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Abstract—We study the maximum flow possible between a single-source
and multiple terminals in a weighted random graph (modeling a wired
network) and a weighted random geometric graph (modeling an ad-hoc
wireless network) using network coding. For the weighted random graph
model, we show that the network coding capacity concentrates around the
expected number of nearest neighbors of the source and the terminals.
Specifically, for a network with a single source, terminals, and relay
nodes such that the link capacities between any two nodes is independent
and identically distributed (i.i.d.) , the maximum flow between the
source and the terminals is approximately [ ] with high probability.
For the weighted random geometric graph model where two nodes are con-
nected if they are within a certain distance of each other we show that with
high probability the network coding capacity is greater than or equal to the
expected number of nearest neighbors of the node with the least coverage
area.

Index Terms—Minimum cut, multicast, network coding, random geo-
metric graphs, random graphs.

I. INTRODUCTION

Consider a communication network where one source node wants
to transmit information through a network to multiple terminal nodes.
This correspondence considers the problem of finding the capacity of
this scenario for random networks. The capacity under consideration
here is the graph-theoretic max-flow capacity, not the capacity in the
information-theoretic sense.

It is a known fact that routing achieves the max-flow capacity [1] of a
networkwhen transmissions are froma single source to a single terminal
(for a wired network). However, in their seminal paper Ahlswede et al.
[2] showed that for the single-source multiple-terminal case, the infor-
mation rate to each terminal is the minimum of the individual max-flow
bounds over all source–terminal pairs under consideration and that in
general we need to code over the links in the network to achieve this ca-
pacity. Li et al. [3] showed that linear network coding is sufficient for
achieving the capacity of the transmission of a single source to mul-
tiple terminals. Subsequent work by Koetter and Médard [4] and Jaggi
et al. [5] presented constructions of linear multicast network codes. A
randomized construction of multicast codes was presented by Ho et al.
[6] and Chou et al. [7] demonstrated a practical scheme for performing
randomized network coding. More recently, several authors have con-
sidered the use of network coding for nonmulticast problems [8] where
there are multiple sources and multiple receivers and the receivers have
arbitrary sets of demands. These problems are substantially harder and,
in fact, it is necessary to utilize nonlinear solutions in some cases [9].
Network coding has also been considered for the transmission of cor-
related sources over a network in [10], [11].
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Fig. 1. Network with source s and terminals y and z. Note that sending b �b
on the w ! x link is more efficient than simply forwarding b or b .

It is important to clearly differentiate between routing and network
coding. We say that a network employs routing when each node in the
network performs only a replicate and forward function. Thus, each
node can create multiple copies of a received packet and forward it on
different lines.Network coding, on the other hand, refers to the situation
when each node has the ability to perform operations such as linear
combinations on the received data and then send the result on different
lines. So, routing is a special case of network coding.
The usefulness of network coding can be understood by considering

a simple topology shown in Fig. 1, which we borrowed from [2]. In
Fig. 1, each link can transmit a single bit, error free and delay free.
Observe that performing network coding (as shown in Fig. 1) enables
transmission of both b1 and b2 to both the terminals y and z in a single
transmissionwhereas routing would require more transmissions. In this
correspondence, only the source and the terminal nodes are communi-
cating with each other and the rest of the nodes are acting as relays.
Sections II and III prove high-probability results for the multicast ca-

pacity under network coding of weighted random graphs as described
in [12] (a model for wired networks) and weighted random geometric
graphs as described in [13] (a model for wireless networks), respec-
tively. Section IV provides simulations that confirm the results and Sec-
tion V concludes the correspondence.

II. WIRED NETWORKS—THE WEIGHTED RANDOM GRAPH MODEL

Consider a single-source multiple-terminal transmission, where we
denote the source s and the terminals t1; . . . ; tl. Let there be n relay
nodes in the network. As shown in Fig. 2, the links between the relay
nodes are bi-directional with equal capacity in both directions (a model
along the same lines was considered in [14]). The source s has only out-
going links and the terminals ti; 1 � i � l only have incoming links.

Definition 1: We assume the following model on the graph.

1) The source node s is connected to each relay node i by a link of
capacity Csi (it has only outgoing links).

2) Each relay node i is connected to another relay node j by a
link of capacity Cij . There exists a directed link from i to j of
capacityCij and a directed link from j to i of capacityCji such
that Cji = Cij .
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Fig. 2. Connectivity of the different types of nodes present in the network. The
source node S has only outgoing edges whereas the terminals T ’s have only
incoming edges. The inter-relay connections are all bi-directional.

Fig. 3. There are cuts for which jV j = k + 1 and j �V j = n � k + 1.
The figure shows one such cut. The broken lines depict the links between relay
nodes. The solid lines depict the links between the source/terminals and the relay
nodes.

3) Each relay node i is connected to each terminal node tj by a link
of capacity Cit . Terminal nodes have only incoming links.

4) All the link capacities are independent and identically dis-
tributed (i.i.d.) � X;X � 0, such that E[X] < 1.

Henceforth, we shall refer to this model as the GWRG (WRG stands
for weighted random graph) model, and our results shall be for random
instances of it. Similar techniques were used in [15] in an algorithmic
context.

A. Weighted Random Graph Model—The General Case

First consider the case l = 1, i.e., only one receiver terminal for
simplicity. The results will generalize for larger l.

Lemma 1: Let G be a random instance of the model GWRG with
l = 1. Let '(�) = E[e��X ], for � > 0 and E[X] = �. Let

Ck =

n

i=k+1

Csi +

k

j=1

n

i=k+1

Cji +

k

i=1

Cit

be the capacity of a cut in G as shown in Fig. 3. The cut is defined by
partitioning the vertex set V into a set Vk (jVkj = k + 1) such that
s 2 Vk and the complementary set �Vk (j�Vkj = n � k + 1) such that
t1 2 �Vk (thus, Ck is the capacity of a particular instance of a cut in
which jVkj = k + 1 and j �Vkj = n� k + 1). If 0 < � < 1, then

P (Ck � (1� �)E[Ck]) � e�(n+k(n�k))a(�) (1)

where, a(�) is a function such that ln'(�) + �(1� �)� � �a(�) < 0
for some � > 0.

Proof: Since

Ck =

n

i=k+1

Csi +

k

j=1

n

i=k+1

Cji +

k

i=1

Cit

where all the terms are distributed i.i.d � X , we obtain E[Ck] =
(n + k(n � k))�.
Let � > 0. Then

P (Ck�(1� �)E[Ck])

= P (e��C � e��(1��)E[C ])

�
E[e��C ]

e��(1��)E[C ]
(using Markov's inequality)

= ['(�)]n+k(n�k) exp[�(1� �)(n+ k(n� k))�]

= exp[(n+ k(n� k))(ln'(�) + �(1� �)�)]

� exp[�(n + k(n� k))a(�)]: (2)

It is possible to prove the existence of a function a(�), such that for
some � > 0 (see Theorem 6 in the Appendix )

ln'(�) + �(1� �)� � �a(�) < 0; for some � > 0: (3)

This proves the bound.

Based on the above lemma we can obtain a corollary that bounds the
probability that any cut in the graph falls below (1� �) times its mean
value.

Corollary 1: Let G be a random instance of the model GWRG with
l = 1. Let Ck be as defined in Lemma 1. Define Ak to be the event
fCk < E[Ck](1 � �)g. Then

P ([kAk) � 2 exp[�na(�)](1 + exp[�na(�)=2])n: (4)

Proof: From Lemma 1 we know that

P (Ak) � exp[�(n + k(n� k))a(�)]: (5)

There are a maximum of 2n cuts in the graph. A union bound on all
Ak’s gives

P ([kAk) �

n

k=0

n

k
exp[�(n + k(n� k))a(�)]

� exp[�na(�)]

n

k=0

n

k
exp[�k(n� k)a(�)]

=�

n

k=0

n

k
�n (1� ); where � = exp[�na(�)] < 1

=�

bn=2c

k=0

n

k
�n (1� ) +

n

k=bn=2c+1

n

k
�n (1� )

��

bn=2c

k=0

n

k
�n +

n

k=bn=2c+1

n

k
�n (1� )

since, when
k

n
2 [0; 1=2];

k

n
1�

k

n
�

k

2n

and when
k

n
2 [1=2; 1];

k

n
1�

k

n
�

n� k

2n

� 2�[1 + �]n

=2 exp[�na(�)][1 + exp(�na(�)=2)]n: (6)
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Similarly, we can upper-bound the probability that a random instance
of GWRG with l = 1, has a minimum cut � (1� �)E[C0]. Note that
E[C0] is the expected value of the total flow to the nearest neighbors
(i.e., nodes that can be reached in one hop) of the source. E[Cn] is
the expected value of the total flow from the nearest neighbors of the
terminal to the terminal itself. By symmetry E[Cn] = E[C0].

Corollary 2: Let Cmin(s ! t1) denote the s ! t1 minimum cut
of a random instance of GWRG with l = 1. Then

P Cmin(s! t1) � (1� �)E[C0]

� 2 exp(�na(�)) 1 + exp(�na(�)=2)

n

: (7)

Proof: Let us define ~Ak to be the event fCk < (1��)E[C0]g and
Ak to be the event that fCk < (1��)E[Ck]g. Recall thatE[C0] = n�
andE[Ck] = (n+k(n�k))� so that,E[Ck] � E[C0] for k � 0. So

P ( ~Ak) � P (Ak): (8)

Thus,

P (Cmin(s! t1) � (1� �)E[C0]) =P ([k ~Ak)

�
k

P ( ~Ak)

�
k

P (Ak): (9)

From Corollary 1 the result follows.

The above corollary bounds the probability that the s ! t1 min-
imum cut falls below (1� �)E[C0]. In the general case, we have l ter-
minals. Therefore, the probability that at least one of the s ! ti; 1 �
i � l minimum cuts is less than (1 � �)E[C0] can again be bounded
by a union bound.

Theorem 1: Consider the model specified in Definition 1. Let a(�)
be a function of �, such that ln'(�) + �(1 � �)� � �a(�) < 0, for
some � > 0. If � < 1, then with probability at least

1� l � 2 exp[�na(�)][1 + exp(�na(�)=2)]n

the network coding capacity CNC
s;t ;...;t > (1� �)E[C0].

Proof:

P (CNC
s;t ;...;t � (1� �)E[C0])

= P ([li=1fCmin(s! ti) � (1� �)E[C0]g)

�

l

i=1

P (Cmin(s! ti) � (1� �)E[C0]) (10)

� l � 2 exp(�na(�))(1 + exp(�na(�)=2))n

) P (CNC
s;t ;...;t > (1� �)E[C0])

� 1� l � 2 exp(�na(�))(1 + exp(�na(�)=2))n:

Theorem 2: Consider the model specified in Definition 1 with the
additional condition that �(�) = E[e�X ] <1 for � 2 [0; �0]. Let b(�)
be a function of � such that ln �(�)��(1+�)� � �b(�) < 0 for some
0 < � < �0. If � > 0, then with probability at least 1 � e�nb(�), the
network coding capacity CNC

s;t ;...;t � (1 + �)n�.

Proof: To show the upper bound onP (CNC
s;t ;...;t � (1+�)n�) it

is sufficient to consider the cut separating the source from all the other
nodes. Let � > 0

P (CNC
s;t ;...;t �(1 + �)n�) �P (

n

i=1

Csi � (1 + �)n�)

�
E[e

� C
]

e�(1+�)n�

= exp[n(ln �(�)� �(1 + �)�)]

� exp[�nb(�)]: (11)

It is possible to prove the existence of b(�) so that for some �

ln �(�)� �(1 + �)� < �b(�) < 0

(see Theorem 7 in the Appendix).

Together, Theorems 1 and 2 show a concentration of the network
coding capacity aroundn�. We can specialize the above result to obtain
more concrete statements about models where we fix the link capacity
distribution. To illustrate the results more clearly we consider a model
similar to the random graphG(n; p) [12], where the link capacities are
Bernoulli random variables with parameter p and a model where the
link capacities are exponentially distributed with parameter �.

B. Random Graph Model With Bernoulli Distributed Weights

Under this model we assume that the link capacities are distributed
as Bernoulli random variables with parameter p.

'(�) = 1� p(1� e��)

� exp(p(e�� � 1)): (12)

Thus, we have

ln'(�) + �(1� �)� � p(e�� � 1) + p�(1� �): (13)

The right-hand side (RHS) is minimized by � = � ln(1��) (by simple
differentiation and some algebra). So

�a(�) = � p(�+ (1� �) ln(1� �))

� � p
�2

2
: (14)

Now we are in a position to evaluate the bound in Corollary 2.

Theorem 3: Consider the model specified above with Bernoulli dis-
tributed link capacities with parameter p with l terminals. Let

� =
4d lnn

np

with d > 1. If � < 1, then with probability 1�O(l=n2d) the net-
work coding capacity CNC

s;t ;...;t > (1� �)np and with probability
1�O(1=n8pd), CNC

s;t ;...;t � (1+�)np.
Proof: Based on the preceding derivation , we can evaluate the

RHS of the bound in Corollary 2 with

� =
4d lnn

np
:

Therefore,

P (Cmin(s! ti) � (1� �)np) �
2

n2d
1 +

1

nd

n

=
2

n2d

n

k=0

n

k

1

nd

k

�
2

n2d

1

k=0

n

nd

k

�
2

n2d � n1+d
; since d > 1

�O
1

n2d
: (15)
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So as in Theorem 1

P (CNC
s;t ;...;t � (1��)np)=P ([li=1fCmin(s! ti)�(1��)npg)

�

l

i=1

P (Cmin(s! ti)�(1��)np)

�O
l

n2d
: (16)

The upper bound onP (CNC
s;t ;...;t ) simply reduces to a Chernoff bound

for Bernoulli random variables [16]

P (CNC
s;t ;...;t � (1 + �)np)

�P (

n

i=1

Csi � (1 + �)np)

�P (j

n

i=1

Csi � np j � np�)

� 2e�2np � By a simple Cherno� Bound [16]

=O
1

n8pd
: (17)

C. Random Graph Model With Exponentially Distributed Weights

Here we assume that the capacity of each link is distributed as an
exponential random variable with mean �. Thus, in this case

'(�) =
1

0

e��x�e��xdx

=
�

� + �
: (18)

Therefore, we can write

ln'(�) + �(1� �)
1

�
= � ln

� + �

�
+

�

�
(1� �): (19)

The RHS is minimized by � = ��
1�� and so we can obtain

�a(�) = � + ln(1� �)

� �
�2

2
: (20)

It is now straightforward to derive an upper bound on the probability
that the s! ti (for some i) minimum cut of a random instance of the
graph falls below (1 � �)n

�
using Corollary 2. Subsequently, we can

obtain the bound on the probability that the network coding capacity
falls below (1 � �)n

�
.

Theorem 4: Consider the model specified above with exponentially
distributed link capacities with parameter �. Let

� =
4d lnn

n

with d > 1. If � < 1, then with probability 1�O(l=n2d), the net-
work coding capacity CNC

s;t ;...;t > (1� �)n
�

and with probability

1�O(1=n ), CNC
s;t ;...;t � (1+�)n=�.

Proof: The first part of the claim is obvious by simply utilizing
Corollary 2 with

� =
4d lnn

n
:

For the second part of the claim, we need to produce a suitable b(�)
as in Theorem 2. It can be easily verified that

E[e�X ] =
�

�� �
; � < �:

It can be also be shown that ( �
���

)ne�n� is minimized by setting
� = � �

1+�
. After some manipulation we can obtain

P (CNC
s;t ;...;t � (1 + �)

n

�
) � en(ln(1+�)��): (21)

We further observe that

ln(1 + �)� � = ln
1 + �

e�

� ln
1 + �

1 + � + �2=2

= ln 1�
�2

2 + 2�+ �2

� �
�2

2 + 2�+ �2

� � �2=5; since � < 1: (22)

Finally, we have

P (CNC
s;t ;...;t � (1 + �)

n

�
) � e�n� =5 (23)

and the result follows by substituting the appropriate value of �.

In both the bounds above, for higher d, the probability that the net-
work coding capacity falls below (1��)n� is lower. At the same time,
a higher d causes � to increase. There is tradeoff between these two pa-
rameters that decides the tightness of the bound.We remark at this point
that the above results are general in the sense that they can be re-derived
for link capacity distributions that are not the same for source–relay,
relay–relay, and relay–terminal. Under moderate conditions on the dis-
tributions the high-probability bound on the capacity would continue
to hold.
Thus, in a weighted random graph there is a strong case for using net-

work coding since the network coding capacity is with high probability
the expected total flow to the nearest neighbors of the source. On av-
erage we shall not lose much because of the random nature of the graph.
Note that for a wired network, the capacity of the single-source mul-
tiple-terminal information transfer (i.e., the network coding capacity)
is actually achievable. There exists a network code that can be found
in polynomial time [5] that achieves this capacity. However, the re-
sult above is an “existence result,” we do not provide an algorithm for
finding the network code.
While the minimum of the max-flows from s to ti; 1 � i � l is

greater than (1� �)n� with high probability, the extent to which net-
work coding is actually required to achieve this capacity has not been
investigated in this work. In many cases investigated by other authors
[17], routing has been found to perform reasonably well.

III. AD-HOC WIRELESS NETWORKS—THE WEIGHTED RANDOM

GEOMETRIC GRAPH MODEL

At first, one might consider network coding inappropriate for a
distributed wireless network because transmissions from relatively
simple distributed wireless nodes (such as wireless sensor networks)
are typically omnidirectional, precluding the transmission of different
bits from the same node to different links at the same instant of time
and in the same frequency band. However, communication has been
shown to dominate all other sources of energy consumption in a sensor
network. So, in order to save power, wireless sensor nodes typically
will go into a sleep mode from which they periodically awaken to
listen for transmissions. Furthermore, nodes negotiate time slots and
frequency slots with which to communicate for both transmission and
reception, also with a desire to minimize power drain. Under these
practical assumptions, network coding solutions would be possible to
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Fig. 4. If a third node k is connected to j then it surely falls in the shaded area
R . If it falls in R = R \ R then it is also connected to i.

implement in a wireless network. Observe that many sensor networks
would need a sensor node to periodically send data to a set of other
nodes. Network coding might provide a viable solution to the low-en-
ergy single-source multiple terminal information transfer problem
where distinct edges correspond to different frequencies or time slots
in a single transmission frame.

A. Weighted Random Geometric Graph Model

The weighted random graph model of Section II is not a realistic
model for a wireless ad-hoc network or sensor network because it
places edges between nodes independent of the distance between them.
In fact, distance is a critical factor in determining the connectivity
properties of a wireless network since propagation losses cause the
power of the signal to fall off as r�� where r is the distance between
the nodes and 2 � � � 4. Thus, we have to use a different model for
wireless networks.

Definition 2: The following model is assumed for the wireless
network.

1) The source, terminals, and the relay nodes are scattered indepen-
dently and uniformly on the unit square [0; 1]2.

2) The source node s is connected to each relay node i by a link of
capacity Csi (it has only outgoing links).

3) Each relay node i is connected to another relay node j by a
link of capacity Cij . There exists a directed link from i to j of
capacityCij and a directed link from j to i of capacityCji such
that Cji = Cij .

4) Each relay node i is connected to each terminal node tj by a link
of capacity Cit (it has only incoming links).

5) Interference effects are neglected.
6) Let the distance between nodes i and j be denoted d(i; j). The

link capacity between nodes i and j, Cij is assumed to have the
following form:

Cij =
1; if d(i; j) � r

0; otherwise.
(24)

This model is similar to a class of graphs known in mathematical
literature as Random Geometric Graphs [13].

Henceforth, we shall refer to the above model as the GWRGG

(WRGG stands for Weighted Random Geometric Graph) model with
parameter r. This model is fundamentally different from the WRG
model because of the inherent dependencies in the connectivity among
different nodes. This is discussed in more detail in the discussion
that follows. Consider three vertices i; j; k in a graph from the above
model as illustrated in Fig. 4. The region Ri is the circle centered at i.
Since node placements are i.i.d. uniform, it follows that

P [i! k] = P [i! j]: (25)

Fig. 5. Different coverage area that nodes may have depending on their
position on the unit square. Node V has the maximum coverage area as it lies
sufficiently in the interior followed by V that lies on an edge and V that lies
on a corner.

Now consider the probability, P [i ! kji ! j; k ! j]. For simplicity
of explanation, we neglect the effects arising from the placement of
nodes near the boundaries in the following argument. From Fig. 4

P [i! kji! j; k ! j] =
Area(Rij)

Area(Rj)
: (26)

To see this, observe that given that i ! j and k ! j, we know that
i 2 Rij and k 2 Rj , respectively. Thus, the only way in which i can
be connected to k is if k 2 Rij . Also note that in general

Area(Rij)

Area(Rj)
6=

Area(Ri)

Area(U)
(27)

which, in turn, means that

P [i! kji! j; k ! j] 6= P [i! k]: (28)

The analysis is further complicated by the fact that the connectivity of a
node in the case of theWRGG is position dependent. If either the source
or any of the terminal nodes is located close to the boundary, it is highly
probable that the max-flow is much lower compared to the situation
when they are located sufficiently in the interior. As a result, unlike the
case of the WRG, the network coding capacity does not concentrate
about a particular value. However, even in this case we can provide
high probability statements about the behavior of the network coding
capacity. This analysis only provides an upper bound on the amount of
information flow possible, in part because max-flow bounds are upper
bounds in general for wireless systems [18, Ch. 14], and in part because
interference is ignored.

B. A High-Probability Result

We proceed by demonstrating that the WRGG can be treated in a
manner very similar to the WRG case under certain conditions. Con-
sider Fig. 5. NodeV1 that lies in the interior has coverage area� = �r2.
On the other hand, node V2 lying on an edge has coverage area �r2=2
and node V3 lying on a corner has a coverage region �0 = �r2=4. The
event that either the source or one of the terminals lies in a corner oc-
curs with constant probability so in general any high probability result
about the capacity will be dominated by this event.
Now consider the hypothetical situation in which all nodes adjust

their transmit power so that the area of their region of coverage= �0 =
�r2=4. This would require the nodes lying strictly in the interior of the
unit square to reduce their power. Note that �0 can be interpreted as
a probability since the square is assumed to be of unit area and hence
0 � �0 � 1. If the nodes operate with a larger power, the max-flow
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can only improve. Let i; j1; j2; . . . ; jk be a set of nodes. Let pos(k) be
the random variable denoting the position of a node k. Then

P [Cij = z1; Cij = z2; . . . ; Cij = zk]

=
[0;1]

fpos(i)(A)

� P [Cij = z1; Cij = z2; . . . ; Cij = zkjpos(i) = A]dA

=
[0;1]

�k
�=1P [Cij = z�jpos(i) = A]dA

by the conditional independence of Cij 's given i's position

=
[0;1]

�k
�=1(�

0)z (1� �0)1�z dA

= �k
�=1(�

0)z (1� �0)1�z

= �k
�=1P [Cij = z�]: (29)

This demonstrates that the capacities of the outgoing links from any
particular node are independent. By a very similar argument it can be
shown that the capacities of the incoming links into a particular node
are independent as well. The assumption that the connectivity of node
i is the same irrespective of its location on the square is crucial to the
above observation.

Lemma 2: Let G be a random instance of GWRGG with l = 1. Let
�0 be the probability that two nodes are connected under the hypothet-
ical assumption that all nodes reduce their power as explained above.
Let

Ck =

n

i=k+1

Csi +

k

j=1

n

i=k+1

Cji +

k

i=1

Cit

be the capacity of a cut in G as shown in Fig. 3. The cut is defined by
partitioning the vertex set V into a set Vk(jVkj = k + 1) such that
s 2 Vk and the complementary set �Vk(j �Vkj = n � k + 1) such that
t1 2 �Vk. Then

P [Ck � (1� �)(n+ k(n� k))�0] � e�(n+k(n�k))� : (30)

Proof: Consider

Ck =

n

i=k+1

Csi +

k

j=1

n

i=k+1

Cji +

k

i=1

Cit : (31)

By the argument presented earlier, outgoing/incoming links from/to
any particular node are independent. In addition, two links that have
no node in common are anyway independent. Thus, all the terms in the
above sum are independent. Therefore, bounding the probability that
the cut falls below (1� �)(n+ k(n� k))�0 reduces to the situation in
Lemma 1. The theorem follows from Lemma 1 and the discussion in
Section II-C.

It is now straightforward to conclude the high-probability statement
on the network coding capacity for the wireless case, based on argu-
ments similar to the ones made in Theorem 3.

Theorem 5: LetG be a random instance of GWRGG, with parameter
r. Let �0 = �r2=4 (since the square is of unit area we can treat �0 as
a probability) and

� =
4d lnn

n�0

with d > 1. If � < 1, then with probability 1�O(l=n2d), the network
coding capacity CNC

s;t ;...;t > (1 � �)n�0.
Proof: The proof follows by making the hypothetical assumption

that all nodes adjust their power so that their coverage area = �0 =
�r2=4. Then Lemma 2 holds and the stated result holds by a discussion
identical to the one presented in the proof of Theorem 3. In reality, of

Fig. 6. Histograms of s � t minimum cuts for (a) weighted random graphs
with Bernoulli links, (b) weighted random geometric graphs with parameter
r = 0:1262, and (c) weighted random geometric graphs with r = 0:1262

and toroidal distance metrics.

course, many nodes shall have coverage that exceeds �0. However, this
can only cause the minimum cut to improve. Thus, the lower bound on
the probability still holds.

It is important to note that this is essentially the best that one can
hope for since with constant probability = 1� (1� 4�)l+1 either the
source or one of the terminals lies in a region of area � near the corners
of the unit square. One can impose restrictions on the positions of the
sources and the terminals, e.g., force their positions to be sufficiently
within the interior of the unit square, etc. One can also consider sce-
narios where the nodes at the boundary use directional antennas so that
their connectivity is not reduced. However, in this work we have not
considered those possibilities.

IV. SIMULATIONS AND DISCUSSION

We performed simulations for the weighted random graph with
Bernoulli (p = 0:05) distributed link capacities, and the weighted
random geometric graph with parameter r = 0:1262. The number
of nodes was chosen to be n = 1000. The value of r was chosen so
that p � �r2. Different nodes were declared to be the source and
terminal, respectively, and a histogram of the s � t minimum cuts
was generated. These results are presented in Fig. 6. Note that the
histogram of Fig. 6(b) extends more to the left than the one in Fig. 6(a).
The results are in agreement with the theoretically derived results.
Note that the histogram of Fig. 6(b) extends to about 10 � 45:99=4.
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This means that with high probability, the minimum cut is greater that
10 which is what we have predicted.

To make the inter-node distances more homogeneous, we defined
a different toroidal metric [19] for the distance between two nodes.
With a toroidal distance metric, nodes at one boundary of the square
are considered to be close to the nodes at the opposite boundary, i.e.,
nodes at the left boundary of a square can have links with nodes at the
right boundary, and nodes near the top of the square can have links
with those at the bottom. The histogram of the s � t minimum cuts
is shown in Fig. 6(c). Note that now the histogram looks very similar
to Fig. 6(a). This suggests, that at least for this case, the statistics of
the wired network and wireless networks would be similar. As we have
shown before, the capacity is basically dominated by the number of
nearest neighbors of the source and the terminals. Thus, in practice, to
avoid the boundary effects it should be sufficient to choose the source
and the terminals to be sufficiently toward the center of the region.

V. CONCLUSION

We presented high-probability results for the capacity of network
coding for two different classes of random networks, namely, the
weighted random graph model (modeling wired networks) and the
weighted random geometric graph model (modeling wireless net-
works). For the case of wired networks with a dense collection of
relay nodes, the network coding capacity is dominated by the number
of nearest neighbors of the source and terminal nodes. In the wireless
case, boundary effects cause the nodes near the boundary to have
fewer neighbors.

While we have shown high-probability results about the network
coding capacity, the extent to which network coding is actually re-
quired to achieve it has not been investigated in this work. If the whole
topology of the network is known, in many cases routing may perform
as well. However, it is important to keep in mind that network coding
can be implemented in a distributed fashion [6] and provides a robust
solution to the multicast problem as against a routing solution that is
equivalent to the hard problem of Steiner tree-packing [20].

APPENDIX

The proof of the following theorem is based on the argument in [21,
pp. 72–73].

Theorem 6: LetX�0 be a random variable, such thatE[X]=�<

1. Let '(�)=E[e��X ]. Then, for �>0, there exists a �>0, such that

ln'(�) + �(1� �)� < 0: (32)

Proof: Let �(�) = ln'(�). We have

�(0) = 0 (33)

�(�) + �(1� �)� =
�

0

�
0(x) + (1� �)� dx: (34)

Thus, it is enough to show that �0(x) exists and �0(�)! �� as �! 0.
For h � 0; x � 0; je�hx � 1j � hx. Define

Yh =
e�(�+h)X � e��X

h
: (35)

Note that

jYhj � je
��X j

je�hX � 1j

h

� je��X jX

�X: (36)

We know that E[X] < 1. It is easy to see that

lim
h!0

Yh = e
��X lim

h!0

e�hX � 1

h

= �Xe
��X

: (37)

Therefore, using the dominated convergence theorem

'
0(�) = lim

h!0

E[e�(�+h)X ]� E[e��X ]

h

= �E[Xe
��X ]: (38)

This implies that �0(�) = ' (�)
'(�)

. Similarly, we can see that

• Z� = e��X � 1 and lim�!0 Z� = 1 and thus, E[e��X ] ! 1
as � ! 0;

• Z� = Xe��X � X and lim�!0 Z� = X . We are given
E[X] <1 and thus, E[Xe��X ] ! E[X] as � ! 0.

The above equations imply

�
E[Xe��X ]

E[e��X ]
! �EX = ��; as � ! 0: (39)

This shows the existence of a �, such that �(�) + �(1� �)� < 0.

Theorem 7: LetX � 0 be a random variable, such that E[X] = �

and �(�0) = E[e� X ] < 1 for some �0 > 0. Then, for � > 0, there
exists a � > 0 such that

ln �(�)� �(1 + �)� < 0: (40)

Proof: As the proof of the preceding theorem, let�(�) = ln �(�).

�(0) = 1 (41)

�(�)� �(1 + �)� =
�

0

�
0(x)� (1 + �)�dx: (42)

It is enough to show that �0(x) exists and �0(�) ! � as � ! 0. Let
0 < � < �0. Since we have assumed the existence of E[e� X ], we
know that � 0(�) exists [21] and

�
0(�) = E[Xe

�X ]: (43)

This implies that �0(�) = � (�)
�(�)

. Now

e
� X � e

�X ! 1; as � ! 0 (44)

Xe
(�+� )X �Xe

�X ! X; as � ! 0: (45)

Here �1 > 0 is chosen so that �+2�1 < �0. In addition,E[e� X ] <1.
For upper-bounding E[Xe(�+� )X ] we have the following argument.
Let M be such that M � e� M .

E[Xe
(�+� )X ]

=E[Xe
(�+� )X1fX�Mg] +E[Xe

(�+� )X1fX>Mg]

�Me
(�+� )M +E[e(�+2� )X ]

<1: (46)

Thus, by the Dominated Convergence Theorem, we obtain

E[e�X ]! 1 (47)

E[Xe
�X ]!X: (48)

The above equations imply

E[Xe�X ]

E[e�X ]
! E[X]; as �! 0: (49)

This proves the existence of a � such that

ln �(�)� �(1 + �)� < 0: (50)
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An Improvement to the Bit Stuffing Algorithm

Sharon Aviran, Paul H. Siegel, Fellow, IEEE, and
Jack Keil Wolf, Life Fellow, IEEE

Abstract—The bit stuffing algorithm is a technique for coding con-
strained sequences by the insertion of bits into an arbitrary data sequence.
This approach was previously introduced and applied to (d; k) constrained
codes. Results show that the maximum average rate of the bit stuffing
code achieves capacity when k = d + 1 or k = 1, while it is suboptimal
for all other (d; k) pairs. Furthermore, this technique was generalized to
produce codes with an average rate that achieves capacity for all (d; k)
pairs. However, this extension results in a more complicated scheme.
This correspondence proposes a modification to the bit stuffing algorithm
that maintains its simplicity. We show analytically that the proposed
algorithm achieves improved average rates over bit stuffing for most (d; k)
constraints. We further determine all constraints for which this scheme
produces codes with an average rate equal to the Shannon capacity.

Index Terms—Bit-stuffing encoder, (d; k)-constrained systems, Shan-
non capacity.

I. INTRODUCTION

A binary sequence satisfies a run-length-limited (RLL) (d; k) con-
straint if any run of consecutive zeros is of length at most k and any two
successive ones are separated by a run of consecutive zeros of length at
least d. Such sequences are called (d; k)-sequences and are commonly
used in magnetic and optical recording [1], [2]. The (d; k) constraint is
used in order to solve two problems that arise when performing peak
detection: dminimizes intersymbol interference and k assists in timing
recovery. Relevant (d; k) pairs range over all integers d, k, such that
0 � d < k � 1.
One can use a labeled directed graph to generate all possible

(d; k)-sequences by reading off the labels along paths in the graph.
This graph is referred to as a (d; k) constraint graph. A graph that
produces these sequences for k < 1 is shown in Fig. 1.
LetNd;k(n) be the number of distinct (d; k)-sequences of length n.

The Shannon capacity of a (d; k) constraint is defined as

C(d; k) = lim
n!1

log2Nd;k(n)

n
:

The capacity can be computed by applying amore general result derived
by Shannon [3]. It was shown (see, e.g., [1]) thatC(d; k) = log2 �d;k ,
where �d;k is the largest real eigenvalue of the adjacency matrix of the
constraint graph. Therefore, �d;k is the largest real root of the charac-
teristic polynomial of the matrix Pd;k(z), which takes the form

Pd;k(z) =
zk+1 �

k�d

j=0
zj ; k is finite

zd+1 � zd � 1; k =1.

It was further shown that for all values of d and k the capacity exists
and that �d;k 2 (1; 2) for all (d; k) pairs such that (d; k) 6= (0;1).
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