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Abstract

Caching techniques have been used widely to improve the performance gaps of storage hierar-
chies in computing systems. Little is known about the impact of policies on the response times of
jobs that access and process very large files in data grids particularly when data and computations
on the data have to be co-located on the same host. In data intensive applications that access large
data files over wide area network environment, such as data-grids, the combination of policies for job
servicing (or scheduling), caching and cache replacement can significantly impact the performance
of grid jobs. We present some preliminary results of a simulation study that combines an admission
policy with a cache replacement policy when servicing jobs submitted to a storage resource manager.
The results show that, in comparison to a first come first serve policy, the response times of jobs are
significantly improved, for practical limits of disk cache sizes, when the jobs that are back-logged
to access the same files are taken into consideration in scheduling the next file to be retrieved into
the disk cache. Not only are the response times of jobs improved, but also the metric measures for
caching policies, such as the hit ratio and the average cost per retrieval, are improved irrespective of
the cache replacement policy.
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Accurate Modeling of Cache Replacement Policies in a Data Grid

Ekow Otoo, Doron Rotem and Arie Shoshani
Lawrence Berkeley National Laboratory

1 Cyclotron Road, MS: 50B-3238
University of California

Berkeley, CA 94720

Abstract

Caching techniques have been used widely to improve the performance gaps of storage hierar-
chies in computing systems. Little is known about the impact of policies on the response times of
jobs that access and process very large files in data grids particularly when data and computations
on the data have to be co-located on the same host. In data intensive applications that access large
data files over wide area network environment, such as data-grids, the combination of policies for job
servicing (or scheduling), caching and cache replacement can significantly impact the performance
of grid jobs. We present some preliminary results of a simulation study that combines an admission
policy with a cache replacement policy when servicing jobs submitted to a storage resource manager.
The results show that, in comparison to a first come first serve policy, the response times of jobs are
significantly improved, for practical limits of disk cache sizes, when the jobs that are back-logged
to access the same files are taken into consideration in scheduling the next file to be retrieved into
the disk cache. Not only are the response times of jobs improved, but also the metric measures for
caching policies, such as the hit ratio and the average cost per retrieval, are improved irrespective of
the cache replacement policy.

1 Introduction

Communities of research scientists are increasingly using data grids [6, 4] as the environment for man-

aging the massive datasets that result from scientific experiments and observations. Examples of such

communities include collaborators in the Particle Physics Data Grid (PPDG) [8], the Grid Physics Net-

work (GriPhyN) [5], the Earth Science Grid (ESG) [7], and a host of others. In data intensive applications

that subsequently access a large number of very large data files over these wide area network, there is

the need to implement strategies that significantly improve the data access performance under different

workloads. Techniques for enhancing and optimizing data accesses concern good file request scheduling,

caching (or data staging), data replication, cache and replica replacement. Caching techniques, in partic-

ular, have been used generally to improve the performance of storage hierarchies in computing systems.

In the grid environment, specialized middle-ware services such as storage resource manager(SRM) [16]
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and storage resource brokers(SRB) [14], provide the intermediary services of caching or staging files

required by jobs.

A storage resource manager runs on a host, or a cluster of machines, that receives jobs requests

submitted to a data grid. The job requests generally are for a large number of files. Each file can be very

large (of the order of a few to tens of gigabyte), and typically reside either in some mass storage or in

some tertiary storage system. Consequently an SRM maintains a large capacity disk cache, of the order

of hundreds of gigabyte to a terabyte, for retaining those files that are retrieved into its disk cache so that

the same file can be shared by multiple jobs. For an SRM host that consists of a cluster of machines the

disk cache may be distributed over independent disks of the cluster nodes. The use of a storage resource

manager is analogous to the use of a proxy-server and/or a reverse proxy in web-caching except that

SRMs deal with very large data files. In particular a large number of file requests may be batched in one

job. As a result, SRMs contend with file accesses that incur significantly long delays in accessing and

processing files over wide area networks.

The general problem posed, from the perspective of data management, ignoring fault tolerant is-

sues, concerns the development of a suite of policies and their combinations thereof, that optimize the

transparent access to multi-terabyte or even multi-petabyte of distributed datasets in data-intensive grid

computing. Our concern here is solely from the view point of the service rendered by a host of a storage

resource manager, storage resource broker (SRB), or even a storage area network (SAN). In the sequel

we would refer only to SRMs although the results are equally applicable to SRBs and SANs.

1.1 Job Servicing Model of an SRM

A job that arrives at an SRM’s host makes requests for hundreds or thousands of files that it processes

either one at a time or in groups referred to as “file bundles.” The one-at-time processing may be done

either in some order or arbitrarily. By processing, we mean an execution of a task such as an analysis

program that takes its input data from the files stored in the local disk cache. The task execution may

simply involve transferring either the entire file or a subset of the file (e.g., the result of query), to the

originating host of the job. A “file bundle” is a set of files that must all be in cache to be processed at the

same time.

In general an SRM queues the jobs and later makes decisions as to which job needs to be serviced

next and which file, from the batch of files of the selected job, must be retrieved into or transfered from

the disk cache. If a requested file happens to be in the cache, the SRM may choose to retain it (i.e., “pin”
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the file) in its cache until after the job that requested it releases it, in which case the file is “unpinned.”

The decision of selecting the next job to be processed is governed by a rule termed “the service policy.”

The decision of which file to retrieve into the disk cache is governed by rule termed the “file caching

policy.” When a decision is made to cache a file it may have to determine which of the files currently

in the cache must be evicted to create space for the incoming one. This latter decision is also governed

by the rule termed the “cache replacement policy.”The “service policy” and “caching policy” are often

combined and referred to as the “admission policy.” Other related rules, or policies may define a limit on

the number of file requests that may be processed concurrently for the same job or the amount of cache

space that is allowed to be taken up by files of the same job.

Research studies conducted so far on grid job execution have only addressed job scheduling (or

task assignment) problem with the view to balance the load over available distributed resources in a

manner that satisfies the resource requirements of each job [1, 15]. The problem is well known to

be analytically intractable and consequently, studies conducted so far have been predominantly with

simulations [1, 3, 10, 15]. We follow similar methodology in our work. We concern ourselves only

with the impact of the interactions of job admission policies and disk cache replacement policies on

job response times. We restrict the problem to a simplified model of job execution where the order

of processing of the files of a job is immaterial. When a file is cached, all jobs in the queue, at the

time the selection criteria was evaluated, are immediately allowed to process the file. A job can process

concurrently, as many files as it finds in the cache.

1.2 The File Admission and Caching Replacement Problem

Consider job arrivals to a queue Qa of an SRM, where each job Ji , makes a request for a set of files

to be processed independently of one another, Ji = { fi,1, fi,2, . . . , fi,l}. The storage resource manager,

maintains a disk cache of capacity C and retrieves into its cache a file fc according to some admission

policy. The decision to cache fc is based on the content of Qa at the time a decision is made.

When a file fc is read into the disk cache, all the jobs that require the file at the time the selection

criterion was evaluated, invoke tasks to process the file. A task denoted by Ti, j is identified by a combined

key of the job identifier Ji and the requested file identifier fj . A job is removed from the queue Qa only

after all its file requests have been serviced.

Assuming that the jobs J1,J2, . . . ,JM are currently in the queue Qa and the cache C contains the

files f1, f2, . . . , fN. An admission policy gives the order of servicing jobs in Qa, which in turn implies a
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decision as to which files must be loaded next into the cache. A naive admission policy simply serves the

jobs in the order of arrival in the queue, choosing arbitrarily, a file from the set of pending file requests

of the job at the front of the arrival queue. The problem is to find an admission policy that minimizes

the average response time of jobs subject to some fairness criteria or user specified constraints. Possible

fairness criteria include defining:

• the maximum time a request can wait in the queue before all its file requests are completely ser-

viced.

• the maximum idle time for a job. A job is considered to be idle if it is not processing any of its

requested files.

• the maximum number of files each jobs is allowed to process concurrently.

The fairness criteria may be quantified, at any instant in time, by some value assignment v(Ji) for

each job Ji . The assigned value may be perceived also as a time varying priority value for the job.

The metrics for measuring the performance of any specific service configuration of an SRM include

the “average response time”of a job, averagequeue lengthof the arrival queue. In addition we examine

the “hit-ratio” and the averagecost per file retrieval”of the cache replacement policies. These are

formerly defined in section 2. The results reported in this paper are only for the “average response

time”, the averagecost per file retrieval”and the “hit-ratio” for an admission policy we refer to as

“OptCacheLoad”when combined with the least recently used (LRU), cache replacement policy.

1.3 Main Results and Contributions

We focus on a variant of the above problem and then consider a development of an admission policy that

we combine with a detailed cache replacement policy for storage resource managers. The main results

of this paper are that:

1. An efficient admission policy can be achieved, for a defined dynamically varying value v(Ji) for

each job Ji . The admission policy is termed the OptCacheLoadpolicy. We show that OptCache-

Load is analogous to the Budgeted Maximum Coverage Problemintroduced by Khuller et al. [9].

2. Based on the mapping of OptCacheLoadadmission policy to the Budgeted Maximum Coverage

Problem, we conclude that the admission policy gives a result that is within a factor of 1−1/e of

the optimal.
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3. We present an accurate and detailed framework for evaluating cache replacement policy using

finite state machine (FSM), with conditional transitions.

4. Using an FSM model for a combined LRU cache replacement algorithm and OptCacheLoadad-

mission policy, we show that the response times of grid jobs serviced at an SRM are considerable

improved compared to a combination of a simple first come first serve (FCFS) admission pol-

icy with LRU cache replacement policy. These results are obtained for both synthetic and real

workloads. The real workload is obtained from the log of file accesses made to a mass storage

system.

5. The use of an admission policy also improves the hit-ratio and the average cost per retrieval of

cache replacement policies.

The result of this work has applications in a number of areas. First, the result can be integrated as a

policy advisory module in the implementations of storage resource managers and storage area networks.

Such a policy module, either as an SRM component or directly in coordination with mass storage sys-

tems, provides optimization strategy in the use of data grids. The major benefits to be gained are in

reduced network traffic, reduced average response times for file requests and optimal resource allocation

to meet defined response and deadline objectives under specified local resource management autonomy

with little or no global control.

The rest of the paper is organized as follows. We describe the service model of an SRM in section 2.

In section 3 we present the theoretical foundation of the OptCacheLoadadmission policy. Our framework

for simulating cache replacement policies is discussed in section 4. Our experimental setup is discussed

in section 5 and we present the results of our preliminary studies in section 6. We conclude in section 7

where we also give some directions for future work.

2 Job Service Model of a Storage Resource Manager

Distributed scientific applications often require access to large amounts of data of the order of hundreds

of terabytes to tens of petabytes. The envisioned model of managing and accessing the data is through

what is currently referred to as data grids where the data repositories are maintained in mass storage

systems and are accessed from different locations by large communities of scientists. The term data

grid was first used to define a project funded by the European Union that aims at enabling access to
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geographically distributed computing and storage facilities belonging to different institutions. It has

since been used to imply any distributed network infrastructure of storage resources and repositories of

huge amounts of data coming from scientific experiments in primarily three different disciplines: High

Energy Physics, Biology and Earth Observation Systems. The idea is to support scientific explorations

that require intensive computations and analyses of large-scale shared databases across widely distributed

scientific communities.

2.1 Servicing of File Requests

The service scenario in a data grid for a typical application is as follows. Grid jobs make requests for

a large number of files that reside on a network of distributed tertiary storage systems or mass storage

systems. An example of such systems is the IBM’s high performance storage system (HPSS) or a storage

area network (SAN). The file requests in a job can be for hundreds or thousands of files at the same time.

To improve the access performance of the data grid, a middleware component generally referred to as a

storage resource manager (SRM) [16], is used to facilitates the sharing of the distributed data and storage

resources. An SRM maintains a large capacity disk for caching files of varying sizes that are read from

or written to Mass Storage Systems (MSS). Just as mass storage systems form a distributed network of

storage resources, SRM’s form a network of disk resources for staging files accessed by grid jobs. An

SRM generally queues the jobs and subsequently makes decisions as to which job has to be serviced

next and which file from the requests of the selected job, must be retrieved into or transferred from the

disk cache. In general, under a workload of shared accesses and high locality of reference, the optimal

use of a data grid in data intensive application depends heavily on the policies for data replication,

caching, file request forwarding, cache replacement and local servicing (or scheduling) of file requests.

We distinguish between data replication and caching. In replication, the information that a file has been

staged in a particular disk resource is immediately communicated to some replica management service

so that all other storage resource managers can become aware of this. In caching, only the local storage

resource is aware of the presence of the file in its disk cache.

2.2 Job Service Policies

We investigate and define a suite of policies that can be selectively combined to enhance or optimize the

performance of data accesses in data grids. The various classes of policies of concern are:
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Service Policies: The rules that govern the decision for selecting the job whose file request is to be

processed next. These are typically defined within the local constraining policies such as, how

much disk space a job can use, the number of simultaneous files a job is allowed to process, etc.

Caching Policies: The rules governing the selection of which file, amongst the list of files of the selected

job, must be retrieved into the disk cache.

Caching Replacement Policies: The rules that govern the selection of a file to be evicted from the cache

when space is needed.

Replication Policy: The rules that govern when, where and which file to replicate in a multi-tier dis-

tributed storage environment. This may use some defined constraint on how many replicas and

which replicas may be used.

Just as in database management systems, where optimal query processing requires that issues related

to, query rewrite, data buffering (or caching), indexing, etc., must be addressed so must corresponding

related problems of optimal file accesses in data grids be addressed to achieve a respectable level of

performance in data intensive applications. The problems we address are those arising from large scale

data accesses in data grids and may be perceived as the relative counterparts of data access problems in

distributed database management system.

2.3 Performance Metrics

The performance of admission policies, which may be referred to also as schedules, is measured by

the response times of jobs, the average queue length of waiting jobs and sometimes the “makespan”of

the schedule. Cache replacement algorithms are key to the implementation of a good caching system.

Not only should this be evaluated in an almost negligible time relative to the time it takes to cache an

object, but it should optimize, in some sense, some measure of a performance metric. Cache replacement

policies are typically designed to optimize the hit ratio usually by retaining in the cache either the most

frequently referenced objects or the most recently referenced objects. The former effectively evicts the

least frequently used object (i.e., the LFU-policy), the latter evicts the least recently used object (i.e., the

LRU-policy). Both policies are predicated on the assumption that a reference stream has a high degree

of locality of reference.
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Since the goal of caching is to improve the overall performance of jobs serviced by an SRM, we will

consider, as our measures for comparisons between different alternative admission policies, the response

times, the average cost per file retrieval and the hit ratio of the cache replacement algorithms.

Average response time of a job: The response time of a job is the time between the last service com-

pletion time of the file requests of the job and the arrival time of the job. Suppose a workload

contains N distinct jobs. Let the job i have a response Ti , then the average response time time

denoted by T̄ is defined by T̄ = 1/N∑i Ti .

Average Cost Per Reference (ACPR): This metric measures the effectiveness of a caching policy by

the average response time per reference. It takes into consideration the total delay in caching

files of varying sizes, the varying source delays and the varying transfer times. Suppose for a

given workload of a set of R file references, a subset R ′ ⊆ R of the files are retrieved. Each file

i ∈ R ′, that is retrieved, is done at a cost ci(t), where the cost is measured in time units and is

given simply by total time it takes to completely read the file into the disk cache. The average

cost per retrieval, denoted by c̄ is then defined as c̄ = 1/|R |∑i∈R ′ ci(t). Consequently an optimal

replacement algorithm based on ACPR, implicitly minimizes the response times of file requests.

This is a more practical measure for the effectiveness of a cache replacement algorithm for SRMs

on the grid.

Hit Ratio: This is given by the ratio of the number of references that encounter cache hits to the total

number of file references. This assumes that all files are of the same size and have the same access

cost. This assumption is unrealistic in the use of SRMs in data grids. The files have varying sizes

and have replicas at different sources with different delays and transfer cost into an SRM’s disk

cache. It is easy to envisage a replacement policy that favors only files of small sizes thereby

retaining as many files in cache as possible and improving the hit ratio at the expense of high

retrieval cost and poor response time whenever large files are referenced. Hit ratio only measures

the effectiveness of the use of a cache as the number of hits and does not reflect in any way the

effects of source and transfers delays of the files. We include it in the measures considered in this

paper simply because it is a popular measure used extensively in the literature on caching.
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2.4 Related Works

The concept of data-grids and storage resource management have only recently been given considerable

research attention as a result of the need to support large scale scientific experiments - PPDG [8] and

GriPhyN [5] - some of which are expected to be operational in three to five years. Storage resource

management and some related component prototypes are already in service [16, 14, 12]. These make

use of the Globus toolkit [13], that is becoming the de-facto standard software for implementing grid

services. These systems still lack the fine tuning required for the optimal operation of real systems. A

close analogous environment from which we leverage some experience is in web services. For example,

web-caching [2, 17], address similar cache replacement policies except that the scale of data sizes and

transfer delays considered are on a much smaller scale than those in a data grid environment. This is one

reason why we introduced a different performance metric for caching in the grid domain as opposed such

simple metrics as hit-ratio and byte hit-ratio. We discuss our machinery for evaluating cache replacement

policies in the next section.

3 Theoretical Foundation of Admission Policies

More formally, we are given a set of jobs J = {J1,J2, . . . ,JN}, that arrive independently into a queue Qa,

where each job Ji is associated with some value v(Ji), a set of files F = { f1, f2, . . . , fM} where each file

f j is of size s( f j) and a cache C of size s(C). The value of a job may measure its priority or the overall

importance assigned to the application it represents. Each job Ji , makes requests for a subset Fi ⊆ F , of

the files. A job Ji is removed from the queue only after all the files it requested have been serviced. An

example of the jobs together with the set of files being requested can be depicted as a bipartite graph as

shown in Figure 1.

For a subset G ⊆ F , we denote by s(G) the sum of the sizes of files in G . We will show that our

problem involves solving the optimization problem, we call OptCacheLoadwhich stands for “Optimal

Cache Loading.”

OptCacheLoad: Find a subset of files G ⊆ F , which when loaded into the cache C, (s(G) ≤ s(C)),

maximizes the total value of jobs served by the files in G .

It turns out that OptCacheLoadis equivalent to the Budgeted Maximum Coverageproblem introduced

by Khuller et al. [9] that is defined as follows:
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Figure 1: A bipartite graph depiction of a set of jobs and their file requests.

Budgeted Maximum Coverage Problem: Given a collection S of sets with associated costs defined

over a domain of weighted elements, and a budget L, find a subset S′ ⊆ Ssuch that the total cost of

sets in S′ does not exceed L, and the total weight of elements covered by S′ is maximized.

The analogy between the two problems is as follows. The sets in S are our jobs, i.e. J ≡S, the budget

L corresponds to s(C), the available size of our cache C. The weighted elements correspond to our files

with weights equivalent to the file sizes s( fj). The total cost corresponds to the total value of jobs. In [9]

it is shown that this problem is NP-hard even for the special case of this problem, where each set has a

unit cost. However efficient approximation algorithms were developed in [9], and shown to produce a

result bounded from the optimal algorithm by a factor of 1−1/e.

We adopt the following greedy algorithm from [1] for our purposes. Assuming the cache C already

contains some files, we can start servicing jobs in Qa that need these files. The problem is to find an

optimal set of files to be loaded next. Intuitively, the benefit of loading a specific file into the cache is

proportional to the total value of additional jobs that can be serviced by loading the file but inversely pro-

portional to the size of the file. Let J ′( fi) be the set of additional jobs that can be serviced by loading file

fi into the cache C. We define for each file fi its relative value, v′( fi), where v′( fi) = ∑r∈J ′( fi) v(r)/s( fi ).

We note that v′( fi) changes dynamically with the contents of the cache. The algorithm for admitting a

set of files to be loaded into the cache when some cache space of size s(C) becomes available is given

below.

The value v(Ji), of a job can be seen as a quantitative measure of fairness for the jobs and can

be defined in a number of different ways. For our purpose and in the experiments conducted in the

simulations of this paper, we define v(Ji) simply by the difference in time between the current time and

the last recorded time that a file request for a job was made. A large value for v(Ji) indicates that the job

has been idle for a long time and should be given a higher priority.
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Algorithm 1: The OptCacheLoad Algorithm for Admitting a set of files
Data: A set of jobs J ; a set of all files requested by J ; a cache C with available free space s(C)

and a value function v(Ji) expressed for each Ji ∈ J .

Result: A set of files G , that when loaded into the cache maximizes∑ fi∈G (∑r∈J ′( fi) v(r)).

Initialization;
/* ρ keeps track of size of unused cache space; Js keeps track jobs served; G keeps track of
loaded files. */
/* Note that F \G is the set of unloaded files */
ρ ← s(C) ;
Js ← φ ;
G ← φ ;
while ρ = 0∧F \G = φdo

Order the files fi ∈ F \G in non-increasing order of v′( fi) ;
f j ← the first file in this ordering that fits in the cache if one can be found ;
if found( fj ) then

Load the file f j into the cache ;
ρ ← ρ−s( f j); // Update available cache size
Js ← Js∪ J ′( f j); // update the set of requests that can be serviced
G ← G ∪ f j ; // update the set of loaded files

else
break;

end
end

4 The Simulation Framework of Cache Replacement Policies

We note that cache replacement policies have been studied extensively in the literature. These appear

in data transfers between computing system’s memory hierarchy, database buffer management and in

web-caching. Cache replacement models for these situations assume that the request to cache an object

is always serviced immediately and once the object is cached, the service on the object is carried out

instantaneous. We have not encountered any comparative studies of replacement policies that address

long retrieval and processing delays, where the file must be held or pinned in cache for a considerable

long time while it is being processed. Almost all models of cache replacement assume instantaneous

references to the files, or the cached objects. In the comparative studies of cache replacement policies,

in virtual memory, database buffering and web-caching, the object or file references in the workload are

serviced strictly in the order of occurrence of the references. Further more the models not only assume

that the references made to a cached object is instantaneous but that some file can always be selected

for eviction. As a result the literature gives us very simplistic simulation models for the comparative

studies of cache replacement policies. Such models are inappropriate in the data grid. We develop and
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implement an appropriate simulation model that takes into account the inherent delays in locating the

file, transferring the file into the cache and holding the file in the cache while it is processed. The sizes of

the files we deal with impose these long delays. We capture these in the general setup of our simulation

framework.

Figure 2 shows the organization of the information required to simulate the disk cache. There are

three data structures for holding the information about the disk cache: a search structure T1 to hold

information about referenced and active files; a data structure T2 for organizing the information on files

that are available for eviction, and a third data structure V1 to hold the files that are pinned in cache.

A search tree T1: This is a balanced binary search tree using the file identifier fi . The nodes of T1 hold

information of all referenced files that are considered to be active. In particular, the nodes hold

pointers to the locations of elements that are either in the structure T2 or in the vector V1. A status

indicator specifies whether the file is considered to be in T2 or V1. In addition T1 holds information

of the history of references made since the first reference that caused a node to be created for the

file.

A data structure T2: The elements in the data structure T2 hold information about files that are in cache

but not pinned. The algorithm for cache replacement is evaluated on the non-empty data structure

T2. We choose an efficient implementation of T2 according to the cache replacement algorithm

being considered. For example, T2 will be implemented as a vector when considering random

replacement and it will be implemented as a priority queue data structure when considering least

recently used (LRU), least frequently used (LFU) and greedy dual size (GDS).

The Vector V1: The entries in the vector V1 hold information for files that are the cache and pinned. A

file is pinned in cache either because some space have been reserved for it and is in the process of

being cached or it is cached and one or more tasks are processing it. Note that due to the sizes of

the files, there is a time delay between the initiation and completion of a file caching operation. In

particular, an element in V1 maintains a count of the number of pins placed on the corresponding

file of that element. Each time a task completes, it decrements the pin count by one and whenever

the pin count becomes zero, the entry is removed and the appropriate node, corresponding to the

file, inserted into T2.

A file that is referenced, cached, processed and eventually evicted from the cache is considered to

undergo some state changes. The information about the state of a file is maintained in the nodes of
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Finish

Events Priority Queue

Queue
T5: Events

Start 
File
Admission

Job
Arrivals

T4: Files

T3: Jobs

Waiting Files/Jobs 

Figure 3: A Simulation Model of an SRM at a Local Host

T1. A file that is referenced can be in one of five possible states. The various states of a file are: Not-

In-Memory or Not-Referenced (S0), In-Memory-But-Not-In-Cache (S1), In-Cache-But-Not-Pinned (S2),

Space-Reserved-But-Not-Cached (S3) and In-Cache-And-Pinned (S4). The table 1 shows an Exit State

(S5) which is equivalent to S0. Since we need to retain some history of the references made to a file

even when it is not in cache the memory resident search structure T1, continues to maintain the relevant

node of an evicted file. However, the memory resident information in T1 does not grow indefinitely. At

periodic times, say every 5 days (this is determined by the job arrival rate of the workload), the nodes

corresponding to all files that have not been referenced in the last five days are cleared. A special event,

Clear-Aged-file (E5), when it occurs, causes the nodes of all such files to be deleted. Any future reference

to a file, whose node has been cleared, would reinsert a new node entry and initiate a new accumulation

of historical information.

The events affecting the state changes of the files are caused by the actions of the tasks that are

invoked by the jobs. Figure 3 illustrates some of the details of the simulation framework used in process-

ing jobs at an SRM host. Jobs that arrive at a host are maintained in the search structure T3. The files
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Event Types on Files
E0 E1 E2 E3 E4 E5 E6

State Admit
File

Start
Caching

End
Caching

Start
Processing

End
processing

Cache
Eviction

Clear
Aged
Files

S0 Start: File Not
in Memory

ψ{0,0}() /
S1

S1 File in Memory
but not Cached

ψ{1,1}() /
Cond(S3)

ψ{1,6}() /
Cond(S5)

S2 File in Cache
but not Pinned

ψ{2,1}() /
S4

ψ{2,5}() /
Cond(S1)

S3 Space Reserved
but not Cached

ψ{3,1}() /
S3

ψ{3,2}() /
Cond(S4)

S4 File in Cache
and Pinned

ψ{4,1}() /
S4

ψ{4,2}() /
S4

ψ{4,3}() /
S4

ψ{4,4}() /
Cond({S2 | S4})

S5 Exit: File Re-
moved from
Memory

Table 1: The Final State Machine with Conditional Transition of File Requested

requested by the jobs are maintained in a search structure T4. Besides other relevant information, each

node of T3 holds a list of identifiers of the files being requested by the job. Similarly each node of T4

corresponds to a unique file and maintains a list of the identifiers of all the jobs requesting that file.

A file admission policy is used to select a file to be retrieved next. If the file selected to be admitted

has no information in T1, an appropriate node is created and inserted into T1. Upon making a decision on

the file to be brought into the disk cache, each of the jobs associated with the file initiates a task token

that is inserted into the event queue T5. Each task token is uniquely identified by the pair of values of

the job and file identifiers and subjected to five distinct events at different times. These events are: Start-

Caching (E0), End-Caching (E1), Start-Processing (E2) and End-Processing (E3). The entire activities

within this framework are executed as a discrete event simulation. The activities of the simulation may

be summarized by the finite state machine, with conditional transitions, shown in Table 1. The equivalent

state transition diagram is given in figure 4.

Each entry in the table defines a function ψ{i, j} that is evaluated and a possible state transition is

made depending on the outcome of the evaluation. For example, if a Start-Cachingevent occurs on a

file that is in state S1, the function ψ{1,1} is computed and a conditional transition is made into state S3.

ψ{1,1} involves reserving space in the cache and then initiating a transfer operation to bring the file into

the disk cache. The evaluation of ψ{1,1} could trigger an event of type E5 to evict some files from the

cache until enough free space becomes available. After space is reserved the file moves into state S3.
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Figure 4: A Finite State Machine Diagram with Conditional Transitions

The task token is reinserted into the event queue T5 after setting its next event type to End-Cachingand

its next event time to the time that the file caching completes. If no space can be reserved, the file request

may be discarded. However, if we ensure that the admission policy guarantees that there would be free

space available before the file is admitted then, no file request can be discarded.

The FSM above represents only the model of one site. Such FSMs may be configured into a multi-tier

network to represent a multi-tier network of SRM sites. We expand to single site framework to multi-tier

networks where file replication decisions may also be made and request can be forwarded to other sites

in our future work.

5 Experimental Setup

We conducted some experiments to determine the impact of the OptCacheLoadadmission policy on the

response times of jobs submitted at an SRM host. The assumption here is that the tasks executed by the

jobs are I/O-bound jobs as opposed to CPU-bound (or compute intensive) jobs. We conducted perfor-

mance tests using the simulation framework to evaluate cache replacement policies. Our implementation

is a straight forward translation of the FSM, with conditional transitions, to a C++ code. Since our focus

here is on the impact of the admission policy, we consider this in conjunction only with the LRU cache

replacement policy. Results of extensive comparisons of different cache replacement policies only using

the same simulation framework for realistic workloads are discussed in [11]. When a file is cached, the

tasks of a job process the file at a rate of 10 MBytes per second.
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5.1 Workload Characteristics

We subjected the simulation model to two types of workloads in our experiments: a real workload and a

synthetic workload. The real workload is the log of about 6 months of file accesses to the Jasmine mass

storage system at the Jefferson National Accelerator Facility (JNAF). The file sizes ranged from about

500 KBytes to about 6 GBytes per file. The jobs of file requests contain batched requests for 1 to about

1000 files per job. There is however very low locality of file references. By locality of reference we mean

the occurrence of references for the same file in jobs that are close to each other in the workload. For

the synthetic workload, we extracted statistics of the real workload, such as the average file size, the job

inter-arrival times, etc., and generated a workload based on Poisson job arrivals but with a high locality

of reference. For both the JNAF workload and the synthetic workload, the file accesses were read-only.

5.2 Simulation Runs

The simulation runs were carried out on a Redhat Linux machine with 512 MBytes of memory. We

evaluated the performance metrics of the average response time per job, the average cost per retrieval of

a file and the hit ratio for LRU under two alternative configurations. The first configuration executes the

workloads by applying the OptCacheLoadadmission policy to select the set of files to be admitted. The

second configuration executes the workloads according to a FCFS admission policy. For each configu-

ration and for each workload a number of runs were done with cache sizes varying from 200 Gigabytes

to about 3 Terabytes. For each run and for each cache size, we applied a variance reduction method by

averaging the statistics that we compute independently for 5 to 7 segments of the workload. The results

of the experimental runs are discussed next.

6 Preliminary Results

Figures 5a and 5b show the graphs of the response times for the synthetic and JNAF workloads re-

spectively that were obtained from servicing jobs using the simulation framework of an SRM. For the

synthetic workload, 500 GBytes of disk cache size corresponds to about 0.5% of the data processed and

800 GBytes of cache size corresponds to about 1.0%. In the JNAF workload, 1 Terabyte of disk cache

size corresponds to about 0.65% of the data processed and 2 Terabytes of a cache size corresponds to
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about 1.3% of the data processed. Clearly for most practical disk cache sizes s(C) ≤ 1 Terabyte, there is

a very significant gain in response time when OptCacheLoadadmission policy is used.

In [11], we defined the average cost per retrieval as the appropriate measure for the performance

evaluation of disk cache replacement policies in a data grid. It is noteworthy, from the graphs of figures 5c

and 5d, that not only does the use of the OptCacheLoadadmission policy improve the response time of

jobs but the average cost per retrieval is also improved for any practical limit of cache sizes. From

figures 5e and 5f, we observe similar improvements for the hit-ratios when OptCacheLoadadmission

policy is used. In fact the same relatively results are obtained for other cache replacement policies. Due

to space limitation we do not report these.

7 Conclusion and Future Work

Unlike page caching in virtual memory management or page buffering in data base management systems,

file caching onto disks is not relatively instantaneous. We have developed and implemented a simulation

framework for investigating both file scheduling and cache replacement policies that may be used to

govern I/O-bound job execution on data grids. Using this simulation model of an SRM host, we have

demonstrated that a good admission policy, that takes into account the file requests of the waiting jobs,

significantly improves the average response time of a job, the average cost per retrieval and the hit ratio

of the cache.

The results reported in this paper are only preliminary results of an ongoing work to implement

realistic simulation model of SRMs and subsequently a network of SRMs that are deployed in data grids.

Future work extensions of our current research include:

• The characterization of workloads of file accesses to different mass storage systems. These concern

the logs of data accesses to mass storage systems used in different scientific collaborations.

• An implementation of a Policy Advisory Module (PAM), including the ability to configure differ-

ent policy options, that can be integrated with deployed SRMs.

• The use of a storage resource manager emulator to extensively study the performance of data

accesses of real workloads, under various combinations of admission, caching, cache replacement,

replication, and replica replacement policies.

• An emulator for multi-tier adaptive file caching and replication in data grids.
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