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LBL-19324 

Theory of Angle-Resolved Photoemission Extended Fine Structure 

ABSTRACT 

J.J. Barton, S.W. Robey, and D.A. Shirley 

Materials and Molecular Research Division 
Lawrence Berkeley Laboratory 

and 
Departments of Chemistry and Physics 

University of California 
Berkeley, California 94720 

We present a theory for photoelectron scattering in the 100-1000 ev 

energy range designed to simulate experimental measurements of Angle-

Resolved Photoemission Extended Fine Structure (ARPEFS) from ordered 

surfaces. The zero-order problem of photoabsorption in the solid is 

treated first, followed by a scattering problem which incorporates the 

scattering ion-cores in a perturbation series (cluster expansion). The 

dynamics of core-hole relaxation are discussed, but the dynamical 

effects are shown to be small. The Taylor-series magnetic quantum 

number expansion is used for the curved-wave, multiple-scattering 

equations. We argue that a velocity-dependent surface barrier gives 

primarily an inner potential shift, with no clear evidence for surface 

electron refraction. Analytic formulas for aperture integration are 

derived and thermal averaging in a correlated Debye model is extended to 

multiple scattering. Reasonable values for non-structural parameters in 

the theory are shown to give very good simulations of the experimental 

ARPEFS measurements from c(2X2)S/Ni(001) in contrast to previous 

theoretical calculations. We find, in agreement with full multiple-

scattering calculations, that forward focussing is a fundamental feature 

of ARPEFS and that curved-wave corrections are essential for_ 
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quantitative results. Since the scattering path-length difference is 

not appreciably altered by forward scattering, the ARPEFS oscillation 

frequency is equal to the geometrical path length difference plus a 

small potential phase shift, but the amplitude and constant phase of the 

oscillations cannot be predicted by theories based upon single­

scattering or plane-wave approximations. 
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I. INTRODUCTION 

Much of the interest in adsorption studies on clean, single-crystal 

surfaces is based on the usefulness of these systems as well 

characterized models for more complicated interfaces. Unfortunately, 

characterization of even these model systems has proved difficult. We 

have been exploring 1•2 a new approach to determining surface structures 

using core-level, angle-resolved photoemission. Core-level 

photoemission provides an element-specific, surface-sensitive, localized 

probe for adsorbates. By performing angle-resolved measurements with 

polarized light we may independently orient the emission and 

polarization vectors: we can view the surface structure from many 

different angles and emphasize different atoms. These distinctive 

features or core-level, angle-resolved photoemission have led to a 

number of experimental measurements and theoretical analysis 3 •
4 of 

surface structures, primarily by means of two measurement techniques, 

azimuthal photoelectron diffraction (APD) and normal photoelectron 

diffraction (NPD). 1 Recently, we reported the first structure 

determination using a new photoelectron diffraction technique which we 

call angle-resolved photoemission extended fine structure (ARPEFS). In 

this paper we describe a theoretical model which provides the basis for 

analyzing ARPEFS measurements to extract surface structure information. 

Experimental measurements of ARPEFS are very similar to those of 

normal photoelectron diffraction. 5 An ordered overlayer, adsorbed onto 

a single crystal, is irradiated with soft x-rays from a tunable, 

monochromatic photon source. The photon energy is typically scanned 

from 50 to 500 eV above some core energy level characteristic of the 
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overlayer. At each energy, the photoemission intensity in a selected 

emission direction is recorded. The resulting curve of photoemission 

intensity versus electron kinetic energy contains oscillations which we 

call ARPEFS. These measurements differ from NPD measurements only in 

their higher and wider energy range and in the unrestricted choice of 

emission angles. 

The more significant differences between NPD and ARPEFS lie in the 

interpretation of the measurements, specifically, in the process of 

extracting the surface structure information. NPD was viewed as being 

closely related to low energy electron diffraction (LEED); the measured 

oscillations were ascribed to multiple scattering interferences and 

analyzed by trial-and-error comparison to sophisticated calculations. 4 

ARPEFS, on the other hand, is viewed as closely related to extended x­

ray absorption fine structure (EXAFS); the scattering interferences seem 

to be directly related to individual scattering atoms and the scattering 

geometry may be extracted using Fourier analysis. 1 One important goal 

in this paper is to examine the justifications for this simplified view 

of ARPEFS. 

The physical explanation for ARPEFS is based on elastic electron 

scattering. Core-level photoabsorption gives a localized, atomic-like 

outgoing photoelectron wave. Direct propagation of this wave into the 

detector gives the overall atomic-like cross section to the ARPEFS 

curve. Propagation of this wave to the core region of nearby atoms 

creates a second set of elastically scattered waves which can also reach 

the detector. Interference between these two sets of waves gives rise 

to the ARPEFS. Since the interference extrema occur for electron 

wavenumbers which are integral multiples of n divided by the difference 
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in path lengths for direct and scattered waves, the path lengths--and 

hence the geometry--can be determined from the oscillation frequency. 

6 This is the physical picture presented by Lee , although he noted 

that the same physics had been described earlier, and McDonne11 7 et al. 

had analyzed angular distributions of Auger emission with an equivalent 

model. Lee drew strong parallels between EXAFS and angle-resolved 

photoemission, further suggesting that Fourier transformation might be 

useful in the analysis of angle-resolved photoemission. This localized, 

single-scattering cluster model was not, however, thought to be adequate 

for the analysis of normal photoelectron diffraction data. 4•5 Instead, 

the full multiple scattering analysis used for LEED was adapted to 

photoemissiont first by Leibsch8 and later and more extensively by Tong 

4 
and coworkers. The success of this adaptation is evident in a series 

of surface structure analysis based on this approach. 3 •4 

Despite the success of the NPD analysis, the complexity of the 

theoretical analysis is discouraging. The first step toward a simpler 

technique came when Hussain, et a1. 9 applied Fourier analysis to 

theoretically generated, wide energy range NPD curves. Hussain et al. 

were able to relate peaks in the Fourier spectrum to the interplanar 

spacings of adsorbate and substrate layers. While this would suggest 

that some simple model would predict the NPD curve, it appeared 

inconsistent with Lee's model of localized scattering. Lee's model 

would seem to predict shells of near neighbor distances in the Fourier 

transform, rather than the interplanar distances observed. Orders and 

' 10 Fadley resolved this dilemma by investigating in detail a single 

scattering cluster model similar to Lee's. They noticed that the strong 

peaking of the scattering angular distribution for backscattering in the 
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intermediate (100-600 eV) energy range would highlight substrate atoms 

directly below the adsorbate in the NPD normal emission geometry. Thus, 

the localized EXAFS-like theory could explain the Fourier transform 

result without resorting to a multiple scattering model. 

With the basic form of the localized cluster theory reconciled with 

the NPD theoretical curves, we measured 1 intermediate energy off-normal 

photoelectron diffraction data for c(2x2)S/Ni(100) and applied the 

techniques of EXAFS analysis in an attempt to derive the surface 

structure. To emphasize the differences between these measurements and 

their analysis and the NPD measurements, with their multiple scattering 

analysis, we have called the new technique angle-resolved photoemission 

extended fine structure (ARPEFS). 

The success of Lee's model as a basis for interpreting the ARPEFS 

to extract structure does not follow from the quantitative accuracy of 

published numerical calculations with the model. In fact, numerical 

calculations by Bullock, Fadley, and Orders 11 demonstrate that the basic 

single-scattering theory reproduced only the barest outlines of the 

experimental results. In our opinion, the experimental measurements and 

Fourier transforms indicate that only backscattering atoms and nearest 

neighbor atoms contribute substantially to the ARPEFS curve. Many other 

atoms contributed substantially to the theoretical curves of Bullock et 

al., giving them too much structure and the theoretical Fourier 

transform far too many peaks. Although Bullock et al. concluded from 

their calculations that many scattering atoms must be considered when 

analyzing ARPEFS, we prefer the interpretation that single-scattering 

theory does not adequately reproduce the experimental measurements. 
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In this paper we will concentrate solely on the form of the theory. 

We will assume that the non-structural parameters and the structure 

itself are well understood from independent sources. Our ultimate goal 

for the theory is a simulated curve which reproduces the measured data 

points to within their experimental precision. 

Some of the ingredients of this ARPEFS theory have been presented 

before. Beyond the qualitative analysis of Lee6 and McDonnell et al.'s 

early Auger results7 , theories which describe photoelectron scattering 

in the intermediate energy range have been developed by Fadley and 

10 11 12 13 .. 14 4 coworkers, ' ' ' FUJlkawa, and Tong and coworkers. The models of 

Fadley and coworkers and of Tong and coworkers are compared to our model 

in Table 1. The theory presented by Fujikawa 14 is a full spherical-

wave, multiple-scattering, cluster method, but it has not to our 

knowledge been applied as yet to any photoelectron scattering such as we 

are interested in here, and we will not discuss it further. 

Building on earlier work in azimuthal photoelectron diffraction, 13 

Orders and Fadley 10 applied a single-scattering cluster model to normal 

emission ARPEFS. Individual scattering events are sufficiently simple 

in this formulation that important insights could be gained about the 

nature of the electron scattering, specifically the connection between 

scattering anisotropy and interlayer distances. Unfortunately, this 

model is not adequate for detailed calculations, and its application to 

ARPEFS by Bullock, Fadley, and Orders 11 served primarily to spur further 

work. Very recently, Sagurton, Bullock, and Fadley 12 modified this 

model to include spherical wave scattering and correlated Debye Waller 

factors, giving somewhat better agreement with experiment. 
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The theory described by Tong et al. 4is complementary to that of the 

Fadley group. Their methods were developed for NPD studies in the low 

electron energy regime and extended, with some approximations, to 

intermediate energies. The sophistication of these calculations has 

limited their use either for simulation of experimental curves or for 

further understanding of the photoelectron scattering. Nevertheless 

this model led to two important developments of particular note: i) .the 

aforementioned Fourier transform results of Hussain, et a1. 9 providing 

the link with earlier NPD results and ii) the "quasi-dynamic" multiple 

scattering method~ This latter result is equivalent to our conclusion 

that multiple scattering serves to focus the single-scattered waves 

without introducing new path-length differences: the quasi-dynamical 

calculation includes all single scattering paths plus all forward 

multiple scattering paths. 

Our work falls somewhat between that of the Fadley and Tong groups. 

In related papers we have already investigated the nature of curved wave 

corrections to the single scattering of photoelectrons 15 and derived 16 

new approximate formulae for the multiple scattering of spherical waves 

by a method which we will refer to here as the Taylor series magnetic 

quantum number expansion (TS-MQNE). Our most significant contribution 

to the theory of ARPEFS will then be the application of the TS-MQNE 

multiple scattering equations and the qualitative insight 15 to arrive at 

a complete but parsimonious account of the elastic scattering of 

photoelectrons. Thus we include the multiple-forward scattering events 

(up to fourth order) considered by Tong's curved wave, quasi-dynamic 

theory, but we retain the relative simplicity of the cluster approach. 

To treat inelastic damping, we adopt isotropic mean free path damping 
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from EXAFS work. We include the correlated Debye Waller vibrational 

correction extended to multiple scattering and we derive an analytic 

formula for the angle integration effect. 

Section II describes the goals of the theory and the division of 

the ARPEFS problem into a zeroth order problem--discussed in Section IV­

- and a scattering problem--discussed in Section V. The effect of the 

surface barrier is treated in Section VI. A new formula for analytic 

aperture integration is given in Section VI and thermal averaging is 

discussed in Section VII. The full theory is compared to experiment in 

Section VIII, and the importance of each aspect of the theory is 

discussed. 
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II. GOALS OF THE THEORY; THE MODEL SYSTEMS 

We begin by posing the theoretical problem to be solved. We will 

use as our example the S(1s) ARPEFS from c(2x2)S/Ni(100) measured along 

[110] and [001] directions as reported previously1 •2 and analyzed in 

detail elsewhere. 17 The experimental angle-resolved photoemission 

partial intensities, I(E), can be reduced to the proportional cross-

section oscillations: 

x(E,R,E:) 
I(E) -I 0 (E) 

I
0

(E) 
( 1 ) 

where E is the measured pHotoelectron kinetic energy~ The unit vector R 

specifies the direction to the photoemission analyzer and E gives the 

polarization vector orientation. The curve I(E) has been corrected for 

such effects as photon flux; r 0 (E) is taken as the smooth, slowly 

varying part of I(E). This form is relatively insensitive to errors due 

to experimental efficiencies, which tend to be cancelled by r 0 (E). 

Similarly if the theory is asked only to reproduce x(E,R,E), we can 

concentrate on only the rapidly varying portion of the partial cross 

section. Specifically we may ignore various constants, density of 

states, and--at least for S(1s)--any atomic cross-section dependence on 

energy. To simulate the measurement, then, we must calculate the 

probability that an electron will enter our angle-resolving aperture, Q, 

on irradiating the sample with photons of energy 100-600 eV above the 

S(1s) absorption edge. 
-+ 

Thus we need the continuum orbital, w(r), from a 

stationary state of the light-plus-sample system. The complete 

calculation of ~ is a complex problem, primarily because photoabsorption 

is a dynamic process. Our procedure--implicit in previous work--is to 
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divide the complete problem into two parts. The first part which we 

will call the zeroth-order problem, contains all of the dynamical (time-

dependent) physics; the second part, the scattering problem, includes 

the scattering from ion cores as a perturbation on the zeroth-order wave 

~ 

function. Thus w(r) is constructed in the scattering problem as 

(2) 

~ 

using w0(r) from the zeroth-order problem, and we form 

x(E,R,€) -1 (3) 

for an aperture of radius a, to compare to the experimental x(E) curve. 

In the next two sections we define the zeroth-order and scattering 

problems and give our solutions to them. 
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III. The Zeroth-Order Problem 

The zeroth-order problem consists of the photoabsorption in the 

absence of ion-core scattering. To be useful for structure 

determination, the photoelectron continuum orbital must be representable 

as a wave about a single center; we are only interested in 

photoabsorption from localized core level initial state. Thus the 

zeroth-order problem is nothing more than atomic photoabsorption in the 

presence of a tenuous medium representing the properties of the material 

surrounding the photoemitter. We shall want the medium to represent the 
• 

valence charge density in the metal which is responsible for screening 

the photo-ion, since screening is a dynamical process. Typically, we 

would also ask the medium to simulate the interstitial regions of the 

crystal (between ion cores) smoothly continued over the whole crystal. 

The only important requirement for the medium is that it present only a 

very smooth potential incapable of scattering or of attenuating the 

photoelectron wave anisotropically. For the S/Ni problem we consider a 

sulfur atom partially embedded in a jellium surface being irradiated by 

soft x-rays of energy above the S(1s) threshold. 

Atomic photoabsorption is well understood 18 and as the jellium 

surface has only a very small interaction with the S core, we need only 

summarize the assumptions and conclusions of the photoemission theory. 

In all practical experimental arrangements for ARPEFS we can assume that 

the photon beam is a weak, linearly polarized electric field of 

intermediate energy, 50 eV < hv < 50 keV. This insures accuracy of the 

dipole approximation so that we may write 

~ 

1jJ ( r) 
0 

( 4) 
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where ~,s is the (1s) orbital, € is the polarization (unit) vector of 

the electric field, ~f is the photoion wavefunction and ~0 is the ground 

state wavefunction excluding the (1s) orbital. 

The angle integration immediately yields the dipole selection rule: 

-+ 
expanding ~ (r) in spherical harmonics and integrating shows that ~ (r) 

0 0 

is a "P" wave: 

-+ 
~ ( r) 

0 
( 5) 

where R100 (r) is the radial part of the photoelectron continuum orbital. 

We emphasize that the angular distribution of the photoelectron in ~ is 
0 

solely determined by the dipole selection rule. 

The remaining problem would seem to be a difficult one. 

Fortunately, the details of the radial wavefunction are almost without 

consequence for the purpose of determining surface structures. The 

interference leading to ARPEFS does not depend upon the absolute phase 

of the photoelectron wavefunction, and we specifically avoid studying 

slowly varying fine structure so that we may ignore the photoabsorption 

cross-section structure. Thus if we select a sphere surrounding the 

photoabsorbing atom within which the potential experienced by the 

photoelectron is spherically symmetric, e.g., the "core" region, then 

-+ 
the phase and amplitude of ~ (r) may be set to arbitrary constants on 

0 

the surface of the sphere. With no more error than is already 

introduced in the muffin-tin form of our scattering problem we may 

extend the radius of this sphere, ra' to include the entire atomic 

volume of the photoabsorbing atom. 
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The form of the photoelectron wavefunction outside r will depend a 

on the extent of the dynamic core-hole screening. 19 Noguera et al. have 

considered the semiclassical problem of the response of a jellium metal 

to a suddenly created core hole. These authors argue that the screening 

time is a fraction of the plasmon period, 0.15 (2n/w) for plasmon p 

frequency w • They calculate the photoelectron position classically 
p 

with r=vt: the screening time is - 0.04 femtosec in metals, and 

electrons with energy of a few hundred electron volts have velocities of 

- 100A/femtosec. Thus we can expect the wavefunction from r to r -
a 

4.0A to correspond to a partially screened potential. We will, however, 

take the approximation that the core-hole potential is fully screened at 

r . We expect little error from this choice even though the nearest a 

neighbor scattering atoms lie between r and r - 4.0A, since the a 

difference between the scattering properties of the partially and fully 

screened potential wavefunction will be slight. Then our zero-order 

wavefunction will be 

-+ 
ljJ ( r) 

0 
for r>r a 

(6) 

where ih1(kr) is the spherical Hankel function (free spherical wave) and 

the damping of the electron amplitude due to excitation of the jellium 

is modelled with a mean-free path A. The complex constant, A(r ), . a 

contains transition amplitudes and phase shifts which ultimately cancel 

when x(E,R,s) is formed. 

IV. THE SCATTERING PROBLEM 
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For our scattering problem we use an array of spherically symmetric 

ion cores, the familiar muffin-tin model for solids. The scattering 

problem itself has been extensively investigated. While Tong and 

coworkers 4 have applied the multiple scattering methods of LEED directly 

to the scattering problem we face, the usual techniques become 

unmanageable in the higher energy range. We have investigated the 

difficulty posed by the higher energy range, and we have proposed a new 

approximate method which we call TS-MQNE: Taylor series-magnetic quantum 

b 
. 16 num er expans1on. Therefore we will concentrate here only on the form 

of this approximate method and its application to ARPEFS. 

The MQNE may be qualitatively described as follows. The basic 

ingredients in the scattering problem is a wave source, a scattering 

potential, and an observation point. The wave source may be the 

original photoemitting atom, or a scattering atom. The scattering 

potential is taken to be spherically symmetric. The observation point 

may be a detector or another scattering potential. The first step in 

the MQNE is to describe the basic scattering problem in a coordinate 

system in which the z axis lies along the vector between the wave source 

and the scattering potential. Thus we decompose the source wave into 

partial waves of orbital and magnetic angular momenta quantized along 

the internuclear axis between source and scattering atoms. If the 

source wave is originally described in terms of partial waves about a 

different axis, then this step introduces rotation matrices for the 

spherical harmonics. 

The second step of the MQNE procedure translates the source partial 

waves to the scattering potential. This translation conserves the 

magnetic quantum number--the first of two reasons we choose the 
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internuclear axis for the quantization axis. The third step of the MQNE 

procedure generates the outgoing scattered wave by multiplying each 

individual incoming partial wave by a complex scattering matrix element. 

Our convenient choice of the internuclear separation as the quantization 

axis now helps a second time: only waves with low magnetic quantum 

numbers scatter from the potential. 16 The number of waves is directly 

related to the ratio of the potential radius to the internuclear 

separation. The restriction of the magnetic quantum number scattered by 

the potential constitutes the MQNE. 

The zeroth-order wavefunction is an ~ = 1 spherical wave centered 

on the photoabsorbing atom. Placing the origin of coordinates on the 

photoabsorber with the z axis along the polarization vector, E, means 

that this wave is 

ikR -L(0)/2A 
e 
ikR cos 8ER e (7) 

-+ 
at our detector, R. The factor L(O) is the distance in the direction of 

the detector from the photoemitter to an arbitrary reference plane above 

the surface (See Section V). The first-order (single-scattered) 

wavefunction has spherical waves emanating from every ion core except 

the photoabsorbing atom: 

ik 1 R-a .1 ika. -a.I2A -L(a.)/2A 
-+ e J e J -+ -+ -+ 

'¥1(R) I -- F(E,a. ,R) e J e J (8) 
1-+ -+ a. J 

aj~O ik R-a .1 J 
J 



17 

~ 

The index j runs over all near by atoms; The vector a i~ the 

internuclear separation vector between the photoemitter and the first 

scattering atom. We may expand 

a. 
IR-a .I 

J 
== R(1 - __l_ cos 8 

R a.R 
+ ••• ) == R - a. cos 8 

J a .R 
(9) 

J J 

to write 

ikR e 
-ika.cos 8 

e J ajR 
( 1 0) 

ikR 

The second and third term in the first order wavefunction accounts for 

the phase and amplitude of the zero-order wave at the center of the 

~ 

scattering potential at a .. 
J 

~ ~ ~ 

The complex number F(E,a.,R) is the 
J 

scattering factor and it gives the phase and amplitude of the scattered 

wave in the direction of the detector; its precise nature depends on the 

scattering approximation chosen. 
~ ~ ~ 

In a plane wave model, F(E,a.,R) would 
J 

be the scattering factor of atomic physics times cos 8 • The final Ea 

term in the first order wavefunction is the attenuation of the scattered 

waves as they propagate from the scattering atom to the reference 

~ 

surface, a distance of L(a.). 
J 

Similarly, the double scattered wave is 

ikR -ika. cos 9 a.R 
ika. +a .12>. 

J J J 
I I e e J e 

ikR a. 
b.~o a.~o J 

J J 



-ikb.cos eb.R 
~~ ~ e J J 

F(E:,a.,b.) 
J J . 

~ 
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~ ~ 

-L(a.+b.)/2>. 
e (~ ~ ~) J J ----- F a.,b.,R e .(11) 

ikb.+b./2A 
J J 

b. J J 
J 

The vector b runs between single-scattering and double-scattering atoms. 

The higher order waves may be written down by analogy. 

Interference between the zero-order wave at the detector--which we 

will call the direct wave--and the single and double scattered waves 

occurs when the complete wave probability is calculated: 

~ ~ * * * * * * 1jJ(R)1jJ(R) = $0$0 + (1jJ01jJ1 + $1$0) + ($0$2 + $2$0) + $1$1 ( 12 ) 

* * + $1$2 + $2$1) + ••• 

The interference leads to ARPEFS when the proportional oscillations are 

formed. 

We detect the photoemission intensity with a small but finite 

angular acceptance and the scattering atoms vibrate so that every 

photoelectron scatters from a slightly different system. We must 

consider this angle integration and thermal averaging before we can hope 

to simulate the experimental ARPEFS. We have also neglected any effect 

of the surface on the photoelectron. We take up these topics in the 

next three sections. 
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V. REFRACTION AND THE INNER POTENTIAL 

The interaction between the fast photoelectron and the conduction 

electrons of the solid can be approximated as a complex optical 

20 potential operating on the photoelectron. The imaginary part of the 

optical potential serves to attenuate the photoelectron wave; its 

physical origin is the electronic excitation of the solid plasmon 

oscillations and electron-hole pairs. We have incorporated this 

attenuation with the mean free path factors in Section IV. The real 

part of the optical potential plays no role in scattering; it represents 

the energy difference between a free electron and that electron screened 

by the conduction electrons of the solid. When the photoelectron leaves 

the solid it moves away from the influence of the optical potential. 

Here we consider the results of this surface barrier. 

A photoelectron with energy E within the jellium medium will have 

energy E-E 0 in the vacuum far from the surface. This loss of kinetic 

energy E
0 

may be related to a potential barrier whose total height is 

v0 , the real part of the optical potential. The height of the barrier 

determines the energy loss, but the barrier shape will alter the 

trajectory of the photoelectron. 12 Sagurton et al. adopted a planar 

step barrier of height v0 just outside the last row of ion cores. This 

is the usual first-order model for the surface barrier, introduced for 

both low energy photoemission 21 and low energy electron diffraction. 20 

The important consequence of this model is a prediction that the 

emerging photoelectron will be refracted in a direction away from the 

surface normal in the manner of optical refraction with 

(E)
1/2. 

Sln 6 (E-E ) 112 sin(e+~e) 
0 

( 1 3) 
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where the angles are measured from the surface normal. Since E0 << E 

for ARPEFS energies, the angle correction AB is small, but it could be 

significant for high accuracy at larger emergence angles. This 

correction is, however, not a consequence of the photoemission physics 

but only results from the particular choice of the potential barrier. 

As we now discuss, every improvement in the description of the physical 

barrier serves to reduce this already small correction, to the point 

that we shall neglect it. 

We divide the surface barrier into two parts. 22 The first part is 

the electrostatic potential of the charge density outside the muffin tin 

potentials of the surface atoms. This potential is distinctly non-

planar, resembling an egg carton on the solid side of the barrier. For 

a plane wave or a spherical wave whose source point is deep inside the 

solid, the first-order effect of the electrostatic potential would be 

optical refraction from the average potential, but the variation of the 

potential from its average should be about v
0
12. More important, a 

spherical wave originating near the surface barrier will be sensitive to 

the local geometry of the potential rather than its average. For 

example, a wave emanating from a surface atom will experience a 

potential which curves around the surface atom and hence will propagate 

with little refraction. 

The second part of the surface barrier is caused by polarization of 

the surface electron density (real part) and excitation of surface 

plasmons (imaginary part). The real part of this potential is long 

range, corresponding to the image potential if the electron is at rest. 

The precise form of this potential for a moving electron has not been 

studied, but we can say that both the shape and size of the potential is 
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velocity dependent. 23 At low energies the potential has the form of an 

image potential V(z) = 1/(z+c) depending only on the normal distance, 

z+c, between the surface and the electron, but saturating when the 

electron is within a screening length, c. For a fast electron with 

energy above the plasmon excitation energy, the electron trails a wake 

of low electron density corresponding to sluggish co~duction electrons 

24 moving away from the photoelectron charge. As the photoelectron 

emerges from the surface this screening charge density spreads out on 

the surface to give the dynamic image potential. A fast electron is 

already some disance from the center of screening charge: its inner 

potential is less than that of a slow electron. Furthermore, the 

surface charge density is slow to redistribute as the fast electron 

moves away. As a result, rather than an image potential directed along 

the surface normal, a fast electron works against a force more nearly 

directed at the spot it emerged from the solid. Such a force does not 

alter the photoelectron's path. 

To summarize, there does not seem to be a strong theoretical basis -

for extending the optical refraction model into the intermediate energy 

12 range as proposed by Sagurton et al. Unfortunately, there seems to be 

very little experimental evidence on refraction despite its fundamental 

25 nature. .Until an appropriate theoretical model is treated or 

experimental measurements are made, we shall use the inner potential 

shift as the only effect of the surface barrier. 

We should note that the inner potential for ARPEFS is the same as 

that used in LEEo 20 but not the same as the E0 used in EXAFS. The only 

energy relevant for the scattering problem is the kinetic energy of the 

electron when it encounters a scattering potential. In ARPEFS and in 
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LEED the scattered electron is detected, and the inner potential 

represents the physical kinetic energy lost when the electron travels 

from the scattering potential edge to the detector. From our previous 

considerations, this inner potential should be velocity dependent. The 

conduction electrons are slow to respond to the photoelectron so the 

positive charge responsible for the dynamic part of the inner potential 

lies in a wake whose center of gravity lies further away from the 

photoelectron the higher the energy. Usually, the energy dependence is 

neglected. In EXAFS, however, the scattered electron is not detected, 

and the "inner potential", E0 , is a complicated weighted sum of all the 

26 photoelectron energies created at a particular x-ray photon energy, 

and further it is commonly used as an adjustable parameter. Note that 

in all of these spectroscopies, high precision surface structure 

determination requires E0 to be known to within 1 ev, suggesting that 

further study of the energy dependence of the inner potential would be 

profitable. 

Finally, the imaginary part of the dynamic surface barrier also 

extends into the vacuum due to excitation of surface plasmons. The 

corresponding attenuation cancels when the ARPEFS is formed: the direct 

and scattered waves are equally attenuated. Thus the choice of the 

"surface" plane at which we discontinue inelastic attenuation is 

arbitrary as long as it lies above the top layer of ion cores. 

• 
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VI. FINITE ANGULAR RESOLUTION 

The experimental apparatus for measuring the ARPEFS oscillations .. 
~ 

has a small but finite angular resolution characterized by half 'the 

angle subtended by the aperture at the source, which we call, a. For 

small apertures, a is the radius of the aperture projected on a unit 

sphere so that the detected area is 2 
~a • The major effect of this 

finite resolution is to limit the highest observable path-length 

difference, p. = a.(1-cos 6.) such that all paths with kp. >> 1/a will 
J J J J 

be averaged away by the opening, while oscillations corresponding to 

path-length differences with kp. << 1/a will be individually resolved. 
J 

With experimental angular resolution of ±3°, 1/a- 10 and kp will fall 

between 10 and 100 in practical cases: we have kp ~ 1/a. Thus we are in 

the regime of partial angle averaging, and we must consider the effect 

in detail. 10 Orders and Fadley previously demonstrated by numerical 

example that angle-averaging has important effects on the theoretical 

calculations of azimuthal and energy-dependent photoelectron 

diffraction. Here we give a simple analytic damping function valid for 

small apertures and we show that the angle integration preferentially 

attenuates scattering events with angles near 90°. 

~ 

If we use R0 to denote the position of the aperture center, our 

angle-averaged intensity is 

-
I 

f

a 
sin 

0 
J~ 

0 
(14) 

for double scattering. Here eRR is the polar angle between R and 
0 

R0 while ~xR R is the azimuthal angle of R about R0 
0 
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We distinguish three terms from the expansion of the squared total 

wave function i) direct intensity, r00 , ii) scattered-direct intensity, 

- -
lOs' and iii) scattered-scattered intensity, Iss 

-
I 

where 

and 

-
I ss 

( 15) 

( 1 6) 

( 17) 

( 18) 

Each term contains the coordinates of R in the amplitudes of the 

-
wavefunction, but the interference terms r 0s and Iss also contain R in 

the wavefunction phase. As the position of R moves around the aperture, 

the wavefunction amplitude always lies near its value at R0 and for 

small apertures we ignore this variation. The phase of the wavefunction 

is, however, quite sensitive to the position of R and even for small 

apertures this variation should be integrated. The direct intensity 

integrates to the aperture area times the intensity at R0: 

( 1 9) 
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Each term in the direct-scattered intensity will be of the same form: 

-+ 

I 
-i ka • ( R- R ) 

e 0 · dn] (20) 

-+ 
where a now represents the bond vector for the scattering event which 

-+ "' 
immediately precedes the trip to the aperture. Expanding a·R in a 

coordinate system where R
0 

is the z axis gives: 

"' -+ 
-ikR·a -ika[cos eaR cos eRR +sin eaR sin eRR cos(~aR R~],(~~) (21) 

0 0 0 0 0 

but for small apertures we neglect second-order terms in eRR to write: 
0 

- -+ 
I (a) 

OS 

-ika cos eaR * -ika R0 0 2Rew (R )w (R )e e o o a o 

* f 
ll 

sin 
0 J

2TI -ika 

1e 

0 

cos ~ 
'~'aR R 

0 d~.(22) 

The classical optics problem of Fraunhofer diffraction through a 

circular aperture leads to the same integration, 27 and we may transfer 

the result to our problem as: 

f

a 
sin 

0 

-+ "' 

f
2n -i ka •R 

e de d~ e 
0 

2J 1(kaa sine R ) 
2 a 0 

'!Til [ ] kaa sin e aR 0 

(23) 
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where J
1

(x) is the first order Bessel function. The factor of 2J 1(x)/x 

is the circular, two-dimensional analog of sin x/x familiar from 

diffraction phenomena; 27 its value at x=O is 1.0, and it falls to zero 

at x ~ 3.8, continuing to higher x with ever smaller oscillations (see 

figure 1). 

By relating the physical parameters to the argument of the aperture 

damping [unction, i.e. x = aka sin eaR , we draw the following 
0 

conclusions: 

i) backscattering and forward-scattering atoms are not 

significantly attenuated by angle integration because sin e -

0, 

ii) side-scattering (8- 90°) atoms are maximally attenuated (sin 

e - 1). 

iii) the attenuation increases with bond length, radius of the 

aperture , and the square root of the energy. 

In Fig. 1, we plot the aperture damping function for a~ 3° and a= 10°. 

We also mark the range of ka expected for side-scattering ARPEFS from 

nearest neighbor atoms (a= 2.2A) and more distant atoms (a= 7.5A). 

Both apertures attenuate the more distance atoms; the wider aperture 

even damps the nearest neighbor side-scattering atoms. We further 

tentatively conclude that as long as single scattering dominates, 

apertures of ~ 10° would simplify the ARPEFS spectra by eliminating 

side-scattering atoms. Since the larger aperture would decrease the 

data collection time by an order of magnitude this conclusion merits 

further investigation. Note that a side-scattered wave which 

subsequently forward scatters through a small angle into the detector 

will not be attenuated. The larger aperture will however introduce 
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higher terms into the phase integral, eqn. (3), and require treatment of 

the amplitude variation. 

Finally, we note that the scattered-scattered intensity may be 

treated in the same fashion as the direct-scattered term by replacing 

~ 

the last scattering event bond vector, a above, by the vector 

difference in the last scattering bond vectors from the two interfering 

scattered paths in the scattered-scattered case. In most experimental 

geometries l$0 1 >> l$sl so that we may neglect Iss altogether. In these 

cases, it is convenient for numerical calculations to associate the 

angle attenuation with the scattered waves so that a single attenuation 

factor is required for each path rather than a factor for every possible 

pair of paths. 
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VII. THERMAL AVERAGING 

As the final ingredient in our theory we must allow for the 

thermally excited vibrational motion of the atoms in the surface. Each 

atom in the crystal oscillates about some equilibrium position; each 

photoemission event senses only the instantaneous positions of these 

atoms. The complete ARPEFS spectrum averages over many photoemission 

events and hence records an average of the atomic positions according to 

the probability of each configuration. For typical materials at typical 

temperatures, the amplitude of these thermal oscillations is not large. 

However, the effect on the ARPEFS spectrum is significant both in 

magnitude--thermal averaging is primarily responsible for limiting the 

highest measurable energy--and in detail--inappropriate thermal 

averaging can lead to theoretical calculations with far too many 

scattering events contributing (compare Bullock et a1. 11 to Sagurton et 

12 el. ). Our problem is formally similar to x-ray diffraction where 

thermal averaging leads to multiplication of diffracted intensity by a 

I
~ 2 2 ~ 

Debye-Waller factor exp(-2 Kl o ) where K is the momentum change in 

2 ~ 28 
scattering and o is the mean square displacement projected on K. 

Since the momentum change in ARPEFS may be written: 

k(R-a) (24) 

~ ~ 

for single scattering off an atom at a into a detector at R, Bullock et 

al. 11 introduced a factor: 

-2IK 12 2 ~ 0 
e 

2 2 
-k (1-cos 6aR)o 

e (25) 



29 

where cos eaR = a·R, to include thermal averaging in electron 

scattering. However, as has been described for the more analogous 

problem of thermally averaged EXAFs, 29 the form of the x-ray diffraction 

result is adequate only if the mean square displacements are replaced by 

the mean square relative displacements. This difference is crucial for 

electron scattering: the motions of near neighbor atoms are correlated 

so that the mean square relative displacements of near neighbor is much 

less than their mean square displacements. 

Incorporating the displacement correlations, Sagurton, et al. 12 

found some improvement in the agreement between theory and experiment 

·for S(1s) ARPEFS from S/Ni(100) over that reported by Bullock et al. In 

fact, these authors demonstrate that no thermal averaging at all 

produces a more reliable result than eqn. (25) with mean square 

displacements. 

The thermal average, like the aperture integration discussed in the 

previous section, must be performed on the intensity oscillations; we 

will restrict our attention to experimental geometries which emphasize 

direct wave interference and ignore the scattered-scattered 

interference. Furthermore, to avoid obscuring the thermal average with 

the MQNE notation, we will only consider averaging the zero-order Taylor 

series term. This is not a serious r~striction: the variation in the 

scattering amplitude over the range of typical vibrational motions is 

small. 

We first consider the single scattering average. The instantaneous 

position of the scattering atom can be related to the equilibrium 
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~ ~ 

position a
0

, the displacement of the origin (emitting atom), u
0 

and of 

~ 

scattering atom, u according to a 

~ 

a 

~ 

(26) 

The vector ~Ua is the change in the equilibrium bond length. Defining 

~ ~ 

~ ~ ~ -[(a-L(O))+L(a)]/2A F(s,a,R) e a (27) 

and noting that the thermal average consists of multiplying by a 

probability distribution for displacements, and integrating over 

configurations 28 allows the thermal average (indicated by angle 

brackets) of the single-scattering direct-wave interference fine 

structure to be written: 

(28) 

For displacements ~~~al << 1~0 1 we can expand 

+ ••• (29) 

and 

(30) 
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2 2 ~ 
where forms of order l~ul /a0 have been dropped. The gradient of g(a) 

is similar in size to the curved wavefront corrections described 

elsewhere. 15 For moderate temperatures and not too soft materials the 

displacements ~u~ will be small enough so that we can ignore the second a 
~ 

term in the expansion of g(a). Then we have 

~ A ~ ~ 

ik(a -a •R) -iK ·~u 
~ 0 0 aR a 2Re {g(a0)e <e >}. 

~ 

where KaR 

(31) 

The thermal average of the phase term may be derived by following 

either the x-ray diffraction 28 theory with proper modification or the 

EXAFs 29 treatment: 

e 

~ ~ 2 
-<(K·~u ) >12 a 

If we identify 

2 
0~ 
a 

and 

A ~ 2 
<(K·~u~) > a 

e 
I
~ 2 A ~ 2 

- Kl <(K·~u ) >12 a 
(32) 

( 33) 

(34) 

2 we retrieve the Debye-Waller form (eqn (25) but o~ becomes the mean 
a 

~ 

square projection of relative displacement (MSPRD) upon the vector KaR" 
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To proceed we need to consult some physical model for lattice 

vibrations which can predict o2 . Accurate values may be derived by 
~ 

a 

constructing the normal modes and eigenfrequencies of the solid if the 

geometry and bonding force constants are known. 28 While potentially 

useful for theoretical study, this approach requires far too much 

information for our poorly understood surface system. The Debye model 

has been adapted to calculate the mean square relative 

displacements 29 •30 in good agreement with experimental EXAFS 

determinations. 31 Here we need only extend the treatment to include the 

predicted32 surface layer dependence and anisotropy of the mean-square 

displacements that we can expect to encounter and the mass dependence 

required for an adsorbate. Our result will be a combination of the work 

of Allan et a1. 32 on mean-square displacements on surfaces, of Housley 

and Hess 33 on mean-square displacements in general, and of Sevillano et 

al.30 on mean-square relative displacements. 

2 ~ ~ 
We expand the MSPRD, o (O,a) into the sum of the mean-square 

~ ~ 

displacements (MSD) of atoms a and of 0 minus twice their displacement 

correlation function (DCF): 

~ ~ A 2 
<[(u -u )·K] > a ~ 

0 

~ A 2 
<(u •K) > + 

a (35) 

To incorporate the directional anisotropy in a simple fashion we 

approximate 
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-+ "' 2 
<(u •K) > a a.=x,y,z 
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(36) 

This relation is exact in the low frequency limit for a medium with 

isotropic elastic constants 28 or when K points along any axis a.. We can 

say that we are calculating <u2 > and approximating the projected mean-
a. 

square displacement by the indicated weighted average. Denoting34 the 

-+ 
density of modes of frequency w with a. direction displacements on atoms 

in layer ~ 3 by f (w,~ 3 ). Then a a. a 

where wmax is the highest frequency of the system. 

(37) 

For [~w /2k
8
T] < 3 max 

(i.e. moderate temperatures) we may apply a modified35 Thirring 

expansion28 of coth x ~ 1/x +x/4 to write 

(38) 

where the moments of the frequency distribution, 

w 

f 

max n 
f (w,Ow dw 

0 a. 
( 39) 

have been introduced. 34 Since <w0 (~ 3 )> = 1 the mean-square a. a 

displacement in this form requires only one material parameter, the 

inverse second moment of the frequency distribution. 
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The corresponding expression for the displacement correlation 

function between atoms in the same layer will contain moments of the 

-+ -+ -+ 
frequency distribution weighted by cos q•a where q is the wavevector for 

two dimensional displacements. If we suppose that the moments of the 

frequency distribution are insensitive to any differences in the density 

-+ -+ -+ 
of the modes with the direction of q, we may replace cos q•a by its 

spherical average 30 sin(qa)/qa. 

To proceed we need a model for the frequency distribution. Based 

on the success reported 31 for EXAFS we adopt the Debye model and set 

f (w,Q.
3 

) 
a. a 

(40) 

temperature e0 is a material parameter and p is the number of atoms per 

unit volume. Directional, layer dependent Debye temperatures are no 

more than an expression of the direction and layer dependence of the 

moments of the frequency distribution: 

( 41 ) 

Under these conditions we have 

(42) 

-+ -+ 
and, if. atoms a and 0 are in the same layer, 



·• 

Y (O,a) 
CL 

where 

< ( u
0

) ( u ) > 
CL a CL 

1T 

2 

35 

( 4 3) 

(45) 

The sine integral may be calculated with a numerical form, but the 

asymptotic form is accurate to 1% for even the smallest q
0

a of physical 

interest, except a = 0 where of course the DCF must cancel the MSD. For 

atoms in separate layers we know no better than to average the Debye 

temperatures. 

We can also get low temperature limit formulae which overlap the 

high temperature forms near T ~ 0.2e0 : 

and 

~ ~ 

Y (O,a) 
CL 

T < 0 • 20 D ( 4 6 ) 

- -- 2] (47) 
2(q

0
a) 
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The first result is standard, and the second may be proven by expanding 

cotangent in a power series and integrating terms. Taken together these 

two limits are adequate to represent the correlated Debye model as 

illustrated by comparison to numerical integrations in Fig. 2. 

2 
a~ 
a 

To summarize our results then we write 

a=x,y,z 

2 ~ -+ 
<(u ) > - 2Y (a,O)] 

0 a a 
(48) 

2 ~ -+ 
where <(u ) > is given by eqn. (42) or (46) andY (a,O) by eqn.(43) or 

~ a a 
a 

(47). Each layer is characterized by three directional Debye 

temperatures, 8 • n,a The studies by Allen and deWette and by Clark et 

a1.3 2 may be used to reduce the number of free parameters. From the 

first work we may connect the Debye temperatures in the three crystal 

directions to reproduce the ratios of mean-square displacements for the 

theoretical crystals of Allen and deWette. From the second work, we may 

cause the difference between surface layer and bulk Debye temperatures, 

which we may assume to be known, to decay such that the mean-square 

displacements approach the bulk values exponentially in three or four 

layers. 

We have accounted for the changes in the vibrational amplitudes due 

to the free surface boundary conditions, but both studies cited above 

assume all layers have the same mass. Fortunately, Allen, Alldredge, 

and deWette 37 have considered just the problem of mass change, and they 

have demonstrated that, under quite general conditions, the mean-square 

displacement at high temperatures must be independent of mass, while at 

lower temperatures, 



37 

(49) 

2 where <u > is the surface MSD for a pure crystal of atomic mass M and 
(). 

the primes indicate a hypothetical mass change of the surface layer 

without change in force constants. Since the mass dependence is smooth 

with temperature we may incorporate the adsorbate mass dependence by 

noting that a Debye temperature, writterl as: 

(50) 

where c0 is a non-physical Debye spring constant, will reproduce the 

high- and low-temperature-limit mass dependence of the mean-square 

displacements. 

For the double scattering term we must average 

(51) 

Expanding the thermal average 
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we see that the first two terms are MSPRD as given for single scattering 

while the last factor represents higher order correlations: 

(53) 

As before we write these factors as 

2 

We recognize that the Debye model for the correlated motion of 

surface atoms is physically untenable: a true Debye model describes low 

frequency modes in an isotropic continuum particularly relevant to low 

temperatures. Note however that the MSPRD is sensitive only to moments 

of the vibrational frequency distribution. The averaging property of 

the moments mitigates the error in the crude Debye model and, in fact, 

similar EXAFS Debye-Waller-like factors have been found for force­

constant, Debye, and Einstein models of the frequency distribution.30,31 



39 

VIII. APPLICATION TO C(2X2)S/NI(001) 

Having constructed a theory of ARPEFS we now present a preliminary 

assessment of its predictions. Our study cannot be complete without a 

thorough examination of the non~structural parameters that the theory 

requires, but we should expect physically reasonable estimates of the 

parameters to reproduce most of the features of the experimental curves, 

allowing our current work to guide both experiment and theory toward a 

conclusion on the practical accuracy of ARPEFS for structure 

measurements. In this spirit we have applied the theory of the previous 

sections to recent S(1s) ARPEFS measurements on c(2X2)S/Ni(001). 

The nominal structure of c(2X2)S/Ni(001) is illustrated in cross-

section in. figure 3. Sulfur occupies a four-fold hollow adsorption site 

with two nearest neighbors in the plane of the figure and two equivalent 

neighbors above and below the plane of the figure. Two experimental 

17 ARPEFS measurements have been made and reported elsewhere. The first, 

which we will call [011], aligned both emission and polarization vectors 

with a bulk [011] axis, making an angle of 45° with the surface normal. 

The second experiment, called [001] here, used normal emission with the 

polarization vector inclined 30° from normal in a [100] direction. The 

proportional partial cross-section oscillations, x(E), measured in these 

experiments, are plotted as solid curves in figures 4 and 5. The 

measured kinetic energies may be converted to wavenumbers given a value 

for the real part of the inner potential, E0• Throughout this paper we 

will use experimental curves x(k) obtained with E0=10.5 ev, close to the 

reported values used elsewhere 37 . 

A. Choice of Parameters 
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The non-structural parameters fall into five classes: the 

scattering potentials, inelastic scattering, aperture integration, 

thermal averaging, and numerical convergence. 

Our scattering potential phase shifts are those of Orders and 

10 Fadley, generated by them from muffin-tin potentials. These 

potentials are real, and we do not account for the ionization of the 

photoemitting atom. 

Our inelastic mean free path is also the value given by Orders and 

Fadley10 , A= (0.753k), where k is the electron wavevector in A- 1• This 

mean free path lies somewhat below the "universal curve" values. We 

represent the surface as a plane for the calculation of the path length 

in the solid, and we place this plane through the adsorbed S atoms. 

Although some guidelines for this choice are available in surface 

barrier studies23 , any location above the sulfur atoms is equivalent: 

any attenuation of the scattered waves in the region above the surface 

plane is cancelled by the attenuation of the direct wave when the 

proportional oscillations are formed. 
-+ 

Thus we use L(a.) 
J 

-+ 
a. •Z/R•Z. A 

J 

more sophisticated shape for the surface barrier is hardly justified if 

we persist in using an isotropic mean free path. 

For the aperture half-angle we will use 3°. The energy dependence 

of the electron analyzer used in the experimental measurements indicates 

that the effective opening may be smaller for high kinetic energy but we 

will assume a constant opening. 

We use the reported 38 bulk Debye temperature for Ni of 390°K 

appropriate for room temperature. We selected the z axis Debye 

temperature for Ni as if the S atoms were a layer of Ni, adjusting the 

Debye temperature to give z axis mean square displacement on the surface 
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equal to twice the bulk value. This gave a Debye temperature of 300°K. 

Then the sulfur Debye temperature was corrected for the overlayer mass 

dependence, giving a e0 =405°K. The x and y Debye temperatures for ,z 

both atomic species was selected as 1.1 times the z axis values, to give 

mean square displacements about 1.4 times the bulk values. 

The size of our scattering cluster is given by comparing the 

maximum plane wave scattering amplitude for atoms at the edge of the 

cluster to an amplitude cutoff value and reducing the cutoff value until 

no significant changes can be seen in the theoretical curves. We have 

also only calculated path-length differences less than 10.5A; the 

measured curves can easily be filtered to match the theoretical range 

via the Fourier transform. We have included up to quadruple scattering 

although only in rare instances will four consecutive scattering events 

have a path-length difference less than 10.5A. For each scattering 

event, the Taylor series order, 1, was selected as the lowest integer 

which satisfied 

< c (55) 

where f is the maximum of the plane-wave amplitude lf(6,k) I over the max 

complete energy range for the scattering angle e, the scattering bond 

l ~al length is and Cis a constant set to 0.10. By this means, nearest 

neighbors and forward scattering atoms are given a higher Taylor order 

than more distant scatterers at more acute angles. 

The atomic geometry was refined by minimizing the mean squared 

difference between experiment curves and theoretical curves as a 
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function of atomic coordinates. The procedure is described in Ref. 18. 

It give~ a geometry with S 2.19.11. from all four Ni nearest neighbors 

(dl = 1 .30.11.) and space the Ni first and second layers by 1.84.11.. 

The calculated theoretical curves are compared to the experimental 

data in Fig. 4 for the [001] experiment and Fig. 5 for the [011] 

experiment. The theoretical reproduction of the [001] data, Fig. 4, is 

good: the oscillatory structures of medium frequency are all matched, 

with some discrepancies in smaller structures. The results for [011], 

Fig. 5, are not so good, with significant differences occurring at 5.11.- 1, 

7.11.- 1 and 9.11.- 1 • -1 -1 
The features at 7.11. and 9.11. are sensitive to the 

number of successive forward scattering events included in the 

calculation, and we might expect some improvement here if more accurate 

'scattering potentials are used. Nevertheless, the agreement between 

theory and experiment is good enough to suggest that distinguishing 

further improvements in the theory will require a quantitative 

assessment of the experimental reproducibility. 

Thus encouraged, we can reexamine the theory to isolate its most 

significant components, using the [011] geometry as our example. In 

Fig. 6 we compare the single-scattering curved wave results to the 

quadruple scattering curve. The single-scattering result has the 

underlying frequencies correct, of course, because the frequencies are 

dominated by the geometrical path-length differences and because we 

find, in agreement with Tong, 4 that the multiple scattering is primarily 

forward scattering, which focusses the single-scattered waves and shifts 

their phase without disturbing their frequencies. HoweveF the 

oscillation phase and amplitude cannot be correctly given in the single-

scattering theory. 
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This point deserves further emphasis, as Bullock, Fadley, and 

1 1 1 Orders have questioned our previous analysis of the [011] experiment, 

claiming on the basis of single-scattering calculations that many atoms 

contribute to the ARPEFS curves. Their conclusions are based on 

comparing relative single-scattering amplitudes, ignoring the focusing 

effect of forward scattering (as well as the correlation of vibrational 

motion and the aperture integration). It is important to note that each 

neglected forward scattering event is comparable in amplitude to the 

single-scattering events that they do include. In fact, if we compare 

the expressions for single and double scattering where the second 

scattering event has a scattering angle near zero, we find identical 

terms except for an additional factor of the forward scattering 

amplitude divided by the bond length. Since the forward scattering 

amplitude is comparable to the bond length for nearest neighbors, single 

and double scattering are comparable. We can see this graphically in 

Fig. 7 where the major backscattering event for the [011] experiment is 

calculated in both single and double scattering. In the [011] geometry, 

the Ni atom lying directly behind the S photoemitter contributes a large 

oscillation with a frequency near 4.4A. The curves show that the 

single-scattering calculation is too low by nearly a factor of two. The 

single-scattering calculations therefore cannot be relied upon for 

relative scattering amplitudes. 

Figure 7 also shows that the naive analysis we presented in ref 

is erroneous. The EXAFS-like backtransformation analysis applied in 

ref. 1 requires the oscillation phase to be known for the E0 adjustment 

procedure. Comparing the two curves in Fig. 7 shows that the single 

backscattering phase is not close to the double scattering wave phase 
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even though the oscillation frequency is unchanged. The [011] 

experiment has been re-analyzed to include the forward scattering 

effects in ref. 17. 

The multiple-scattering curved-wave calculations are also compared 

to multiple-scattering plane-wave results in Fig. 6. It is evident that 

the curved wave corrections are essential to describe the ARPEFS 

oscillations. This would seem to contradict the results of Sagurton et 

al. 12
, who report insignificant curved wave corrections to single­

scattering calculations. However, the curved wave corrections apparent 

in Fig. 6 are primarily in the forward scattering direction 16 and hence 

only appear in the multiple scattering curves, which are absent in the 

single-scattering treatment of Sagurton et a112
• 

We have also calculated the [011] curve with multiple-scattering 

using the zero-order Taylor series (homogeneous wave) method 16 and 

compare it to the higher order Taylor result in Fig. 8. The zero-order 

curve is quite close to the higher order one, but this is partly a 

consequence of the [011] geometry: no important scattering atoms are 

near the nodal plane in the photoemission angular distribution or near a 

Generalized Ramsauer Townsend resonance, the types of scattering events 

that we have shown require higher order treatment. 15 

Also in Fig. 8 we have simulated the ARPEFS curve for a 10° 

aperture but including only the first order aperture damping. Although 

some of the details of the curve will be subject to correction with more 

accurate aperture averaging, the size of the oscillations is still 

large, giving considerable weight to the idea that experimental 

measurement with 10° apertures could be used to determine surface 

structures. Assuming that a suitable electron analyzer can be 
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constructed with this large aperture, the red~ction in measurement time 

by an order of magnitude would be of great value to the experimentalist. 

Finally, in Fig. 9 we illustrate some of the effects that 

vibrational averaging models have on the ARPEFS. In the upper panel we 

11 have returned to the uncorrelated Debye model of Bullock et al. , but 

2 adjusting the surface Debye temperature so that the Debye-Waller o 

0.01A2 for the nearest neighbor Ni atoms. There are some changes in the 

details of the curve, but the differences are not profound. In the 

bottom panel we illustrate an important point: the overall magnitude of 

the ARPEFS curve connects the physically allowed values of inelastic 

mean free path to thermal vibration amplitude (assuming that the elastic 

scattering amplitude is reasonably accurate). If the vibrational 

amplitude is reduced to that predicted by the surface vibrational 

frequency 12 in a harmonic oscillator model, .003A2 , (corresponding to a 

S "Debye" temperature of 725°K) then the oscillation amplitude will be 

far too large to agree with experiment and the mean free path must be 

reduced by 40% as in Fig. 9. Conversely low mean free path will require 

a stiffer surface vibration. This ambiguity can be removed by fixing 

the thermal parameters with a temperature dependent ARPEFS study. 

Finally, we address the question, do only a small number of 

identifiable scattering atoms contribute to the ARPEFS signal? We have 

contended our experimental ARPEFS curves seem always to be consistent 

with significant scattering from nearest neighbors and backsc'attering 

1 2 11 12 atoms only. ' Bullock et al. and Sagurton et al. have challenged 

this idea on the basis of single-scattering calculations. We have shown 

that these calculations are not adequate, and we note that every 

11 improvement in the model used by Bullock et al. serves to favor 
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backscattering and nearest neighbor scattering. Thus, the correlated 

Debye model gives less vibrational averaging for nearest neighbor, 

aperture integration dampens contributions from atoms which are not 

nearby or backscattering, and forward scattering always accompanies 

backscattering while other angles are not always so favored. We have 

calculated the ARPEFS curve including only the four nearest neighbor Ni 

atoms, the four Ni atoms closest to backscattering in the (011) plane 

lying further away from S than nearest neighbors and the five Ni atoms 

in the succeeding (011) plane which are also backscattering. In Fig. 10 

we compare the resulting curve to the experiment. It seems clear that 

these atoms determine the essential character of the ARPEFS signal. 
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IX. CONCLUSION 

We have presented a theory for quantitative calculation of the 

intermediate energy (100-1000eV) photoelectron diffraction oscillations 

which we call ARPEFS. For a complete theory we would have to reexamine 

the non-structural parameters, but the present theory should provide an 

adequate foundation for surface structure work. 

We summarize our present approach as follows. The problem is 

explicitly divided into two parts, a time dependent, semi-classical 

solid state photoabsorption problem and a stationary, cluster-type 

muffin-tin-potential scattering problem. This commonly used division 

allows us to update the treatment of the photoemission dynamics to show 

that dynamic core hole screening and surface barrier refraction are 

smaller effects than we can hope to measure at present. The cluster 

scattering approach gives us close contact to the interpretation of the 

ARPEFS oscillations in terms of particular scattering atoms while the 

application of the Taylor series MQNE small-atom approximation allows 

economical curved-wave multiple scattering calculations with a full 

partial-wave expansion of the potential even at these higher energies. 

This solution to the scattering problem facilitates analytic aperture 

integration and correlated vibrational averaging of the multiple 

scattering series, both of which we have derived here. We have also 

given a method for incorporating the surface dependent vibrational 

anisotropy into a correlated Debye model for mean-square projected 

relative displacements. 

4 Our work must be compared to that of Tong and co-workers and of 

1 0 1 1 1 2 Fadley and co-workers. ' ' Tong, et al. have the advantage of 

complete summation of the multiple scattering series and of closer 
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contact to surface-chemistry-dependent potential phase shifts via the Xa 

multiple-scattering initial state wave functions. Both of these 

advantages may be crucial in the low energy regime, but for most common 

surface systems and in the intermediate energy range, we should achieve 

multiple scattering convergence easily, and the potentials should be 

insensitive to mild electronic changes. The cluster approach allows us 

to introduce local physical effects such as photoion core potentials and 

dynamic core hole screening which do not have two-dimensional 

periodicity and thus are more difficult to introduce into LEED-like 

theories. 

10 The single-scattering cluster approach of Fadley et al. has the 

virtue of simplicity and some pedigogic value. However, the focusing 

effect of forward scattering is a fundamental feature of photoelectron 

diffraction, and the scattering amplitudes predicted by single 

scattering are not adequate to give quantitative agreement with 

experiment. 

The apparent success of single-scattering theory to interpret the 

ARPEFS 1 was part of our original attraction to the measurement of 

surface structure by this method, and we must therefore examine the 

utility of the technique in light of the complications introduced by 

multiple scattering. In the intermediate energy range, multiple 

scattering is primarily forward scattering so that the qualitative idea 

that the ARPEFS oscillations represent individual scattering atoms is 

unchanged if we associate each forward scattering event with the 

backscattering event having a similar path length difference. Thus for 

the example given in Fig. 8, the single-scattered wave travels from the 

photoemitting S toNi and backscatters into the detector giving a path 
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length of 4.35A. The double scattered wave travels from S to Ni and 

back to S, scattering into the forward direction giving a path length of 

4.37A. These paths are sufficiently close that we may consider the sum 

of both scattering events to represent the scattering signal from the Ni 

atom for the purpose of estimating the ARPEFS signal. The presence of 

forward scattering does affect our procedure for extracting the 

geometrical path-length difference. For the example in Fig. 8, we may 

not simply use the Ni backscattering phase shift to derive the geometry 

from the oscillation frequency, but instead we must perform the two atom 

scattering calculation to calculate the effect of the potentials on the 

waves. 
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FIGURE CAPTIONS 

Figure Aperture attenuation curves for electron analyzer half-angle 

openings of 3° and 10°. The independent variable contains 

geometry factors from the emission direction dependent part of 

the scattering path length difference. For interference 

~ 

between direct and scattered waves ~ is the bond vector for 

the scattering event which immediately precedes detection; for 

~ 

interference between scattered waves, ~. is the vector 

difference between the bond vectors for the interfering paths. 

The line aa gives an indication of the k range typical for 

nearest neighbors (2.2A) with sin8~=1.0; the line bb 

corresponds'to similar angles but bond lengths of 7.5A. 

Figure 2. Comparison of solutions to Debye model integrals. The mean 

square projected relative displacement along the z axis for S 

on Ni is plotted versus temperature for two different 

correlation distances, r=50A (upper curves) and r=2.2A (lower 

curves). The z axis Debye temperature for S was 410°K and for 

Ni it was 300°K; and arithmetic average Debye temperature was 

used for the DCF. The solid curves give results for numerical 
''), 

integration of the required integrals, dashed-dot curves are 

the results from the modified Thirring expansion of ref 35, 

and the dashed line is the low temperaure limit form. 

Figure 3 Cross-sectional view of a fcc crystal (001) surface showing 

the experimental geometry for the [011] experiment. The 

angle-resolving detector is along the vector labeled e ([011] 

direction); the polarization vector is E. The geometrical 

path length difference is given by the bond distance from S to 
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a scattering Ni atom plus the distance from the Ni atom to the 

plane perpendicular to the emission direction and passing 
• 

through the S photoemitter. 

Figure 4 Numerical simulation (dashed curve) of the [001] experimental 

data (solid curve) 

Figure 5 Numerical simulation (dashed curve) of the [011] experimental 

data (solid curve) 

Figure 6 Comparison of numerical simulation curves for S(1s) ARPEFS 

from c(2X2)S/Ni(001) along [011]. (a) Multiple scattering, 

plane wave theory, (b) multiple scattering, curved wave 

theory, (c)single scattering, curved wave theory. All three 

curves used identical geometries and non-structural 

parameters. 

Figure 7 Comparison of ARPEFS single and double scattering for [011] 

emission, but only including the scattering from the Ni atom 

directly behind the S from the detector. Thin curve, single 

backscattering from Ni; Thick curve, single backscattering 

from Ni plus forward focusing through s. The actual 

scattering angles are 173° for backscattering and 7° for 
• 

forward scattering. 

Figure 8 As in figure 6 with (a) zero-order Taylor series (homogeneous 

wave theory), (b) full theory, (c) full theory with aperture 
0 

damping corresponding to 10 half angle. 
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Figure 9 As in figure 6 with (a) vibrational amplitudes calculated 

without correlation of vibrational motion (mean square 

displacements instead of mean square projected relative 

displacements), (b) full theory, (c)same as (b) with mean free 
0 

path of .44k A and a S Debye temperature of 725 K for all 

three directions. 

Figure 10 Numerical simulation (dashed curve) of the [011] ARPEFS data 

(solid curve), but including only a very limited number of 

scattering atoms, as described in the text. 

) 
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