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Abstract

Experiments in model organisms report abundant genetic interactions underlying biologically 

important traits, whereas quantitative genetics theory predicts, and data support, that most genetic 

variance in populations is additive. Here we describe networks of capacitating genetic interactions 

that contribute to quantitative trait variation in a large yeast intercross population. The additive 

variance explained by individual loci in a network is highly dependent on the allele frequencies of 

the interacting loci. Modeling of phenotypes for multi-locus genotype classes in the epistatic 

networks is often improved by accounting for the interactions. We discuss the implications of 

these results for attempts to dissect genetic architectures and to predict individual phenotypes and 

long-term responses to selection.

Introduction

When the combined phenotypic effect of alleles at two or more loci deviates from the sum of 

their individual effects, it is referred to as a genetic interaction or epistasis. Most biological 

traits are regulated by a complex interplay between multiple genes and environmental 

factors. Despite this underlying complexity, data and theory have shown that it is expected 

that most of the genetic variance in a population will be additive1–3. The apparent 
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contradiction between the complexity of the biological mechanisms that determine 

quantitative traits, and the observation that most genetic variance can be captured by an 

additive model, has led to a long-standing debate in genetics: Does the predominant role of 

the additive genetic variance mean that strictly additive models are always sufficient to 

describe the relationship between the genotype and the phenotype of an organism1,4, or 

could there be added value in explicitly modeling genetic interactions despite the lower 

levels of epistatic genetic variance5–8?

There are some situations where data and theory has suggested that it might be particularly 

important to account for genetic interactions. One is when the aim is to predict phenotypes 

of individuals based on their genotype. If interactions lead to extreme phenotypes for some 

genotypes, these phenotypes are unlikely to be captured by additive models, particularly if 

they are rare. This has, for example, been illustrated for sporulation efficiency in yeast9. 

Another is in the prediction of long-term selection response. Under additivity, both the 

additive variance and the response are expected to be near constant over the first few 

generations. As generations proceed, allele frequencies change to alter the additive variance 

and consequently the response to selection. This change is more rapid for traits regulated by 

fewer loci with larger effects than for traits regulated by many loci with smaller effects. It is 

known that genetic interactions can contribute to the additive genetic variance in a 

population1,7. The contribution, however, varies depending on the joint allele frequencies 

across all the interacting loci as well as on the types and strengths of the genetic 

interactions10,11. The changes in the additive variance, and hence the response, during 

ongoing selection is therefore more complex in the presence of genetic interactions. As a 

result, genetic interactions can make the long-term selection response more dynamic12,13 

and result in a realized response beyond predictions based on the additive genetic effects and 

allele frequencies at the individual loci10,11. However, as little is known about how prevalent 

and strong genetic interactions are in real populations, and how much they contribute to the 

additive variance as the allele frequencies change during selection, it has been difficult to 

obtain any empirically based conclusions about how influential interactions are expected to 

be in these situations.

Here we analyze a panel of 4,390 yeast recombinant offspring (segregants) from a cross 

between a lab strain (BY) and a vineyard strain (RM), generated in Bloom, et al. 20153. In 

this population, each segregant is genotyped for 28,220 SNPs and phenotyped for 20 end-

point growth traits. Across these traits, a total of 939 QTL with additive, and 330 with 

epistatic, effects were mapped previously3. Since the individuals in this population are 

haploids, the sample size is large and all allele frequencies are close to 50%, this dataset 

presents a unique opportunity to accurately estimate how allelic combinations across large 

numbers of loci influence quantitative traits. Using phenotype information for multiple 

segregants with each possible allelic combination across many loci, we directly estimate 

how high-order genetic interactions contribute to complex trait variation in this segregating 

population. We quantify how well quantitative genetics models can capture the empirically 

revealed relationships between multi-locus genotypes and phenotypes.

We observe networks of epistatic loci for most of the traits in the study, and find that some 

highly interactive loci in these networks can hide, or reveal, the effects of their interactors. 
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We show that additive genetic models capture much of the genetic variance contributed by 

the interacting genes in these networks. However, when used to estimate the phenotypes for 

individual segregants, they often fail to fully capture the effects of multi-locus genotypes 

that lead to extreme phenotypes. Accounting for interactions in the models led to more 

accurate phenotypic predictions for such genotypes. We illustrate this by analyzing an 

individual network in detail, and then generalize the results across the other revealed 

networks. We discuss the potential impact of these findings on prediction of individual 

phenotypes that is of importance in for example personalized medicine, prediction of long-

term selection response in breeding and evolution, and interpretation of results from QTL 

and genome-wide association studies.

Results

Many epistatic QTL are part of highly connected networks

Most epistatic QTL3 interacted with one or a few loci, while a smaller subset were involved 

in pairwise interactions with several loci (Figure 1a). By visualizing the 330 statistically 

significant epistatic QTL3 as nodes, and the interactions between them as edges, we revealed 

many networks of interacting loci. These were often connected in hub-and-spoke type of 

architectures where QTL involved in many interactions tied larger networks together (Figure 

1b). We refer to these as radial networks, with a hub-QTL in the center that connects the 

radial QTLs. Hub-radial QTL interactions were, on average, more significant than 

interactions that did not involve a hub (Supplementary Figure 1), supporting that the radial 

architecture is a prominent feature of the networks. The available genotype and phenotype 

data allowed us to accurately estimate the phenotypes for individual six-locus genotype-

classes (see below). We therefore selected the 15 six-locus radial networks where a hub-

QTL interacted with at least five other QTL, for further in-depth studies (Figure 1b). The 

selected networks contributed to 11 of the 20 studied traits, and included 81 QTL.

Below, we first illustrate our analyses and results for the network regulating growth on 

medium containing indoleacetic acid (IAA-network) and then extend them to all networks.

Hub-QTL often moderate the phenotypic effects of radial QTL

The hub-QTL in the IAA-network explained the most additive genetic variance of any locus 

for this trait 3. The phenotypic variance was 3-fold higher among segregants with 

the BY-genotype, than among segregants with the RM-genotype, at this locus. This genetic 

variance-heterogeneity is highly significant (p < 2.2 × 10−16; dglm, two-sided test). By 

estimating the narrow sense heritability (h2) separately among segregants with the BY and 

RM allele at this hub-QTL we showed that much of this difference was due to genetics 

( ). We here call such QTL, where one allele suppresses genetic 

contributions by other loci and the other allele uncovers them, genetic capacitors. Across the 

15 epistatic networks, 10 hub-QTL were genetic capacitors with significant differences in h2 

(p < 0.001; Bonferroni corrected multiple-testing threshold; one-sided permutation test) 

between the genotypes ranging from 10 to 42%. By testing 40 randomly selected radial 

QTL, we found that few (3) of these were significant genetic capacitors and that they were 
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weaker capacitors than the hubs (mean difference ± SD in h2 for radial QTL = 4.3% ± 3.6 vs 

12.5% ± 9.2% for hub-QTL). We also revealed a strong correlation (r = 0.64; Pearson 

correlation; p < 2.2 × 10−16; two-sided test) between the level of variance-heterogeneity 

between the genotypes at the 330 epistatic QTL and the number of interactions they were 

involved in (Supplementary Figure 2). Together, this shows that strong genetic 

capacitors14,15 often are hubs in epistatic networks.

Modeling phenotypes for multi-locus genotype-classes

Allelic interactions contribute to complex trait variation—For the six-locus IAA-

network, we divided the segregants into 64 groups representing each of the 64 possible six-

locus genotype classes, and calculated their phenotypic means and variances (Figure 2a). 

Segregants with the capacitating BY allele at the hub-QTL (green) display the poorest 

growth when they have many IAA-sensitizing alleles at the five radial QTL. In contrast, 

segregants with the canalizing RM allele at the hub-QTL (grey) have similar growth 

regardless of how many IAA-sensitizing alleles they have at the radial QTL. The RM/BY 

alleles at the hub-QTL in the network thus decrease (canalize)/increase (capacitate) the 

effects of the radial QTL, respectively (Figure 2a). Similar results are also observed for 

several of the other networks with significant differences in h2 between the genotypes at the 

hub-QTL (p < 0.001; Bonferroni corrected multiple-testing threshold; one-sided permutation 

test; Supplementary Figure 3).

Across the networks, we detected hub-QTL capacitor alleles of both BY and RM origin. The 

most extreme phenotypes in these networks were always observed for a genotype-class with 

a combination of BY and RM alleles at the hub and radial loci. The alleles at the radial loci 

that required the presence of the capacitating hub allele to reveal their full effect on growth 

(Figure 3; Supplementary Figure 3; Supplementary Figure 4) did in 60% of the cases 

originate from the same strain as the canalizing hub allele. The two parental strains thus 

harbor cryptic, or hidden, genetic variation16–19, whose phenotypic effect is revealed when 

combined in the haploid segregants.

Non-linear capacitation effects in some epistatic networks—In the IAA-network, 

the reduction in growth among the segregants with the BY allele at the hub-QTL decelerates 

in a multiplicative, rather than a linear, manner as the number of IAA-sensitizing alleles 

increases (Figure 2b). For segregants with the BY allele at the hub-QTL, the effect of having 

5 IAA-sensitizing alleles is much larger than 5 times the effect of having one IAA-

sensitizing allele. As a result, an exponential model fits this data better than an additive 

model (R2 increases from 0.34 to 0.39; Figure 2b). One other network, affecting growth in 

medium containing Copper Sulfate, displayed a similar non-linear capacitation (R2 

increased from 34 to 43%; Figure 3d; Supplementary Figure 4). This multiplicative effect 

could result from measuring growth as the increase in radius of the yeast colonies, or it 

could be a feature of the underlying biology.

Extreme estimates from additive models are often biased—Many additive-model 

based estimates of the phenotypes for multi-locus genotype classes in the IAA network 

differed substantially from the actual values estimated directly from the data (Figure 2a). 
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Cross-validated model-based estimates were computed for each multi-locus genotype class 

to quantify their accuracy and bias. Accuracy for each genotype class was measured by the 

mean square error (MSE), and bias by the difference between the modeled and actual 

phenotypes. Twenty-three of the 64 estimates were significantly biased (Bonferroni 

corrected multiple-testing threshold ( ); two-sided t-test), showing that the additive 

model was unable to represent the genetic contributions by the IAA network to many of the 

individual segregant phenotypes. To evaluate whether this trend generalized across all 

networks, and whether alternative quantitative genetics model parameterizations could 

perform better, we fitted three different quantitative genetics models to all six-locus 

networks: i) additive effects only, ii) additive effects and pairwise interactions and iii) 

additive, pairwise and three-way interactions.

Models with only additive effects captured much of the phenotypic variance for all networks 

(on average 28% of ). Accounting for epistatic interactions only increased the variance 

explained marginally (on average 5% of ). The additive model based estimates of the 

phenotypes were, however, significantly biased for between one and 23 of the 64 genotype 

classes per network in 14 of the 15 examined networks (Bonferroni corrected multiple-

testing threshold ( ); two-sided t-test; Figure 2; Figure 4; Supplementary Figure 5). 

Models with pairwise interaction terms provided unbiased estimates of all 64 measured 

genotype values for most networks. Only two networks required three-way interaction terms 

to remove all detectable bias. In 5 of the 15 networks, the accuracy was significantly better 

for at least one of the 64 genotype classes when using models with pairwise interaction 

terms (Bonferroni corrected multiple-testing threshold ( ); two-sided t-test; 

Supplementary Figure 6).

The bias for the additive model estimates of the phenotypes of individual multi-locus 

genotypes was largest for the most extreme trait values, i.e. those corresponding to the best 

or worst growth in the capacitated group, and the best or worst estimated growth in the 

canalized group (Figure 2; Figure 4). In networks where the hub-QTL are capacitors, the 

direction of the bias depends on the genotype at the capacitor: Among segregants with the 

capacitor allele at the hub-QTL, the models underestimated the phenotypic effect of 

combining many growth-increasing or growth-decreasing alleles at the radial-QTL (Figure 

4a). For segregants with the canalizing allele at the hub-QTL, the models instead 

overestimated these phenotypic effects (Figure 4b). By accounting for epistatic interactions, 

the bias is reduced or entirely removed (Figure 4). For the 5 networks where the hub-QTL 

was not a significant capacitor, the bias was not dependent on the genotype at the hub-QTL.

Genetic variances explained by loci in epistatic networks

The additive genetic variance contributed by a locus depends on its effect and allele 

frequency in the analyzed population20. When loci interact, the variance explained 

marginally by each of the epistatic loci will in addition also depend on the frequencies at the 

loci with which it interacts. For example, the additive genetic variance contributed by each 

individual locus in the IAA-network varies depending on the allele frequencies of all loci in 

the network due to the extensive interactions among them. When considering the entire 
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population of segregants (all allele frequencies ~0.5), the additive variance ( ) contributed 

by the network amounts to 26.8% of the total phenotypic variance in the population. In the 

subpopulations where the BY/RM alleles at the hub-QTL are fixed (BY allele frequency 1 or 

0), the network instead contributes 36% and 3% of the total phenotypic variance, 

respectively. To generalize this result across the allele-frequency space, we simulated 

populations with allele frequencies ranging from 0.05 to 0.95 at increments of 0.15 for the 

six loci in the network. We then evaluated how the additive genetic variance contributed by 

the individual loci varied depending on the allele frequencies at the other five loci. We also 

simulated populations without genetic interactions. In Figure 5 we summarize the results for 

the simulations based on the 64 actual genotype-values in the IAA-network. The additive 

genetic variance contributed by the hub-QTL varied from 0 to 58% of the total phenotypic 

variance in the population, only by changing the allele-frequencies at the five other loci 

(Figure 5). The result was similar for the other five QTL, although their ranges were smaller 

than for the hub-QTL (Figure 5 blue boxes; average range: 0 to 31% of ). As expected, the 

additive genetic variance contributed by each locus was much less dependent on the allele 

frequencies when loci with the same marginal effects, but no interactions, were simulated 

(Figure 5 red boxes; range: 2 to 6% of ). The results were similar across all 15 networks, 

with estimates of additive genetic variance for individual epistatic loci that were highly 

dependent on the allele frequencies at the other loci in the network.

Discussion

The link between the genotype and the phenotype of an organism is immensely complex. 

Despite this it can, to a great extent, be captured using models that assume that gene variants 

combine their effects in an additive manner. We here used a large experimental yeast cross to 

identify six-locus epistatic networks affecting 11 complex traits. We then estimated the 

average phenotypes for the groups of segregants sharing each combination of alleles at these 

loci. We evaluated how well different quantitative genetics models captured the phenotypes 

of these multi-locus genotype classes. In most networks, the phenotypes for at least one, but 

often several, multi-locus genotype classes deviated significantly from what is expected 

under additivity. This empirically illustrates the important role of classic epistasis, as defined 

by Bateson more than 100 years ago21, in the genetic architecture of complex traits. We 

provide several examples of such epistasis, involving multiple loci in highly interconnected 

genetic networks.

An earlier study of this population3 showed that most of the genetic variance for the 20 

measured traits is additive. Consistent with this, the additive model based estimates of the 

phenotypes for most multi-locus genotype classes in the epistatic networks were reasonable. 

However, the most extreme estimates from the additive models were often both inaccurate 

and biased (Figure 4). For example, the bias is very large for the most extreme genotype 

class in the IAA-network (1.7 σp; Figure 2). Our results highlight the importance of 

analyzing collected data with models that can represent the features of the underlying 

genetic architectures. They also confirm that, regardless of the underlying genetic 

architecture, additive models are likely to capture much of the genetic variation for a trait. 

This makes them useful for revealing genes contributing to the phenotypic variance in a 
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particular population, as well as for predicting short-term response to selection in a 

population11. However, we also show that additive models are often unable to represent all 

key features of genetic architectures involving networks of epistatic loci. In particular, their 

most extreme estimates are often inaccurate and biased for networks with capacitor hub-

QTL. Accounting for epistasis increases estimation accuracy and decreases bias. Modeling 

genetic interactions should therefore be considered when it is important to identify and 

predict the effects of specific combinations of alleles, or where it is important to identify 

genotypes that are likely to lead to extreme phenotypes. Examples of this include prediction 

of disease risk or drug responses in individual patients.

As shown here and in earlier studies1,7,22, most genetic variance in a population is expected 

to be additive even in the presence of extensive epistasis. The lack of empirical knowledge 

about the pervasiveness and strength of epistasis in the genetic architectures of complex 

traits makes it largely unknown how much of the observed additive genetic variance in 

quantitative genetics studies is due to genetic interactions. This experimental yeast 

population allowed us to directly estimate the phenotypes for individual multi-locus 

genotype classes in networks of interacting loci. With these as a basis, we used simulations 

to demonstrate that the types of interactions revealed here have a very large influence on 

both the estimates of the additive genetic effects of the individual loci and their contributions 

to the additive genetic variance. The IAA-network provides a striking example: the additive 

variance contributed by the hub in the epistatic network (Figure 2) ranged from zero to the 

largest contribution by any single locus across all networks when we varied the allele 

frequencies at the 5 radial QTL. This empirically illustrates how allelic interactions 

(epistasis) can be the main driver of the additive genetic variance in a population, and that 

the importance of epistasis in the genetic architecture of a complex trait cannot be inferred 

from the relative levels of additive and epistatic genetic variance.

Many interacting loci in this population were part of radial epistatic networks where hub loci 

interact with multiple other QTL. In general, this network topology reflected how the loci 

contributed to the phenotypic variation in the population. The hub-QTLs acted as genetic 

capacitors that modify the effects of the radial loci in the network. These capacitating 

interactions are highly influential for the total level of phenotypic variance displayed in a 

population, as they can both buffer and release cryptic (standing) genetic variation23,24. 

Several genetic capacitors have been studied in molecular detail, including the heat shock 

protein HSP9016,25 and EGFR26. Genetic capacitation has also been found for complex 

traits in segregating populations. For example, it facilitated extreme selection responses for 

body-weight in a long-term experimental selection experiment in chicken10–12 and 

contributed to the variation in root length between natural Arabidopsis thaliana accessions27. 

This study suggests that capacitor networks are likely to be a common property of the 

genetic architecture of complex traits. We found them to be both common and influential for 

many traits in this population, suggesting that they should be considered in other studies of 

complex traits, including those aiming to genetically dissect, or statistically predict, 

responses to long-term selection.

It is currently unknown how indoleacetic acid affects yeast fitness, but the discovery of the 

epistatic network described here may shed some light on its mode of action. The hub-QTL 
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in the IAA-network maps to the gene GPA1, which is required for the yeast response to 

mating pheromone. Although this response is not normally triggered under laboratory 

growth conditions, as the yeast is not exposed to mating pheromone, the BY allele of GPA1 
leads to residual expression of the pheromone response pathway28,29. Thus, a model for the 

capacitance activity of the BY allele of GPA1 is that indoleacetic acid primarily affects cells 

with an activated pheromone response pathway. Interacting radial QTL would then arise if 

the underlying variants influence either the response to indoleacetic acid, or the activation of 

the pheromone response pathway by the BY allele of GPA1. The radial QTL include several 

loci involved in pheromone response, including the mating-type locus MAT, which dictates 

which pheromones are expressed or sensed (and is known to interact with GPA1)30, and the 

gene VPS34, which is required for GPA1’s activation of the mating pathway31. Further work 

will be required to elucidate the importance of the yeast pheromone response pathway for 

the fitness effects of indoleacetic acid.

For several other networks, the hub-QTL include candidate genes with known 

polymorphisms in BY and RM. For example, the networks regulating growth on media with 

Copper Sulfate and Manganese Sulfate have hub-QTL that includes the genes CUP1 and 

PMR1, respectively. The BY allele of CUP132 is known to increase copper ion tolerance33 

and the RM allele of PMR1 allele confers manganese resistence34. The current data does not 

allow further functional dissection of the possible connections between these polymorphisms 

and the capacitation in the networks. However, by revealing the allelic dependencies 

between the loci in the network (Figure 3b; Figure 3d), it is possible to formulate hypotheses 

about how these and other known polymorphisms in hub-QTL could contribute epistatically 

to growth in the respective media for testing in future functional studies (Supplementary 

note).

In summary, we show that networks of capacitating genetic interactions are common, and 

that these networks form a key part of the genetic architectures of multiple complex traits in 

a large experimental yeast population. We illustrate how such interactions affect model-

based estimation of individual phenotypes and the inference of genetic architectures. This 

shows that epistasis needs to be explored beyond estimates of epistatic genetic variances, in 

order to understand its contribution to the phenotypic variability and long-term selection 

responses in populations. This is a key discovery in the long-standing debate about how to 

approach epistasis in complex trait research.

URLs

The R Project for Statistical Computing (accessed 17 January 2017), http://www.r-

project.org; dglm: Double Generalized Linear Models. (accessed 17 January 2017), http://

cran.r-project.org/package=dglm

Online Methods

The creation of the BYxRM cross, genotyping, phenotyping, quality control of genotypes, 

filtering and normalization of growth measurements has previously been described in2,3. The 

reanalyzed data are available as supplementary information in3. Additive QTLs were 
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mapped in Bloom et al.3. All analyses were performed using the R framework for statistical 

computing (http://www.r-project.org). All figures were prepared using R.

Statistical analysis

Inferring epistatic networks—Pairwise epistatic interactions were mapped by Bloom et 
al.3. Networks of epistatic loci were inferred by connecting loci that displayed pairwise 

interactions. The R-package igraph35 was used to visualize individual networks and to 

identify network hubs. The GWA analysis for growth on indoleacetic acid containing 

medium among the segregants with the BY-allele at the hub-locus was performed using the 

qtscore function in the R-package GenABEL36. Genome-wide significance was determined 

using a Bonferroni-corrected significance threshold for the number of tested markers 

. The additive genetic variance explained by a certain set of QTL was 

calculated as the R2 from a fixed effect model without interactions.

Exhaustive mapping of loci in the network affecting growth on indoleacetic 
acid containing medium—To identify all individual loci that contributed the additional 

genetic variance in amongst the segregants carrying the BY allele at the hub-QTL in the 

IAA-network, we performed a GWA analysis in this group of segregants using GenABEL36 

with significance thresholds as described above. This revealed in total 8 genome-wide 

significant loci in the radial network, out of which 6 were the same as the loci in the earlier 

two-way interaction analysis3.

Estimating average phenotypes for multi-locus genotypes—The average 

phenotypes were estimated for each of the 26 = 64 possible combinations of alleles for 15 

six-locus epistatic networks. Each of these networks had a hub-QTL connected to five radial 

loci by pairwise interactions. On average,  segregants are expected in each six-

locus genotype class in these networks, allowing confident estimation of the average growth 

associated with carrying each possible combination of alleles at these loci (exact values in 

each class are reported in the figures describing the results). Some of the hub-QTL were 

connected to more than five other loci in the network in the initial network analysis. Here we 

only kept the loci with the strongest statistical interaction with the hub-QTL as we could not 

confidently estimate phenotypes for individual genotype-classes in networks with more than 

six loci.

Estimation of the genetic variance heterogeneity at a locus—We estimated the 

difference in the phenotypic variance between segregants that carry alternative alleles at the 

epistatic loci using a Double Generalized Linear Model (DGLM)37, as suggested in 

Rönnegård et al.14. This allowed us to simultaneously model the effects of every locus on 

the phenotypic mean and variance. We fitted a DGLM with linear predictors for both mean 

and variance as y ~ N(μ1 + Xβ1,eμ2+Xβ2) using the R-package dglm (http://cran.r-

project.org/package=dglm), where y is the phenotype, X is the genotype, β1 is the effect on 

the mean, and β2 is the effect on the variance. Coding the genotypes in X as 0 and 1, β1 then 

describes the difference in mean whereas eβ
2
 describes the fold difference in variance 

between the segregants with alternative alleles at the locus.
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Estimating the capacitating effects of the hub-QTL in the epistatic networks—
QTL interacting with 5 or more other loci were defined as hubs. We estimated the 

capacitating effects of all hub-QTL as follows. For each network containing a hub-QTL, we 

divided the segregants into two groups based on their genotype at the hub. We then fitted the 

mixed model y = Xμ + a + e separately for each group. Here, y is a column vector containing 

the phenotypes, X is a column vector of ones, μ is the overall mean,  and 

. A is the additive kinship matrix, giving the fraction of the genome shared 

between each pair of segregants,  is the additive genetic variance captured by the markers, 

and  is the residual variance. A was calculated using the ibs function in the R-package 

GenABEL. We used the GenABEL function polygenic to fit the mixed model. The narrow 

sense heritability in each group was calculated as the intra class correlation .

We performed a permutation test to obtain the significance of the difference ρ1 – ρ2 between 

the two groups of segregants in each network. For each of the 20 traits, we randomly divided 

the population into two groups and estimated ρ1 and ρ2 in these as described above. This 

was repeated 1000 times per trait to obtain 20 empirical NULL distributions. We here report 

the number of traits for which the difference ρ1 – ρ2 was significant at a Bonferroni-

corrected multiple testing threshold of .

Quantifying non-linear effects after capacitation—To quantify the potential 

multiplicative action of capacitated radial alleles, we compared the fit of an additive (y = μ + 

xβ + e) and an exponential (y = μ + β1,exβ2+e) model. Here, y is the phenotype, x is the 

number of growth decreasing radial alleles, and e is the residual variance.

Modeling the phenotypes for individual multi-locus genotype classes—For 

each six-locus epistatic network, we estimated the phenotypes for the 64 individual genotype 

classes in each network using three different models including i) additive effects, ii) additive 

effects and pairwise interactions and iii) additive, pairwise and three-way interactions, 

respectively. For ii) and iii), the included interaction-terms that, together with all additive 

terms, minimized the AIC = 2k − 2ln(L). Here, k is the number of included parameters and 

L is the maximum likelihood value for the model. We used the R-function step in the stats 
package to perform the backward elimination (http://www.r-project.org). The performances 

of the final models (bias and accuracy) were evaluated using 10-fold cross-validation, where 

the variable selection for i) and ii) above was performed within the training data in every 

fold.

Within each of the 64 genotype-classes, defined by the six loci in each network, we 

calculated the CV estimation errors as e = y − ŷ. Here, y is the actual and ŷ the estimated 

phenotype. We tested if e significantly deviated from 0 using a t-test. If the deviation was 

significant at a multiple testing Bonferroni corrected threshold of , we 

considered the estimate for that particular genotype-class biased. The accuracy of the 

estimates was measured by e2, and for each genotype-class, we tested the difference in e2 

between models with and without interaction-terms using a t-test. If the e2 was significantly 
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lower for the interaction model, at a multiple testing Bonferroni corrected threshold of 

, we considered these estimates more accurate.

Simulations

In the simulations, we used the phenotypic means μ1 ··· μ64 in each of the 26 = 64 classes for 

each of the 15 six-locus networks, and the total phenotypic variance  for each trait, 

obtained in the analyses above as a representation of the genetic architectures of these traits. 

In every simulation, we generated populations with the same number of segregants as in the 

original dataset (n = 4,390). The number of segregants in each genotype class was 

determined by the allele frequencies p1 ··· p6 at the six loci. For example, the number of 

observations with genotype ABcDef, where the big/small letters indicate the alternative 

alleles at the six loci, would be p1 × p2 × (1 − p3) × p4 × (1 − p5) × (1 − p6) × n. To evaluate 

the effect of different combinations of allele-frequencies at the loci on the results, we 

simulated populations with pk ∈ {0.05,0.20,0.35,0.50,0.65,0.80,0.95}, where k = 1 ··· 6. This 

leads to, in total, 76 allele frequency combinations. The phenotypes for the individuals in 

each genotype class were then simulated as yk ~ N(μk, σ2), where k = 1 ··· 64.

As a comparison, we also simulated populations where the genetic architectures (i.e. the 

phenotype for each of the 64 multi-locus genotypes) for the 15 networks were given by the 

estimates obtained from a six-locus additive model fitted to the respective loci. The linear 

model used was y = Xβ + e, where y is a column vector containing the phenotypes, X is a 

4,390×7 matrix, the first column consisting of ones and columns 2–7 of the genotypes of the 

six loci, β is a 1×7 column vector with the intercept and the additive genetic effects, and e is 

the residual variance. Using this model, estimates  were obtained for each 

genotype class. The simulations were then performed across the different combinations of 

allele-frequencies as described above, with phenotypes given by .

The additive genetic variance contributed by each locus was estimated as the R2 from the 

linear model y = Xβ + e, fitted to the respective subset of the 76 simulated populations where 

the allele frequency of the locus itself was 0.5 (p1 = 0.5 ), and the frequency at the other five 

loci varied in pk ∈ {0.05,0.20,0.35,0.50,0.65,0.80,0.95}, where k = 2 ··· 6. In this model, X is 

a column vector with the genotype of the locus whose allele frequency is 0.5. The additive 

genetic variances were estimated in such subsets to analyze the effect of the individual locus 

across variable genetic backgrounds for the other loci, without the estimates being 

influenced by changes to the allele frequency of the analyzed locus itself.

Code Availability Statement

The custom R-code for the analyses and simulations in the manuscript has been deposited in 

Github, where it is available at https://github.com/simfor/yeast-epistasis-paper.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Many QTL involved in pairwise interactions are part of highly interconnected epistatic 
networks
a) A histogram of the number of interactions each epistatic QTL is involved in. Most of the 

330 epistatic loci detected for the 20 traits are involved in few pairwise interactions. Few 

QTL are involved in many interactions, here defined as five or more, but their role is 

prominent since they are the hubs that tie the networks together (b). b) The pairwise QTL 

interactions contributing to growth in 11 different media form highly interconnected 

epistatic networks. Each circle represents a QTL and the lines represent significant pairwise 

interactions3. Red circles highlight hub-QTL involved in five or more pairwise interactions.
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Figure 2. Epistatic network regulating growth on indoleacetic acid containing medium
The RM allele suppresses (canalizes) the phenotypic effects of segregating alleles at the 

radial QTL. The BY allele capacitates the growth decreasing effects that combine in a non-

linear fashion. Tukey boxplots (bottom/top of box are first/third quartiles, band is median 

and ends of whiskers the lowest/highest datum within 1.5 interquartile range of the lower/

upper quartile) illustrate the phenotypic distributions in segregants with different 

combinations of alleles across the IAA-network. a) One boxplot for each of the 64 genotype 

classes. The color indicates the genotype at the hub-QTL (chrVIII:114,114bp; Green/grey 

boxes for BY/RM alleles). The x-axis gives the six-locus genotype class, where blue/orange 

dots indicates growth-decreasing/increasing alleles at the five radial-QTL (from top to 

bottom chrXIV:469,224bp, chrIII:198,615bp, chrIV:998,628bp, chrXIII:410,320bp, and 

chrXII:645,539bp). The black line through the boxes illustrates the additive model based 

estimates of the phenotypes for the 64 genotype classes. The number above the x-axis is the 

number of segregants in each genotype class. b) One boxplot for each group of segregants 

that share the same number of growth decreasing alleles at the five radial QTL. The 

segregants are divided and colored based on the genotype at the hub-QTL as in a). The x-

axis gives the number of growth decreasing alleles at the radial QTL and the number of 

segregants in each group. The regression lines illustrate the fit for linear additive (black; R2 

= 0.34) and non-linear exponential (dashed blue; R2 = 0.39) models, respectively.
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Figure 3. Epistatic networks contain hub-QTL capacitor alleles of both BY and RM origin that 
moderate growth increasing or decreasing effects of segregating alleles at radial QTL
Each sub-figure corresponds to one epistatic network where the hub-QTL capacitates the 

growth-increasing, or growth-decreasing, effects of segregating alleles at the radial QTL (a: 

E6-Berbamine, b: Manganese Sulfate, c: Neomycin, d: Copper Sulfate). Within each 

network, the segregants are divided based on the genotype at the hub-QTL, and segregants 

carrying the RM allele are shown in grey and those with the BY allele are shown in green. 

The x-axis gives the number of growth decreasing alleles at the radial QTL. The Tukey 

boxplots (bottom/top of box are first/third quartiles, band is median and ends of whiskers the 

lowest/highest datum within 1.5 interquartile range of the lower/upper quartile) show 

phenotypic distributions for groups of segregants with different numbers of growth affecting 

alleles at the five radial QTL in six-locus epistatic networks. a(b) illustrate networks where 

the RM(BY) allele at the hub-QTL maintain low growth in the segregants almost regardless 

of the genotypes at the radial-QTL. In c(d), the RM(BY) alleles allow the segregants to 

maintain high growth almost regardless of which alleles segregate at the radial QTL. The 

regression lines illustrate the difference in effects of the radial-QTL alleles depending on the 

genotype at the hub-QTL.
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Figure 4. The biases in the additive model based estimates of the phenotypes are largest in the 
genotype-classes with the largest or poorest expected growth
Across the 10 interaction networks with a capacitor hub-QTL, the most extreme additive 

model based representations of individual multi-locus genotypes are biased. The additive 

model under/over-estimates the extremity of the genotypes with many/few growth-

decreasing alleles at the radial-QTL. This results in a positive correlation between the 

estimation errors (bias) and the number of growth-increasing alleles at the radial-QTL when 

there is a capacitor allele at the hub-QTL (a; r = 0.54; Pearson correlation; n = 320; p < 2.2 × 

10−16 in two-sided test). Among segregants with a non-capacitor allele at the hub-QTL (b) 

the trend is opposite with over/under- estimates for segregants with many/few growth-

decreasing alleles at the radial-QTL (r = −0.69; Pearson correlation; n = 320; p < 2.2 × 10−16 

in two-sided test). The y-axis gives the average estimation-error (bias) from cross-validation 

for each genotype in the 10 networks. The x-axis illustrates the genotype at the five radial 

QTL in the networks: blue/orange dots indicate growth-increasing/decreasing alleles, 

respectively. Each dot represents the average estimation error (bias) for a particular six-locus 

genotype-class in one of the 10 networks. Black dots (green triangles) are errors from 

additive-only (additive + pairwise interaction) models with solid (dashed) black lines 

denoting the regression on these errors. The estimation errors (biases) are calculated as 

measured – estimated phenotypes, and over/under estimations will therefore result in 

negative/positive estimation errors (biases) respectively.
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Figure 5. Simulations show that the additive genetic variances contributed by the loci in the 
epistatic network regulating growth on indoleacetic acid containing medium is highly dependent 
on the allele-frequencies at the other loci in the same network
The phenotypic variance explained by the individual loci in the IAA-network depends on the 

allele frequencies at the other loci with which they interact. Each Tukey boxplot (bottom/top 

of box are first/third quartiles, band is median and ends of whiskers the lowest/highest datum 

within 1.5 interquartile range of the lower/upper quartile) shows the additive genetic 

variances across 16,807 simulated populations. For each locus, we simulated populations 

where the allele frequency of the loci themselves were fixed at 0.5, while varying the 

frequencies at the other 5 loci from 0.05 to 0.95 in increments of 0.15. The light blue boxes 

represent the variability in the additive genetic variances when simulating populations based 

on the observed phenotypic means for the 64 genotype classes in the IAA-network. The red 

boxes represent the additive genetic variances when simulating based on the phenotypic 

means estimated using the additive genetic model (black line in Figure 2a). The x-axis gives 

the location of the SNP representing each locus (chromosome:location in bp). The two 

leftmost boxplots (diagonal lines) show the simulation results for the hub-locus.
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