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Statistics and Its Interface Volume 12 (2019) 181–191

Bayesian modeling and uncertainty quantification
for descriptive social networks∗

Thomas Nemmers, Anjana Narayan, and Sudipto Banerjee
†

This article presents a simple and easily implementable
Bayesian approach to model and quantify uncertainty in
small descriptive social networks. While statistical methods
for analyzing networks have seen burgeoning activity over
the last decade or so, ranging from social sciences to genet-
ics, such methods usually involve sophisticated stochastic
models whose estimation requires substantial structure and
information in the networks. At the other end of the analytic
spectrum, there are purely descriptive methods based upon
quantities and axioms in computational graph theory. In so-
cial networks, popular descriptive measures include, but are
not limited to, the so called Krackhardt’s axioms. Another
approach, recently gaining attention, is the use of PageRank
algorithms. While these descriptive approaches provide in-
sight into networks with limited information, including small
networks, there is, as yet, little research detailing a statis-
tical approach for small networks. This article aims to con-
tribute at the interface of Bayesian statistical inference and
social network analysis by offering practicing social scientists
a relatively straightforward Bayesian approach to account
for uncertainty while conducting descriptive social network
analysis. The emphasis is on computational feasibility and
easy implementation using existing R packages, such as sna
and rjags, that are available from the Comprehensive R
Archive Network (https://cran.r-project.org/). We analyze
a network comprising 18 websites from the US and UK to
discern transnational identities, previously analyzed using
descriptive graph theory with no uncertainty quantification,
using fully Bayesian model-based inference.

Keywords and phrases: Bayesian modeling, Directed
graphs, Krackhardt’s axioms, PageRank algorithms, Social
network analysis, Uncertainty quantification.

1. INTRODUCTION

Social network analysis (SNA), sometimes referred to
as “structural analysis”, constitutes a key methodology in
modern sociology. SNA models social phenomenon using

∗We thank the Editors, the Associate Editor and Referees for their
suggestions that improved the article considerably. The third author’s
work was supported, in part, by grants NIH/NIEHS 1R01ES027027-01,
NSF IIS-1562303 and NSF DMS-1513654.
†Corresponding author.

networks and studies them using graph theory. The vertices
of the graph are referred to as nodes or actors and the edges
between these nodes represent links or connections defined
using an underlying relation. SNA has generated much in-
terest in diverse disciplines well beyond sociology; they in-
clude but need not be limited to biology, economics, geogra-
phy, organizational studies, political science, and computer
science due to their ability to model potentially complex
interactions in the underlying network. Examples of social
networks include, but are not limited to, media networks,
friendship and acquaintance networks, disease transmission,
and biological gene networks. Network analysis techniques
can broadly be described as either descriptive or statistical.
Descriptive methods exploit measures based upon the struc-
ture of the network to quantify properties such as how con-
nected or centralized the network is and quantifies the im-
portance of each node in the network. Such methods abound
in the literature and a comprehensive review is beyond the
scope of this article [see, e.g., 28, 3, 13, 20, 25, 26, for excel-
lent reviews]. Stochastic methods formulate statistical mod-
els for the network and include random graph models [24],
latent space approaches [15], and several other probability
models using matrix-variate distributions [8].

We outline some model-based strategies for quantifying
uncertainty in descriptive SNA. Our particular focus is on
small networks, where information is usually too limited to
fit richer stochastic models such as the latent class or expo-
nential random graph models. We pursue Bayesian inference
for small networks. This is appealing because it offers ex-
act sampling-based inference as opposed to asymptotics that
may be difficult to envisage for small networks. We also offer
direct and easy interpretation of uncertainty in estimation.
We build a Bayesian hierarchical model for the variables
associated with the network and compute the posterior dis-
tribution of some descriptive measures from the underlying
graph using posterior predictive data replicates [see, e.g.,
12]. There are a variety of such descriptive measures [see,
e.g., 27, 28, for a detailed outline of such measures]; we opt
for some common measures described in [28] and [18], often
referred to as Krackhardt’s axiomatic measures. Our choice
is governed primarily by the availability of these measures
in statistical software packages. We will also outline simple
Bayesian inference on “PageRanks”.

Our intended contribution lies at the interface between
descriptive SNA and parametric Bayesian inference. The
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Table 1. The adjacency matrix

Site Names 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 Cambridge 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 Glasgow 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
3 UK-National 1 1 0 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0
4 Nottingham 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 STG 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
6 UCL 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
7 UMU 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
8 Warwick 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
9 Austin 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
10 Berkeley 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
11 CMU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 Cornell 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1
13 George Mason 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1
14 US-National 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1
15 MIT 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1
16 NCSU 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 1 1
17 PSU 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1
18 Stanford 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

proposed approach will likely assist social scientists in glean-
ing information from small networks with limited informa-
tion regarding the underlying processes generating struc-
tures within the network. We also emphasize easy implemen-
tation. The Bayesian models deliver clear interpretation and
are implemented entirely within the R statistical computing
environment using packages such as sna (for descriptive so-
cial networks) and rjags (for Bayesian computations).

Our application concerns a small network studied by
[21] to better understand recent intercultural and social
phenomenon involving migrant students and how they de-
velop their ethnic identities. Narayan et al. [21] have con-
ducted some descriptive structural analysis on a network
constructed from websites of Hindu student groups within
the United States and the United Kingdom to examine
whether websites can help foster a transnational identity.

The article proceeds as follows. Section 2 gives a basic
description of the network we will be revisiting. Section 3
begins with a brief review of familiar concepts in graph the-
ory used in SNA. This is followed by a discussion of the
quantities and measures in descriptive SNA that will be an-
alyzed subsequently using Bayesian modeling, including un-
certainty quantification with posterior predictive data repli-
cates. Section 4 presents a Bayesian analysis of the network.
We conclude the paper with a brief discussion in Section 5.

2. DATA

For the analysis, the dataset from Narayan, et al. [21] was
used. The network analyzed there was a collection of 18 web-
sites for Hindu student groups. Again, the focus of the paper
is on small networks such as these. Websites 3 and 14 were
the national student group websites for the United Kingdom
and the United States, respectively. Based upon links from

Figure 1. The network of websites represented as a directed
graph corresponding to the adjacency table. The labels

correspond to sites in the table.

those two websites, other websites were found that were lo-
cal, functioning, and currently maintained. Seven additional
websites were found from the UK, and nine other from the
US. Pictorially, the network can be seen in Figure 1 and the
corresponding adjacency matrix is shown in Table 1. A fully
deterministic network analysis for this dataset can be found
in Narayan, et al. [21].

3. METHODS

3.1 Descriptive social network analysis

Descriptive SNA refers to descriptive measures derived
from the structure of the network. These measures are easy
to compute and interpret, but do not account for the uncer-
tainties inherent in modeling the relationships in the net-
work. These measures can be regarded as local or global. Lo-
cal measures determine the relative importance of a vertex
(for example, how important or “central” a website is within
a network), while global measures apply to the network as a
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whole, such as how connected (or not) the network is. After
some basic definitions in Section 3.1.1, we will discuss local
measures using vertex analysis in Section 3.1.2 and PageR-
ank algorithms in Section 3.1.3. We describe global measures
using Krackhardt’s axiomatic analysis in Section 3.1.4.

3.1.1 Definitions and measures

We will model the social network as a directed graph, or
digraph, G = {V,E}, where V is the set of vertices repre-
senting websites and E = {(i, j) : i ∈ V, j ∈ V } consists
of pairs of websites that are connected by a link from web-
site i to website j. The set of edges E describes a relation
on the set of vertices V . The adjacency matrix or relational
table has its (i, j)-th entry equal to 1 if (i, j) ∈ E and 0
if i and j are not related. Each edge can be thought of as
having a direction. For any given vertex, its indegree is the
number of edges coming into it, and its outdegree is the
number of edges leaving from it. A path in G is a sequence
of vertices such that from each of its vertices there is an
edge to the subsequent vertex. Also of interest is the dis-
tance between two vertices in a graph: this is the number of
directed edges in the shortest path connecting them. Note
that the shortest path is not always unique, but the distance
is. The shortest paths are called geodesics and the distance
is the geodesic distance. There are a number of other mea-
surements defined in terms of distance: the eccentricity of a
vertex v is the greatest distance between v and any other
vertex. Two vertices u and v are called connected if G con-
tains a directed path from u to v. Otherwise, the two vertices
are called disconnected. A graph is called connected if every
pair of vertices in the graph is connected. A maximal con-
nected subgraph S = (Vs, Es) of G is such that Es ⊆ E and
Vs ⊆ V , if i, j ∈ V , i ∈ Vs, but j /∈ Vs, neither (i, j) ∈ E nor
(j, i) ∈ E. A connected component of a graph, G, is the same
as a maximal connected subgraph of G. Each vertex belongs
to exactly one connected component, as does each edge. The
graph is weakly connected if replacing all of its directed edges
with undirected edges produces a connected (undirected)
graph. It is strongly connected, or strong, if it contains a di-
rected path from u to v for every pair of vertices u, v ∈ V .
A weak component, W , is a subgraph of G such that W only
becomes a maximal connected subgraph when its directed
edges are replaced with undirected edges. The strong com-
ponents are the maximal connected subgraphs (no need to
replace the directed edges with undirected edges). A graph
structure can be extended by assigning a weight to each
edge of the graph. A digraph with weighted edges is called
a network. Networks have many practical uses.

3.1.2 Vertex analysis using digraphs

Within graph theory and network analysis, there are var-
ious measures for the centrality of a vertex within a graph
that determine the relative importance of that vertex (for
example, how important a website is within a network).
These measures attempt to quantify the prominence of an

individual node embedded in a network. The measures in-
vestigated here include, among others, (i) degree, (ii) be-
tweenness, (iii) closeness, (iv) eigenvector centrality, and (v)
structure statistics.

The calculation of overall network centralization starts
by determining the centrality of each individual in the net-
work. There are many different definitions of centrality in
the literature [28], and the choice between measures is based
on the nature of the relationships. The most basic definition
is based on degree: nodes that “receive” or “send” more con-
nections are more central than those that do not. Indegree
and outdegree can be used; in addition, the total degree can
be used, which is the sum of the indegree and outdegree.
This total degree is also called the Freeman measure of con-
nectedness or centrality [10].

The betweenness, CB(v), for vertex v is

CB(v) =
∑
i �=v

∑
j �=i,j �=v

givj
gij

where gij is the number of geodesics from i to j and givj is
the number of those geodesics that pass through v. Concep-
tually, vertices with high betweenness lie on a large number
of non-redundant shortest paths between other vertices [9].

The next measure of centrality is closeness. The closeness
of a vertex v is defined as

CC(v) =
|V | − 1∑
i:i �=v d(v, i)

,

where |V | is the cardinality of V and d(i, j) is the geodesic
distance between i and j (where defined). Intuitively, close-
ness provides an index of the extent to which a given vertex
has short paths to all other vertices in the graph.

Two other measures of centrality are Harary centrality
and eigenvalue centrality of a vertex v. The Harary central-
ity of v is

CH(v) =
1

maxu d(v, u)

where d(v, u) is the geodesic distance from v to u. Eigen-
vector centrality scores correspond to the values of the first
eigenvector of the graph’s adjacency matrix; the first eigen-
vector being the eigenvector corresponding to the largest
eigenvalue. These scores may, in turn, be interpreted as aris-
ing from a reciprocal process in which the centrality of each
actor is proportional to the sum of the centralities of those
actors to whom it is connected [14].

Also useful is the structure statistics, which is computed
as follows: let d(i, j) be the geodesic distance from vertex i
to vertex j in G. The structure statistics of G are then given
by the sequence {s0, . . . , sn−1}, where n = |V | and

si =
1

n2

∑
j∈V

∑
k∈V

I(d(j, k) ≤ i)
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where I(d(j, k) ≤ i) = 1 if d(j, k) ≤ i and 0 otherwise.
Intuitively, si is the fraction of G which lies within distance
i of a randomly chosen vertex. Structure statistics have been
of particular importance to biased net theorists, because of
the link with Rapoport’s original tracing model [28]. They
may also be used along with component distributions or
connectedness scores as descriptive indices of connectivity
at the graph-level.

The centrality measures can also be aggregated to obtain
a global centrality index for the entire network. For exam-
ple, centralization refers to the extent to which the network
is concentrated on one vertex or a group of vertices. Nu-
merically, a centralized network is one which has a few or
one vertex with considerably higher centrality scores than
others in the network. The centralization or global centrality
index of a graph G for centrality measure C(v) is defined as

C∗(G) =
∑
i∈V

|C(i)−max
v∈V

C(v)| ,

or, the absolute deviation from the maximum of the central-
ity measure C(v) on G [10].

Tables showing all of the aforementioned measures have
been presented in detail in [21], hence are not reproduced
here.

3.1.3 PageRank algorithm

The PageRank algorithm [6] can be added to the other,
more usual vertex analysis measures. It can be regarded as a
centrality measure of a certain vertex within a network. This
algorithm starts by creating a transition probability matrix,
P , whose rows and columns correspond to each vertex in
the network, composed of n vertices in total. For the i-th
row, ri refers to the count of all vertices to which vertex i
has an edge, or hyperlink. So, ri is equal to the outdegree
of i. Now,

(P )ij =

{
1/ri if i has a link to j

0 otherwise
,

∀i, j. If vertex i has an outdegree of 0, then each entry in
the ith row of P is simply 1/n. It is easy to see that, for the
ith row in P , all of the entries sum to 1. Or, denoting 1 as
the n × 1 dimensional vector with all entries equal to 1 (n
being the number of rows or columns of P ),

P1 = 1 .

Thus, 1 is the eigenvector of P corresponding to the eigen-
value of 1. Matrices having this property are said to be
row-stochastic and this transition probability matrix corre-
sponds to a discrete Markov chain with n states. It is well-
known that if P is a regular transition matrix, i.e., some
power of P has all its entries positive, then

lim
m→∞

Pm = W ,

where W is a matrix all of whose row vectors are the same
[see, e.g, 19, 17, 1]. Denoting any one of these rows as α�,
α is the stationary distribution of P . Should the matrix P
converge, in this sense, to a stationary distribution α, then
the PageRank algorithm returns the rank of the i-th vertex
as the i-th entry in α.

As far as finding α for a row-stochastic transition prob-
ability matrix P , the following results provide a solution.
First, if W and, therefore, α exist, then the vector π such
that

P�π = π

is equal to kα, where k is a scalar constant. Since α� is a
row of a row-stochastic matrix,

α�1 = 1 .

Thus, we can find k from the relation(
1

k

)
π�1 = 1

and (1/k)π is the stationary distribution. Notice that π is
simply the eigenvector of P� associated with the eigenvalue
of 1.

The second result is that all irreducible transition proba-
bility matrices converge to a unique stationary distribution.
A transition probability matrix is irreducible if there exists
no permutation matrix M such that

M�PM =

[
X Y
O Z

]
,

where X and Z are both square matrices and O has all en-
tries equal to zero (X, Y , O, and Z are all dimensionally
compatible). Thus, if the transition matrix can be shown to
be irreducible, the eigenvector of its transpose that is asso-
ciated with the eigenvalue of 1 is its stationary distribution,
after appropriate scaling. The entries of the stationary dis-
tribution are the ranks for each vertex. The vertex with the
highest rank is deemed the most important vertex in the
network as it has the highest probability of getting a hit
were there a web search over this network.

While the original transition probability matrix P may
not always be irreducible, the algorithm actually proceeds
to work with a similar transition probability matrix, P̃ :

P̃ = dP + (1− d)

(
1

n

)
J ,

where d ∈ [0, 1] and J is an n×nmatrix with all entries equal
to one. Conventionally, d is set to 0.85 [6]. Notice that when

d > 0, all of the entries in P̃ are strictly positive, meaning
P̃ is irreducible and will always converge to a stationary
distribution. The stationary distribution of P̃ returns the
PageRanks for each vertex [19, 17, 1].
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Table 2. PageRanks for the network

Vertex PageRank

14 0.17
3 0.11
18 0.07
9 0.06
11 0.06
10 0.05
12 0.05
13 0.05
15 0.05
16 0.05
17 0.05
1 0.03
2 0.03
4 0.03
5 0.03
6 0.03
7 0.03
8 0.03

The above deterministic algorithm was implemented for
the adjacency matrix corresponding to Table 1 and the
PageRanks for the network are preseted in Table 2. The
vertices are arranged from the highest to the lowest rank
(up to 2 significant digits).

3.1.4 Krackhardt’s axiomatic analysis

The preceding section devoted itself to analyzing the cen-
trality properties in the structure of a network by locating
and ranking nodes in the network according to their impor-
tance. We now turn to global measures describing the level
of connectedness and the hierarchy of a network’s struc-
ture. These are evaluated using Krackhardt’s axiomatic ap-
proach [18]. Rather than assign an importance measure to
each vertex, we now provide a score to the entire network.
A basic method for assessing connectedness is constructing
the reachability table or matrix for a network. Two vertices
reach each other if there exists a path connecting them. A
reachability graph is constructed from a given graph or net-
work by joining or linking vertices that can be reached from
one another in the original graph. For the reachability ma-
trix, the (i, j)-th entry is 1 if vertex j can be reached from
vertex i in the original network.

In addition to reachability, Krackhardt’s measures can
be used. There are four such measures developed for study-
ing the underlying structure: connectedness, hierarchy, effi-
ciency, and least upper bound (LUB), or “LUBness”. These
four measures quantify the four conditions Krackhardt con-
sidered necessary for a graph to be considered a hierarchy
or an out-tree. First, connectedness is defined as:

CK = 1− D

n(n− 1)/2

where D is the number of pairs of points that cannot reach
one another in a “weak” sense, meaning that all directed
paths are converted to undirected paths before assessing
reaching. In other words, Krackhardt’s connectedness for a
digraph G is equal to the fraction of all pairs of nodes, (i, j),
such that there exists an undirected path from i to j in G.
The connectedness score ranges from 0, for a null graph to
1, for a weakly or strongly connected graph.

The Krackhardt efficiency of a graph G is computed
as follows: suppose all of G’s weak components are
G1, G2, . . . , Gm. Denote the cardinalities of these graphs’
vertex sets by |V (G)| = N and |V (Gi)| = Ni, for i =
1, . . . ,m. Then the Krackhardt efficiency of G is given by

EK = 1− |E| −
∑m

i=1(Ni − 1)

[N(N − 1)/2]−
∑m

i=1(Ni − 1)
,

where |E| is the number of edges in G. A high value, close
to 1, implies that the network has the minimal number of
edges in order for its weak components to be connected.
Efficiency can also be interpreted as 1 minus the propor-
tion of possible “extra” edges above those needed to con-
nect the weak components. A graph with an efficiency of
1 has precisely as many edges as are needed to connect its
components; as additional edges are added after that, the
efficiency gradually falls towards 0.

Hierarchy measures quantify the extent of asymmetry in
a structure. To understand symmetric directed paths, first
consider that, for each directed path, there is a “sender”, the
first vertex in the sequence, and a “receiver”, the final vertex
in the sequence. A path is said to be symmetric if there exists
a directed path from its receiver back to its sender; this new
path is also trivially symmetric. All other such paths are said
to be asymmetric. The Krackhardt hierarchy is defined as
the fraction of paths which are asymmetric. The closer this
value is to 1, the more hierarchical, in a conventional sense,
are the relationships in the communications network. That
is, a link from website A does not also have some existing
path of links from website B back to A.

The Least Upper Boundedness, or “LUBness”, is defined
as follows. A node k is said to be an “upper bound” for two
nodes i and j if the directed paths k → i and k → j belong
to G. If such a node does not exist, then i and j do not have
an upper bound. An upper bound l is known as a least upper
bound, or LUB, for i and j if, for all upper bounds, k, of i
and j, l belongs to at least one of the k → i paths and at
least one of the k → j paths. Where all vertex pairs possess
a least upper bound, Krackhardt’s LUBness is equal to 1;
in general, it approaches 0 as this condition is broached.
Krackhardt offers that the LUB is the common “boss” for
two nodes, either directly or up though the network.

Krackhardt’s axiomatic analysis has also been presented
in detail in [21], hence are not reproduced here. Instead,
we will now turn to the statistical models for uncertainty
quantification.
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3.2 Bayesian modeling

3.2.1 Bayesian hierarchical modeling

To statistically model the various network analysis mea-
sures, the adjacency matrix must first be modeled. Let Yij

be the (i, j)-th entry of an n× n adjacency matrix Y asso-
ciated with the network. We will assume a binary adjacency
matrix, i.e.,

Yij =

{
1 if there is an edge going from node i to node j

0 if not
.

Note that the edges are directed, so the matrix Y need not
be symmetric; a directed edge from node i to node j implies
Yij = 1, but does not imply Yji = 1. Each entry in the
adjacency matrix is modeled using logistic regression,

Yij |πij ∼ Bern(πij)

logit(πij) = x�
ijβ ,(1)

for i, j = 1, 2, . . . , n, where xij is a p×1 vector of covariates
and β is the vector of slopes. The posterior distribution for
β is

p(β |Y ) ∝ p(β)×
n∏

i,j=1

Bern(Yij | logit−1(x�
ijβ)) ,

where p(β) is the prior on β.
Bayesian logistic regression and the effect of priors

(weakly informative, non-informative and informative) have
been explored in depth by Gelman et al. in [11] and also by
other authors in the context of noninformative (including
flat or improper) priors for generalized linear models [see,
e.g., 7, 2, 16, 30, among others]. A full exploration for dif-
ferent choices of priors is not attempted here. Instead, we
will focus on some typical choices for the p× 1 vector β.

One specification assumes a weakly informative Gaus-
sian prior, β ∼ N(0, τ2Ip), where τ2 is a positive scalar.
A very large value of τ2 yields a vague proper prior for
β and lim τ2 → ∞ results in the improper uniform prior.
Necessary and sufficient conditions for the propriety of the
posteriors under improper priors have been established rig-
orously in [7]. Here, we do not use improper priors, so our
posterior distributions are proper.

Another proper specification assumes a multivariate
normal-Wishart prior

β |Σ ∼ Np(0,Σ), Σ−1 ∼ Wish(Ip, p+ 1) ,

where Σ is an unknown p × p positive definite matrix, and
Ip is the p × p identity matrix. Markov chain Monte Carlo
(MCMC) methods are used to sample from p(β |Y ) or
p(β,Σ |Y ), as the case may be, for each of the above mod-
els [see, e.g., 12]. These can be implemented in a number of
available R packages; for the specific analysis in this paper
we used rjags.

3.2.2 Predictive distribution for network analysis measures

One possible approach to quantifying uncertainty in de-
scriptive SNA is to evaluate the proposed descriptive mea-
sures using replicated datasets generated from the posterior
predictive distribution [12]. A replicated data matrix is de-
fined as the random n× n adjacency matrix Y rep with en-
tries Y

rep
ij such that p(Y rep |Y ,θ) = p(Y rep |θ), where

θ represents the set of model parameters to be estimated.
Thus, Y rep is assumed to be generated from the same model
as the observed data and is assumed to be conditionally in-
dependent of Y given πij . One can also regard Y rep as a
future or alternate adjacency matrix that could have been
observed from the assumed underlying probability model for
the realized Y .

Since uncertainty quantification needs to account for the
uncertainty in estimating θ, we compute the posterior pre-
dictive distribution of the replicated adjacency matrix,

p(Y rep |Y ) =

∫
p(Y rep |θ)p(θ |Y )dθ ,(2)

where Y
rep
ij |π ind∼ Bern(πij) and πij is determined by β. We

sample from (2) using samples from p(β |Y ). From each

sampled β(s) ∼ p(β |Y ) for s = 1, 2, . . . , S, we compute

the corresponding π(s) and draw Y
rep,(s)
ij ∼ Bern(π

(s)
ij ) for

i, j = 1, 2, . . . , n. The collection {Y rep,s} for s = 1, 2, . . . , S
are samples of the replicated data from the distribution
in (2). Each of the descriptive measures in Section 3 are
fully determined from the graph G, hence the adjacency
matrix Y . Therefore, we can express them as a function
T (Y ). Computing T (Y rep,s) for each s yields samples from
p(T (Y rep) |Y ).

3.2.3 Bayesian PageRank model

Posterior predictive distributions for replicated adjacency
matrices can also offer uncertainty quantification in PageR-
anks by applying the PageRank algorithm to the replicated
datasets. However, the πij ’s from (1) are not modeled jointly
and, hence, do not necessarily correspond to a transition ma-
trix; i.e., they need not be row-stochastic. An alternative is
to develop a Bayesian model for the row-stochastic matrix
involved in the PageRank calculation. The following model
is an option.

Yij |πij
ind∼ Bern(πij) , i, j = 1, 2, . . . , n ,

πi |α ind∼ Dirichlet(α) , i = 1, 2, . . . , n ,

α1 =
1

1 +
∑n

m=2 μm
,

αj =
μj

1 +
∑n

m=2 μm
, j = 2, 3, . . . , n ,

μj = exp
(
x�
j β

)
, j = 2, . . . , n

β ∼ N(0, τ2Ip) ,

(3)
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where πi = (πi1, πi2, . . . , πin)
�
, αi is the i-th element of the

n× 1 vector α, where the αi’s sum to one, and each xj is a
p× 1 vector of covariates.

Since the support of the Dirichlet distribution is a sim-
plex, the matrix with π�

i is row-stochastic. So, the posterior
distribution for the πij ’s define the posterior distribution of
the PageRank transition matrix. Computing the stationary
distribution for each posterior sample of this row-stochastic
matrix will return a sample of the posterior distribution for
the PageRank vector. The posterior samples for the i-th en-
try of these vectors gives the posterior distribution of the
PageRank for the i-th node. Ranks assigned according to
this algorithm will be referred to as Dirichlet-1-Ranks for
the rest of this paper.

A generalization allows the prior on πi to vary across i:

Yij |πij
ind∼ Bern(πij), i, j = 1, 2, . . . , n ,

πi |αi
ind∼ Dirichlet(αi) , i = 1, 2, . . . , n ,

αi1 =
1

1 +
∑n

m=2 μim
, i = 1, 2, . . . , n ,

αij =
μij

1 +
∑n

m=2 μim
, j = 2, . . . , n ,

μij = exp(x�
ijβ) , i = 1, 2 . . . , n ; j = 2, . . . , n .

(4)

4. RESULTS

For our data we will consider the following covariates,

X1i =

{
1 if vertex i, the “sender”, is from the UK

0 if i is from the US

X2j =

{
1 if vertex j, the “recipient”, is from the UK

0 if j is from the US
.

We fit five specific models. The first three models use the
likelihood in (1). Model 1 specifies x�

ij = (1, X1i, X2j), so

p = 3, and specifies a vague Gaussian prior β ∼ N(0, τ2I3),
where β = (β0, β1, β2)

�. Model 2 uses the same xij as
Model 1, but uses the Normal-Wishart specification for
{β,Σ} as described in Section 3.2.1. Model 3 uses the
same Normal-Wishart prior for θ = {β,Σ} as in Model 2,
but adds an interaction term to the regressors, so x�

ij =

(1, X1i, X2j , X1iX2j) and p = 4 with β = (β0, β1, β2, β3)
�.

Models 4 and 5 correspond to (3) and (4), respectively. In
Model 4, we take x�

j = (1, X3j), where

X3j =

{
1 if site k is from the U.K.

0 if site k is from the U.S.
,

and in Model 5 we take xij to be the same as for Model 3.
The results from models 1, 2, and 3 are summarized in

Tables 3, 4, and 5, respectively. Since the main slope coeffi-
cients have 95% Bayesian credible intervals with 2.5th and
97.5th quantiles of the posterior distributions as endpoints

Table 3. Posterior summaries for Model 1

Coefficient Mean SD 95% CI

β0 -0.20 0.20 [-0.59, 0.20]
β1 -1.14 0.31 [-1.75, -0.55]
β2 -1.68 0.33 [-2.36, -1.04]

Table 4. Posterior summaries for Model 2

Coefficient Mean SD 95% CI

β0 -0.27 0.19 [-0.65, 0.19]
β1 -1.04 0.29 [-1.61, -0.48]
β2 -1.50 0.31 [-2.15, -0.95]
σ2
0 1.03 3.09 [0.11, 5.31]

σ2
1 1.93 4.87 [0.19, 9.95]

σ2
2 3.15 14.45 [0.30, 15.64]

ρ01 0.14 0.50 [-0.83, 0.92]
ρ02 0.18 0.50 [-0.82, 0.92]
ρ12 0.52 0.41 [-0.54, 0.97]

Table 5. Posterior summaries for Model 3

Coefficient Mean SD 95% CI

β0 0.14 0.20 [-0.24, 0.53]
β1 -2.41 0.43 [-3.30, -1.61]
β2 -3.97 0.88 [-6.02, -2.54]
β3 4.76 1.07 [3.00, 7.22]
σ2
0 0.98 3.13 [0.11, 4.77]

σ2
1 6.84 37.80 [0.64, 32.06]

σ2
2 16.48 60.53 [1.45, 82.03]

σ2
3 23.48 85.51 [1.99, 120.05]

ρ01 -0.12 0.51 [-0.92, 0.84]
ρ02 -0.12 0.51 [-0.92, 0.84]
ρ03 0.12 0.51 [-0.84, 0.92]
ρ12 0.85 0.19 [0.29, 0.99]
ρ13 -0.86 0.19 [-1.00, -0.33]
ρ23 -0.92 0.12 [-1.00, -0.62]

(subsequently referred to as CI) that are wholly below zero
in all three models, the network seems to imply that the
UK websites were less likely than US sites to both “send”
and “receive” a hyperlink to and from another site. In fact,
re-examining the adjacency matrix (Table 1), the UK sites
are generally fairly isolated. The UK-National site has links
to all the other UK sites, and to the US-National Site. Both
of the national sites receive links from most of the UK sites.
But, outside of the national websites, the only hyperlink is
from UCL to CMU, which is a link from a UK site to a US
site, or a transnational link.

While none of the correlations between the slope param-
eters in Model 2 were deemed significantly different from
zero (the credible intervals all included 0), there were statis-
tically significant correlations between all pairs of the slope
coefficients (β1, β2, and β3) in Model 3. For the latter model,
the interaction slope coefficient, β3, had a 95% CI that was
wholly above zero, which indicates significantly higher prob-
abilities of connections between nodes within a country than
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between countries (described as lack of transnational con-
nections in [21]). We also note that while modest posterior
shrinkage is observed, most of the 95% CI’s for the correla-
tions in Table 4 are somewhat wide and there is no signifi-
cant correlation between the global intercept and either of
the two main effect slope parameters. We see greater shrink-
age in Table 5, clearly brought about by the introduction
of the interaction parameter. Here, the correlations between
the interaction effects and the two main effect slopes are sig-
nificant, but not with the global intercept; the two main ef-
fect slopes continue to be essentially uncorrelated with each
other and the global intercept.

A model’s fit was assessed using the Watanabe-Akaike In-
formation Criterion, or Widely Applicable Information Cri-
terion (WAIC) [see, e.g., 12, 29]. We used the definition

WAIC = −2×
(
lppd− pwaic

)
,(5)

where lppd is the log pointwise predictive density, which is
the log of the pointwise likelihood averaged over the pos-
terior distribution of the model parameters, and summed
over all the data points. This yields a measure of predictive
accuracy and is computed as

n∑
i,j=1

log Eθ |Y [p(Yi,j |θ)] ≈
n∑

i,j=1

log

(
1

S

S∑
s=1

p(Yij |θ(s))

)
,

(6)

where θ(s) for s = 1, 2, . . . , S denote posterior samples of
model parameters, and pwaic is a measure of model com-
plexity given by the sum of the posterior variance of the log
predictive density for each observed data point Yij . This is
computed as

pwaic =

n∑
i,j=1

varpost (log p(Yij |θ))

(7)

≈
n∑

i,j=1

varsample

({
log p(Yij |θ(s)) : s = 1, 2 . . . , S

})

where varsample

({
log p(Yij |θ(s)) : s = 1, 2 . . . , S

})
com-

putes the sample variance of the quantities log p(Yij |θ(s))
for s = 1, 2, . . . , S. Lower values for WAIC indicate a better-
fit model. The WAIC values for models 1, 2, and 3 are 355.0,
315.1, and 269.5, respectively. So, model 3 was used for gen-
erating draws from the posterior predictive distribution for
the subsequent analysis.

For plots indicating the medians and the 95% CI’s for
the odds ratios comparing transnational connections against
intra-national connections, see Figure 2. Note that these in-
tervals are based only on Model 3 and that the reference
groups are both types of intra-national connections (US-to-
US and UK-to-UK).

Figure 2. Plot of the medians and 95% CI’s for various odds
ratios; the first two intervals are compared against a reference
group of UK-to-UK and the second two are compared against

a reference group of US-to-US.

The medians and the 95% posterior predictive credible
intervals based for the network analysis measures described
in Sections 3.1.2 and 3.1.4 are presented in Tables 6 and 7,
respectively. Here, the network was replicated using draws
from (2) and the measures were computed for each sampled
network as described in Section 3.2.2. This generated pos-
terior predictive samples for each of the network analysis
measures from which we computed point estimates and the
95% posterior predictive credible intervals.

The point estimates of the vertex analysis measures in
Table 6 seem to be consistent with earlier findings reported
in [21], hence not reproduced here, but quantify uncertainty
which will enable social scientists to attach confidence to
their conclusions. In general, there was much overlap be-
tween all the credible intervals for a specific vertex measure,
especially the intervals for betweenness, closeness, Harary
centrality, and eigenvector centrality. The structure statis-
tics table indicates that at least half of all possible site-pairs
have a geodesic distance of 4 or less.

Looking at the table for Krackhardt’s axiomatic analysis
in Table 7, the network appears to be very connected, since
the 95% CI for connectedness is (0.79, 1). The network also
seems to be fairly efficient, with an interval of (0.75, 0.88);
Krackhardt’s measures range from 0 to 1. The point esti-
mates appear consistent with what was concluded from the
structure statistics table reported in [21]. The network does
not seem to be too hierarchical, with a CI of (0.00, 0.68) for
that measure. The CI for LUBness indicates a lack of in-
formation from the network on that property, since it spans
almost the entire range of possible values for LUBness.

Finally, the summaries of the posterior distributions for
β in Models 4 and 5 are seen in Tables 8 and 9, respectively.
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Table 6. Medians and 95% CI’s for the vertex centrality measures

Vertex Outdegree Indegree Freeman Betweenness Closeness Harary E-center

1 2 [0, 6] 1 [0, 4] 4 [1, 8] 5.3 [0.0, 65.5] 0.0 [0.0, 0.5] 0.0 [0.0, 0.3] 0.1 [0.0, 0.3]
2 2 [0, 6] 1 [0, 4] 4 [1, 8] 5.5 [0.0, 64.2] 0.0 [0.0, 0.5] 0.0 [0.0, 0.3] 0.1 [0.0, 0.3]
3 2 [0, 6] 1 [0, 4] 4 [1, 8] 5.3 [0.0, 65.0] 0.0 [0.0, 0.5] 0.0 [0.0, 0.3] 0.1 [0.0, 0.3]
4 2 [0, 6] 1 [0, 4] 4 [1, 8] 5.9 [0.0, 64.5] 0.0 [0.0, 0.5] 0.0 [0.0, 0.3] 0.1 [0.0, 0.3]
5 2 [0, 6] 1 [0, 4] 4 [1, 8] 5.7 [0.0, 64.8] 0.0 [0.0, 0.5] 0.0 [0.0, 0.3] 0.1 [0.0, 0.3]
6 2 [0, 6] 1 [0, 4] 4 [1, 8] 5.4 [0.0, 64.0] 0.0 [0.0, 0.5] 0.0 [0.0, 0.3] 0.1 [0.0, 0.3]
7 2 [0, 6] 1 [0, 4] 4 [1, 8] 5.3 [0.0, 63.1] 0.0 [0.0, 0.5] 0.0 [0.0, 0.3] 0.1 [0.0, 0.3]
8 2 [0, 6] 1 [0, 4] 4 [1, 8] 5.5 [0.0, 64.0] 0.0 [0.0, 0.5] 0.0 [0.0, 0.3] 0.1 [0.0, 0.3]
9 5 [2, 8] 6 [2, 9] 11 [6, 15] 13.0 [1.3, 63.5] 0.0 [0.0, 0.5] 0.0 [0.0, 0.3] 0.3 [0.1, 0.4]
10 5 [2, 8] 6 [2, 9] 11 [6, 16] 13.1 [1.4, 64.7] 0.0 [0.0, 0.5] 0.0 [0.0, 0.3] 0.3 [0.1, 0.4]
11 5 [2, 8] 6 [2, 9] 11 [6, 15] 13.0 [1.2, 63.7] 0.0 [0.0, 0.5] 0.0 [0.0, 0.3] 0.3 [0.1, 0.4]
12 5 [2, 8] 6 [2, 9] 11 [6, 16] 13.0 [1.3, 65.3] 0.0 [0.0, 0.5] 0.0 [0.0, 0.3] 0.3 [0.1, 0.4]
13 5 [2, 8] 6 [2, 9] 11 [6, 15] 13.2 [1.3, 65.1] 0.0 [0.0, 0.5] 0.0 [0.0, 0.3] 0.3 [0.1, 0.4]
14 5 [2, 8] 6 [2, 9] 11 [6, 16] 13.3 [1.3, 63.1] 0.0 [0.0, 0.5] 0.0 [0.0, 0.3] 0.3 [0.1, 0.4]
15 5 [2, 8] 6 [2, 9] 11 [6, 15] 12.9 [1.2, 64.0] 0.0 [0.0, 0.5] 0.0 [0.0, 0.5] 0.3 [0.1, 0.4]
16 5 [2, 8] 6 [2, 9] 11 [6, 16] 13.1 [1.4, 65.0] 0.0 [0.0, 0.5] 0.0 [0.0, 0.3] 0.3 [0.1, 0.4]
17 5 [2, 8] 6 [2, 9] 11 [6, 16] 13.0 [1.3, 67.0] 0.0 [0.0, 0.5] 0.0 [0.0, 0.3] 0.3 [0.1, 0.4]
18 5 [2, 8] 6 [2, 9] 11 [6, 16] 13.3 [1.3, 65.4] 0.0 [0.0, 0.5] 0.0 [0.0, 0.3] 0.3 [0.1, 0.4]

Centralization 0.2 [0.1, 0.3] 0.3 [0.2, 0.4] 0.2 [0.1, 0.3] 0.1 [0.05, 0.3] 0.07 [0.0, 0.6] 0.02 [0.0, 0.4] 0.2 [0.1, 0.3]

Table 7. Medians and 95% CI’s for the Krackhardt’s
axiomatic analysis measures

Measures from
Krackhardt’s axioms 95% CI

Connectedness 1.00 [0.79, 1.00]
Efficiency 0.82 [0.75, 0.88]
Hierarchy 0.33 [0.00, 0.68]
LUBness 1.00 [0.11, 1.00]

Table 8. Posterior summaries for Model 4

Coefficient Mean SD 95% CI

β0 0.85 0.38 [0.10, 1.56]
β1 -1.08 0.22 [-1.46, -0.69]

Table 9. Posterior summaries for Model 5

Coefficient Mean SD 95% CI

β0 11.39 92.12 [-163.71, 188.39]
β1 14.02 94.39 [-173.11, 198.68]
β2 -0.51 0.16 [-0.82, -0.19]
β3 0.61 0.34 [-0.13, 1.19]

Here, it is worth pointing out that the interpretations of the
regression coefficients are different from those in Models 1–
3. In fact, the purpose of incorporating the covariates in
the μ’s in Models 4 and 5 are solely to allow the Dirichlet
distribution to vary by the nodes, thereby adding flexibility.
Our main inferential goal concerns the ranks. The means,
standard deviations, and 95% CI’s for the Dirichlet-1-Ranks
are presented in Figure 3. A summary plot for the Dirichlet-
2-Ranks is presented in Figure 4. For the most part, these

Figure 3. Plot of the medians and 95% CI’s for the
Dirichlet-1-Ranks for the 18 sites. Blue bars indicate UK sites

and red bars indicate US sites.

two plots are similar. The posterior medians seem to be more
or less consistent with the PageRank measures in Table 2,
but the inherent uncertainties gleaned here (but not from
the deterministic PageRank algorithm) should add caution
to making substantial conclusions regarding these rankings.

While there is still overlap between most of the 95% CI’s
seen here, there is, as in the other results, a split between the
US and the UK sites. The UK sites have median estimates
that are consistently below those of the US sites. There is
also a spike in mean estimates for sites 3 and 14, the two
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Figure 4. Plot of the medians and 95% CI’s for the
Dirichlet-2-Ranks for the 18 sites. Blue bars indicate UK sites

and red bars indicate US sites.

national sites, which was not seen in the other statistical
results seen here. It is, however, noteworthy that there is no
overlap between the CI for the US-National site and any of
the UK sites, except for the UK-National website. These last
two facts demonstrate that both of the Dirichlet-Ranks ap-
pear to be more sensitive or tuned than the other statistical
approaches presented in this paper.

5. CONCLUSION

This paper has presented some parametric Bayesian
methods for structural network analysis of small networks
with limited information. The intended contribution is to
offer sociologists some easily implementable Bayesian mod-
els that can offer uncertainty quantification while carrying
out descriptive SNA. Basic descriptive measures of directed
graphs, PageRank algorithms and Krackhardt’s axiomatic
analysis are considered in conjunction with parametric
Bayesian hierarchical models. The Bayesian paradigm is par-
ticularly attractive as we do not need to rely upon asymp-
totic validation of our inference based on the numbers of
vertices (or edges) becoming larger and larger. The meth-
ods are easily implemented using R packages sna and rjags.
Bayesian inference provides new insights into a rather struc-
turally sparse network of Hindu student groups, previously
studied without uncertainty quantification, to better under-
stand transnational identities.

We clarify that our treatment here is by no means ex-
haustive. For example, there are numerous other struc-
tural quantities that could be added to the measures we
considered here in Section 3 as described, for example, in
[3, 5, 20, 25, 26, 27]. Our choice of the measures and models
investigated here has been dictated to a substantial extent

by their accessibility to practicing social scientists in the
form of R packages. Investigations with these networks can
be part of future studies. We can also easily incorporate la-
tent random effects in the mean structures for our models.
This can be done for each of Models 1–5 here. We have de-
liberately not attempted to fit such, more complex models
here, given that the random effects would not be able to
learn much from the small network. However, this is cen-
tral to the objectives of this paper where we have focused
upon methods that work well for small networks, and will
be equally applicable to large networks as well.

In addition, there are much richer stochastic models such
as exponential random graph models and Erdos-Renyi mod-
els [see, e.g., 4, 23]. The logistic regression models described
here can be looked upon as heterogeneous versions of the
Erdos-Renyi models where the probability of a directed edge
between two nodes is not uniform but depends upon at-
tributes (covariates) associated with the sender and receiver.
There are other models, such as the Barbási-Albert models
[22], that are generative and can simulate artificial networks
given certain characteristics, but it is less clear how to carry
out model-based Bayesian inference from observed networks,
as we do here, with these models. We identify these as pos-
sible areas for future research.

6. SUPPLEMENTARY MATERIAL

Supplement to the paper (http://intlpress.com/site/
pub/pages/journals/items/sii/content/vols/0012/0001/
s004) comprises the R programs used for the analysis.

Received 28 November 2017

REFERENCES

[1] Banerjee, Sudipto and Roy, Anindya. (2014). Linear Algebra
and Matrix Analysis for Statistics, 1st ed. CRC Press, Boca Ra-
ton, FL. MR3222172

[2] Bedrick, E.J., Christensen, R. and Johnson, W. (1996). A new
perspective on priors for generalized linear models. Journal of the
American Statistical Association, 91, 1450–1460. MR1439085

[3] Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. and
Hwang, D.-U. (2006). Complex networks: Structures and dynam-
ics. Physics Reports, 424, 175–308. MR2193621

[4] Bollobás, B. (2001). Random Graphs Second Edition. Cam-
bridge University Press: Cambridge UK. MR1864966

[5] Borgatti, S.P. (2005). Centrality and network flow. Social Net-
works, 27, 55–71.

[6] Brin, Sergey and Page, Lawrence. (1998). The anatomy of a
large-scale hypertextual web search engine. Computer Networks
and ISDN Systems. 30 107–117.

[7] Chen, M.-H. and Shao, Q.-M. (2000). Propriety of posterior dis-
tribution for dichotomous quantal response models. Proceedings of
the American Mathematical Society, 129, 293–302. MR1694452

[8] Chikuse, Y. (2003). Statistics on Special Manifolds. vol. 174, Lec-
ture Notes in Statistics. Springer-Verlag, New York. ISBN 0-387-
00160-3. MR1960435

[9] Freeman, L.C. (1977). A set of measures of centrality based on
betweenness. Sociometry 40 35–41.

190 T. Nemmers, A. Narayan, and S. Banerjee

http://intlpress.com/site/pub/pages/journals/items/sii/content/vols/0012/0001/s004
http://intlpress.com/site/pub/pages/journals/items/sii/content/vols/0012/0001/s004
http://intlpress.com/site/pub/pages/journals/items/sii/content/vols/0012/0001/s004
http://www.ams.org/mathscinet-getitem?mr=3222172
http://www.ams.org/mathscinet-getitem?mr=1439085
http://www.ams.org/mathscinet-getitem?mr=2193621
http://www.ams.org/mathscinet-getitem?mr=1864966
http://www.ams.org/mathscinet-getitem?mr=1694452
http://www.ams.org/mathscinet-getitem?mr=1960435


[10] Freeman, L.C. (1979). Centrality in social networks I: Concep-
tual clarification. Social Networks 1 215–239.

[11] Gelman, A., Jakulin, A., Pittau, M.G. and Su, Y.-S. (2008).
A weakly informative default prior distribution for logistic and
other regression models. Annals of Applied Statistics, 2, 1360–
1383. MR2655663

[12] Gelman, Andrew, Carlin, John B., Stern, Hal S., Dun-

son, David B., Vehtari, Aki, and Rubin, Donald B. (2013).
Bayesian Data Analysis, 3rd ed. CRC Press, Boca Raton, FL.
MR3235677

[13] Costa, L. da F., Rodrigues, F.A., Travieso, G. and Villas

Boas, P.R. (2007). Characterization of complex networks: A sur-
vey of measurements. Advances in Physics, 56, 167–242.

[14] Harville, D.D. (1997). Matrix Algebra from a Statistician’s Per-
spective. Springer-Verlag, New York. MR1467237

[15] Hoff, P.D., Raftery, A.E. and Handcock, M.S. (2002). La-
tent space approaches to social network analysis. Journal of the
American Statistical Association, 97, 1090–1098. MR1951262

[16] Ibrahim, J.G. and Laud, P.W. (1991). On Bayesian analysis
of generalized linear models using Jeffrey’s prior. Journal of the
American Statistical Association, 86, 981–986. MR1146346

[17] Kemeny, J.G. and Snell, L.J. (1976). Finite Markov Chains.
New York: Springer-Verlag. MR0410929

[18] Krackhardt, D. (1994). Graph theoretical dimensions of infor-
mal organizations. In Kathleen M. Carley and Michael J. Pri-
etula (Eds.), Computational Organization Theory pp. 89–111.
Lawrence Erlbaum Associates, Hillsdale, NJ.

[19] Langville, A.N. and Meyer, C.D. (2006). Google’s PageRank
and Beyond: The Science of Search Engine Rankings. Princeton,
NJ: Princeton University Press. MR2262054

[20] Newman, M.E.J. (2010). Networks: An Introduction.Oxford Uni-
versity Press. Oxford, UK. MR2676073

[21] Narayan, A., Purkayastha, B. and Banerjee, S. (2011). Con-
structing transnational and virtual ethnic identities: A study of
the discourse and networks of ethnic student organisations in the
USA and UK. Journal of Intercultural Studies 32, 515–537.

[22] Albert, R. and Barabási, A.-L. (2002). Statistical mechanics
of complex networks. Reviews of Modern Physics, 74, 47–97.
MR1895096
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