Federation, Ministerio de Educacion y Ciencia
(Spain), and the Science and Technology Facilities
Council (United Kingdom). Individuals have received sup-
port from the Marie Curie IEF program (European Union)
and the A.P. Sloan Foundation.

[1] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett.
98, 211802 (2007).

[2] M. Staric et al. (BELLE Collaboration), Phys. Rev. Lett.
98, 211803 (2007).

[3] L.M. Zhang et al. (BELLE Collaboration), Phys. Rev.
Lett. 99, 131803 (2007).

[4] L. Wolfenstein, Phys. Lett. 164B, 170 (1985); J.F.
Donoghue, E. Golowich, B.R. Holstein, and J.
Trampetic, Phys. Rev. D 33, 179 (1986); I.1. Y. Bigi and
N. G. Uraltsev, Nucl. Phys. B592, 92 (2001); A.F. Falk, Y.
Grossman, Z. Ligeti, and A. A. Petrov, Phys. Rev. D 65,
054034 (2002); A.F. Falk, Y. Grossman, Z. Ligeti, Y. Nir,
and A. A. Petrov, Phys. Rev. D 69, 114021 (2004).

[5] G.Burdman and I. Shipsey, Annu. Rev. Nucl. Part. Sci. 53,
431 (2003); A. A. Petrov, Int. J. Mod. Phys. A 21, 5686
(2006); E. Golowich, J. Hewett, S. Pakvasa, and A.A.
Petrov, Phys. Rev. D 76, 095009 (2007).

[6] T. Liu, in Batavia 1994, The Future of High-Sensitivity
Charm Experiments, Proceedings of the CHARM 2000
Workshop, edited by D. Kaplan and S. Kwan,
FERMILAB-Conf-94/190 (1994).

[7]1 G. Blaylock, A. Seiden, and Y. Nir, Phys. Lett. B 355, 555
(1995); I. 1. Bigi and A. 1. Sanda, CP Violation (Cambridge

University Press, Cambridge, England, 2000), p. 257; G.
Burdman and I. Shipsey, Annu. Rev. Nucl. Part. Sci. 53,
431 (2003); Y. Grossman, A.L. Kagan, and Y. Nir, Phys.
Rev. D 75, 036008 (2007).

[8] D. Acosta et al. (CDF Collaboration), Phys. Rev. Lett. 94,
122001 (2005); X.C. Tian et al. (BELLE Collaboration),
Phys. Rev. Lett. 95, 231801 (2005); B. Aubert et al.
(BABAR Collaboration), Phys. Rev. Lett. 100, 061803
(2008).

[9] S. Bergmann, Y. Grossman, Z. Ligeti, Y. Nir, and A. A.
Petrov, Phys. Lett. B 486, 418 (2000).

[10] The use of charge-conjugate modes is implied unless
otherwise noted.

[11] B. Aubert et al. (BABAR Collaboration), Nucl. Instrum.
Methods Phys. Res., Sect. A 479, 1 (2002).

[12] W.M. Yao et al. (Particle Data Group), J. Phys. G 33, 1
(2000).

[13] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 72,
052006 (2005).

[14] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett.
91, 121801 (2003).

[15] L. Lyons, D. Gibaut, and P. Clifford, Nucl. Instrum.
Methods Phys. Res., Sect. A 270, 110 (1988).

011105-9

RAPID COMMUNICATIONS





