
J. Parallel Distrib. Comput. 113 (2018) 167–178

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

A hardware accelerated system for high throughput cellular image
analysis
Dajung Lee *,1, Nirja Mehta 1, Alexandria Shearer 2, Ryan Kastner 2

University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92122, USA

h i g h l i g h t s

• A scalable, high speed image analysis algorithm for cell morphological analysis.
• A hardware accelerated system to achieve a high throughput and low latency constraint.
• A demonstration of a proposed system in an end-to-end (CPU- FPGA) machine.
• A flexible hardware design for an FPGA using a high-level synthesis tool.

a r t i c l e i n f o

Article history:
Received 2 July 2016
Received in revised form 7 November 2017
Accepted 15 November 2017
Available online 24 November 2017

Keywords:
Hardware acceleration
Biomedical image analysis
Cytometry
Reconfigurable hardware
FPGA
High throughput

a b s t r a c t

Imaging flow cytometry and high speed microscopy have shown immense promise for clinical diagnos-
tics, biological research, and drug discovery. They enable high throughput screening and sorting using
biological, chemical, or mechanical properties of cells. These techniques can separate mature cells from
immature ones, determine the presence of cancerous cells, classify stem cells during differentiation, and
screen drugs based upon how they affect cellular architecture. The process works by imaging cells at
a high rate, extracting features of the cell (e.g., size, location, circularity, deformation), and using those
features to classify the cell. Modern systems have a target throughput of thousands of cells per second,
which requires imaging at rates of more than 60,000 frames per second. The cellular features must be
calculated in less than a millisecond to enable real-time sorting. This creates challenging computing
performance constraints in terms of both throughput and latency. In this paper, we present a hardware
accelerated system for high throughput cellular image analysis. We carefully developed algorithms and
their corresponding hardware implementations tomeet the strict computational demands. Our algorithm
analyzes and extracts cellular morphological features from low resolution microscopic images. Our
hardware accelerated system operates at over 60,000 frames per second with 0.068 ms latency. This is
almost 1400× faster in throughput than similar software based analysis and 335× better in terms of
latency.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Quantitative analysis of cellular properties, such as size, shape,
structure, life span, and molecular contents, can characterize cell
function, give insight into how it behaves, and provide a technique
for cell screening and/or sorting. This is useful for diagnosing
disease, monitoring immune systems, screening drugs, and devel-
oping regenerativemedicine [3,28,23,18]. However, there are strict
performance constraints to achieve real-time cellular analysis; the

* Corresponding author.
E-mail addresses: dal064@eng.ucsd.edu (D. Lee), njmehta@eng.ucsd.edu

(N. Mehta), ashearer@ucsd.edu (A. Shearer), kastner@ucsd.edu (R. Kastner).
1 Department of Electrical and Computer Engineering.
2 Department of Computer Science and Engineering.

system must have enough processing power to handle a very high
cell throughput, andmust perform cell feature analysis with a sub-
millisecond latency to facilitate sorting.

Our system is capable of analyzing thousand of cells per second
based on image based technology, which corresponds to work at
over 60,000 frames per second; this is a common goal in imaging
flow cytometry [13,34,9]. In our system, a high speed camera
images cells at very high frame rate on a specialized experimental
setup to catch fast moving target cell features. Camera at such high
frame rates have lower resolutions, in our case 64 × 64 pixels.
These images may have low contrast; they are sensitive to even a
single pixel noise; and the fast movement of the cells within a tiny
field of view causes blurring and other optical effects. Furthermore,
there are strict latency constraints—real-time cell sorting requires
decisions in under 10 ms [25], and ideally under one millisecond.

https://doi.org/10.1016/j.jpdc.2017.11.013
0743-7315/© 2017 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2017.11.013
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2017.11.013&domain=pdf
mailto:dal064@eng.ucsd.edu
mailto:njmehta@eng.ucsd.edu
mailto:ashearer@ucsd.edu
mailto:kastner@ucsd.edu
https://doi.org/10.1016/j.jpdc.2017.11.013


168 D. Lee et al. / J. Parallel Distrib. Comput. 113 (2018) 167–178

Our system processes these noisy, low-contrast, blurry images
with very high throughput and minimal latency.

Cytometry systems in such high performance use a specialized
sensor, such as a laser, or focus on observing simple properties.
However, our cell analysis system computes cellular morpholog-
ical feature using bright field imaging on a microfluidic device,
which givesmore sophisticated information of cellular mechanical
properties. The system images cells using a high speed optical
image sensor, analyzes the resulting video streams, extracts fea-
tures from the images, and classifies cells based on those observed
features. It does not require labeling the cells with fluorescent
chromes, which minimizes the preparation time and effort. How-
ever, the bright field based images have limited resolution; they are
sensitive to variations in lighting; and they easily become blurred
or noisy. This makes the accurate extraction of the morphologi-
cal features difficult, which hinders high throughput massive cell
analysis inspite of many other benefits of image based cell analysis
system.

In this work, we carefully develop a cellular analysis algorithm
to extract their morphological features from microscopic images
and build a real-time system using an FPGA device. There are
various image analysis approaches for feature detection over low
contrast images. However, these approaches are too computation-
ally intensive and hard to achieve such high performance even on
a hardware implementation. Most of them have iterative solutions
to refine analysis results or use spatial and temporal signatures to
estimate target features accurately, which causes longer latency
and lower throughput. Our method does not have an iterative
process to find a solution and minimizes data dependency for
independent operations. It processes input and intermediate data
in streaming way, which is intended for an efficient hardware
implementation in terms of performance and resources.

The major contributions of our work are:

• Accurate image analysis algorithms for high speed cell mor-
phological analysis.

• Hardware architectural optimizations using high-level syn-
thesis (HLS) code.

• Developing a hardware accelerated system for microfluidic
deformability cytometry.

• An in-depth evaluation and end-to-end demonstration of
our system using a heterogeneous (CPU–FPGA) compute
platform.

The remainder of the paper is organized as follows.We describe
background and introduce our target system in Section 2. Section 3
overviews and discusses related works. Then, we explain detailed
image analysis algorithms and hardware architecture optimization
methods in Section 4. Section 5 presents the system description
and experimental results in terms of accuracy and performance.
We conclude in Section 6.

2. Background

Cytometry assesses biological, physical, or chemical charac-
teristics of cells using specialized instruments or micro-devices.
Imaging cytometry and flow cytometry are the most well known
methods of cell analysis.

Imaging cytometry is the oldest and most basic method. It
observes cells using a microscope which results in high contrast
and high resolution images, yet cannot be performed in a high
throughput manner. Imaging cells at the microscopic level com-
monly requires staining themwith a fluorochrome, which binds to
a structure within the cell [17,36]. This labeling process highlights
particular molecules or cellular structures. For example, it can
separate out individual cell features (like the cell membrane or
nuclei) and determine interactions between multiple cells [14].

Accurately extracting cell parameters demands significant effort
making it difficult to perform high throughput analysis [8,32].

Flow cytometry uses a laser [31,30], an optical device [26,16],
or an electrical impedance device [6,10] to extract course features
from cells suspended in a fluid. For example, cells are labeled with
fluorochromes, which activate when targeted with a particular
wavelength of light. A cytometer reads these tagged response
signals and determines the cell types or properties. This method
is capable of providing high throughput cell analysis, but is not
capable of extracting sophisticated cell parameters.

Imaging flow cytometry combines the strengths of flow
cytometry (high throughput) and imaging cytometry (high sensi-
tivity) [4,5,1]. Take, for example, the ImageStream by Amnis [34] —
a commercial imaging flow cytometer capable of processing 5000
cells per second. It produces 12 images: 10 fluorescent markers in
addition to darkfield and lightfield images. The fluorescent images
provide higher contrast but require a pre-processing step to add
the fluorochromes. On the other hand, the lightfield and darkfield
images have no pre-processing requirement, but have reduced
image clarity.

Our system targets a particular type of imaging flow cytome-
try that analyzes cellular mechanical properties using bright-field
images. The main idea is to generate a force on a cell in a flowing
fluid and determine its physical response. We can analyze the high
speed images to determine mechanical properties based upon the
cell’s shape, size, circularity, and deformability. And then we can
use those features to classify the cell.

For example, we can determine the deformability of a cell
by analyzing the image. Different cells will deform in different
ways. A pluripotent stem cell deforms more than its differentiated
progeny; pleural fluid with metastatic cells will deformmore than
fluidwith normal cells [13]; cells susceptible to tumor cell invasion
have a changing mechanical behavior [24]; cancerous cells with
the highest invasive potential are stiffer than those with lower
migrations [33]; and older cells deform differently than younger
ones [38]. More generally, recent research states that cells’ me-
chanical properties ‘‘play important roles in the regulation of var-
ious biological activities at the molecular and cellular level’’ [39].
Thus, a cellular image analysis system for microfluidic deformabil-
ity cytometry provides an attractive approach for high throughput
cell screening and sorting.

In this paper, we focus on developing a high speed cellular anal-
ysis system for microfluidic deformability cytometry. This uses a
microfluidic channel to deliver a cell into the center of a stretching
extensional flow,which generates a uniform stress on the cell caus-
ing a deformation. The cells flow quickly through the microfluidic
channel enabling high throughput processing. By imaging the cell
in the extensional flow with a high speed image sensor, we can
observe the deformation of large population of cells with a high
throughput.

Fig. 1 shows the target system that is designed to produce
cell stretching in an extensional microfluidic channel. The target
systemuses a high speed camera to observe cellular deformation. It
applies uniformhydrodynamic force to a single cell on the channel,
while the fast flowing fluid enters the field of view of the camera.
High speed microscopy focuses on the center point imaging cell’s
movement and its deformation. For example, Fig. 1(d) shows a
sequence of a single cell events from entering the field of view to
exiting into an outlet for sorting. The resolution of thismicroscopic
image is 64× 64 and one cell stays in this view only fewmicrosec-
onds or few frames. Because of the fluid speed in the channel, this
hydrodynamic approach is able to assess a large number of cells
efficiently. This technique has the potential to process up to 20,000
cells per second. However, it comes with the critical bottleneck of
handling the generated image data.

Our target performance is to analyze 2000 cells per second
while assuming (1) any frame has no more than one cell (2) one



D. Lee et al. / J. Parallel Distrib. Comput. 113 (2018) 167–178 169

Fig. 1. (a) An imaging flow cytometry system can be used to sort cells by imaging micro-fluid having cells in a device. It consists of two big processes, data collection and
data analysis. Data collection: (b) this system has a microfluidic device where the fluid flows (c) the device is designed to generate uniform pressure to stretch cells. (d) raw
images for one cell event. A cell can appear on 15 frames at most from entering to exiting a field of view. Data analysis [13]: (e) it analyzes cellular morphological features,
such as initial diameter, circularity, or size. (f) examples of cellularmechanical property analysis, (i), (ii) and (iii) density scatter plots of the size and deformability of different
cells. (iv) different patterns for different cells in size-deformability map.

cell event appears in 7–15 consecutive frames, and (3) only 50% of
frames have valid cell feature. Thatmeans the systemmust process
28,000–60,000 frames in one second. Also, for the practical usage
of cell sorting, it should analyze one cell within a predetermined
latency, which is dictated by the time it takes the cell to arrive at
the sorting point or the end of the extensional channel.

3. Related work

In this section, we review other literature pertaining to high-
performance hardware-accelerated cytometry research. High-
throughput cell analysis systems aremostly based on an FPGA, DSP
or embedded-sensor system.Aswediscussed in Section 2, themost
conventional cytometry research for high throughput analysis is
flow cytometry, which reads a particular reaction signal that varies
depending on the experimental setup and cellular properties. This
specialized hardware has been commonly employed in various
signal-processing research and provides an optimized system to
meet high throughput and low latency constraints. Thus, flow
cytometers for high-throughput cell analysis are, in general, imple-
mented on an embedded system to maximize their performance.

There are several imaging flow cytometry approaches, but
mostly they are limited to a particular type of image input that still
requires the researcher to biotag or attach fluorescence on a cell
or risk limited performance. [4,11,12] Our approach is based on a
bright-field image taken by a high-speed phantom camera, which
requires no tags on a cell. We measure cellular morphological
features based on this image input enabled by a high-performance
system using an FPGA.

Buschke et al. [4] present a cell analysis system for image
cytometry using a DSP and FPGA. Their system attempts to detect
the cell and automatically process the image in the same way
we do. However, our input data are bright field images, which
require more complex processing than their fluorescence images.
Moreover, our requirements are more challenging in terms of

throughput and latency compared to their system, which operates
at 2.33 frames per second.

Goda et al. [11,12] developed a heterogeneous hardware accel-
erated (FPGA and CPU) image cytometer for cancer cell detection.
For this application, the FPGA is used for data capture and performs
only simple low-level processing, which amounts to coarse size-
based classification. The CPU performs the bulk of the analysis
on the filtered images. Our system requires significantly more
advancedmorphological feature detection to be performed in real-
time on the FPGA.

GPUs are frequently used to accelerate image processing and
computer vision applications. GPUs achieve speedups by process-
ing and computing upon data using thread level parallelism. Tse
et al. [35] present a GPU-based approach to analyze cellular fea-
tures in image. It parallelizes two bottleneck modules in a system
pipeline: an image transform function from one image coordi-
nate to another one and a bottomhat-filter module for contrast
enhancement. This work accelerates only partial modules of the
entire image analysis process, but shows substantial improvement
over a CPU-based implementation.

However, a GPU implementation must access DDR memory
frequently to load/store data, which inevitably causes high latency.
This inherent restriction of GPU architecture prevents our applica-
tion from achieving its strict latency goal. Our previous work [25]
presents an FPGA-based approach for imaging flow cytometry and
compares the accelerated result in different platforms including a
GPU. The FPGA based architecture for cell analysis achieves 2262
FPS throughput and 1.4ms/frame latency. This result is better than
a GPU implementation in terms of throughput, and it shows an
FPGA canmeet the strict latency constraints that are not achievable
on the GPU.

In this article, we demonstrate an advanced FPGA acceleration
work for various datasets with better accuracy in higher perfor-
mance than the previous work [25]. Imaging cells in a microscope
highly depends on the camera performance. Bright field based



170 D. Lee et al. / J. Parallel Distrib. Comput. 113 (2018) 167–178

image is easily blurred and sensitive to the light level, so noise
level or intensity level of input image varies and image quality is
not consistent. The previous work presents a prototyped design
only for a single data set, so it is not adjustable for other dataset
in different conditions. We develop more generic algorithm for
more difficult datasets using experimental setups. The noise level
in the new datasets has small particles that can be easily misread
as a valid cell. The algorithms described in this research work on a
broader set of data with higher accuracy.

Thus, the system pipeline is deeper and has more stages, which
may increase the computation complexity if it is not designed
carefully. We partition the analysis into a detection module and
an analysis module. The separate detection module screens empty
frames at a higher frame rate and only passes valid cell frames to
the analysis module. The analysis stage analyzes cell morphology
accurately on a subset of the original frames. The prefiltering
detection operation reduces the frame rate requirements for the
analysis, which generally contains more complex functions that
end up being the bottleneck.We parallelize these operations when
necessary to achieve higher framerates.

To achieve our performance goals in both latency and through-
put, we should minimize memory access and parallelize data and
tasks intensively. Our analysis algorithm is carefully designed to
feed data in a feed-forward streaming manner. We leverage on-
chip memories and our hardware design is customized to imple-
ment pipeline, data, task level parallelism in our system in various
level. These optimizations enable a design that is 30 times faster
speed up than our previous implementation.

Using hardware acceleration for image processing is well
known in many other domains. However, the target throughput
is generally less demanding (under 1000 frames per second) and
focused on processing the larger resolution images [21,15]. Greisen
et al. present a video processing pipeline for high definition stereo
video in [15]. It utilizes a FPGA–GPU–CPU system for high speed
stereo vision and processes video streams up to the resolution
1920 × 1080 at 30 frames per second.

There are several works accelerating a medical imaging system
on an FPGA [37,7]. Coric et al. [7] present a hardware accelerated
parallel-beam backprojection algorithm used in computerized to-
mography (CT). Xu et al. [37] developed a medical imaging system
for a CT filtered backprojection algorithm. They compare and in-
vestigate different hardware designs using C, Impulse C and VHDL.
Their work is limited in that they show their manual design has
better performance than Impulse C. Our work targets a different
imaging system and achieves the high performance requirements.

We can find several other image processing systems running
at higher frame rates (thousands of frames per second) [22,19,12].
Kagami et al. shows a networked vision system of transferring vi-
sual features using ethernet at 1000 fps in [22]. It handles a 64× 64
image on an FPGA attached to a CMOS vision chip, but it does not
analyze the image itself and only performs on preprocessed vision
features and transfers them through a network. IDP Express is a
high speed vision system that uses an FPGA to record 512 × 512
images and operates at 2000 frames per second [19]. Compared to
theseworks, our target system hasmore challenging requirements
as it needs to perform more complex image analysis to extract the
cellular morphology.

4. Methods

In this section, we introduce our cell image analysis algorithm
and its hardware accelerated architecture on an FPGA. To ease
the design space exploration process, we design and optimize the
hardware architecture using a high level synthesis tool, Xilinx
VivadoHLS 2015.2. It allows us to focus on behavior level synthesis,

data access patterns, pipelining, connections between modules,
and so on, rather than low-level hardware debugging.

4.1. System goal

We aimed to extract cellular morphological features from given
cell images, such as cell shape, size or radius, circularity, and
deformability. To measure cell shape or roundness, we convert a
cartesian coordinate of the cell image into a polar coordinate and
trace the cellular wall. The basic idea is that, if a cell is a closed
convex shape, the converted image can be used to describe a cell
morphology. For example, if a cell is a perfect circle, the distances
between the cell center and the cellular wall in every angle will be
the same. However, if the cell is stretched, then they will not.

One cell is captured in multiple frames as it flows across the
field of view of the camera. The number of consecutive images
depends upon the flow rate. In our system, a cell can be present
in up to 15 frames. By integrating morphological feature results
of these frames, we can acquire the deformability or the shape
changing pattern of cell.

4.2. Overall flow

The imaging flow cytometry system is not only computationally
intensive for image analysis algorithm, but it is highly data in-
tensive. Our method processes these image data in streaming and
fully pipelined manner in finer level as well as functional level for
high performance and low resource usage. It has to handlemassive
amount of cellular images that are coming in the analysis pipeline
in streaming way pixel by pixel initially. It can process incoming
data when it is ready and forwarding it to next module right away
with no storage required. It does not have iteration or feed data
backward in its data flow, which prevents a faster pipelining oper-
ation. Our streaming data processing approach minimizes delay of
analysis results and on-chip memory for caching data.

Also,modules do not have iterations. All functionalmodules can
be implemented in one-pass processing, and input and interme-
diate data in the algorithm pipeline are delivered only forward.
That enables us to create a hardware architecture that works on
streaming images with a pipelined structure. The cell image anal-
ysis algorithm has two major parts: cell detection and cell analysis.
Fig. 2 provides an overview of the process.

Fig. 3 shows a cell analysis core architecture at a high level,
corresponding to the algorithm flow. The averaging module gen-
erates a background image as a preprocessing step. It takes the
first 256 frames and averages them. The averaged background is
stored to a BRAM and persists in memory while the system is
running. All incoming input images after the first 256 frames are
directly connected to the detectionmodule. The detectionmodule is
relatively smaller and simpler than the analysis module. It quickly
checks if the current frame has a cell or not. The background image
will be used in this process. Only valid cell frames are passed
to the analysis module. The analysis module processes the rest
of the major operations; deformation/morphological analysis. It
consists of three stages; find cell, find center, and trace cellular wall.
We synthesize these big modules separately and integrate them
manually to generate a bitstream in Vivado 2015.2.

4.3. Image analysis pipeline

Fig. 4 shows a detailed block diagram of our hardware design
including all modules and the connections between them. The box
(a) in the figure is cell detection, and the rest of them, (b), (c), and(d),
are substages of cell analysis, find cell, find center, and trace cellular
wall, respectively.



D. Lee et al. / J. Parallel Distrib. Comput. 113 (2018) 167–178 171

Fig. 2. Cell image dataset and a cellular morphology feature analysis flow in high level; (a) A and B are raw input data for cell events. They have 64 × 64 resolution. White
pixels in C represent cell area of the cell event B, which is intermediate data in processing module. (b) The algorithm flow consists of two main modules; cell detection and
cell analysis. The detection module checks if a current frame has a cell and passes only cell frames to the analysis module. The analysis module converts cell-focused areas
into polar coordinate images and traces cellular walls on the image. This shape information can be used to estimate radius, circularity, and deformability; Note that frames
in the C row of (a) is from the cell detection module in (b).

Fig. 3. Cell analysis core; Averaging, detection, and analysis. The averaging module
takes the first 256 frames to generate a background image. The detection and analy-
sis modules start running after that. The averaging module generates a background
image and stores it using a BRAM, which is read by the detection module. The
detection module passes intermediate images to the analysis module using FIFOs,
and, if a current frame has no cell, it discards it.

4.3.1. Detection module
The detectionmodule detects the presence of a cell quickly from

incoming frames and passes only valid cell frames to the next
stages, rejecting empty ones. We minimize the complexity of the
detectionmodule for a fast detection process. This rejecting process
is based on a binary image, where it represents the cell area as
white (or 1 in binary) pixel values (see in Fig. 5(a)).

In Fig. 4(a),when an input frame (C) comes in, it subtracts (B) the
background image acquired by averaging the first 256 input frames
in the averaging module. Then, it considers the bins in its histogram
with the lowest intensity as background and selects a gray level
value to separate the cell area from background. The binary image
generated from this process may have noise in the background,
so it applies a binary morphology operation, erosion-only, to leave
only big particles, which is likely to be a cell. The number of valid
true pixels in this frame is used to determine frames with a cell. A
one-bit iscell flag indicates this frame has a cell (A).

4.3.2. Find cell stage
The find cell stage needs a more accurate cell location than

the cell detection stage. The input is the background subtracted
image (B) from the detection module. Then, a Gaussian filter is
used to denoise the input (E), and the thresholding module con-
verts it (E) into a binary image. To remove extra particles from
the background, it does a binary morphology operation, opening,
i.e. dilation after erosion. The resulting binary image has a white
blob on a plain black background representing the cell area as
shown in Fig. 5(b). Averaging the number of these white pixels in
each rowand columngives an exact location of cell (D) (See Fig. 7).

4.3.3. Find center stage
Based on the location of the cell (D), it crops a 24 × 24 cell area

from three images (B, C, and E). The resizing module interpolates



172 D. Lee et al. / J. Parallel Distrib. Comput. 113 (2018) 167–178

Fig. 4. Cell analysis core pipeline block diagram (a) cell detection module (b)(c)(d) cell analysis module; (b) find cell, (c) find center, (d) trace cellular wall. The connections
between these stages are noted alphabetically.

them 5 times and the adjusting module enhances its contrast. It
converts the contrast-enhanced images to binary images to find
the center point of a cell. In the binary images, white pixels repre-
sent the inner cell area or cellular walls as shown in Fig. 6. It finds
a center point (F) by averaging the number of these pixels in each
row and column similarly to the find cell module. Averaging the
3 images also confers the benefit of reducing the noise since the
errors in one are compensated for in the other images. The center
point will be the input for the next stage.

4.3.4. Trace cellular wall stage
In this stage, the conversion module converts cartesian coordi-

nate cell images into polar coordinate images based on the center
point (F). The horizontal axis represents the angle from the x
axis in the original image, 0 to 360 degrees, and the vertical axis
represents the distance from the center of the cell, or the radius.
It uses the contrast-enhanced input image (G) as the module input
and the darkest pixel in every single angle is considered the cellular
wall. Finding the minimum intensity value at a particular angle is



D. Lee et al. / J. Parallel Distrib. Comput. 113 (2018) 167–178 173

Fig. 5. The cell detection process and the find cell stage in the cell analysis module (a) cell detection; it subtracts background from a given input image using thresholding.
Then based on a converted binary image, it determines valid/non-valid cell frames.(b) finding cell; similar to cell detection, it finds a location of the cell from a denoised binary
image, which is more accurate.

Fig. 6. Find center stage; this stage resizes the cropped cell area from the three images based on the cell location found in the find cell module. Then, it resizes the cropped
images 5 times and enhances their contrast. Adaptive thresholding converts the adjusted images to binary images. A center point is found by averaging the number of white
pixels in each row and column.

Fig. 7. Trace cellular wall; The input to this module is the contrast-enhanced input image and the center point from the previous module. Based on the center point, it
converts the cell image into a polar coordinate image and traces the cellular wall. The horizontal axis represents 0 to 360 degree angles. The vertical axis represents the
radius, the distance from the center point to cellular wall in terms of the number of pixels. The lowest intensity values are considered to be cellular wall.



174 D. Lee et al. / J. Parallel Distrib. Comput. 113 (2018) 167–178

Fig. 8. Hardware optimization for bottleneckmodules; Resizing, adjusting, and get center are themain bottlenecks because they handle the largest size images. (a) To balance
the overall performance, they are partitioned into four quadrants and parallelized. (b) The bicubic interpolation operation has weak data dependency on the overlapped
boundaries region. If we ignore this, it can cause artifacts at the partitioned edges. (c) Generating a histogramhas a data dependency on the entire scanned image. It generates
a histogram for each partitioned image and reduces them. (d) The get center module also needs to scan the image by rows and columns. This process is also partitioned and
reduced similar to (c).

the simplest way to determine the distance to the cellular wall, but
this method is likely to produce noisy results. So the conversion
module extracts the distance to the cellular wall using several
different methods and takes the median value of the results for
each angle.

4.4. Hardware modules

Some modules in Fig. 4 share some common patterns of com-
putation or data access, like templates [27,2]. While [27,2] identify
general computation or data access patterns, our work is more
specific to image processing. The sliding window pattern is the
most frequently used pattern in this domain. Gaussian filtering,
erosion, and dilation are sliding window kernel operations. Scaling
is similar except it changes the size of output image. Thresholding
and adjusting arematching a pixel value to another pixel value, and
these are not dependent onneighboring pixels. The find cell and get
center modules are group detection operations, which find a point
by averaging the number of white pixels in a binary image in each
row and column. Coordinate conversion transforms a geometrical
shape of image, like warping, but also changes the size. Modules in
each group are optimized in a similar way, and optimizedmodules
are used to compose larger modules, such as cell detection, find cell,
find center, or trace cellular wall in Fig. 4.

Our hardware implementation is fully pipelined at a fine-
grained level (intra-modules) as well as a coarse-grained level
(inter-modules). Most of the optimized modules achieve Initiation
Interval (II) in one clock cycle using the pipeline directive. All sub-
modules inside of two big modules run in a functionally pipelined
way by applying the dataflow directive in HLS (See Table 1).

This hardware design method combined with image analysis
algorithm flow let us estimate a deterministic performance result
overall and gives a stable throughput in spite of probable algorithm
flow update. Because they are divided into small modules and fully
pipelined, only a bottleneckmodule decides the entire throughput.
That means, even if the algorithm flow adds more modules for
further extensive analysis, it does not affect latency or throughput

Table 1
Modules grouped based on their computation patterns.

Groups Modules

Sliding window
Kernel operation Gaussian filtering, erosion, dilation.
Scaling Bicubic interpolation, cropping
Pixel-matching Adjusting, thresholding

Detection Find cell, get center
Geometry transformation Coordinate conversion
Others Generating histogram, Otsu’s method

performance that much as long as additional modules are opti-
mized to meet the similar condition within similar patterns, II in
one clock cycle with a pipeline directive.

4.5. Bottleneck modules

In a pipelined design, it is important to balance throughput
performance by improving main bottlenecks since they are the
critical path of the entire system. In our hardware design, the
latency of each module depends on the size of image. The main
bottleneck modules in the system pipeline are find center since it
handles the largest frame after resizing; resizing (bicubic interpola-
tion), adjusting, thresholding, and get center.

To achieve the higher performance, these modules should bal-
ance their performance with different modules. There are two
ways to achieve that: scaling and partitioning. Scaling is simply
replicating bottleneck modules multiple times and maximizing
bandwidth, and partitioning breaks a bottleneck module down
into submodules. Scaling is relatively simple to implement but it
uses more resources to hold data for multiple frames. Partitioning
should be done carefully considering data dependencies between
submodules,which can introducemore complexity. But processing
units in partitioning are smaller and use less resources. So we
partition the bottleneck modules, resizing (bicubic interpolation),
adjusting, thresholding, and get center, to multiple submodules that
can run in parallel (see Fig. 8(a)). Each module operation and its
data are divided and sent to four quadrants.



D. Lee et al. / J. Parallel Distrib. Comput. 113 (2018) 167–178 175

Fig. 9. System description (a) offline cell analysis system connecting a host computer and an FPGA. The host reads raw data from a disk and sends them to the hardware
using RIFFA for PCIe. All image analysis is processed on the FPGA side. (b)(c) input and output data format. Input data are streamed as 4096 pixel values and output data for
a single frame consists of the frame number, valid cell flag (iscell), cell location from raw data, center point found, and 360 radius values in every angle.

4.5.1. Bicubic interpolation
The interpolation module is basically a sliding window opera-

tion. Line buffers hold pixel data while a sliding window moves
over them. It uses a 4 × 4 sized window for the bicubic operation.
No temporal dependency between frames is needed, but there is
a spatial dependency in one frame for neighboring window pixels.
Ignoring this dependency can cause aliasing at cut boundaries (see
in Fig. 8(b)). To minimize this error, line buffers should contain
pixel values from the overlapping region. Cropped images are
delivered to BRAMs and the line buffers can be filled from the
cropped images.

4.5.2. Image adjustment
The image adjustment operation stretches an image histogram

and matches each pixel to another pixel value. Generating the
histogram requires checking every pixel value in a given image and
therefore there exists a strong data dependency. To generate the
histogram of the partitioned image without sacrificing throughput
performance, it calculates small histograms for each quadrant first
and then reduces them into one later (Fig. 8(c)). The histogram
reduction is a one pass operation with a small input size, so it does
not decrease the throughput performance.

4.5.3. Get center
The get center module is similar to the image adjustment opera-

tion. It also needs to scan the entire image counting-pixel histograms
by rows and columns and has a strong data dependency (see in
Fig. 8(d)). For partitioned images, each processing unit generates
multiple histograms independently, then reduces them into one.

5. Experimental results

In this section, we describe our experimental system and
present the accuracy and performance results that we achieved.

5.1. System description

We tested our method on 3 different platforms: Matlab, C,
and FPGA. The software implementations used a 2.3 GHz Intel
Core i5 with 8 GB DDR3. The target FPGA board for hardware
implementation is the Xilinx VC707, which has a Xilinx Virtex
7 FPGA device, xc7cx485tffg1761-2. We demonstrate an end-to-
end system by connecting the FPGA board with a host computer
communicating through PCIe. The control PC has Windows 7 or

Table 2
Test video set for accuracy; the number of valid cell frames for cell detection results.
The first 1000 frames are taken from each video data. Note that the concentration
of cells can be controlled by diluting the fluid.

Set 1 Set 2 Set 3 Set 4

Cell 135 170 148 150
No-cell 865 830 852 850

Ubuntu Linux and runs with the latest RIFFA 2.1 driver for FPGA
communication [20]. On the software side, the host is responsible
for reading data, streaming the data to the FPGA, and receiving the
results (see Fig. 9(a)). The analysis core of the FPGA design uses
the AXI-stream interface. This system is for offline analysis, and
the connection can be replaced with any streaming interface for
an online system.

5.2. Test dataset

The test data are organized in four different sets, each of which
has 5000 frames. The frames are 64× 64 in resolution, 4096-pixels,
and stored in anunsigned 8-bit data type. The rawdata are takenby
a phantom camera [29]. Since this setup is very sensitive to light-
level, the contrast level of the test video varies slightly. For accu-
racy testing, we take the first 1000 frames and generate ground
truth data. Then we compare our results to them (see Table 2.) The
hit/miss ground truth data are manually produced, but others are
from an initial work, which are also estimated results.

The format of the input test data sent to the FPGA is in Fig. 9(b).
The output data consists of the frame number, iscell signal, the
location of the cell, the location of the cell center in the resized
image, and 360-radius values (see in Fig. 9(c)). If the detection
module decides a current frame has no cell, the analysis module
does not start and generates no output. The first four bytes of the
output, i.e. the frame number, help to synchronize an input frame
and the output data by counting the number of frames sent to the
FPGA.

5.3. Target throughput performance

Our initial target performance is to analyze 2000 cells per sec-
ond. If one cell event appears in 7–15 frames and the event happens
in 50% of frames, the system has to be capable of processing 28–
60k frames/sec at the front end.
2000 (cells/sec) × 7–15 (frames/cell)

0.5 (valid frames/total frames)
= 28–60 k fps.



176 D. Lee et al. / J. Parallel Distrib. Comput. 113 (2018) 167–178

Table 3
Detection results with sensitivity (true positive rate), specificity (true negative rate),
precision (ratio of true positives to number of positive predictions), and accuracy.

Set 1 Set 2 Set 3 Set 4

Sensitivity (%) 55.31 66.47 64.86 75.33
Specificity (%) 99.88 99.64 100 99.29
Precision (%) 98.73 97.41 100 94.96
Accuracy (%) 93.60 94.00 94.8 95.7

Table 4
Find cell results representing hit/miss rate within a fixed distance from a true cell
position.

Set 1 Set 2 Set 3 Set 4

Cell location (%) 97.36 100 97.92 98.23

Table 5
Accuracy results in mean absolute error (MAE) and statistical distributions of test
and ground truth data in terms of mean (µ) and standard deviation (σ ).

Set 1 Set 2 Set 3 Set 4

Size

MAE 1.31 1.37 6.88 1.74

True µ 15.03 14.73 14.20 12.43
σ 2.52 2.71 3.26 2.98

Test µ 16.11 15.72 20.47 13.25
σ 2.24 1.99 4.13 4.03

Ratio

MAE 0.22 0.17 0.26 0.21

True µ 1.04 1.03 1.19 1.00
σ 0.29 0.29 0.36 0.35

Test µ 1.06 0.98 1.21 0.84
σ 0.30 0.25 0.18 0.36

5.4. Accuracy results

For accuracy results, we use severalmetrics: (1) detection result
(hit/miss) (2) find cell result (hit/miss) (3) size of cell (average
radius) (4) respective ratio (ratio of long/short axis of cell.)

The detection output represents the result of determining
cell/no-cell frames. The results in Table 3 show the true positive
rate (sensitivity), true negative rate (specificity), ratio of true posi-
tives to number of positive predictions (precision), and true value
rate (accuracy). They can be calculated as below.

• Sensitivity = (true positive)/(condition positive, or true pos-
itive + false negative)

• Specificity = (true negative)/(condition negative, or false
positive + true negative)

• Precision = (true positive)/(test outcome positive)
• Accuracy = (true positive + true negative)/(total).

Sensitivitymeans howmany valid frames the system can detect
out of true valid cell frames, and specificity means the number of
empty frames the system can find out of true no-cell frames. And
high precision represents that there is a high probability that most
of the correctly predicted frames have real cell features. Our system
ignores some frames at the edges or cell blobs that are too blurry,
and effectively screens unnecessary frames and assures the validity
of cell frames. A high precision result here indicates more efficient
performance with fewer wasted operations.

The Find cell result presents the correctness of cell location
found. The next stage, cropping, cuts off cell focusing area based on
this result. Table 4 shows the findcell result. It decides hit if a cell
location is found within a certain boundary from a ground truth
point, which is 5-pixels in Euclidean distance in this test.

We check the size of cells and respective ratios to evaluate
tracing cellular wall results. Fig. 10 visualizes the tracing result
examples using test cell images, and Table 5 shows mean absolute
error (MAE), mean (µ) and standard deviation (σ ) of cell size and
respective ratios in each dataset.

Table 6
Throughput performance in detection and analysis modules of the hardware design
pipeline.

Detection Analysis

Bottleneck latency (cycles) 4102 8287
Max clock frequency (MHz) 268 255
Max frame rate (FPS) 65.3k 30.8k

Table 7
Performance comparison in terms of throughput and latency for different plat-
forms: Matlab, C, and FPGA.

Matlab C FPGA

Throughput (FPS) 43.73 230.76 60.9k
Speed up ×1392 ×263.9 N/A
Latency (ms) 22.87 4.33 0.068
Speed up ×335.6 ×63.6 N/A

5.5. Performance results

In this section, we show our performance results on an FPGA
and compare them to other design platforms. We have three dif-
ferent test platforms: Matlab, C, and FPGA.

In the FPGA design, we build two main processes which run
independently: detection and analysis. Table 6 shows themaximum
achievable frame rate of each module. The detection module deals
with smaller images, so it spends less clock cycles than a bottleneck
module and runs at a higher clock frequency. The analysis module
consists of more submodules and processes more complex opera-
tions. The image size is larger in this module and the critical path is
longer. Even though themaximum frame rate is less than detection,
it does not affect the system performance since it is handling less
frame data.

The performance of the entire design in terms of throughput
and latency is represented in Table 7 across platforms. Latency is
an average time to process one frame. Throughput is an inverse of
latency andmeans the amount of frames processed in a second. The
performance result of hardware is deterministic and predicable,
which depends on the size of image, but software is not. Perfor-
mance can differ across varying input. Our result is evaluated using
the dataset introduced in Section 5.2.

When the FPGA design runs at a 250 MHz unified clock fre-
quency, it is able to process 60.9k frames per second at the front
end. This is a×1392 speed upwhen compared to theMatlab design
and is×263.9 faster than the C-based software design. The latency
result also shows a significant speed up. The hardware design takes
0.068 ms to process one frame on average, which is ×335.6 faster
than Matlab and ×63.6 than the C-design.

We compare our performance achievement with our previous
work [25] in Table 8. Even though the new image analysis process
is enhanced andmore complicated covering broader cellular image
sets, it presents much faster throughput and latency performance
against both FPGA and GPU implementations. Our new architec-
ture filters valid cell frames quickly at the front end, and all bottle-
neck modules are balanced to achieve the target throughput as in
Section 4.5. The new design results in about 30 times faster than an
FPGA design in [25]. GPU design has a critical bottleneck in terms
of latency because of data load operation. We utilize only on-chip
memories for minimal latency, which is tiny but provides great
memory bandwidth.

5.6. FPGA resource utilization

Table 9 shows the resource utilization results of our hardware
design. The detection module consumes less than 1% of FPGA re-
sources; 0.8% of LUTs and 0.3% of FFs. The analysis module uses
16.6% of BRAMs, 18.8% of LUTs, 7.72% of FFs, and 10.14% of DSPs.



D. Lee et al. / J. Parallel Distrib. Comput. 113 (2018) 167–178 177

Fig. 10. Trace cellular wall results example (a) polar coordinate images with the trace of the cellular wall in white lines (b) cell images with corresponding trace lines.

Table 8
Performance comparison in terms of throughput and latency with our previous
work in [25].

Previous works [25] This work

GPU FPGA

Throughput (FPS) 1.32k 2.26k 60.9k
Latency (ms) 151.7 1.4 0.068
Frequency (MHz) – 100 250

Table 9
Resource utilization in hardware design pipeline analysis. Utilization of detection
and analysis modules and total utilization including PCIe connection.

Detection Analysis Total

BRAM 0 328 390 (19.0%)
LUT 2653 45242 58533 (19.3%)
FF 1683 45338 60587 (9.98%)
DSP 0 299 299 (10.7%)

The entire design, including the PCIe API, consumes less than 20%
of the resources overall.

Since the image analysis process runs with no dependency
between frames, it can be scaled as much as the resources are
available. The current design uses only 20% of resource on a target
FPGAdevice, it is possible to addmore processing element pipeline.
If it scales the procedure multiple times, the frame rate could
be more than the current 60k FPS up to few hundreds thousand
frames per second. Our current goal in the algorithm is estimating
the cellular feature accurately, but if the rest of resources could
be also used for post processing after measuring cellular feature
if necessary.

6. Conclusion

In thiswork,wedeveloped anddemonstrated a hardware accel-
erated cellular image analysis system. We designed an algorithm
to analyze low resolution microscopic videos, and we created a
custom hardware architecture to implement the algorithm on an
FPGA. Our target setup is designed to extract cellular morpho-
logical features from a high speed camera. Our system meets the
challenging performance requirements in terms of throughput as
well as latency. Our system can handle video streams up to 60,900
frames per second and process each imagewith a 0.068ms average
latency. This provides the capability to perform real-time analysis
and sorting of 2000 cells per second.

References

[1] M. Abkarian, M. Faivre, H.A. Stone, High-speed microfluidic differential
manometer for cellular-scale hydrodynamics, Proc. Natl. Acad. Sci. USA 103 (3)
(2006) 538–542.

[2] K. Asanovic, R. Bodik, B.C. Catanzaro, J.J. Gebis, P. Husbands, K. Keutzer, D.A.
Patterson, W.L. Plishker, J. Shalf, S.W. Williams, et al., The landscape of par-
allel computing research: A view from berkeley, Tech. rep., Technical Re-
port UCB/EECS-2006-183, EECSDepartment, University of California, Berkeley,
2006.

[3] S.C. Bendall, E.F. Simonds, P. Qiu, D.A. El-ad, P.O. Krutzik, R. Finck, R.V. Bruggner,
R. Melamed, A. Trejo, O.I. Ornatsky, et al., Single-cell mass cytometry of differ-
ential immune and drug responses across a human hematopoietic continuum,
Science 332 (6030) (2011) 687–696.

[4] D.G. Buschke, J.M. Squirrell, H. Ansari, M.A. Smith, C.T. Rueden, J.C. Williams,
G.E. Lyons, T.J. Kamp, K.W. Eliceiri, B.M. Ogle, Multiphoton flow cytometry to
assess intrinsic and extrinsic fluorescence in cellular aggregates: applications
to stem cells, Microsc. Microanal. 17 (04) (2011) 540–554.

[5] J. Che, V. Yu, M. Dhar, C. Renier, M. Matsumoto, K. Heirich, E.B. Garon, J.
Goldman, J. Rao, G.W. Sledge, et al., Classification of large circulating tumor
cells isolated with ultra-high throughput microfluidic Vortex technology,
Oncotarget 7 (11) (2016) 12748–12760.

[6] K. Cheung, S. Gawad, P. Renaud, Impedance spectroscopy flow cytometry: On-
chip label-free cell differentiation, Cytometry A 65 (2) (2005) 124–132.

[7] S. Coric, M. Leeser, E. Miller, M. Trepanier, Parallel-beam backprojection: an
FPGA implementation optimized for medical imaging, in: Proceedings of the
2002 ACM/SIGDA Tenth International Symposium on Field-Programmable
Gate Arrays, ACM, 2002, pp. 217–226.

[8] A.A. Dima, J.T. Elliott, J.J. Filliben, M. Halter, A. Peskin, J. Bernal, M. Kociolek,
M.C. Brady, H.C. Tang, A.L. Plant, Comparison of segmentation algorithms for
fluorescence microscopy images of cells, Cytometry A 79 (7) (2011) 545–559.

[9] J.S. Dudani, D.R. Gossett, T. Henry, D. Di Carlo, Pinched-flow hydrodynamic
stretching of single-cells, Lab Chip 13 (18) (2013) 3728–3734.

[10] S. Gawad, L. Schild, P. Renaud, Micromachined impedance spectroscopy flow
cytometer for cell analysis and particle sizing, Lab Chip 1 (1) (2001) 76–82.

[11] K. Goda, A. Ayazi, D.R. Gossett, J. Sadasivam, C.K. Lonappan, E. Sollier, A.M.
Fard, S.C. Hur, J. Adam, C. Murray, et al., High-throughput single-microparticle
imaging flow analyzer, Proc. Natl. Acad. Sci. 109 (29) (2012) 11630–11635.

[12] K. Goda, D. Di Carlo, B. Jalali, Ultrafast automated image cytometry for cancer
detection, in: Engineering in Medicine and Biology Society (EMBC), 2013 35th
Annual International Conference of the IEEE, IEEE, 2013, pp. 129–132.

[13] D.R. Gossett, T. Henry, S.A. Lee, Y. Ying, A.G. Lindgren, O.O. Yang, J. Rao, A.T.
Clark, D. Di Carlo, Hydrodynamic stretching of single cells for large population
mechanical phenotyping, Proc. Natl. Acad. Sci. 109 (20) (2012) 7630–7635.

[14] H.E. Grecco, S. Imtiaz, E. Zamir, Multiplexed imaging of intracellular protein
networks, Cytometry A (2016).

[15] P. Greisen, S. Heinzle, M. Gross, A.P. Burg, An FPGA-based processing pipeline
for high-definition stereo video, EURASIP J. Image Video Process. 2011 (1)
(2011) 1–13.

[16] J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz,
H.M. Erickson, R. Ananthakrishnan, D. Mitchell, et al., Optical deformability as
an inherent cell marker for testing malignant transformation and metastatic
competence, Biophys. J. 88 (5) (2005) 3689–3698.

[17] J.E. Hobbie, R.J. Daley, S. Jasper, Use of nuclepore filters for counting bacteria by
fluorescence microscopy., Appl. Environ. Microbiol. 33 (5) (1977) 1225–1228.

http://refhub.elsevier.com/S0743-7315(17)30325-8/sb1
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb1
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb1
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb1
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb1
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb3
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb3
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb3
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb3
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb3
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb3
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb3
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb4
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb4
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb4
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb4
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb4
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb4
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb4
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb5
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb5
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb5
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb5
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb5
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb5
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb5
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb6
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb6
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb6
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb7
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb7
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb7
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb7
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb7
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb7
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb7
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb8
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb8
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb8
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb8
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb8
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb9
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb9
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb9
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb10
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb10
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb10
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb11
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb11
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb11
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb11
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb11
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb12
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb12
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb12
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb12
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb12
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb13
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb13
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb13
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb13
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb13
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb14
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb14
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb14
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb15
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb15
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb15
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb15
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb15
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb16
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb16
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb16
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb16
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb16
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb16
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb16
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb17
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb17
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb17


178 D. Lee et al. / J. Parallel Distrib. Comput. 113 (2018) 167–178

[18] L. Hood, J.R. Heath, M.E. Phelps, B. Lin, Systems biology and new technolo-
gies enable predictive and preventative medicine, Science 306 (5696) (2004)
640–643.

[19] I. Ishii, T. Tatebe, Q. Gu, Y.Moriue, T. Takaki, K. Tajima, 2000 fps real-time vision
system with high-frame-rate video recording, in: 2010 IEEE International
Conference on Robotics and Automation, (ICRA), IEEE, 2010, pp. 1536–1541.

[20] M. Jacobsen, D. Richmond, M. Hogains, R. Kastner, RIFFA 2.1: A Reusable Inte-
gration Framework for FPGAAccelerators, ACMTrans. Reconfigurable Technol.
Syst. (TRETS) 8 (4) (2015) 22.

[21] S. Jin, J. Cho, X. Dai Pham, K.M. Lee, S.-K. Park, M. Kim, J.W. Jeon, FPGA design
and implementation of a real-time stereo vision system, IEEE Trans. Circuits
Syst. Video Technol. 20 (1) (2010) 15–26.

[22] S. Kagami, S. Saito, T. Komuro,M. Ishikawa, Anetworkedhigh-speed vision sys-
tem for 1000-fps visual feature communication, in: 2007 First ACM/IEEE Inter-
national Conference on Distributed Smart Cameras, IEEE, 2007,
pp. 95–100.

[23] M.J. Kim, S.C. Lee, S. Pal, E. Han, J.M. Song, High-content screening of drug-
induced cardiotoxicity using quantitative single cell imaging cytometry on
microfluidic device, Lab Chip 11 (1) (2011) 104–114.

[24] S. Kumar, V.M. Weaver, Mechanics, malignancy, and metastasis: the force
journey of a tumor cell, Cancer Metastasis Rev. 28 (1–2) (2009) 113–127.

[25] D. Lee, P. Meng, M. Jacobsen, H. Tse, D. Di Carlo, R. Kastner, A hardware
accelerated approach for imaging flow cytometry, in: 2013 23rd International
Conference on Field Programmable Logic and Applications, (FPL), IEEE, 2013,
pp. 1–8.

[26] Y.-H. Lin, G.-B. Lee, Optically induced flow cytometry for continuousmicropar-
ticle counting and sorting, Biosens. Bioelectron. 24 (4) (2008) 572–578.

[27] J. Matai, D. Lee, A. Althoff, R. Kastner, Composable, parameterizable templates
for high Level Synthesis, in: Proceedings of the Conference onDesign, Automa-
tion and Test in Europe, EDA Consortium, 2016.

[28] S.P. Perfetto, P.K. Chattopadhyay,M. Roederer, Seventeen-colour flow cytome-
try: unravelling the immune system, Nat. Rev. Immunol. 4 (8) (2004) 648–655.

[29] PhantomCamera [cited June 28, 2016]. URL https://www.phantomhighspeed.
com/Products/Phantom-Camera-Products.

[30] I. Schmid, W.J. Krall, C.H. Uittenbogaart, J. Braun, J.V. Giorgi, Dead cell dis-
crimination with 7-amino-actinomcin D in combination with dual color im-
munofluorescence in single laser flow cytometry, Cytometry 13 (2) (1992)
204–208.

[31] I. Schmid, C.H. Uittenbogaart, B. Keld, J.V. Giorgi, A rapidmethod formeasuring
apoptosis and dual-color immunofluorescence by single laser flow cytometry,
J. Immunol. Methods 170 (2) (1994) 145–157.

[32] R.A. Schultz, T. Nielsen, J.R. Zavaleta, R. Ruch, R. Wyatt, H.R. Garner,
, Hyperspectral imaging: a novel approach formicroscopic analysis, Cytometry
43 (4) (2001) 239–247.

[33] V. Swaminathan, K.Mythreye, E.T. O’Brien, A. Berchuck, G.C. Blobe, R. Superfine,
Mechanical stiffness grades metastatic potential in patient tumor cells and in
cancer cell lines, Cancer Res. 71 (15) (2011) 5075–5080.

[34] The imagestreamx by amnis [cited June 28, 2016]. URL https://www.amnis.
com/documents/brochures/ISX-MKII%20Brochure_Final_Web.pdf.

[35] H.T.K. Tse, P. Meng, D.R. Gossett, A. Irturk, R. Kastner, D. Di Carlo, Strategies for
implementing hardware-assisted high-throughput cellular image analysis, J.
Assoc. Lab. Autom. 16 (6) (2011) 422–430.

[36] R. Tsien, T. Rink, M. Poenie, Measurement of cytosolic free Ca 2+ in individual
small cells using fluorescence microscopy with dual excitation wavelengths,
Cell Calcium 6 (1) (1985) 145–157.

[37] J. Xu, N. Subramanian, A. Alessio, S. Hauck, Impulse C vs. VHDL for accelerating
tomographic reconstruction, in: 2010 18th IEEE Annual International Sym-
posium on Field-Programmable Custom Computing Machines, (FCCM), IEEE,
2010, pp. 171–174.

[38] F. Xue, A.B. Lennon, K.K. McKayed, V.A. Campbell, P.J. Prendergast, Effect of
membrane stiffness and cytoskeletal element density on mechanical stimuli
within cells: an analysis of the consequences of ageing in cells, Comput. Meth.
Biomech. Biomed. Eng. 18 (5) (2015) 468–476.

[39] Y. Zheng, J. Nguyen, Y. Wei, Y. Sun, Recent advances in microfluidic tech-
niques for single-cell biophysical characterization, Lab Chip 13 (13) (2013)
2464–2483.

Dajung Lee is currently a Ph.D. candidate in the University
of California San Diego (UCSD) and is a system engineer in
Intel since 2017 April. She received her bachelor degree
(B.S.) in Electronic Engineering from Sogang University,
South Korea in 2010 and her master degree (M.S.) in
Electrical and Computer Engineering from UCSD in 2013.
She was an engineer in Samsung Electronics before her
graduate study and worked in IBM T.J. Watson Research
Center as an intern in 2015. Her primary research interests
are in hardware acceleration and system design at image
processing, computer vision and machine learning.

Nirja Mehta joined UC San Diego in 2014, as a Graduate
Student in Electrical and Computer Engineering Depart-
ment. She received her B.Tech. in Electronics and Commu-
nication Engineering fromNirmaUniversity, Gujarat, India
in 2013 and M.S. in Electrical and Computer Engineering
with concentration in Signal and Image Processing under
the advisement of Professor Ryan Kastner from UC San
Diego in 2016. She currently works in Engineering Devel-
opment Group at MathWorks.

Alexandria Shearer received her Bachelors in Computer
Science and Engineering and aminor inMathematics from
Santa Clara University in 2013, was admitted to the UCSD
Computer Science Ph.D. program, and recently earned her
masters degree in Computer Science from UCSD. She was
recognized with the Outstanding Computer Science and
Engineering Senior Award in undergrad (2013). She is a
Google Anita BorgMemorial Scholar (2012), a Eugene Cota
Robles Fellow, and a National Science Foundation Gradu-
ate Research Fellow. She is now a Robotics Technologist
at the Jet Propulsion Laboratory in Pasadena working on

deep learning classifiers for vessel types on water.

Ryan Kastner is currently a Professor in the Department
of Computer Science and Engineering at the University
of California, San Diego. He received a Ph.D. in Computer
Science fromUCLA, amasters degree (M.S.) in Engineering
and bachelor degrees (B.S) in both Electrical Engineering
and Computer Engineering, all from Northwestern Uni-
versity. He is the Co-director of the Wireless Embedded
Systems Master of Advanced Studies Program. He also co-
directs the Engineers for Exploration Program. His current
research interests reside in three areas: hardware acceler-
ation, hardware security, and remote sensing.

http://refhub.elsevier.com/S0743-7315(17)30325-8/sb18
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb18
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb18
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb18
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb18
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb19
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb19
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb19
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb19
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb19
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb20
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb20
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb20
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb20
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb20
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb21
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb21
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb21
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb21
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb21
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb22
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb22
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb22
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb22
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb22
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb22
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb22
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb23
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb23
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb23
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb23
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb23
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb24
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb24
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb24
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb25
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb25
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb25
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb25
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb25
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb25
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb25
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb26
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb26
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb26
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb27
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb27
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb27
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb27
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb27
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb28
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb28
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb28
https://www.phantomhighspeed.com/Products/Phantom-Camera-Products
https://www.phantomhighspeed.com/Products/Phantom-Camera-Products
https://www.phantomhighspeed.com/Products/Phantom-Camera-Products
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb30
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb30
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb30
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb30
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb30
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb30
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb30
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb31
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb31
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb31
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb31
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb31
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb32
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb32
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb32
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb32
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb32
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb33
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb33
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb33
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb33
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb33
https://www.amnis.com/documents/brochures/ISX-MKII%2520Brochure%5FFinal%5FWeb.pdf
https://www.amnis.com/documents/brochures/ISX-MKII%2520Brochure%5FFinal%5FWeb.pdf
https://www.amnis.com/documents/brochures/ISX-MKII%2520Brochure%5FFinal%5FWeb.pdf
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb35
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb35
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb35
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb35
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb35
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb36
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb36
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb36
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb36
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb36
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb37
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb37
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb37
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb37
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb37
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb37
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb37
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb38
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb38
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb38
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb38
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb38
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb38
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb38
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb39
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb39
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb39
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb39
http://refhub.elsevier.com/S0743-7315(17)30325-8/sb39

	A hardware accelerated system for high throughput cellular image analysis
	Introduction
	Background
	Related work
	Methods
	System goal
	Overall flow
	Image analysis pipeline
	Detection module
	Find cell stage
	Find center stage
	Trace cellular wall stage

	Hardware modules
	Bottleneck modules
	Bicubic interpolation
	Image adjustment
	Get center


	Experimental results
	System description
	Test dataset
	Target throughput performance
	Accuracy results
	Performance results
	FPGA resource utilization

	Conclusion
	References


