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This dissertation aims to better understand the role of moist convection (clouds and turbulence) 

in the complex dynamic coupling that occurs between components (land and atmosphere) as well 

as between subregions (Andes and Amazon) of the Earth system, using modern numerical 

modeling approaches. First, climate model representation of land-atmosphere coupling is 

compared between standard techniques that use conventionally parameterized convection versus 

prototype next-generation simulations that can include explicit convection. That is, numerical 

experiments are designed to isolate the global hydrologic land-atmosphere coupling on weekly-

to-subseasonal and seasonal timescales using both approaches to representing convection in 

climate simulation. Initial analysis focuses on hydrologic coupling dynamics, and then the effects 

of explicit convection on thermal land-atmosphere coupling are highlighted over the 

southwestern U.S. and the Arabian Peninsula. Implications on global land surface Bowen ratio 

and its climate sensitivity are also discovered and discussed. Finally, a separate topic is analyzed, 

related to clarifying ongoing issues in capturing realistic regional hydroclimate over the Amazon. 

In this case the coupling dynamics are not between atmosphere and land, but between convective 

heating over a mountain chain (the Andes) and associated modulations of the atmospheric 
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thermodynamic environment over an upstream rainforest (the Amazon). These dynamics are 

elucidated using mechanism denial techniques within an ensemble hindcast experiment, which 

sheds light on a previously underappreciated Andean control on Amazonian rainfall. Key results 

from these analyses are summarized below. 

 

The first theme (Chapter 2) is to investigate the effects of explicit convection on global 

hydrologic land-atmosphere coupling across multiple timescales. Over weekly-to-subseasonal 

timescales, based on experiments following the Global Land-Atmosphere Coupling Experiment 

(GLACE) protocol, explicit convection is found to systematically mute the soil moisture–

precipitation coupling strength on a global scale which is primarily linked to the atmospheric 

segment (evapotranspiration–precipitation) of the land-atmosphere feedback. Whereas this 

sensitivity is pronounced on short timescales relevant to synoptically driven drought and 

hydrologic weather extremes, over longer (seasonal) timescales, based on simulations following 

the Atmospheric Model Intercomparison Project (AMIP) protocol, the effects of explicit 

convection on seasonal hydrologic land-atmosphere coupling are undetectable. 

 

The second topic (Chapter 3) is to uncover the effects of explicit convection on global thermal 

land-atmosphere coupling. In both the GLACE- and AMIP-type simulations, a range of 

complementary metrics all suggest that explicit convection robustly changes the thermal 

coupling within specific subregions of the globe. Over the Arabian Peninsula, explicit convection 

produces less but more realistic time-mean rainfall, pushing local soil moisture regime away 

from the optimal transitional regime, which is required for strong coupling. As a result, local 

thermal coupling strength is significantly reduced. Over the southwestern U.S. and northern 
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Mexico, explicit convection substantially enhances the thermal coupling strength independent of 

soil moisture or precipitation. Instead, such enhancement is related to increases in the local 

surface Bowen ratio. Based on a variety of simulations across multiple model version pairs of 

using parameterized vs. explicit convection, I conclude that the use of explicit convection has a 

systematic and robust effect of increasing the land surface Bowen ratio. Furthermore, under 

climate change scenarios, comparing to parameterized convection, explicit convection exhibits a 

remarkably stronger amplification of the land surface Bowen ratio. This opens up new questions 

in the era of explicitly simulated convection in climate models pertaining to surface climate 

simulation. 

 

The third subject matter (Chapter 4) of the thesis is motivated by the ubiquitous “Wet Andes – 

Dry Amazon” (WADA) dipole pattern of rainfall biases seen in the Coupled Model 

Intercomparison Project Phase 5 (CMIP5) archive. Using the Community Earth System Model 

version 1 (CESM v1) and focusing on the wet season, mechanism denial experiments are 

conducted to investigate the remote influence of Andean convection on Amazonian rainfall. It is 

shown that Andean convective heating reduces rainfall over the Amazon with a maximum of -1 

mm/day, and that this response sets up rapidly, within 15 hours. Column moisture budget 

analysis shows that the total advection of moisture over the Amazon due to Andean convective 

forcing is controlled by the vertical advective term in ways that can be traced back to a 

mountain-forced component of the vertical velocity field. Meanwhile, other causative pathways 

that could control Amazon precipitation through the surface moist static energy, gross moist 

stability, or column energetics are found to be either irrelevant or secondary. 
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Chapter 1. Introduction 

1.1 Overview 

Atmospheric convection is crucial in transporting heat, momentum, and moisture within the 

troposphere, and it occurs across a broad range of spatial and temporal scales. This dissertation 

aims to better understand the role of convection within the Earth system through numerical 

investigations into the impacts of explicit convection on global hydrologic and thermal land-

atmosphere coupling, and remote influence of Andean convective heating on Amazonian rainfall 

over South America. 

 

1.2 Effects of explicit convection on global hydrologic land-

atmosphere coupling across multiple timescales 

Land-atmosphere feedbacks refer to interactions between state variables belonging to the land 

and atmosphere, among which soil moisture is of essential functionality in modulating the energy 

balance and the hydrological cycle. Soil moisture directly modulates local evapotranspiration 

(ET), surface Bowen ratio, and impacts atmospheric boundary layer stability, near-surface 

temperature, convection, clouds, and precipitation. As a major component of land-atmosphere 

interaction, the soil moisture-precipitation feedback has received considerable attention. In 

transitional zones, i.e., geographic regions where soil moisture is neither too small nor too large 

for interactions with the atmosphere to be inconsequential, elevated soil moisture can enhance 

ET, which may decrease or increase subsequent precipitation, and with few exceptions 

increasing (decreasing) precipitation will cause changes in soil moisture in the same direction, 
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completing the whole feedback loop (Seneviratne et al. 2010a). The soil moisture-precipitation 

feedback intrinsically involves ET. As a result, this complex overall feedback is often 

decomposed into two links: first, the soil moisture-ET (the terrestrial segment) and next the ET-

precipitation (the atmospheric segment). 

 

The feedback link between ET and precipitation is very uncertain, rendering the sign of the total 

soil moisture-precipitation feedback difficult to characterize. Depending on the impacts of the 

synoptic-scale background circulation, soil moisture-precipitation feedback can be either positive 

or negative (Cook et al. 2006; Entekhabi et al. 1992; Froidevaux et al. 2014). Even in the 

absence of impacts from background circulation, the sign of the soil moisture-precipitation 

feedback is still affected by the relative dominance of descending in the Level of Free 

Convection (LFC) and growing of boundary layer depth in triggering convection (Schlemmer et 

al. 2012), and by whether the complex effects of explicit convection are included (Hohenegger et 

al. 2009). Furthermore, mesoscale soil moisture spatial distribution patterns can also alter the soil 

moisture-precipitation feedback (Taylor et al. 2012a; Taylor et al. 2011). As a result, different 

studies have disagreed on the sign of the feedback. Over the eastern United States, using North 

American Regional Reanalysis dataset (NARR), after mitigating the impact of large-scale 

synoptic systems, Findell et al. (2011) argue that the probability of afternoon precipitation is 

enhanced by high evaporation over the eastern United States and Mexico. However, based on 

remote sensing, in-situ, and reanalysis datasets, Guillod et al. (2014) find no confirmation from 

observational-derived data for the positive relationship of the ET-precipitation link over the 

eastern United States revealed by NARR. 

 



 3 

Much of our historical intuition for land-atmosphere feedback in global climate models comes 

from the Global Land-Atmosphere Coupling Experiment (GLACE) (Koster et al. 2006a), in 

which a metric for the land-atmosphere coupling strength, namely the degree to which land 

surface anomalies can impact the atmosphere, is intercompared across twelve modeling groups. 

This GLACE study concluded that land-atmosphere coupling hot spots occur in transition 

regions and a follow-up study suggests that the inter-model variation of land-atmosphere 

coupling strength in GLACE mostly comes from differences in the soil moisture-evaporation 

link (Guo et al. 2006). In results of the GLACE, during boreal summer, regions of strong soil 

moisture–precipitation coupling include the central Great Plains of North America, the Sahel, 

equatorial Africa, and India (Koster et al. 2004). 

 

Multiple studies have since cast doubt on the soil moisture-precipitation coupling strength 

obtained by Global Climate Models (GCMs) via the GLACE protocol. Wei et al. (2010)  argue 

that considering the tendency of GCMs to underestimate of the low-frequency band of 

precipitation variability, the soil moisture–precipitation coupling strength obtained in GLACE 

should be re-calibrated to be smaller. Utilizing observational data from the Atmospheric 

Radiation Measurement Program’s Southern Great Plains (SGP) Central Facility site, Phillips 

and Klein (2014) suggest that the impacts of soil moisture on precipitation, unlike in GCMs, are 

minimal and the soil moisture-precipitation coupling strength over the central United States may 

be overestimated in modern ESMs. Consistent with this view, remote sensing observations also 

suggest weaker soil moisture–precipitation coupling compared to modeled coupling strength 

(Ferguson et al. 2012; Levine et al. 2016b). 
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Soil moisture–precipitation interactions are too important to be misrepresented, yet too complex 

to be realistically simulated by traditional GCMs. One huge uncertainty in traditional GCMs 

comes from parameterizations of sub-grid scale cloud processes. Such deficiencies have plagued 

the atmospheric modeling community for decades. The best approach to solve this problem 

would be using a Global Cloud-Resolving Model (GCRM). Despite the progress on this front, 

long-duration simulations using this type of model are not yet practical due to computational 

limitations (Fukutomi et al. 2016; Randall 2013; Sasaki et al. 2016; Satoh et al. 2019; Stevens et 

al. 2019). Another more practical approach, called cloud SuperParameterization (SP), is to 

embed a Cloud-Resolving-Model (CRM) within every grid column of a GCM, to explicitly 

simulate deep convection, shallow convection and cloud overlapping, making it possible to 

couple large-scale circulation, cloud processes, gravity wave dynamics, turbulence, and radiative 

transfer, hence enabling generally more realistic and explicit simulations of weather and climate 

(Randall et al. 2003; Randall 2013). This approach is computationally much cheaper than a 

GCRM model while still maintaining many of the physical merits of explicit convection. SP 

models have been shown to give fruitful results in some aspects of atmospheric simulations that 

have been challenging in conventional GCMs, such as the Madden-Julian Oscillation (MJO), the 

diurnal cycle of precipitation, and the frequency and intensity statistics of rainfall (Benedict and 

Randall 2009; Demott et al. 2007; Kooperman et al. 2016; Pritchard and Somerville 2009; 

Randall 2013). 

 

The research objective of Chapter 2 is to reveal the effects of explicit convection by using the SP 

framework on global soil moisture–precipitation coupling across multiple timescales. In 

particular, chapter two aims to answer the following research questions: 
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(1) How does explicit convection change the soil moisture–precipitation coupling in GLACE-

type experiments that measure it with soil moisture synchronization? Are these effects global or 

regional? 

(2) How to understand the effects of explicit convection on hydrologic land-atmosphere 

coupling? Is the atmospheric segment or the terrestrial segment the dominant driver of the 

overall effects of explicit convection? 

(3) Does explicit convection change the hydrologic land-atmosphere coupling on seasonal 

timescales? Why or why not? 

 

1.3 Effects of explicit convection on global thermal land-atmosphere 

coupling and implications on land surface Bowen ratio 

The soil moisture–temperature feedback can be described as follows: negative soil moisture 

anomalies will reduce surface ET and latent heat flux, which leads to more surface sensible heat 

flux and higher temperature; elevated temperature may in turn enlarge the water vapor deficit, 

potentially producing more ET despite dryer soils and hence exacerbating soil moisture dryness 

(Seneviratne et al. 2010a). The soil moisture-temperature feedback may interplay with the soil 

moisture-precipitation feedback. For instance, less rainfall results in soil moisture deficit, leading 

to strengthened surface sensible heat flux and increased surface temperature (Berg et al. 2015). 

Over strong land-atmosphere coupling regions, soil moisture-atmosphere interactions are also 

able to alter the mean, variance, and higher-order distribution moments in the probability density 

functions of surface temperature (Berg et al. 2014). 
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Soil moisture-temperature feedbacks can impact society and ecosystems by modulating the 

intensity and persistence of heatwaves (Fischer et al. 2007b; Lorenz et al. 2010), which 

subsequently contribute to increased mortality, forest fires and crop yield shortfall (Fischer et al. 

2007a). Regional simulations of the 1976, 1994, 2003, and 2005 heat extremes over Europe 

demonstrate (Fischer et al. 2007a) that these heatwave events can be partially attributed to 

preceding soil moisture depletion, and 50-80% of sweltering summer days can be attributed to 

soil moisture-temperature interactions. As a consequence of global warming, there is a higher 

probability of hot extremes induced by surface soil moisture deficits (Mueller and Seneviratne 

2012). In future climate, new transitional climate zones of strong land-atmosphere coupling have 

been predicted to form in central and eastern Europe, which could likewise contribute to 

increased summer temperature variability and hot extremes by end of century (Seneviratne et al. 

2006). 

 

The research objective of Chapter 3 is to shed light on the effects of explicit convection on soil 

moisture-temperature coupling and understand why explicit convection changes the thermal 

coupling in a certain way. Specifically, this chapter will address the following research 

questions: 

(1) What are the effects of explicit convection on soil moisture–temperature coupling based on 

ensemble hindcast experiments following the GLACE protocol? 

(2) Are these effects of explicit convection robust insofar as they are similarly detectable when 

using different types of experiment designs and different diagnostics to measure soil moisture–

temperature coupling? 

(3) Why does explicit convection impact the thermal coupling in the manner observed? 
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(4) Does explicit convection have an impact on the surface Bowen ratio? Does explicit 

convection have a robust effect on the future amplification of the surface Bowen ratio in a 

warmer climate? 

 

1.4 Understanding the remote influence of Andean convection on 

Amazonian rainfall 

Amazonia is the most diverse terrestrial ecosystem on the planet with crucial impacts on regional 

and global weather and climate. It is a massive carbon sink capable of buffering to some degree 

the current carbon stress impacting the atmosphere. As the climate warms, this paradise of 

biodiversity and its carbon buffering functionality may be endangered by water stress and 

deforestation in the coming decades (Levine et al. 2016a; Malhi et al. 2008; Malhi et al. 2009; 

Medvigy et al. 2013). 

 

GCMs remain an important tool for projecting future climate and informing mitigation and 

adaptation strategies. Nevertheless, biases in GCMs in the present climate increase uncertainties 

of future climate projections, reducing the reliability of this policy-making process. Models 

participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) do not perform 

well on the hydroclimate over the Andes-Amazon region, as can be seen by the biases of annual-

mean rainfall in the multi-model-mean of CMIP5 (Figure 1.1). I will refer to the zonal dipole 

structure of rainfall biases as the “Wet Andes – Dry Amazon” (WADA) in this thesis. This 

WADA bias pattern is also evident in the multi-model-median from CMIP5 (Mueller and 

Seneviratne 2014). 
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Figure 1.1 Biases of annual-mean precipitation rate in the multi-model-mean of all atmosphere-

ocean coupled GCMs in CMIP5 historical simulations (1850-2005). Benchmark dataset for 

precipitation is from Global Precipitation Climatology Project (GPCP). Adapted from Fig. 9.4b 

in the Working Group One report of IPCC (2014). 

 

Imperfections in GCM-simulated Amazonian rainfall have been historically viewed through the 

lenses of surface net radiation, terrestrial water availability, nearby Intertropical Convergence 

Zones (ITCZs), sea surface temperatures (SSTs) in adjacent oceans (Fernandes et al. 2015; Yin 

et al. 2012); treatments of cloud processes, land parameterizations (Sakaguchi et al. 2018; Zhang 

et al. 2017); strength of the South American Low-Level Jet (SALLJ) and its east-to-west 

moisture transport (Barros and Doyle 2018; Boers et al. 2017; Kooperman et al. 2018; 

Langenbrunner et al. 2019; Vizy and Cook 2007). 
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This chapter takes a different perspective by hypothesizing that Andean convection can remotely 

influence Amazonian rainfall in a west-to-east manner. If proven right, this hypothesis suggests 

that the Andes-Amazon ought to also be assessed in model evaluations, and implies that 

Amazonian rainfall biases in a model can be partially attributed to biases of convection and 

rainfall over the Andes. 

 

The research objective of Chapter 4 is to better understand the role of Andean convection on 

Amazonian rainfall. In particular, this chapter answers the following research questions: 

(1) How does Andean convection influence Amazonian rainfall? What are the spatial and 

temporal features characterizing its role? 

(2) What is the dominant mechanism for Andean convection to exert a notable influence on 

precipitation over the Amazon? Can other mechanisms be ruled out? 

 

1.5 Organization 

Chapter 2 will first briefly review the GLACE protocol for historical context on background on a 

GCM experiment design that has become a standard for defining the soil moisture–precipitation 

coupling strength unambiguously, then introduce the seasonal hydrologic coupling metric using 

terrestrial water storage. Next, this chapter will reveal the effects of explicit convection by 

comparing new superparametreized vs. conventionally parameterized climate simulations, 

focusing on hydrologic land-atmosphere coupling on weekly-to-subseasonal timescales and 

examining implications on the atmospheric and terrestrial segments. Lastly, the effects of explicit 

convection on hydrologic land-atmosphere coupling on seasonal timescales will be shown. 
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The first part of Chapter 3 builds upon the GLACE-type simulations introduced in the second 

chapter and further uncovers the effects of explicit convection on thermal land-atmosphere 

coupling. In the second part of this chapter, after corroborating evidence using multiple 

experiment designs and various diagnostics, it will be shown that the effects of explicit 

convection on soil moisture–temperature coupling is robustly detectable over the Arabian 

Peninsula and the southwestern United States. Explicit convection reduces thermal coupling over 

the Arabian Peninsula due to reductions of the time-mean rainfall, while it enlarges the thermal 

coupling over the southwestern United States, which is related to enhancements of surface 

Bowen ratio. The final part of this chapter will present additional evidence showing that explicit 

convection systematically enhances land surface Bowen ratio in the present climate, and it also 

leads to predictions of a stronger amplification of future land Bowen ratio in a warmer climate 

compared to standard GCMs with conventionally parameterized convection. 

 

The research in Chapters 2 and 3 was published in the Journal of Advances in Modeling Earth 

Systems as: 

Qin, H., Pritchard, M. S., Kooperman, G. J., & Parishani, H. (2018). Global Effects of 

Superparameterization on Hydrothermal Land-Atmosphere Coupling on Multiple Timescales. 

Journal of Advances in Modeling Earth Systems, 10, 530–549. 

 

Chapter 4 will focus on the remote control by Andean convective heating of Amazonian rainfall, 

regionally over South America. After descriptions of the experimental design, this chapter will 

present the characteristics of Andean convective forcing, followed by spatial and temporal 

features in the Amazonian rainfall responses. By testing multiple hypotheses from competing 
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frameworks for interpreting the causality underpinning tropical rainfall dynamics, it will be 

argued that changes in the moisture budget over the Amazon serve as a first-order control on 

Amazonian rainfall oscillations due to the vertical velocity anomalies galvanized by Andean 

convective forcing. As a consequence, features of the eastward expansion of the vertical velocity 

and moisture field in the middle troposphere will be described. The research in Chapter 4 is 

being prepared as a manuscript for publication in the Journal of Advances in Modeling Earth 

Systems as: 

Qin, H., Pritchard, M. S., Terai, C., Bacmeister, J., & Bogenschutz, P., Understanding the 

Remote Influence of Andean Convection on Amazonian Rainfall. (In preparation) 

 

Chapter 5 will summarize the major results and provide suggestions on future directions of 

follow up research. 
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Chapter 2. Effects of Explicit Convection on Global 

Hydrologic Land-Atmosphere Coupling Across Multiple 

Timescales 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Adapted from: 

Qin, H., Pritchard, M. S., Kooperman, G. J., & Parishani, H. (2018). Global Effects of 

Superparameterization on Hydrothermal Land-Atmosphere Coupling on Multiple Timescales. 

Journal of Advances in Modeling Earth Systems, 10, 530–549. 
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Abstract 

 
Many conventional General Circulation Models (GCMs) in the Global Land–Atmosphere 

Coupling Experiment (GLACE) tend to produce what is now recognized as overly strong Land–

Atmosphere (L–A) coupling. I investigate the effects of cloud Superparameterization (SP) on L–

A coupling on timescales beyond diurnal where it has been recently shown to have a favorable 

muting effect hydrologically. Using the Community Atmosphere Model v3.5 (CAM3.5) and its 

Superparameterized counterpart SPCAM3.5, I conduct soil moisture interference experiments 

following the GLACE and Atmospheric Model Intercomparison Project (AMIP) protocols. The 

results show that, on weekly-to-subseasonal timescales, SP also mutes hydrologic L–A coupling. 

This is detectable globally, and happens through the evapotranspiration–precipitation segment. 

But on seasonal timescales, SP does not exhibit detectable effects on hydrologic L–A coupling. 
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2.1 Introduction 

Land–atmosphere (L–A) interactions play a critical role in the energy balance and hydrological 

cycles [Entekhabi et al., 1992; Krakauer et al., 2010; Seneviratne et al., 2010] and thus 

significantly influence weather and climate on local [Chen and Avissar, 1994; Froidevaux et al., 

2013], regional [Kochendorfer and Ramírez, 2005], to global [Seneviratne et al., 2010] spatial 

scales and on diurnal [Findell et al., 2011; Schlemmer et al., 2011, 2012], seasonal [Cook et al., 

2006; Khodayar and Schädler, 2013], decadal and even centennial [Seneviratne et al., 2010] 

temporal scales. Soil moisture is an especially important land variable in a variety of L–A 

feedbacks. Soil moisture affects evapotranspiration (ET), water vapor content in the overlying 

atmosphere, and affects Planetary Boundary Layer (PBL) stability by changing the surface 

Bowen ratio, thus influencing local temperature, convection, clouds and precipitation 

[Hohenegger et al., 2009; Krakauer et al., 2010; Seneviratne et al., 2010]. Soil moisture can also 

have non-local and large-scale impacts [Seneviratne et al., 2010; Koster et al., 2014]. 

 

As reviewed by Seneviratne et al. [2010], L–A feedbacks can occur because soil moisture 

enhancement can lead to amplified ET (this link from soil moisture to ET is referred to as the 

terrestrial segment), which may or may not result in increased precipitation (this link from ET to 

precipitation is referred to as the atmospheric segment); in turn, increased precipitation 

contributes to more abundant soil moisture. The atmospheric segment, linking ET to 

precipitation, is the most uncertain within this process chain. For example, many studies disagree 

on the relationship between evaporation and precipitation over the eastern US [Findell and 

Eltahir, 2003; Findell et al., 2011; Guillod et al., 2014]. In one study, convection and 

precipitation are favored in conditions with either dryer or wetter soils, depending on the 
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inclusion of explicitly resolved convection or not [Hohenegger et al., 2009]. Surface soil 

moisture heterogeneity on scales of tens of kilometers is reported to be important for rainfall 

initiation [Taylor et al., 2011] and afternoon rainfall can be favored over regions dryer than 

surrounding areas [Guillod et al., 2015]. Cloud cover, not always associated with precipitation, 

can be higher over either wetter or dryer soils depending on the moisture content and stability of 

the overlying free atmosphere [Huang and Margulis, 2011; Chlond et al., 2014]. 

 

Despite the importance of L–A coupling, some fundamental puzzles remain unsolved. In the 

Global Land Atmosphere Coupling Experiment (GLACE) [Koster et al., 2000, 2006], inter-

model differences in the degree of soil moisture–precipitation are significant. For ease of 

description here and below, I will refer to coupling between land variables and precipitation as 

hydrologic L–A coupling (e.g., soil moisture–precipitation, land water storage–precipitation). 

Although a companion investigation to Koster et al. [2006] concluded that the multi-model mean 

of GLACE agrees with observations reasonably well [Guo et al., 2006], criticisms of overly 

strong L–A coupling in General Circulation Models (GCMs) have been proposed by many more 

recent studies [Wei et al., 2010; Ferguson et al., 2012; Phillips and Klein, 2014; Levine et al., 

2016], albeit with at least one exception [Mei and Wang, 2012]. 

 

Model representations of land processes have been shown to play an important role [Wei et al., 

2010; Medlyn et al., 2011; Swenson and Lawrence, 2014], and can be instrumental in 

determining the overall L–A coupling in terms of spatial and temporal variations [Wei and 

Dirmeyer, 2012]. For example, varying the representation of vegetation on the terrestrial 

segment of L–A coupling was shown [Williams and Torn, 2015] to improve summer climate in 
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central US in the single column Community Earth System Model v1.2.2 through prescribing 

Leaf Area Index (LAI), increasing leaf reflectivity, soil resistance to evaporation, and minimal 

stomatal conductance [Williams et al., 2016]. 

 

Representations of atmospheric processes are also important to L–A coupling, as has been noted 

by sensitivities to the choices of PBL and cumulus schemes in a regional model (Hirsch et al. 

2014) and changes of convection schemes in a GCM (Mei and Wang 2012); interactions between 

land surface and PBL (Santanello et al. 2009a; Santanello Jr et al. 2011; Santanello Jr et al. 

2013); and simulations of the low frequency component of precipitation (Wei et al. 2010). 

Interestingly, Wei and Dirmeyer (2010) investigated the GLACE-type soil moisture–

precipitation coupling strength in six combinations using two atmospheric models and three land 

surface schemes, and concluded that the main difference of coupling strength was due to the 

choice of atmospheric model rather than land surface scheme. In this chapter, I focus on a major 

update to the representation of atmospheric convection using an approach known as 

Superparameterization (SP, also known as Multiscale Modeling Framework, or “embedded 

explicit convection”), which replaces conventional parameterizations of deep convection, 

shallow convection and PBL turbulence with embedded Cloud-Resolving-Models (CRMs) 

[Grabowski and Smolarkiewicz, 1999; Grabowski, 2001; Khairoutdinov and Randall, 2001; 

Randall et al., 2003]. It has been shown to have important consequences. Over the Central U.S. 

during summer, SP can alter canopy–rainfall interactions due to a more intense precipitation 

distribution, without the overly frequent drizzle and associated excessive canopy interception 

recycling found in conventional GCMs [DeMott et al., 2007]. An improved rainfall intensity 

distribution is also evident at global scales relative to remotely sensed precipitation data TRMM 
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3B42 [Kooperman et al., 2016], as is improved surface latent heat fluxes relative to in-situ 

derived data FLUXNET [Mohr et al., 2013]. 

 

Recently, the first detailed analysis of SP from the perspective of modern coupling metrics 

showed that it favorably reduces hydrologic L–A coupling on subdaily timescales [Sun and 

Pritchard, 2016, SP16 hereafter]. But two limitations of SP16 are (1) the use of diagnostic 

correlative metrics of coupling and (2) the focus on short (subdaily) timescales of L–A coupling. 

It is still an open question whether or not similar effects of SP on L–A coupling can be 

confirmed using more causatively unambiguous metrics of GLACE, or on longer timescales in 

ways that might matter to weather and climate prediction. The main focus of this article is thus to 

reveal and understand the effects of SP on hydrologic on timescales beyond daily with an 

emphasis of results following the GLACE protocol.  

 

2.2 Methods 

2.2.1 Quantifying the hydrologic L-A coupling strength 

2.2.1.1 GLACE experiment revisited 

Previous attempts to isolate and quantify the effects of explicit convection on global hydrologic 

L–A coupling have relied on correlative metrics that are purely diagnostic (e.g. in SP16). To 

address this limitation, I first focus on a metric of coupling strength defined in GLACE [Koster 

et al., 2006], which can be derived from mechanism denial interference experiments. This 

procedure is used for a climate model with and without explicit convection. Briefly, the method 

consists of two sets of experiments, each a 16-member ensemble hindcast spanning 1 Jun–31 

Aug 1994, with perturbed initial conditions to sample atmospheric internal variability. In the first 
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set of experiments (called ensemble W, or ENS(W)), one ensemble member is randomly selected 

and its soil moisture is written to external files at every time step. Then in the second experiment 

(called ensemble S, or ENS(S)), subsurface (deeper than 5cm) soil moisture is prescribed from 

previous saved files at time step level for each ensemble member, thus surgically removing the 

soil moisture–atmosphere interactions. The idea is that the internal variability that produces 

differences between ensemble members will be stronger in ensemble W, due to full interactions 

between soil moisture and the atmosphere, than in ensemble S, in which soil moisture time series 

are artificially synchronized to be identical for all members. Thus a quantitative metric of the 

impacts of L–A interactions on simulated internal variability, with direct relevance to intrinsic 

predictability, can be obtained as the difference in a metric of ensemble “similarity,” a converse 

to spread. 

 

Following Koster et al. [2006], this similarity metric is calculated as follows. I neglect the first 8 

days as spinup, and then reduce the following 84 daily mean precipitation values to six-day totals 

representing 14 samples. Within each set of hindcast experiments, I calculate the pan-ensemble 

standard deviation based on the full set of 224 six-day totals (i.e., 14 samples ×16 ensemble 

members) denoted by 𝜎𝑝; I then calculate the standard deviation based on 14 six-day totals 

representing the ensemble mean time series calculated by averaging across the 16 ensemble 

members, denoted by 𝜎�̂�. Finally, I compute the similarity quantity from GLACE, 

 
𝛺𝑝 =

16𝜎�̂�
2 − 𝜎𝑝

2

15𝜎𝑝
2

 
(2.1) 

for both ensemble W and ensemble S, denoted by 𝛺𝑝(𝑊) and 𝛺𝑝(𝑆) respectively. 

In ensemble S, soil moisture is synchronously prescribed to be identical in each ensemble 

member. In ensemble W, soil moisture is allowed to vary internally through atmospheric 
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feedbacks. The higher the enhancement of similarity in ensemble S relative to ensemble W, the 

larger the control of soil moisture on precipitation. Therefore, the soil moisture–precipitation 

coupling strength can be defined as 𝛺𝑝(𝑆) − 𝛺𝑝(𝑊), 𝑜𝑟 𝛥𝛺𝑝, where P stands for precipitation.  

To assess statistical significance, Monte Carlo analysis was done to calculate the 95% confidence 

level of 𝛥𝛺𝑝, finding it to be 0.057. This is consistent with the original GLACE study [Koster et 

al., 2006] arguing 0.06 is significant at 95% confidence level for Ω difference. 

 

It is worth noting that both soil liquid water and soil ice are prescribed in the original GLACE 

(Hauser et al. 2017; Koster et al. 2006b), while only soil liquid water are prescribed in our 

simulation set-up. Coincidentally, Hauser et al. (2017) recently pointed out that prescription of 

soil ice is not recommended for soil moisture prescription practices because it may cause large 

anomalies of surface temperature and ground heat flux. 

 

2.2.1.2 Land–atmosphere coupling on seasonal timescales 

The L–A coupling strength measured by the above GLACE protocol intrinsically focuses on 

weekly-to-subseasonal timescales. I expand our analysis by looking at coupling diagnostics on 

seasonal timescales using a strategy recently proposed in Levine et al., [2016] (L16 hereafter). 

Terrestrial water storage anomaly (TWSA) typically has a marked seasonal cycle with a 

maximum (𝑇𝑊𝑆𝐴𝑚𝑎𝑥) and a minimum (𝑇𝑊𝑆𝐴𝑚𝑖𝑛), the interval between which is referred to as 

the drawdown interval, corresponding to the growing season of vegetation. L16 argued that 

empirically, if land water storage had a strong control on precipitation during the following 

months, there should be detectable correlations across independent years between 𝑇𝑊𝑆𝐴𝑚𝑎𝑥 and 

the rainfall amount averaged over the drawdown interval (𝑃𝑟𝑒𝑐𝑖𝑝𝑑𝑖). Similarly, if preceding 

precipitation had a strong control on terrestrial water storage, the interannual correlation of 
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averaged precipitation over the seasonal drawdown interval and the terrestrial water storage at 

the end of the interval should be strong. Therefore, the impact of TWSA on subsequent 

precipitation can be indirectly measured by what is called the “forcing metric”, which is the 

correlation (Pearson’s r) between 𝑇𝑊𝑆𝐴𝑚𝑎𝑥 and 𝑃𝑟𝑒𝑐𝑖𝑝𝑑𝑖. The impact of preceding 

precipitation on subsequent TWSA can be indirectly measured by the correlation between 

𝑃𝑟𝑒𝑐𝑖𝑝𝑑𝑖 and 𝑇𝑊𝑆𝐴𝑚𝑖𝑛, called the “response metric”. This correlation is computed over inter-

annually varying pairs, separately at every land grid point location. Only inter-annual variability 

of the terrestrial water storage is retained by removing both the least square linear trend and the 

climatology of the seasonal cycle at every grid point. 

 

2.2.2 Models and simulations 

To assess the effects of explicit convection on L–A coupling on weekly-to-subseasonal 

timescales via the GLACE metric, 16-member ensemble hindcast simulations of June-July-

August (JJA) 1994 with and without soil moisture synchronization were conducted. Each 

ensemble member has an initial temperature perturbation on a magnitude of round-off error 

(1.0 × 10−5𝐾) to sample the atmospheric internal variability. I use the Community Atmosphere 

Model version 3.5 (CAM3.5) at T42 horizontal resolution (~2.8 degrees) and with 30 vertical 

levels, developed by National Center for Atmospheric Research (NCAR) [Collins et al., 2004], 

and its Superparameterized counterpart SPCAM3.5, which was developed by Marat 

Khairoutdinov [Khairoutdinov et al., 2005] and supported by the NSF Center for Multiscale 

Modeling of Atmospheric Processes (CMMAP). 
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In SPCAM3.5, within each grid column of the host GCM, a 32-column CRM with 4-km 

horizontal grid spacing replaces the conventional parameterizations of deep convection, shallow 

convection, and boundary layer turbulence. Both models are run with the Community Land 

Model version 3.5 (CLM3.5) [Oleson et al., 2008]. Initial atmospheric conditions are 

interpolated from ERA-Interim Reanalysis [Dee et al., 2011]. CLM3.5 was initialized in the 

same way as in SP16 using land variables from long-term climate simulations. Modifications to 

the CLM3.5 code (also relevant to modern versions of CESM) needed for soil moisture writing 

and reading capabilities were engineered as illustrated in Figure A1, where I make them 

available to the CESM user community. 

 

In a complementary set of long, free-running experiments, I followed the Atmospheric Model 

Intercomparison Project (AMIP) protocol to assess the effects of explicit convection on L–A 

coupling on seasonal timescales and for additional analysis. Both CAM3.5 and SPCAM3.5 were 

run for 1996-2015 with prescribed sea surface temperature (SST) and sea ice [Hurrell et al., 

2008] and the time period of this AMIP-type simulation was chosen to allow consistent 

validation against constraints from the Gravity Recovery And Climate Experiment (GRACE) 

satellite records. 

 

2.3 Results 

2.3.1 Hydrologic L-A coupling on weekly-to-subseasonal timescales 

In CAM3.5, most continental interiors including North America, tropical South America, 

tropical Africa, central Eurasia and East Asia are hotspots of strong hydrologic coupling (Figure 

2.1a). In contrast, in SPCAM3.5, a systematic reduction of the coupling strength can be seen 
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nearly everywhere. The only exception is a regional enhancement over Northern Mexico (Figure 

2.1b), which I will show later is linked to a local enhancement of the terrestrial segment of L–A 

coupling. I note that the presence of small negative values in the 𝛥𝛺𝑝 metric is not physically 

interpretable; such negative values attest to a degree of stochasticity in this type of analysis as 

discussed by Koster et al. [2006]. Thus, it is important to consider these results in broad 

geographical context, and in relation to a full suite of complementary metrics as evaluated below. 

Since CAM3.5 and SPCAM3.5 share an identical land model, it is logical to expect that the 

reductions in overall coupling occur through the atmospheric, rather than the terrestrial segment. 

I quantify their relative contribution by decomposing the soil moisture–precipitation (SM–P) 

coupling into soil moisture–ET (SM–ET) coupling (the terrestrial segment) and ET–precipitation 

(ET–P) coupling (the atmospheric segment). Following Guo et al., [2006], measurement of the 

terrestrial segment, CT, can be expressed as a GLACE-type metric for ET multiplied by the 

standard deviation of ET in ensemble W, i.e.,  

 𝐶𝑇 = (𝛺𝐸𝑇(𝑆) − 𝛺𝐸𝑇(𝑊)) × 𝜎𝐸𝑇(𝑊), (2.2) 

and is calculated for every land point. The latitude-weighted global mean (latitude from 30°S to 

60°N) of the terrestrial coupling is then calculated. For overall consistency, quantification of the 

atmospheric segment is calculated by dividing the global mean of SM–P coupling by that of the 

terrestrial segment. The results shown in Table 2.1 confirm that, for the global mean, the 

reduction of overall coupling strength in SPCAM3.5 comes from the reduction in ET–P 

coupling, highlighting the importance of the atmospheric segment. Therefore, globally speaking, 

on weekly-to-subseasonal timescales, explicit convection reduces the SM–P coupling via 

reducing the atmospheric segment. 

 



 23 

This is consistent with recent findings on the effects of explicit convection on shorter timescales. 

In SP16, on subdaily timescales, CAM3.5 was found to produce systematically higher sensitivity 

of afternoon rainfall occurrence to morning evaporative fraction changes than SPCAM3.5. The 

reduced subdiurnal coupling under SP was in turn in better agreement with precipitation-

assimilating regional reanalysis over the US. One implication of our discovery of a consistent 

effect of SP in the GLACE metric is that the same mechanism that realistically mutes coupling 

on subdaily timescales may also impact coupling on weekly-to-subseasonal timescales. From the 

perspective of criticisms on overly strong coupling strength in conventionally parameterized 

climate models [Wei et al., 2010; Ferguson et al., 2012; Phillips and Klein, 2014; Levine et al., 

2016], such a reduction could be viewed as an improvement, though it is difficult to consistently 

validate the model-based GLACE metric using observations due to its dependence on an 

artificial mechanism denial. 

 

The GLACE result has an interesting implication for subseasonal-to-seasonal predictability in 

superparameterized frameworks. The systematic reduction of SM–P coupling in SPCAM3.5 

indicates that when explicit convection is used, there is less intrinsic synoptic predictability of 

precipitation from knowledge of soil moisture. This message is relevant to ongoing attempts to 

exploit the benefits of SP to enhance subseasonal-to-seasonal predictions [Goswami et al., 2015; 

Subramanian and Palmer, 2016, 2017; Düben et al., 2017] — while more midlatitude 

predictability might be expected from teleconnections linked to enhanced simulations of slow 

tropical modes like the Madden-Julian Oscillation (MJO) using SP [Benedict and Randall, 

2009], our results suggest a reason to expect less predictability from assimilation of local soil 

moisture. 
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Figure 2.1 Soil moisture–precipitation coupling strength revealed by ΔΩp from (a) CAM3.5 and 

(b) SPCAM3.5. ΔΩp is significant at 95% confidence level where it’s larger than 0.06. The color 

bar is irregular and set to be the same as in Koster et al. (2006b). 

Table 2.1 Global mean strength of soil moisture–precipitation coupling (SM–P), terrestrial 

segment coupling (SM–ET), and atmospheric segment coupling (ET–P) in CAM3.5 and 

SPCAM3.5, latitude-weighted (latitude from 30°S to 60°N). 

 SM-P SM-ET ET-P 

CAM3.5 0.0175 0.0249 0.7028 

SPCAM3.5 0.0046 0.0368 0.1250 
 

2.3.2 Hydrologic L-A coupling on seasonal timescales 

 

As pointed out in L16, previous studies do not agree on the sign and magnitude of L–A coupling 

and many focus on short (daily-to-synoptic) timescales. To test whether the striking sensitivity of 
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SP on hydrologic L–A coupling on these short timescales has implications for longer term 

hydrologic variability, I extend our analysis to seasonal timescales using the forcing metric and 

response metric defined in L16. In order to validate the model performance, I use monthly 

precipitation data from the Global Precipitatoin Climatology Project (GPCP) version 2.3 [Adler 

et al., 2003, 2011; Huffman et al., 2009] and monthly TWSA from the GRACE mission’s Level-

3 gridded land data [Landerer and Swenson, 2012]. Missing values in the latter are replaced 

using linear interpolation. 

 

As shown in Figure 2.2, in observations and models, the forcing metric — as a measure of the 

impact of preceding terrestrial water storage on atmospheric precipitation during subsequent 

months — is consistantly weak. The response metric, as a measure of the impact of preceding 

atmospheric precipitation on subsequent terrestrial water storage, is much stronger. This is 

understandable because the impact of precipitation on land water state is more direct and should 

be more detectable than the reverse. In contrast to the striking differences in coupling between 

SPCAM and CAM seen on weekly-to-subseasonal timescales (Figure 2.1), coupling strength is 

remarkably similar on seasonal timescales for both the forcing and the response metric. 
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Figure 2.2  Land–atmophere coupling measured by the forcing metric (left column) and the 

response metric (right column) for 2003-2013 based on (a,b) GPCP and GRACE; and based on 

AMIP simulations from (c,d) CAM3.5 and (e,f) SPCAM3.5. Areas where correlation is not 

significant (significance level set to be 0.1) are shown in grey. In (c-f), numbers are latitude-

weighted pattern correlation between models and observations at the upper left, and latitude-

weighted Root-Mean-Square Error (RMSE) at the upper right. Latitudes are limited between 

60S and 60N. 

 

In summary, based on a set of metrics that attempt to quantify similar aspects of local L–A 

coupling, I have found evidence of time-scale dependence in the effects of SP on hydrologic 

coupling. On subdaily timescales, SP fundamentally changes hydrologic L–A coupling measured 

by triggering feedback strength, which was proposed by Findell et al. (2011) to delineate how 

afternoon rainfall occurrence changes with evaporative fraction, as seen in SP16. On weekly-to-

subseasonal timescales, our results show that SP also has a systematic impact on the hydrologic 

L–A coupling as measured by the GLACE-type metric. 
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I suspect a strong oceanic control and more non-local influences on precipitation for longer 

timescales. This might help explain why SP’s systematic effects on hydrologic L–A coupling 

manifest on subdaily and weekly-to-subseasonal timescales, but vanish over seasonal timescales, 

at least as measured by the seasonal coupling metric of L16, and in simulations in which SSTs 

are prescribed. Another possibility is that differences of the experiment and diagnostic design 

between GLACE-type soil moisture–precipitation coupling metric and the seasonal coupling 

metric of L16 play a role in differentiating the response. 

 

2.4 Conclusion 

L–A coupling is important to regional climate and weather prediction. Focusing on hydrologic 

coupling on timescales beyond daily, I have analyzed the effects of including explicit 

representations of cloud processes on global L–A coupling (by using SP). On weekly-to-

subseasonal timescales, based on the GLACE-type metric, the results show that explicit 

convection systematically mutes soil moisture–precipitation coupling by reducing the 

atmospheric segment. This tends to confirm the recent findings of reduced coupling under SP on 

subdaily timescales, i.e., smaller sensitivity of afternoon rainfall occurrence to morning 

evaporative fraction changes in SP16, and shows this muting extends to weekly-to-subseasonal 

timescales. This implies that realistic treatment of convection will reduce the contribution of 

initial state of soil moisture to intrinsic rainfall predictability. On seasonal timescales, hydrologic 

L–A coupling mainly manifests on the response segment (the impact of precipitation on land 

water storage), and the forcing segment (the impact of land water storage on precipitation) is 

weak, perhaps due to greater oceanic controls on seasonal precipitation. Unlike on shorter 
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timescales, the effects of explicit convection on hydrologic L–A coupling are undetectable on 

seasonal timescales. 

 

I acknowledge physical limitations of the standard implementation of SP used in the models I 

have analyzed, which limits the degree to which these sensitivities should be presumed to inform 

understanding of nature. While several of the sensitivities appear promising relative to 

observational constraints, there is the philosophical concern that real L–A coupling operates 

through the system of real boundary layer turbulence and shallow cumulus convection, which 

requires 3D grid spacing approaching 50-m to satisfyingly resolve vertical mixing. In contrast, 

the 2D CRMs with 200-m vertical (4-km horizontal) grid spacing used in SPCAM heavily under-

resolve, and over-parameterize, the relevant atmospheric physics, even if they are a step towards 

more “explicit” than conventional parameterization approaches. Xu et al. [2017] recently showed 

that addressing this shortcoming by augmenting SP with a higher-order subgrid turbulence 

parameterization significantly modifies simulated surface flux partitioning and the Bowen ratio's 

climate sensitivity. It would likewise be interesting to know if “ultra-parameterized” 

configurations of SPCAM [Parishani et al., 2017] with radically refined resolution in the PBL 

exhibit modified L–A coupling. 
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Chapter 3. Effects of Explicit Convection on Global Thermal 

Land-Atmosphere Coupling and Impacts on Land Surface 

Bowen Ratio 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Adapted from: 

Qin, H., Pritchard, M. S., Kooperman, G. J., & Parishani, H. (2018). Global Effects of 

Superparameterization on Hydrothermal Land-Atmosphere Coupling on Multiple Timescales. 

Journal of Advances in Modeling Earth Systems, 10, 530–549. 
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Abstract 

 
I investigate the effects of cloud Superparameterization (SP) on the thermal Land–Atmosphere 

(L-A) coupling in this chapter. Using the Community Atmosphere Model v3.5 (CAM3.5) and its 

Superparameterized counterpart SPCAM3.5, I conducted soil moisture interference experiments 

following the GLACE and Atmospheric Model Intercomparison Project (AMIP) protocols. Two 

robust regional effects of SP on thermal L–A coupling are found and explored. Over the Arabian 

Peninsula, SP reduces thermal L–A coupling through a straightforward control by mean rainfall 

reduction. More counterintuitively, over the southwestern US and northern Mexico, SP enhances 

the thermal L–A coupling in a way that is independent of rainfall and soil moisture. This signal is 

associated with a systematic and previously unrecognized effect of SP that produces an amplified 

Bowen ratio, and in hindsight is detectable in multiple SP model versions and experiment 

designs. In addition to amplifying the present-day Bowen ratio, SP is found to amplify the 

climate sensitivity of Bowen ratio as well, which likely plays a role in influencing climate 

change predictions at the L–A interface. 
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3.1 Introduction 

Soil moisture and associated L–A coupling are of great importance in operational Numerical 

Weather Prediction (NWP) [Seneviratne et al., 2010; Barthlott and Kalthoff, 2011; Koster et al., 

2011], and contribute to continental summer warm biases seen in both NWP and climate 

simulations [Cheruy et al., 2014; Van Weverberg et al., 2015]. Soil moisture conditions can also 

play a role in sustaining and amplifying temperature extremes and droughts [Entekhabi et al., 

1992; Hong and Kalnay, 2000; Fischer et al., 2007a, 2007b; Lorenz et al., 2010; Jaeger and 

Seneviratne, 2011]. Downstream effects include higher summer temperature variability and 

possibly enhanced temperature extremes, which have been demonstrated in eastern and central 

Europe and the Great Plains over North America [Seneviratne et al., 2006; Mueller and 

Seneviratne, 2012; Teng et al., 2016]. Furthermore, L–A coupling is projected to strengthen in a 

warmer climate [Dirmeyer et al., 2012, 2014], which may contribute to increases in the 

frequency or intensity of these extreme events. 

 

A basic soil moisture – surface temperature coupling concept can be described as follows. A 

decrease in ET (latent heat flux), resulting from a negative soil moisture anomaly, may lead to 

higher sensible heat flux and promote positive temperature anomalies in the air above the 

surface, possibly feeding back to soil moisture depletion by creating a larger atmospheric water 

vapor deficit [Seneviratne et al., 2010]. For convenience, I refer to the coupling between soil 

moisture and near-surface temperature as thermal L–A coupling. In this chapter, I investigate the 

effects of SP on the thermal pathway of L–A coupling which directly influences temperature 

extremes. 
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3.2 Methods 

3.2.1 Thermal L-A coupling strength measured by the GLACE metric 

Firstly, we compute the similarity quantity from GLACE for near-surface temperature, 

 
𝛺𝑇 =

16𝜎�̂�
2 − 𝜎𝑇

2

15𝜎𝑇
2  

(3.2) 

for both ensemble W and ensemble S, denoted by 𝛺𝑇(𝑊) and 𝛺𝑇(𝑆) respectively. The soil 

moisture–temperature coupling strength can be defined as 𝛺𝑇(𝑆) − 𝛺𝑇(𝑊), 𝑜𝑟 𝛥𝛺𝑇, where T 

stands for 2-meter air temperature. To assess statistical significance, Monte Carlo analysis was 

done to calculate the 95% confidence level of 𝛥𝛺𝑇, finding it to be 0.0561. This is consistent 

with the original GLACE study [Koster et al., 2006] arguing 0.06 is significant at 95% 

confidence level for Ω difference. 

 

3.2.2 Terrestrial coupling index 

In Dirmeyer [2011], a metric of terrestrial coupling strength is proposed as:  

 𝐼𝜙 = 𝑆𝑊𝛽𝜙 , (3.3) 

where 𝐼𝜙 is the terrestrial coupling index for surface flux 𝜙, 𝑆𝑊 is the standard deviation of daily 

soil moisture at a given level, 𝛽𝜙 is the linear regression coefficient between soil moisture and 

surface flux 𝜙. Very often 𝜙 is chosen to be the surface latent heat flux in 𝑊/𝑚2 and the index 

𝐼𝜙 is therefore in units of 𝑊/𝑚2. Such an index is only retained when the Pearson’s r correlation 

between soil moisture and variable 𝜙 is significant at the 99% confidence level.  
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Furthermore, the above index can be easily modified into a soil moisture–sensible heat flux 

coupling or soil moisture–temperature coupling index in which 𝜙 is replaced with sensible heat 

flux or 2-meter air temperature. 

3.2.3 Additional simulations 

We also analyze a set of pre-existing simulations from multiple model versions in discussing 

SP’s effects on the Bowen ratio and its climate sensitivity. These included conventional and SP 

simulations of the Representative Concentration Pathway 8.5 (RCP8.5, years 2006 to 2100) 

emissions scenario using the Community Climate System Model v4 (CCSM4), and pre-industrial 

(i.e. 285 ppm) and 4xCO2 (i.e. 1140 ppm) scenarios with the Community Earth System Model v1 

(CESM1). CCSM4 was run with conventional and SP versions of the CAM4 as its atmospheric 

component, and CESM1 was run for two sets of simulations using both CAM4 and CAM5 as its 

atmospheric component. All of these simulations were run in a fully coupled configuration with 

interactive atmosphere, land, ocean, and sea-ice components. More details about these 

simulations are provided in Stan and Xu [2014], Arnold et al. [2014], and Kooperman et al. 

[2016a, b]. 

 

3.3 Results 

3.3.1 Soil moisture–temperature coupling 

Here I investigate the effects of SP on soil moisture–temperature coupling, or thermal L–A 

coupling, which has direct relevance to temperature extremes and has not been studied as 

extensively as hydrologic L–A coupling. 
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Unlike its effects on hydrologic coupling, which I have shown are systematic and visible on a 

global scale, effects of SP on thermal L–A coupling are regionally limited. Figure 3.1 shows that 

thermal coupling in SPCAM3.5 is significantly reduced over the Arabian Peninsula, slightly 

enhanced over parts of South America, and drastically enhanced over the Southwestern US and 

northern Mexico (SW US hereafter). 

 
Figure 3.1 Soil moisture–2m air temperature coupling strength revealed by ΔΩT from (a) 

CAM3.5 and (b) SPCAM3.5. ΔΩT is significant at 95% confidence level where it is larger than 

0.06. The color bar is irregular and set to be the same as in Koster et al. (2006b). 

 

Since these effects of SP on thermal coupling are not globally systematic and have not been 

previously reported, I first test the signal’s resilience beyond the GLACE experiment before 
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proceeding to understand it. This is done by applying an independent diagnostic coupling metric 

— the terrestrial coupling index introduced by Dirmeyer (2011), to a complementary pair of long 

free-running AMIP-style simulations. Compared to CAM3.5, the terrestrial coupling index for 

both latent heat flux (Figure 3.2 a,b) and sensible heat flux (Figure 3.2 c,d)  confirm that SP 

produces local enhancements of coupling over the SW US, as well as India; and reductions of 

coupling over the Arabian Peninsula. I conclude that the main differences of thermal coupling 

between CAM3.5 and SPCAM3.5 initially suggested by the GLACE-type experiments are robust 

in the sense that they seem immune to the diagnostics chosen and the type of simulations 

performed.  

 
Figure 3.2 Based on 1996-2015 AMIP simulation, June-July-August (JJA) terrestrial coupling 

index (Dirmeyer 2011) applied to latent heat flux from (a) CAM3.5 (b) SPCAM3.5; and applied 

to sensible heat flux from (c) CAM3.5 (d) SPCAM3.5; and applied to 2m air temperature 

coupling from (e) CAM3.5 (f) SPCAM3.5; Soil moisture chosen to be soil liquid water in 

𝑘𝑔/𝑚2, at 0.12m depth. 
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In the following subsections, I hone in on Arabia and SW US (illustrated in Figure 3.1) for 

further analysis in order to understand why SP changes the thermal L–A coupling regionally. 

 

3.3.1.1 Reduced Arabian coupling as a result of SP’s reduction of time mean rainfall 

Based on multiple lines of evidence, the Arabian Peninsula is one region where SPCAM is 

superior in simulating time-mean JJA precipitation relative to regular CAM. Over the Arabian 

Peninsula, both the mean and standard deviation of boreal summer precipitation are biased high 

in CAM3.5 while they are less biased in SPCAM3.5 in the AMIP-type simulations relative to 

GPCP datasets (Figure B1). This appears to be a robust effect of SP also seen in earlier versions 

of SPCAM/CAM, JJA mean precipiation over the Arabian Peninsula was more realistically 

simulated in SPCAM3.0 while CAM3.0 overestimated the mean precipitation [Khairoutdinov et 

al., 2005]. In more recent versions of SPCAM5/CAM5, the mean and standard deviation of JJA 

precipitation is also better simulated in SP over the Arabian Peninsula (Jian Sun, personal 

communication). 

 

Given the striking reduction of JJA time mean rainfall over the Arabian peninsula (Figure 3.3), it 

is reasonable to expect that these changes in rainfall when using SP play an overarching role in 

reducing the thermal coupling in this region. This follows ideas from previous studies [Guo et 

al., 2006; Seneviratne et al., 2010; Dirmeyer, 2011] suggesting that strong L–A coupling 

generally occurs in regions with moderate amounts of soil moisture — neither too dry, nor too 

wet. Such regions are called “transitional zones”. From this perspective, mean rainfall through its 

effect on mean soil moisture may be considered as a first-order control on L–A coupling. I 

hypothesize that under CAM3.5, soil moisture is being pushed towards such “transitional” values 

due to relatively high mean precipitation in a region that should be drier, contributing to stronger 
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thermal coupling. While under SPCAM3.5, soil moisture is lower than “transitional” values due 

to less and more realistic mean precipitation, generating weaker thermal coupling. 

 

Figure 3.3 Based on ENS(W) over the Arabian Peninsula, JJA mean precipitation in (a) 

CAM3.5; (b) SPCAM3.5; and (c) differences of JJA mean precipitation between SPCAM3.5 and 

CAM3.5, stippling is based on controlling False Discovery Rate (FDR) (Wilks 2016) by 

choosing 𝛼𝐹𝐷𝑅 = 0.1. Assuming synoptic temporal scale (weekly) precipitation is nearly 

independent, original sample size is reduced by a factor of 7 to account for temporal 

autocorrelation in the Student’s t test. 

 

Detailed regional analysis of the Probability Density Functions (PDFs) of Arabian surface net 

radiation, latent heat flux, sensible heat flux, and volumetric soil moisture broadly confirms this 

view (Figure 3.4). SPCAM3.5’s climate is fairly arid over the Arabian Peninsula. Compared to 

CAM3.5, precipitation is mostly confined below 4mm/day when using SP (Figure 3.3b), 

contributing to smaller soil moisture both at near-surface levels (Figure 3.4e,f) and deeper levels 

(Figure B2). Despite larger surface net radiation (resulting from less cloud cover, Figure 3.4d) 

demanding higher evaporative cooling (Figure 3.4a), surface latent (sensible) heat flux is much 

lower (higher) when using SP (Figure 3.4b,c), presumably due to soil moisture limitations. 
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In summary, the reason SP reduces thermal L–A coupling over the Arabian region appears to be 

relatively straightforward — due to regionally reduced time mean precipitation. The same 

control likely explains similar reductions in coupling noted but not explained for this region in 

SP16 (seen in their Figure 1a,b). 

 

Figure 3.4 Based on ENS(W), probability density functions (PDFs) using daily samples within 

the Arabian box (as outlined in black in Figure 3) from CAM3.5 (solid lines) and SPCAM3.5 

(dashed lines) of (a) surface net radiation, (b) surface latent heat flux, (c) sensible heat flux, (d) 

shortwave cloud forcing, (e) volumetric soil moisture at 0.06m in depth, and (f) volumetric soil 

moisture at 0.12m in depth. 

 

3.3.1.2 Enhanced SW US coupling independent of rainfall 

Unlike the Arabian region, first order effects of SP on precipitation cannot explain why it 

strongly enhances thermal coupling over the SW US region, where precipitation differences 

between the two models are neither universally positive nor negative within the region (Figure 

B3), and the median, lower and upper quartiles of the soil moisture are very similar at all depths 
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(Figure B4). The implication, given that SPCAM3.5 exhibits a remarkable enhancement of 

thermal coupling throughout a large region compared to CAM3.5 (Figure 3.1a,b), is that there 

must be another factor independent of mean precipitation or its associated soil moisture 

abundance that can produce enhanced thermal coupling under SP. 

 

One potentially important pathway may be through the effects of SP on the intensity distribution 

of rainfall, for instance by removing an unrealistic drizzle mode that has been shown to produce 

artifical canopy reevaporation feedbacks [DeMott et al., 2007]. However, after removal of 

drizzling samples in which daily rainfall is less than 0.1 mm/day, SP still highlights 

enhancements of the terrestrial coupling index of thermal coupling over the SW US relative to 

conventional CAM3.5, and such regional enhancement features are insensitive to the selection of 

drizzling threshold ranging from 1.0 × 10−5 to 0.1 mm/day (Figure B5). This argues against the 

idea that SP’s modification of the rainfall distribution is responsible for enhanced thermal 

coupling over SW US. In the subsequent section I investigate other potential pathways that could 

influence thermal coupling strength by focusing on simulated differences in the Bowen Ratio. 

 

3.3.2 Bowen Ratio control 

Soil moisture can influence the near-surface temperature through its impact on surface energy 

partitioning, which can be characterized by the ratio of sensible to latent heat fluxes, or Bowen 

ratio. It is also important to note that the Bowen ratio tends to discriminate conditions of stronger 

or weaker relationship between near-surface temperature and surface soil moisture. This is 

visible as a dominant relationship in diagnostics of model output, in both SPCAM and CAM. 
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Figure 3.5 Based on daily samples in ENS(W) over the Southwestern US and Northern Mexico 

(as outlined in black in Figure 3) during boreal summer, scatter plots between surface volumetric 

soil moisture (0.007m depth) and 2m air temperature in (a) CAM3.5 and (b) SPCAM3.5. 

Samples are colored based on the magnitude of their Bowen ratio. The lavender, green and red 

line segments are the same in both subpanels and are added only for the purpose of illustrating 

that larger Bowen ratio is associated with steeper slope. 

Figure 3.5 shows a scatter plot of soil moisture and 2m air temperature, using colors to 

disciminate samples (with varying days and locations) within the SW US region by their Bowen 

ratio. At higher Bowen ratio, 2m air temperature is more sensitive to changes in soil moisture, as 

evidenced by the sub-clusters of the phase space exhibiting increasing dependency (steeper 

slopes) between soil moisture and the y-axis. Of course Bowen Ratio is not the only factor 

important to coupling – for instance, despite the fact that the strongest dependency between 

surface volumetric soil moisture and 2m air temperature occurs at the driest regime of soil 

moisture (dots in red colors) in both models, the strongest coupling is likely at slightly higher 

soil moisture bins, since sufficient background soil moisture is also a prerequisite (Dirmeyer 

2011; Seneviratne et al. 2010b). But the point is that Bowen Ratio is a relevant factor, such that 
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model differences in its statistics – especially in soil moisture regimes that are not extremely dry 

– may be meaningful to understanding coupling differences. While no major model difference is 

immediately visible in Fig. 3.5, I will uncover one statistically. 

 

SP has little impact on the soil moisture distribution at all depths over SW US (Figure B4). This 

is corroborated by the similarities of percentiles between two models (Figure 3.6a), which are 

used as the bin structure to categorize the effects of SP on the distribution and mean of the 

Bowen ratio in multiple soil moisture groups (Figure 3.6b,c). SPCAM3.5 presents higher mean 

Bowen ratio in seven out of the ten bins and lower Bowen ratio in three very dry bins (soil 

moisture < 0.075 mm3/mm3). I hypothesize that the reason SP enhances thermal coupling over 

the SW US is that it produces conditions that barely change soil moisture distributions (Figure 

B4), but noticeably promote higher Bowen ratios within transitional soil moisture regimes 

(Figure 3.6d). This higher Bowen ratio at moderate soil moisture regimes in turn assists 

variations in soil moisture to translate into noticeable fluctuations in near-surface temperature, 

driving a stronger thermal coupling over the SW US. At least in regions where the first-order 

control of mean precipitation is absent, such effects could determine the magnitude of thermal 

coupling. It is natural to wonder about the reverse tendency for CAM to produce larger Bowen 

ratios in three very dry bins. While at first this might imply stronger dependency between soil 

moisture and near-surface temperature at these bins, I suspect it is overwhelmed by too little 

variation in soil moisture at such dry values (Table B1) to have meaningful impact on overall 

thermal coupling. 
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Figure 3.6 Based on daily samples in ENS(W), over the Southwestern US and Northern Mexico 

(as outlined in Figure 3) during boreal summer, (a) deciles of volumetric soil moisture in 

CAM3.5 (blue solid) and SPCAM3.5 (red dashed). (b) Box-and-whisker plot of the Bowen ratio 

binned within percentiles of volumetric soil moisture at 7 mm depth in CAM3.5 (blue) and 

SPCAM3.5 (red). Bowen ratio is only calculated when absolute value of latent heat flux is larger 

than 10 watts/m2. The whiskers delinate 1.5 times the interquartile range. (c) Difference of the 

mean Bowen ratio between SPCAM3.5 and CAM3.5 within each volumetric soil moisture decile 

bin. (d) Changes of Bowen ratio in SPCAM relative to CAM are expressed in percentage for 

each volumetric soil moisture decile bin. In the 1st-10th bin, Bowen ratio changes by -4.5%, 

2.3%, -11.8%, -7.1%, 14.2%, 7.7%, 13.6%, 17.9%, 13.4%, 19.0%, respectively. 
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3.3.3 Magnified Bowen ratio and its climate sensitivity as a systematic effect of 

SP 

The above analysis has suggested that a locally enhanced Bowen ratio might play a role in 

promoting an otherwise puzzling enhancement of thermal L–A coupling over the SW US. 

Effects of SP on the simulated Bowen ratio have not been reported previously, so the question 

naturally arises as to whether SP has any robust or systematic effect on surface energy flux 

partitioning beyond this region. If so, this would be worth knowing, since the Bowen ratio is 

fundamental to near-surface climate. 

 
Figure 3.7 Based on ENS(W), Bowen ratio differences of the 16-member ensemble mean 

between SPCAM3.5 and CAM3.5. Bowen ratios are calculated only when absolute value of 

surface latent heat flux is larger than 10 watts/m2. Stippling is based on controlling False 

Discovery Rate (FDR) (Wilks 2016) by choosing 𝛼𝐹𝐷𝑅 = 0.1. Assuming synoptic temporal scale 

(weekly) Bowen ratio is nearly independent, original sample size is reduced by a factor of 7 to 

account for autocorrelation in the Student’s t test. 

Figure 3.7 globally examines the Bowen ratio differences between two models in the control 

simulation of the GLACE ensemble. This suggests that the effects of SP on Bowen ratio noted 

over the SW US are actually a global phenomenon. The higher Bowen ratio regime in 

SPCAM3.5 is present over the majority of the land and the difference of Bowen ratio between 
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two models is robustly and detectably positive over the vast majority of continental grid points, 

despite its geographic and inter-ensemble variability (Table 3.1). 

 
 

Table 3.1 Statistics of the difference of ensemble mean Bowen ratio between SPCAM3.5 and 

CAM3.5 over land in ENS(W). (Latitude 30S-60N, only consider where |latent heat flux| > 10 

watts/m2) 

Mean Standard 

deviation 

Lower 

quartile 

Median Upper 

quartile 

Mininum Maximum Range 

0.31 0.53 0.04 0.13 0.35 -3.80 6.61 10.41 

 

Do these changes in the surface flux climatology represent an improvement, or deterioration in 

model realism? Comparing 16-year time periods from our AMIP simulations against 

observationally derived FLUXNET-MTE datasets [Jung et al., 2009, 2011] (Figure 3.8), within 

50°-60°N, both surface sensible and latent heat fluxes are biased low in CAM3.5 (Figure 3.8a,c), 

while the magnitude of this negative bias is reduced in SPCAM3.5 (Figure 3.8b,d). More broadly 

from 30S to 60N over land, SPCAM3.5 outperforms CAM3.5 in the representation of surface 

sensible heat flux, latent heat flux and Bowen ratio based on mean biases and Root-Mean-Square 

Error (RMSE) (Numbers above each sub-panel in Figure 3.8). SP reduces global biases of 

Bowen ratio from -0.43 to -0.14, and produces smaller RMSE (1.05 < 1.40). From this 

perspective, the augmentation of Bowen ratio over land by SP is a clear improvement. 

Nonetheless, regional biases exist. Both models slightly underestimate the Bowen ratio during 

boreal summer in mid-latitudes in the Northern Hemisphere (Figure 3.8e,f). Over India, CAM3.5 

presents moderately negative anomalies of Bowen ratio. In contrast, SPCAM3.5 exhibits large 

positive anomalies associated with very large (small) sensible (latent) heat flux. Over South 

America, positive Bowen ratio biases are noticeably larger in CAM3.5 than in SPCAM3.5, 
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resulting from exceedingly large positive (negative) biases of sensible (latent) heat flux. In 

SPCAM3.5, representations of Bowen ratio are better over South America but worse over India. 

Over the SW US, Bowen ratio is biased low throughout in CAM3.5 while mixed with moderate 

negative and positive anomalies in SPCAM3.5. 

 
Figure 3.8 The difference maps of multiple variables between AMIP-type simulations and 

FLUXNET-MTE datasets, boreal summer mean during 1996-2011. (a) Differences of sensible 

heat flux between CAM3.5 and FLUXNET-MTE; (b) differences of sensible heat flux between 

SPCAM3.5 and FLUXNET-MTE; (c,d) same as (a,b) but for latent heat flux; (e,f) same as (a,b) 

but for Bowen ratio, Bowen ratio is calculated when absolute value of latent heat flux is greater 

than 10 W/m2. Stippling is based on controlling False Discovery Rate (FDR) (Wilks 2016) by 

choosing 𝛼𝐹𝐷𝑅 = 0.1. Numbers in the upper left corner are latitude-weighted near global (30S - 

60N) mean biases, numbers in the upper center are latitude-weighted RMSE. 

 

To further test the robustness of the seemingly systematic effects of SP on the Bowen ratio over 

land, several independent simulations with modern versions of SPCAM were investigated. In the 
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analysis below, the first (2006 to 2015) and last (2091 to 2100) ten-years of the CCSM4 RCP8.5 

simulations were examined, and five-year samples of pre-industrial and 4xCO2 conditions from 

the CESM1 simulations were evaluated. The analysis focuses on annual mean conditions over 

land excluding glacier regions, but including seasons and regions with temporary snow and ice 

cover. 

 
Figure 3.9 Annual mean Bowen ratio (fraction) over land simulated in CCSM4 from (a,b) CAM, 

(c,d) SPCAM, and (e,f) the difference (SPCAM minus CAM) for (a,c,e) present-day and (b,d,f) 

climate change conditions; the grey stippling regions have latent heat flux less than 10 Wm-2. 

 

Table 3.2 Annual-mean global-land-mean net radiation (W/m2), sensible heat flux (W/m2), latent 

heat flux (W/m2), and Bowen ratio (fraction) from CAM and SPCAM simulations with (a) 
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CCSM4-CAM4, (b) CESM1-CAM4, and (c) CESM1-CAM5. ∆SP is the difference between 

SPCAM and CAM, and climate change is the differences between future (RCP8.5/4xCO2) and 

present/pre-industrial climates as defined in the text. The Bowen ratio is calculated from global-

land mean sensible and latent heat fluxes, rather than spatially averaging grid-point level Bowen 

ratio, so regions with low latent heat (stippling in Figure 3.9) do not contribute disproportionally. 

 Present/Pre-Industrial Climate RCP8.5/4xCO2 Climate Climate Change 
 CAM SPCAM ∆SP CAM SPCAM ∆SP CAM SPCAM 

a) Community Climate System Model v4 with Community Atmosphere Model v4 

Net Radiation 86.3 83.6 -2.8 92.2 89.0 -3.2 5.9 5.5 

Sensible Heat 33.4 39.6 6.2 38.1 45.8 7.7 4.7 6.2 

Latent Heat 52.7 43.2 -9.6 53.9 42.4 -11.5 1.2 -0.8 

Bowen Ratio 0.63 0.92 0.28 0.71 1.08 0.37 0.07 0.16 

b) Community Earth System Model v1 with Community Atmosphere Model v4 

Net Radiation 83.9 85.4 1.5 90.5 92.0 1.5 6.6 6.5 

Sensible Heat 31.7 38.8 7.1 37.4 45.7 8.2 5.8 6.9 

Latent Heat 52.3 46.1 -6.2 53.2 45.8 -7.4 0.9 -0.3 

Bowen Ratio 0.61 0.84 0.24 0.70 1.00 0.29 0.10 0.16 

c) Community Earth System Model v1 with Community Atmosphere Model v5 

Net Radiation 82.0 83.6 1.6 87.1 87.3 0.3 5.1 3.7 

Sensible Heat 31.5 35.4 3.9 36.2 40.5 4.3 4.7 5.1 

Latent Heat 50.1 47.8 -2.3 50.4 46.3 -4.1 0.3 -1.5 

Bowen Ratio 0.63 0.74 0.11 0.72 0.88 0.16 0.09 0.13 

 

The amplified Bowen ratio seen over land due to SP is robust across all three model 

configurations and versions, and it results from higher sensible and lower latent heat fluxes in all 

models and scenarios relative to their conventional CAM counterparts (Table 3.2). Differences 

between SPCAM and CAM are positive everywhere in the present-day and highlight regions in 

the Central US and Northern Canada, Northern Europe, Equatorial Central and South America, 

Southern South America, and Australia (Figure 3.9a,c,e). In the future climate change scenarios, 

all model versions project an increase in the global mean Bowen ratio, but the increase is larger 

with SPCAM (Table 3.2). CAM consistently predicts a large increase in sensible heat flux and a 

small increase of latent heat flux, while SPCAM predicts even larger increase in sensible heat 

flux and a small decrease in latent heat flux (i.e. opposite response to CAM). Differences in the 

Bowen ratio climate change response between SPCAM and CAM are mostly positive, with the 
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exception of Southern South America, Western Australia, India, and high latitudes in Northern 

Hemisphere. The largest increases in SPCAM are seen in the sensitive SW US/Mexico region, as 

well as Central America, and Northern South America, Southern Africa, and Eastern Australia 

(Figure 3.9b,d,f). 

 

Overall and consistently in multiple versions of SPCAM, the Bowen ratio is higher in the 

present/pre-industrial climate, and has a larger amplification in climate change scenarios than in 

CAM. Given the connection between the Bowen ratio, thermal L-A coupling and near-surface 

temperature discussed above, the amplified mean Bowen ratio under SP may have important 

consequences for temperature variability and extremes on subseasonal timescales. 

 

3.4 Conclusion 

I have analyzed the effects of explicit convection on global thermal L–A coupling by using SP, 

which revealed a systematic effect of SP on the Bowen ratio with implications for climate 

change projection. 

 

Effects of explicit convection on soil moisture–surface temperature coupling are regionally 

limited but interesting. Reduced thermal coupling occurs over the Arabian Peninsula, but 

enhancements happen over the Southwestern US and Northern Mexico when SP is used. These 

regional features are robust in the sense that they are immune to the diagnostics chosen and types 

of simulations performed. Over the Arabian Peninsula, the process chain is straightforward – SP 

favorably reduces the time mean rainfall, pushing the soil moisture away from transitional 

regimes required for a strong coupling, resulting in a reduced regional thermal coupling strength 
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that is more realistic for the region. Interestingly, over the Southwestern US and Northern 

Mexico, regional enhancements of thermal coupling in SP cannot be explained by differences in 

characteristics of rainfall such as the mean or frequency, nor due to differences in soil moisture. I 

have speculated that a tendency for SP to nonetheless produce an elevated Bowen ratio at 

moderate soil moisture regimes in this region leads to stronger thermal coupling. This led me to 

uncover that Bowen ratio amplification is a surprisingly systematic effect of SP, detectable over 

most continental regions and in four version pairs of CAM and SPCAM. Compared to 

FLUXNET-MTE constraints, the Bowen ratio amplification in the SPCAM3.5 simulations can 

be viewed as an improvement. 

 

There is an associated systematic effect of SP on future climate change scenarios. Like many 

GCMs, CAM projects an enhanced Bowen Ratio by the end of this century, i.e. a significantly 

increased sensible heat flux and moderately increased latent heat flux. But SPCAM projects an 

even more pronounced increase of sensible heat flux, and slightly reduced latent heat flux. Thus 

in future climate, the augmentation of the Bowen ratio in SPCAM is considerably more extreme 

than in CAM. Such amplified climate sensitivity of Bowen ratio under SP might imply a more 

sensitive near-surface climate, especially regarding temperature variability and extremes. 

However, the recent findings by Zhou and Khairoutdinov [2017] of a muted temperature 

subdaily extreme response to climate change under SP suggest this effect may at least in some 

cases become dominated by other consequences of SP impacting the land surface, such as on 

regional time-mean soil moisture and cloud cover. 
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The climate sensitivity of the Bowen Ratio is amplified under SP. These sensitivities appear 

robust across model versions and experiment designs, and thus appear to be general effects of SP 

constituting useful context when interpreting surface climate predictions from Multiscale 

Modeling Frameworks. It would be worth further exploring the effects of SP within modern 

experiment designs that isolate the impact of L–A coupling in long climate change simulations, 

for instance as outlined in [Seneviratne et al., 2013]. 

 

I acknowledge that an important limitation of this chapter is that a satisfying reason for why SP 

exhibits such a robust Bowen ratio amplification over land has not been identified. While beyond 

the scope of the current work, I view it as a priority for future work. One hypothesis is that it 

arises from enhanced surface air thermal ventilation due to amplification in the contrast between 

lowest atmospheric temperature and surface temperature in SPCAM. However, pilot tests 

disproved this hypothesis. Other hypotheses and associated sensitivity testing are needed to 

better understand this mysterious emergent behavior of explicit embedded convection. 

Additionally, I rely on the GLACE-type simulation to quantify the L–A coupling strength. 

Recently, Hauser et al. (2017) pointed out that besides decoupled L–A interactions, the water-

balance perturbation in the land model introduced by soil moisture prescription may also 

contribute to non-negligible changes in temperature. Such effects imply that the derived coupling 

strength by GLACE may be unpurified due to the induced water-balance perturbation 

accompanied with the soil moisture prescription. 
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Chapter 4. Understanding the Remote Influence of Andean 

Convection on Amazonian Rainfall  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is based on a manuscript in preparation as: 

Qin, H., Pritchard, M. S., Terai, C., Bacmeister, J., & Bogenschutz, P., Understanding the 

Remote Influence of Andean Convection on Amazonian Rainfall. (In preparation) 
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Abstract 

 
Historical simulations of General Circulation Models (GCMs) from the Coupled Model 

Intercomparison Project Phase 5 (CMIP5) produce too much precipitation over the Andes but too 

little over the Amazon, hindering the credibility of future projections on the South America 

Monsoon System (SAMS) and terrestrial biosphere. I investigate the remote role of latent heating 

by Andean convection in the rainforest dry bias. Using the Community Earth System Model 

version 1 (CESM v1) and focusing on the wet season, an ensemble of mechanism denial 

experiments show that Andean convective heating reduces rainfall over the Amazon with a 

maximum of -1 mm/day. Details of the fast adjustment to this forcing help unveil the main 

causality. The timescale of initial Amazonian precipitation response is 5-10 hours consistent with 

fast gravity wave transmission of vertical velocity signals that force changes in the column 

moisture budget. Associated drying of the Amazon boundary layer is then linked to secondary 

feedbacks by reducing the Convective Available Potential Energy (CAPE) over the Amazon. 

Column moisture budget analysis shows that the total advection of moisture over the Amazon 

due to Andean convective forcing is controlled by the vertical advective term that can be traced 

back to a mountain-forced component of the vertical velocity field. This study is illustrative for 

other modelers to quantify the Amazonian rainfall biases of Andean origin in their own GCM of 

interest, which is helpful in forming their model development strategies. 
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4.1 Introduction 

As the largest terrestrial carbon reservoir, the Amazon rainforest is critical to the climate system. 

To understand its future, especially as the community approaches an era of explicitly simulated 

vegetation, it is crucial for modern Earth System Models (ESMs) to accurately capture the 

physical processes that sculpt the regional water cycle. A realistic representation of Amazonian 

hydroclimate is also instrumental to climate non-locally, as Amazonian rainfall significantly 

modulates the hydrologic cycle and energy balance globally (Avissar and Werth 2005; Lawrence 

and Vandecar 2015; Medvigy et al. 2013; Snyder 2010; Werth and Avissar 2002). However, the 

current understanding of the processes that control Amazonian rainfall in present and future 

climate remains incomplete. 

 

One symptom of this incomplete understanding is a chronic ESM bias; modern climate models 

do not simulate time mean rainfall realistically over tropical South America. Specifically, the 

multi-model annual mean rainfall from the Coupled Model Intercomparison Project Phase 5 

(CMIP5) suffers from what I will refer to as a “Wet Andes, Dry Amazon (WADA)” bias (IPCC 

2014; Mehran et al. 2014), which is associated with too much surface net radiation, overly high 

Bowen ratio, and associated dry lower troposphere  (Lintner et al. 2017) over the rainforest, as 

well as excessive rainfall along the Intertropical Convergence Zone (ITCZ) in adjacent oceans. 

Although Sea Surface Temperatures (SSTs) are known to play an important role in modulating 

Amazonian hydroclimate (Chen et al. 2018; Fernandes et al. 2015; Yin et al. 2012), the existence 

of the WADA bias (Fig 4.1c) even in CMIP5 simulations (Table 4.1) following the Atmospheric 

Model Intercomparison Project (AMIP) protocol that prescribe observed SSTs (Fig 4.1a) 

suggests its non-oceanic sources of bias. 
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Figure 4.1 (a) Annual mean rainfall biases of the multi-model-mean of 22 AMIP r1i1p1 

simulations in the CMIP5 archive (see Table 4.1) re-gridded to 0.9°x1.25° grid relative to the 

Global Precipitation Climatology Project (GPCP) v2.3 (Adler et al. 2003; Huffman et al. 2009), 

1982-2008 a. Units: mm/day; (b) In a companion 1989-2008 AMIP-type simulation, the Dec-

Jan-Feb mean rainfall bias in the CESM v1.1 in CESM’s 1.9°x2.5° grid. Units: mm/day. (c) 

Illustration of the Wet Andes, Dry Amazon (WADA) concept which describes a model 

simulating too much rainfall over the Andes but not enough rainfall over the Amazon. 

Table 4.1 AMIP-type simulations from the 22 CMIP5 models used in Figure 4.1a and Figure C1 

in our study. 

Model Institute Country Reference 

CCSM4 National Center for 

Atmospheric Research 

USA Gent et al. (2011) 

CanAM4 Canadian Centre for 

Climate Modelling 

and Analysis 

Canada von Salzen et al. (2013) 

ACCESS1-3 Commonwealth 

Scientific and 

Industrial Research 

Organization 

Australia Bi et al. (2013); Dix et al. 

(2013) 

 
ACCESS1-0 

CSIRO-Mk3-6-0 Australian 

Commonwealth 

Scientific and 

Industrial Research 

Organization Marine 

and Atmospheric 

Research, Queensland 

Climate Change 

Centre of Excellence 

Australia Rotstayn et al. (2010) 

NorESM1-M Norwegian Climate 

Centre 

Norway Bentsen et al. (2013) 

(a) annual mean rainfall bias of CMIP5 (b) DJF mean rainfall bias of CESM1

mm/day mm/day

(c) Wet Andes, Dry Amazon (WADA)
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CMCC-CM The Centro Euro-

Mediterraneo sui 

Cambiamenti 

Climatici 

Italy Scoccimarro et al. (2011) 

 

MPI-ESM-MR Max Planck Institute 

for Meteorology 

Germany Raddatz et al. (2007) 

MPI-ESM-LR 

IPSL-CM5A-MR Institut Pierre Simon 

Laplace 

France Marti et al. (2010); Dufresne 

et al. (2013) 

 
IPSL-CM5B-LR 

IPSL-CM5A-LR 

CNRM-CM5 Centre National de 

Recherches 

Meteorologiques, 

Meteo-France and 

Centre Europeen de 

Recherches et de 

Formation Avancee en 

Calcul Scientifique 

France Voldoire et al. (2013) 

 

MRI-AGCM3-2H Meteorological 

Research Institute 

Japan Mizuta et al. (2012); 

Yukimoto et al. (2012) MRI-CGCM3 

MIROC5 Atmosphere and 

Ocean Research 

Institute, The 

University of Tokyo, 

National Institute for 

Environmental 

Studies, Japan Agency 

for Marine-Earth 

Science and 

Technology 

Japan Watanabe et al. (2010); 

Watanabe et al. (2011) MIROC-ESM 

HadGEM2-A Met Office Hadley 

Centre 

UK Martin et al. (2006); Ringer 

et al. (2006) 

GFDL-CM3 National Oceanic and 

Atmospheric 

Administration, 

Geophysical Fluid 

Dynamics Laboratory 

 

USA Donner et al. (2011) 

 

GFDL-HIRAM-C360 Lin (2004); Putman and Lin 

(2007); Zhao et al. (2009) 

 
GFDL-HIRAM-C180 

inmcm4 Institute for Numerical 

Mathematics 

Russia Volodin et al. (2010) 

 

 

Terrestrial feedbacks have been implicated in sustaining and amplifying the WADA bias but 

limitations of modern land surface models are not obviously its sole, or root cause. Yin et al. 

(2012) speculated that overly strong evapotranspiration (ET) during the wet season due to excess 
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surface net radiation might cause excess soil moisture loss, which could subsequently cause 

scarcity of ET and rainfall in the following dry season. In the Community Earth System Model 

(CESM) lineage, Zhang et al. (2017) argued that unlike during the wet season, dry season rainfall 

dry biases over southern Amazon is largely driven from the land component. Regarding the wet 

season rainfall deficit over southwestern Amazon in CESM v1, Sakaguchi et al. (2018) shows 

that despite improvements in surface turbulent fluxes, the rainfall biases are not relieved by 

replacing Community Land Model version 4 (CLM4) with CLM4.5, suggesting that the biases 

might be common, or external, to both versions of the land model. 

 

From the atmospheric perspective, it is known that aspects of the rainforest dry biases are 

sensitive to cloud treatments in the model. Sakaguchi et al. (2018) showed that wet season 

rainfall dry biases over southwestern Amazon are very sensitive to the Convective Available 

Potential Energy (CAPE) calculation in the deep convection scheme. Using the Weather 

Research and Forecasting (WRF) model with parameterized large-scale circulation, the morning 

fog layer in the wet season and associated cloud albedo feedbacks are captured, which contribute 

to better representations of the diurnal and seasonal cycles of surface fluxes and precipitation 

over the Amazon (Anber et al. 2015). Using 2D Cloud-Resolving-Models embedded in 

traditional General Circulation Models (GCMs), cloud super-parameterization (SP) is shown to 

generally improve the soil moisture – ET relationship and surface turbulent fluxes (Qin et al. 

2018; Sun and Pritchard 2016); in certain configurations SP has also been coerced to somewhat 

reduce the wet season rainfall dry bias over southern Amazon with a higher-order turbulence 

closure scheme (Zhang et al. 2017). However, details of the causality, which can be complex and 

non-local, are difficult to clarify. 
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There is a rich tradition in viewing the causality that associates Amazonian with Andean rainfall 

from east to west, i.e., with the mean flow and moisture transport. This is logical given that the 

South American Low-Level Jet (SALLJ) is a main moisture source contributing to Amazon 

precipitation. For instance, it is likely not a coincidence that a regional rainfall maximum occurs 

at the Peruvian Andes–Amazon transition coincident with the height of the strongest SALLJ 

(Chavez and Takahashi 2017). Interesting positive feedbacks accompany this east-to-west 

moisture transport. Meanwhile, latent heat release from precipitation over the Amazon helps 

strengthen the atmospheric heating gradient between the Amazon and the tropical Atlantic 

Ocean, which can further enhance the moisture inflow (Boers et al. 2017; Kooperman et al. 

2018). The argument of using SALLJ moisture transport to understand Andean and Amazonian 

rainfall is also evident in studies focusing on climate of the past and future. During the Last 

Glacial Maximum, a strengthening of the Amazon-to-Andes moisture transport was linked to 

rainfall enhancement over the Peruvian and Bolivian Andes and large-scale drying over the 

Amazon (Vizy and Cook 2007). With elevated CO2 levels in future climate, the physiological 

response of Amazon rainforests drives a similar WADA response of rainfall (Kooperman et al. 

2018) related to transport of moisture and Moist Static Energy (MSE) by the SALLJ 

(Langenbrunner et al. 2019). 

 

Our working hypothesis is that an unknown portion of the causality connecting the Andes and 

Amazon water cycle may flow in the reverse direction, i.e., from west-to-east against the mean 

flow. This is consistent with close links between Andean orography, SALLJ formation, and 

Amazon rainfall that are well established (Insel et al. 2010; Rasmussen and Houze 2016) in 

regional modeling experiments, including those of Langenbrunner et al. (2019) which revealed a 
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significant fraction of a forest-induced drying lags its interaction with downstream topography 

through non-local controls. The purpose of this article is to answer the question: can the WADA 

bias phenomenon (Fig 4.1c) be excited solely from the Andean side (rather than the Amazonian 

side), and if so, what are the most efficient remote-control mechanisms, and what fraction of 

CESM’s dry-Amazon bias can be explained from its wet-Andes component?  

 

By testing this hypothesis, I aim to better understand the role of orographic Andean convection 

on rainfall over tropical South America, and help better set priorities for where to focus model 

development efforts towards reducing Amazon dry biases. Unlike CMIP5 studies (Li et al. 2018; 

Lintner et al. 2017; Mueller and Seneviratne 2014; Yin et al. 2012), which rely heavily on 

diagnostic measures, I will use a global model to conduct causatively unambiguous sensitivity 

experiments in an ensemble simulation approach that allows satisfying statistical detection and 

attribution of the effects of Andean convection on Amazonian rainfall. 

 

The analysis is structured as follows. Section 4.2 will briefly describe our methods and data, 

including mechanism denial experiment design, and analysis methods. In Section 4.3, I first 

show the characteristics of Andean convection, then elaborate on the spatial-temporal features of 

Amazonian precipitation responses due to Andean convective forcing, as well as multiple 

perspectives to understand the underlying mechanisms. In Section 4.4, I depict the Andean 

forced eastward expansion features over the Amazon. Discussions and conclusions are 

summarized in Section 4.5. 
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4.2 Data and methods 

4.2.1 Experiment design 

To investigate the role of Andean convection on Amazonian rainfall, I conduct two groups of 

simulations using CESM v1.1, described below. All simulations use the finite volume dynamical 

core at 1.9°x2.5° (f19_g16) horizontal resolution and 30 vertical levels, driven with prescribed 

SSTs (i.e., AMIP-style simulations) and using the “CAM5” physics parameterization suite. That 

is, the deep convection parameterization follows Zhang and Mcfarlane (1995) with modifications 

from Richter and Rasch (2008) and Raymond and Blyth (1986, 1992); the shallow convection 

scheme uses the University of Washington shallow convection scheme following Park and 

Bretherton (2009); cloud microphysics based on Morrison and Gettelman (2008) with updates 

from Gettelman et al. (2010) and cloud macrophysics are from Park et al. (2014); radiative 

transfer calculations are given by the Rapid Radiative Transfer Method for GCMs i.e. RRTMG 

(Iacono et al. 2008; Mlawer et al. 1997). Aerosol concentration data is prescribed with cyclic 

values of the year 2000. 

(1) CTR group: A prescribed-SST simulation of Austral summer (Dec-Jan-Feb; DJF) of the year 

1989, starting on Nov 21st with the first ten days discarded as spin-up. 

(2) TOPO group: A sensitivity test ensemble, in which I artificially shut down the temperature 

tendency from parameterized deep, shallow convection, cloud microphysics, and cloud 

macrophysics over major mountain and plateau areas (methods described below). Each TOPO 

simulation lasts four days with hourly output frequency and is branched off from the CTR 

simulation at 10-day increments starting from Dec 1st midnight UTC. 

 



 60 

The result is a 9-member ensemble of paired 4-day hindcasts – the unsteady drift between the 

ensemble means of CTR and TOPO will isolate the effects of Andean convection with statistical 

clarity and clues into causation, including lead-lag relationships. 

 
Figure 4.2 Illustration of the interference in the TOPO group simulations. (a) Values of a proxy 

of topography–SGH30, which represents the standard deviation of elevation from 30arcses to 

10arcmin. At the time-step level, temperature tendencies from deep convection, shallow 

convection, cloud microphysics, and cloud macrophysics are untouched if 𝑆𝐺𝐻30 < 100𝑚 

(purple color), linearly damped if 100𝑚 ≤ 𝑆𝐺𝐻30 < 200𝑚 (beige color), and fully muted if 

𝑆𝐺𝐻30 ≥ 200𝑚 (pink color). Units: meter. (b) The linear ramp function. 

The mechanism denial in the TOPO group is restricted geographically to regions of high 

elevation based on a proxy of topography using a linear ramp function (Figure 4.2). For 

convenience, this is built around an existing model diagnostic of subgrid orographic variability, 

the standard deviation of elevation from 30arcsec to 10arcmin, which associates with major 

mountain chains (Figure 4.2). At each model time step, I apply the ramp function to artificially 

modulate the magnitude of the diabatic temperature tendency calculated by the net effects of the 

deep, shallow convection schemes, the cloud macrophysics, and microphysics packages. Full 

heating (no denial) is allowed at low elevations (𝑆𝐺𝐻30 < 100𝑚). I linearly decrease the 

magnitude of the actual diabatic temperature tendency in proportion to local topography when 

approaching higher elevations (100𝑚 ≤ 𝑆𝐺𝐻30 < 200𝑚), until reaching complete denial of 

parameterized temperature tendency where 𝑆𝐺𝐻30 ≥ 200𝑚. 
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The reasons for conducting only wet season (DJF) simulations are twofold. First of all, Andean 

annual rainfall mostly comes from its wet-season contribution based on satellite observations 

(Chavez and Takahashi 2017). Therefore, the effects of Andean convection on Amazonian 

rainfall during the wet season should be easier to detect than during other seasons. Secondly, it is 

during the wet season that CAM5, the atmospheric component of CESM, is known to produce 

the strongest rainfall deficit over southern Amazon (Zhang et al. 2017). Similar to other CMIP5 

models, the CESM v1.1 used in our experiments has a similar WADA bias pattern during the wet 

season (Fig 4.1b). 

 

4.2.2 Analysis methods for investigating controls on Amazonian precipitation 

There are multiple ways to think about what controls time-mean regional rainfall anomalies in 

the tropics, and their sensitivities, such that it is important to consider multiple viewpoints to 

gain a holistic sense of potential causality in our experiments. 

 

4.2.2.1 Moist static energ 

Moist Static Energy (MSE) is defined as follows: 

𝑀𝑆𝐸 = 𝐶𝑝𝑇 + 𝐿𝑣𝑞 + 𝑔𝑧                                                (4.1) 

where Cp is the specific heat of air at constant pressure, T is absolute temperature, Lv is the latent 

heat of vaporization, q is specific humidity, g is gravitational acceleration, and z is height above 

some reference level. MSE incorporates the Latent Static Energy (LSE) 𝐿𝑣𝑞 and Dry Static 

Energy (DSE) 𝐶𝑝𝑇 + 𝑔𝑧. 
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In the tropics, the MSE profile is usually a “V” shape with a minimum in the mid-troposphere 

and deep convection imports MSE at low-level with associative convergence and exports MSE 

aloft associative with divergence. As a result, near-surface MSE increase is an indicator of strong 

convection and precipitation. 

 

4.2.2.2 Mechanics of the gross moist stability 

One helpful viewpoint to understand tropical precipitation is the gross moisture stability, briefly 

reviewed here. Raymond et al. (2009) pointed out that for an air column, at steady state, the joint 

conservation of specific moist entropy s and total cloud water mixing ratio r yields  

𝑃 − 𝐸 =
𝑇𝑅(𝐹𝑠−𝑅)

𝐿𝛤𝑅
 (∝  

𝐹𝑠−𝑅

𝛤𝑅
)            (4.2) 

where TR=300K, L is the latent heat of condensation, P represents precipitation rate, E stands for 

surface evaporation rate, Fs is the diabatic MSE input from surface heat and moisture fluxes, R is 

the column radiative cooling, and 𝛤𝑅 is a dimensionless quantity called Normalized Gross Moist 

Stability (NGMS),  

𝛤𝑅 = −
𝑇𝑅〈𝛻∙(𝑠𝑣)〉

𝐿〈𝛻∙(𝑟𝑣)〉
           (4.3) 

where the 〈∗〉 denotes mass-weighted vertical integration, and v stands for the horizontal wind. 

NGMS can be further decomposed into horizontal, 

𝛤𝐻 = −
𝑇𝑅〈𝑣∙𝛻𝑠〉

𝐿〈𝛻∙(𝑟𝑣)〉
           (4.4) 

and vertical components, 

𝛤𝑉 = −
𝑇𝑅〈𝜔(𝜕𝑠/𝜕𝑝)〉

𝐿〈𝛻∙(𝑟𝑣)〉
             (4.5) 

where 𝜔 is the vertical velocity on pressure coordinate. 
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Based on equation (4.2), it is clear that since TR and L are constants, the net water input (P – E) 

in an air column is determined by the ratio of the diabatic term (Fs – R) over the NGMS term.  

 

The quantity of NGMS can be expressed alternately as in Inoue and Back (2015), 

𝑁𝐺𝑀𝑆 =
〈𝑣∙𝛻ℎ〉+〈𝜔

𝜕ℎ

𝜕𝑝
〉

〈𝑣∙𝛻𝑠〉+〈𝜔
𝜕𝑠

𝜕𝑝
〉
                                            (4.6) 

where h and s represent MSE and DSE, respectively. The NGMS can be interpreted as the 

efficiency of MSE export by convection and its associated large-scale circulations per unit 

intensity of convection. An obvious limitation of equation (4.2) is that it is obtained under the 

assumption of steady state, which may not be a fair test of what I will show are rapidly evolving 

and diurnally fluctuating model sensitivities. Nonetheless, it is important to look at a gross moist 

stability framework as part of a holistic analysis of possible controls on Amazon precipitation. 

 

4.2.2.3 Convective Available Potential Energy 

Convective Available Potential Energy (CAPE) is defined as follows: 

𝐶𝐴𝑃𝐸 = ∫ 𝑅𝑑(𝑇𝑈𝑃 − 𝑇𝑈𝐸)
𝑝𝑛

𝑝𝑓
𝑑𝑙𝑛𝑝                                     (4.7) 

where pn and pf is the pressure at the level of neutral buoyancy and level of free convection 

respectively. Rd is the specific gas constant for dry air. TUP is the virtual temperature of an air 

parcel moving from the level of free convection to the level of neutral buoyancy. TUE is the 

virtual temperature of the environment. 

 

On a skew-T log-p diagram, CAPE is the positive area of a region between the observed 

sounding curve and the parcel lifting curve. Larger CAPE values are beneficial to stronger 

updrafts and deep convection. 



 64 

 

4.2.2.4 Moisture budget 

 

A complementary and traditional way to view precipitation causation is through the moisture 

budget alone, by considering the controls on sources of vapor to the region, and their lead-lag 

relationship relative to our forcing, as seen in many other studies (Seager and Henderson 2013; 

Veiga et al. 2005; Yang et al. 2014). 

 

Measuring total moisture advection accurately 

To avoid issues when estimating advection offline through imperfect reconstruction of horizontal 

and vertical gradients and complex corrections needed to account for a terrain-following hybrid 

vertical coordinate (Benedict et al. 2014), I instead infer the effects of advection using the 

residual method. That is, first the local total rate of change in specific humidity is calculated as 

𝑄𝑡 =
𝑄𝐴𝑃(𝑡)−𝑄𝐴𝑃(𝑡−1)

𝛿𝑡
                                                   (4.8) 

where QAP is the specific humidity after calculations of physics packages, 𝛿𝑡 is the time interval 

between two timestamps t and t-1. 

The total advection of specific humidity can then be obtained by 

𝑄𝑎𝑑𝑣 = 𝑄𝑡 − 𝑃𝑇𝐸𝑄                                                       (4.9) 

where PTEQ is the total diabatic tendency of specific humidity accumulated over the model 

physics package during the corresponding time interval. 

 

Estimating the subcomponents of total advection 

Since moisture advection will turn out to be an especially important aspect of our attribution 

argument it is important to attempt to decompose it into its components, which can be 
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imperfectly estimated using finite difference gradient estimation. That is, the total advection of 

specific humidity can be written as 

−𝑢
𝜕𝑞

𝜕𝑥
− 𝑣

𝜕𝑞

𝜕𝑦
− 𝜔

𝜕𝑞

𝜕𝑝
                                                   (4.10) 

such that, combined with the continuity equation, 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝜔

𝜕𝑝
= 0                                                          (4.11) 

the total advection of specific humidity can be written as 

−𝑢
𝜕𝑞

𝜕𝑥
− 𝑣

𝜕𝑞

𝜕𝑦
− 𝜔

𝜕𝑞

𝜕𝑝
− 𝑞(

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝜔

𝜕𝑝
) 

or 

− (𝑢
𝜕𝑞

𝜕𝑥
+ 𝑣

𝜕𝑞

𝜕𝑦
) − 𝜔

𝜕𝑞

𝜕𝑝
−  𝑞 (

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
) − 𝑞

𝜕𝜔

𝜕𝑝
                                   (4.12) 

Our analysis will focus on vertical integrals, wherein the horizontal gradients are estimated 

following vertical interpolation from the model’s native hybrid terrain-following coordinate to a 

fixed high-resolution vertical pressure grid. 

 

Decomposing vertical moisture advection 

Finally, since the vertical component of vertical moisture advection will prove of main interest, 

disentangling the roles of circulation from moisture redistribution effects will become important. 

To this end, the difference of the vertical advection of specific humidity between the CTR and 

TOPO groups can be written as  

〈−𝜔
𝜕𝑞

𝜕𝑝
〉𝐶𝑇𝑅 − 〈−𝜔

𝜕𝑞

𝜕𝑝
〉𝑇𝑂𝑃𝑂 

or 

〈−𝜔
𝜕𝑞

𝜕𝑝
〉𝐶𝑇𝑅−𝑇𝑂𝑃𝑂                                                     (4.13) 
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where the brackets again represent mass-weighted vertical integration. To understand whether 

the velocity vs. moisture fields provide the dominant effect, this term can be further decomposed 

into three terms as follows 

〈−𝜔
𝜕𝑞

𝜕𝑝
〉𝐶𝑇𝑅−𝑇𝑂𝑃𝑂 =  −〈𝜔𝑇𝑂𝑃𝑂 [

𝜕𝑞

𝜕𝑝
]

𝐶𝑇𝑅−𝑇𝑂𝑃𝑂
〉 − 〈𝜔𝐶𝑇𝑅−𝑇𝑂𝑃𝑂 [

𝜕𝑞

𝜕𝑝
]

𝑇𝑂𝑃𝑂
〉 −

〈𝜔𝐶𝑇𝑅−𝑇𝑂𝑃𝑂 [
𝜕𝑞

𝜕𝑝
]

𝐶𝑇𝑅−𝑇𝑂𝑃𝑂
〉                                   (4.14) 

 

4.2.3 Other datasets 

In addition to the model output from our sensitivity experiments, I also use estimates of observed 

rainfall from the Global Precipitation Climatology Project (GPCP) version 2.3 (Adler et al. 2003; 

Huffman et al. 2009), the remotely retrieved tropospheric humidity from the Atmospheric 

Infrared Sounder (AIRS) version 2 (Tian et al. 2013) datasets, the tropospheric vertical velocity 

and humidity fields from the ERA5 Reanalysis (Hans et al. 2019), and outputs from 22 models 

(Table 4.1) in the CMIP5 AMIP historical simulations (Taylor et al. 2012b) for auxiliary 

analysis. 

 

4.3 Responses of Amazonian rainfall to Andean convection 

In this section, I first present baseline characteristics of Andean convection in CESM v1.1, then 

demonstrate the effects of Andean convective forcing on non-local Amazon rainfall and finally 

test multiple hypotheses in an attempt to understand the relevant processes and mechanisms. 
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4.3.1 Characteristics of Andean forcing 

 
Figure 4.3 (a) Hovmöller diagram showing the composite diurnal cycle of equatorial rainfall 

(shading) in the CTR ensemble (nine members), averaged between 5°S-5°N, with contours 

showing the vertically integrated (1000-100hPa) Andean forcing in the CTR group which is 

denied in the TOPO group. Units: precipitation in mm/day, forcing in W/m2. (b) Composite 

height-longitude snapshot at 10°S latitude, showing Andean forcing in the CTR group at the 15th 

hour after branching off (10:00 am local time at 75°W). Units: K/day. (c) As in (b) but showing 

the horizontal structure of the vertically integrated (1000-100hPa) Andean forcing in the CTR 

group. Units: W/m2. 

 

Figure 4.3 reviews the spatial and temporal structure of Andean convective forcing in the CTR 

group, which is necessary context for interpreting its denial in the TOPO group. An equatorial 
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(5°S-5°N) Hovmöller diagram (Fig 4.3a) of the composite (i.e. CTR ensemble mean) diurnal 

rainfall cycle illustrates the afternoon maxima over the continental interior (east of 75°W) and 

nocturnal oceanic maxima (west of 80°W); this phenomenon is discussed in Mapes et al. (2003) 

from the viewpoint of satellite observations. The Andean forcing maximizes around local 

afternoon at 75°W (Fig 4.3a). Andean forcing in the CTR group exhibits a robust diurnal cycle 

approximately in phase with the diurnal cycle of rainfall. Its vertical structure reveals heating in 

the middle troposphere and cooling in the lower levels (Fig 4.3b) consistent with deep, organized 

convection that includes lower-tropospheric cooling from evaporation of subcloud precipitate. 

The horizontal structure of the vertically integrated Andean forcing shows the intended 

alignment with Andean orography with peak net heating equatorward of 20°S (Fig 4.3c). 

 

4.3.2 Responses of Amazonian precipitation driven by Andean convective 

heating 

In the following analysis, for physical interpretability, I will focus attention on the CTR-minus-

TOPO ensemble mean anomalies since this can be regarded as a proxy for mechanisms 

associated with including the effects of Andean convection. 

 

The remote control of Amazonian rainfall by the Andes can be seen in Fig 4.4. In these 96 hours, 

the CTR group has four complete diurnal cycles with rainfall peaks reaching around 8 mm/day at 

local afternoon (Fig 4.4b). Amazonian precipitation reduces as a response to Andean convective 

heating, and such reduction exhibits a robust diurnal cycle (Fig 4.4c). The first rainfall reduction 

cycle sustains for about 37 hours while the second and the third ones sustain for about 24 hours. 

Although the rainfall reduction maximum averaged over the Amazon box reaches around -1 
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mm/day, it can be as much as -3 to -5 mm/day regionally (Fig 4.4a). The experiment setup and 

the short temporal scale of Amazonian precipitation responses suggest that it is through fast 

atmospheric processes that the Andes–Amazon connection operates. As an aside, I note that local 

to the Andes, latent heat release enhances precipitation (Fig 4.4a, blue shading), which is 

expected since the convergent circulations that feed vapor to a convective cell are partially 

driven by its heating (Holton 2004). This answers our question raised in the introduction that a 

portion of the WADA pattern can be attributed solely from the Andes. 

 
Figure 4.4 (a) Precipitation responses to Andean forcing (CTR minus TOPO) at the 13th hour 

after branching off. Areas with stippling indicate significant of 0.1 level in the student-t test. The 

Amazon area is defined with a red box (51°W-72°W, 10°S-4°N). Units: mm/day. (b) 

Precipitation averaged over the Amazon box in the CTR group. Units: mm/day. (c) Differences 

in precipitation averaged over the Amazon box between CTR and TOPO group. It depicts the 

Amazonian precipitation responses to Andean forcing. The initial dynamic adjustment takes 

about 10 hours, averaged mean during the 11th-96th hour is -0.573 mm/day. Units: mm/day. 

 

4.3.3 Why does precipitation reduce over the Amazon? 

In this section, I try to understand precipitation responses over the Amazon from the lenses of 

near-surface MSE, mechanics of GMS, CAPE, and the moisture budget. 
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Figure 4.5 Summary schematic investigating causality of Andes-Amazon teleconnection 

dynamics (a) the signal of interest; i.e. same as Fig 4.4c, it is included here for easy visual 

comparison of following (b-i) subpanels where a variety of diagnostics are averaged over the 

Amazon. (b) CTR minus TOPO group in MSE (blue), LSE (yellow), and DSE (green) averaged 

in the lowest five model layers. Units: kJ/kg. (c) CTR minus TOPO group in surface sensible 

heat flux (blue), latent heat flux (yellow), vertically integrated solar heating rate (green) and 

longwave heating rate (red), as well as the sum of the four terms (purple). Units: watts/m2. (d) 

CTR minus TOPO group in the numerator (blue) and its horizontal, vertical component, and the 

denominator (yellow) of the NGMS. Units: watts/m2. (e) CTR minus TOPO group in the NGMS. 

Units: dimensionless. (f) CTR minus TOPO group in CAPE. Units: J/kg. (g) CTR minus TOPO 

group in the local rate of change in vertically integrated specific humidity (blue), total physics 

tendency of specific humidity PTEQ (yellow), total advection of specific humidity (green) 

inferred based on equation (4.9). Units: g/kg/hr. (h) Decomposition of the total advection of 

specific humidity based on equation (2.12). CTR minus TOPO group in − 〈𝑢
𝜕𝑞

𝜕𝑥
+ 𝑣

𝜕𝑞

𝜕𝑦
〉  (blue), 

− 〈𝑞(
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
)〉 (yellow), − 〈𝜔

𝜕𝑞

𝜕𝑝
〉 (green), − 〈𝑞

𝜕𝜔

𝜕𝑝
〉 (red), the sum of the previous four terms 

(purple), and vertical integral of the total advection of specific humidity inferred based on 
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equation (4.9) (brown). Units: g/kg/hr. (i) CTR and TOPO group differences 〈−𝜔
𝜕𝑞

𝜕𝑝
〉𝐶𝑇𝑅−𝑇𝑂𝑃𝑂 

(blue), and its decomposition into three terms, −〈𝜔𝑇𝑂𝑃𝑂 [
𝜕𝑞

𝜕𝑝
]

𝐶𝑇𝑅−𝑇𝑂𝑃𝑂
〉 in yellow, 

−〈𝜔𝐶𝑇𝑅−𝑇𝑂𝑃𝑂 [
𝜕𝑞

𝜕𝑝
]

𝑇𝑂𝑃𝑂
〉 in green, −〈𝜔𝐶𝑇𝑅−𝑇𝑂𝑃𝑂 [

𝜕𝑞

𝜕𝑝
]

𝐶𝑇𝑅−𝑇𝑂𝑃𝑂
〉 in red. Units: g/kg/hr. The fact 

that the sum of three individual components does not seem to equal to the original term 

〈−𝜔
𝜕𝑞

𝜕𝑝
〉𝐶𝑇𝑅−𝑇𝑂𝑃𝑂 (blue) is likely due to errors induced in gradient calculations which might be 

accumulated in the summation. 

 

The changes of near-surface MSE induced by Andean convective heating do not seem to explain 

changes in precipitation over the Amazon (Fig 4.5b). Larger MSE in the lower troposphere is 

conducive to deep convection and rainfall, as seen in Hill et al. (2017). From this view, I should 

expect a reduction of lower-level MSE in the CTR group relative to the TOPO group if 

Amazonian rainfall is tele-connected via a near-surface MSE bridge. In contrast, in our 

experiment, relative to the TOPO group, the CTR group actually has a slightly higher near-

surface MSE until the 60th hour, after which it increases even more (Fig 4.5b). The LSE 

component (i.e. vapor in energy units, 𝐿𝑣𝑞) of MSE is mostly compensated by changes in the 

DSE (𝐶𝑝𝑇 + 𝑔𝑧) component before the 60th hour, after which elevated LSE dominates the MSE 

changes (Fig 4.5b). Despite the fact that it is more than compensated by sensible heating, I do 

view the initial low-level drying (reduced LSE) as causatively important, and will return to this 

shortly. 

 

Meanwhile: Can the Amazonian precipitation changes be reconciled with a gross moist stability 

view instead? Based on equation (4.2), I can understand drivers of P-E from the diabatic heating 

term in the numerator and the NGMS term in the denominator. Differences of P-E averaged over 

the Amazon between CTR and TOPO group are very similar to changes of P (not shown). As a 

result, I can use (4.2) to understand changes of precipitation. The diabatic column heating term 
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consists of surface sensible heat flux and latent heat flux, vertically integrated shortwave and 

longwave heating rate. Sensible heat flux increases significantly during the local afternoon with a 

strong diurnal cycle but with peaks tapering down, while the longwave heating rate remains 

stably negative after the first few hours (Fig 4.5c). Changes in latent heat flux and shortwave 

heating rate are relatively negligible, and the sum of the four terms is mainly driven by the sum 

of sensible heat flux and longwave heating rate (Fig 4.5c). The numerator of the NGMS in 

equation (4.6) is mostly driven by the vertical advective term of MSE (Fig 4.5d). The NGMS 

term seems to have two cycles before the 45th hour with peak values around 0.5 but tends to be 

slightly negative afterward (Fig 4.5e). I found that the ratio between the diabatic heating term 

and the NGMS term shows irregular changes (not shown), which is not adequate to explain 

precipitation changes. Intriguingly, precipitation increases in the 85th-90th hour, during which 

both the diabatic term and the NGMS term are negative (Fig 4.5c, e), implying the combined 

effects of longwave cooling and NGMS might contribute to the rainfall enhancement during that 

period. 

 

I next turn to the possibility of control-by-CAPE, which will turn out to be important but in ways 

that may be secondary to a progenitor signal transmitted through the low-level humidity field. 

Comparing to the TOPO group, the CTR group has a much lower CAPE over the Amazon 

during the 10th-80th hour, especially during the 20th-60th hour, associated with suppressed deep 

convection and rainfall (Fig 4.5f). This reduction of CAPE is linked to the boundary layer 

drying, which reduces dew point temperature and therefore CAPE (not shown), for the same 

reasons elaborated in Langenbrunner et al. (2019). Although this CAPE reduction is consistent 

with precipitation decrease due to Andean forcing, it cannot explain the very beginning of a 
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precipitation reduction, and I speculate that it is instead an internal feedback triggered by 

upstream causes linked to the humidity budget. It is worth pointing out that the Amazonian 

rainfall is susceptible to both Andean forcing and complex secondary feedbacks which could be 

developed later-on. The most effective way to disentangle the effects of Andean convection on 

Amazonian rainfall from other secondary feedbacks is to focus on the initial period right after 

branching off. 

 

In the end, to find a causatively satisfying framework to interpret the origins of the Andes-to-

Amazonian precipitation response dynamics, I delve into the moisture budget. In Fig 4.5g, the 

local rate of change in moisture is balanced by moisture changes due to physics package 

calculations and the total advection of moisture. During the initial period until the 30th hour, the 

total advection of moisture decreases (Fig 4.5g); during the same period, precipitation decreases 

and reaches diurnal minima (Fig 4.5a). The total advection of moisture provides the clean 

unidirectional causality during the initial period which provides a reasonable explanation of 

precipitation reduction over the Amazon. It is worth noting that the initial tropospheric drying 

due to advection is strong in the boundary layer (Fig 4.6e-h), which may lead to secondary 

feedbacks (e.g. subsequent CAPE reductions) acting to suppress rainfall over the Amazon 

despite re-moistening due to moisture advection at a later stage. 

 

Based on (4.12), the total advection of specific humidity, which the above analysis has indicated 

is an important part of the causation, can be further decomposed into four terms, the horizontal 

advective term − (𝑢
𝜕𝑞

𝜕𝑥
+ 𝑣

𝜕𝑞

𝜕𝑦
), the divergence term − 𝑞 (

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
), the vertical advective term 

−𝜔
𝜕𝑞

𝜕𝑝
, and the vertical Omega gradient term −𝑞

𝜕𝜔

𝜕𝑝
. Such decomposition is shown in Fig 4.5h. I 
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readily acknowledge that this “bottom-up” way of calculating total advection from model state 

variable snapshots is error prone and needs some careful consideration (e.g., avoiding 

unnecessary vertical interpolation from hybrid to pressure coordinates for vertical advection 

terms; using spherical harmonics to estimate gradients for horizontal terms). For validation and 

comparison, the accurate, residually-inferred, moisture total advection calculation based on (4.8) 

and (4.9) is also overlaid in Fig 4.5h (brown). The closeness of the total advection lines based on 

these two methods (purple vs. brown lines) justifies the decomposition results calculated using 

gradient terms, and demonstrates that the model output frequency is high enough to warrant such 

a reconstruction. 

 

The results in Figure 4h suggest that the vertical circulations induced by Andean latent heating, 

through their influence on vertical moisture advection, are a key causative bridge. On the one 

hand, the divergence term (yellow) always balance with the vertical Omega gradient term (red) 

due to the continuity equation (4.11). On the other hand, the horizontal advective term (blue) is 

negligible compared to other terms. Therefore, the total advection as the sum of the four 

components (purple) is mostly determined by the vertical advective term (green). 

 

Finally, to further understand whether the velocity or the moisture fields provide the dominant 

effect on the differences of the vertical advective term between CTR and TOPO group 

〈−𝜔
𝜕𝑞

𝜕𝑝
〉𝐶𝑇𝑅−𝑇𝑂𝑃𝑂(blue line in Fig 4.5i) , I use (4.14) to decompose it into 

−〈𝜔𝑇𝑂𝑃𝑂 [
𝜕𝑞

𝜕𝑝
]

𝐶𝑇𝑅−𝑇𝑂𝑃𝑂
〉 (yellow line in Fig 4.5i), −〈𝜔𝐶𝑇𝑅−𝑇𝑂𝑃𝑂 [

𝜕𝑞

𝜕𝑝
]

𝑇𝑂𝑃𝑂
〉 (green line in Fig 

4.5i), and −〈𝜔𝐶𝑇𝑅−𝑇𝑂𝑃𝑂 [
𝜕𝑞

𝜕𝑝
]

𝐶𝑇𝑅−𝑇𝑂𝑃𝑂
〉 (red line in Fig 4.5i). It is obvious that the differences of 
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the vertical advective term 〈−𝜔
𝜕𝑞

𝜕𝑝
〉𝐶𝑇𝑅−𝑇𝑂𝑃𝑂 is driven by −〈𝜔𝐶𝑇𝑅−𝑇𝑂𝑃𝑂 [

𝜕𝑞

𝜕𝑝
]

𝑇𝑂𝑃𝑂
〉, i.e. 

differences of vertical velocity field between CTR and TOPO group, revealing the importance of 

the vertical velocity dynamic response to Andean forcing as critical to mediating the advective 

impacts on the Amazonian region. 

 

4.4 Eastward expansion of the Andean vertical advection bridge  

In section 4.3.3, I have shown that the vertical advective term 〈−𝜔
𝜕𝑞

𝜕𝑝
〉𝐶𝑇𝑅−𝑇𝑂𝑃𝑂 is a first-order 

control on reductions of the total advection of moisture, which in turn provide the best 

explanation for initial reduction in Amazonian rainfall. This view is corroborated when I 

examine the 10°S latitude transect (Fig 4.6) during the initial period when the response signals 

are more of a direct response to Andean forcing and less of a mixed effect of Andean forcing 

plus gradually developing local feedbacks. Initially, only on the east flank of the Andes can the 

strong subsidence anomalies be found. Then, the horizontal scale of the sinking anomalies 

expands eastward progressively (Fig 4.6a-d) as expected through fast gravity wave radiation 

(Bretherton and Smolarkiewicz 1989; Cohen and Boos 2017; Halliday et al. 2018; Kalisch et al. 

2016; Kiladis et al. 2009) with a co-located expansion of drying in the troposphere (Fig 4.6e-h). 

Consistently, in the middle troposphere, the vertical velocity anomalies gradually progress 

eastward during the 4th-11th hour with the subsequent eastward stride of specific humidity with a 

few hours lag (Fig 4.7). In order to put the Andean forced Amazonian rainfall response into a 

broader context, I define an Andean east flank region (red box on the left in Fig 4.7a) and an 

Amazon region (red box on the right in Fig 4.7a), based on which I analyzed the CMIP5 data 

archive (Table 4.1), satellite observations and reanalysis datasets. The 500hPa vertical velocity 
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(specific humidity) on the Andean east flank has a significant negative (positive) correlation with 

the precipitation over the Amazon (Fig C1). This suggests that realistic representations of the 

Andean east flank midlevel vertical velocity and humidity fields are associated with a model’s 

skill in simulating Amazonian rainfall. 
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Figure 4.6 Transect at 10°S latitude. (a-d) Differences between CTR and TOPO group of 

temperature (shading), zonal, and vertical velocity (arrows), where vertical velocity is magnified 

100 times for visibility. Units: temperature in Kelvin, wind in m/sec. (e-h) Differences between 

CTR and TOPO group of specific humidity. Units: g/kg. (a)(e) show the 4th hour after branching 

off (23:00 local time at 75°W). (b)(f) show the 7th hour after branching off (02:00 local time at 

75°W). (c)(g) show the 10th hour after branching off (05:00 local time at 75°W). (d)(h) show the 

13th hour after branching off (08:00 local time at 75°W). 
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Figure 4.7 (a) Differences between CTR and TOPO group in the 500hPa vertical velocity at 0.02 

Pa/sec contour during the 4th-11th hour after branching off. (b) Differences between CTR and 

TOPO group in the 500hPa specific humidity at 0.1 g/kg contour during the 8th-15th hour after 

branching off. The red box 1 on the right (67-56°W, 10°S-1°N) shows where the eastward 

progression notably occurs, and the red box 2 on the left (67-74°W, 8°S-equator) delineates the 

Andean east flank region. In Figure A1, precipitation is averaged over the Amazon box (box1). 

500hPa vertical velocity and specific humidity are averaged over the Andean east flank region 

defined by box 2. 

 

4.5 Conclusion and discussion 

Motivated by the systematic “Wet Andes, Dry Amazon” (WADA) bias pattern seen in the 

CMIP5 archive over tropical South America, I designed a sensitivity experiment to surgically 

isolate the effects of Andean convective forcing on Amazonian precipitation processes. Based on 

an ensemble hindcast approach, I illustrate that complete denial of all Andean convective heating 

leads to a peak Amazonian precipitation decrease of approximately -1mm/day within 15 hours 

after initial Andean convective forcing and thereafter exhibits a strong diurnal cycle oscillating 

around ~ -0.5 mm/day reduction. The precipitation decrease over the Amazon is primarily 

controlled by the total advection of moisture driven by the vertical advective term −𝜔
𝜕𝑞

𝜕𝑝
 and is 

also reinforced by local CAPE reductions related to the circulation-induced low-level drying. 

Differences in the vertical advective term between CTR and TOPO group 〈−𝜔
𝜕𝑞

𝜕𝑝
〉𝐶𝑇𝑅−𝑇𝑂𝑃𝑂 are 
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traced to differences of vertical velocity between the two groups. Andean convective heating 

initially induces strong subsidence anomalies on its east flank, which then rapidly expand 

eastward into the Amazon basin through gravity wave radiation. As a consequence of the vertical 

advective term, a similar eastward expansion of tropospheric drying is easily visible and 

detectable on a similar horizontal length scale. 

 

One advantage of our study is its capability to quantify what portion of the Amazonian rainfall 

dry biases may originally stem from Andean rainfall wet biases. In our 1989 DJF CTR group 

simulation, the Andean region has a mean rainfall of 6.37 mm/day and the number is 4.69 

mm/day for the Amazon region. Using GPCP v2.3 as the benchmark, the implied rainfall biases 

are +2.69 mm/day over the Andes and -3.57 mm/day over the Amazon. That is, the Andean wet 

bias is 
2.68

6.37
× 100% = 42% of the Andean mean rainfall. Recalling that the results of removing 

all of the condensational heating over the Andes had a rainfall reduction effect of -0.573 mm/day 

over the Amazon basin as depicted in Fig 4.4a (averaging over the 11th-96th hour in Fig 4c), and 

assuming a simple linear scaling, the implied amount of Amazonian rainfall biases due to 

Andean wet biases can be calculated as −0.573 × 0.42 = −0.24 mm/day. This implies that 

approximately 
−0.24

−3.57
× 100% = 7% of the Amazonian rainfall dry biases in our CTR group 

using CESM v1.1 could be directly attributed to the fast advective bridge from wet biases over 

the Andes. This 7% seems trivial. However, I suspect his number to be much larger over western 

part of the Amazon where it is more susceptible to Andean forced vertical advective drying (Fig 

4.6), and the mean rainfall dry bias (-1 to -3 mm/day) is smaller than the eastern Amazon (Fig 

4.2). Another caveat of such calculation is that the TOPO group only runs for 4 days, such 

experiment is incapable of detecting the effects of Andean convection on Amazonian rainfall on 
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longer synoptic timescales which the initial daily response could be strengthened 

(Langenbrunner et al. 2019). 

 

The immediate implication is that, since the portion of the Amazonian rainfall dry bias that 

directly originates from excess Andean convection is quite small, CESM model developers 

focusing on improving Amazonian hydroclimate might be better served by prioritizing their 

efforts and resources into fixing other sources of Amazonian rainfall biases such as land 

parameterizations, or cloud treatments that impact the forest directly. However, this assumes that 

secondary amplification on longer timescales, such as that already observed intermittently via 

CAPE feedbacks, is not prone on longer timescales to further amplifying the initial effects of 

Andes forcing. Such nonlinear amplification has been observed on > 4-day timescales in this 

regional system before by Langenbrunner et al. (2019) through forest-mountain reinforcement 

and could also occur through land-atmosphere coupling connected wet- to dry-seasons (Levine et 

al. 2019). Obviously, extended versions of these simulations would be needed to know if the 

system dynamics to Andean forcing are likewise amplifying or, perhaps more likely, buffering. 

Meanwhile, other modeling systems beyond CESM could use a similar mechanism denial 

strategy to assess what fraction of Amazonian rainfall dry biases are caused by Andean wet 

biases in their own GCM of interest, which could be beneficial to their model development 

strategies. 

 

Some readers may question our experiment setup about the “energy leakage” issue. In our 

experiment design, our main purpose is to causatively determine the effects of Andean 

convective forcing on Amazonian rainfall. To achieve this, I first have a full-fledged CTR group 
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simulation, and then have a second TOPO group in which I surgically mute the convective 

heating over mountainous regions. By comparing these two groups of simulations, I can separate 

the effects of Andean convective heating on Amazonian rainfall. The tradeoff of such experiment 

design is the violation of energy conservation. Simulations in the second TOPO group allow 

precipitation to occur but deny latent heat release from condensation over areas where 𝑆𝐺𝐻30 ≥

200𝑚 and linearly damp condensational latent heat release over areas where 100𝑚 ≤ 𝑆𝐺𝐻30 <

200𝑚. This means the annihilation of the latent heat energy encapsulated in precipitation, or the 

“energy leakage” issue. In the TOPO group, the interference only deals with temperature 

tendencies (rather than moisture tendencies), such that the energy leakage in the TOPO group 

would be concerning if the increase of the column MSE over the Andes is dominated by DSE. 

But this is not true (Fig C2), implying that the impact of energy leakage is minimal in our setup. 

It is also reassuring to see that similar experiment design strategies are adopted in other studies 

(Sun and Barros 2015a; Sun and Barros 2015b) where surface evaporation is artificially removed 

to investigate the local and remote impacts of evapotranspiration on convection and precipitation 

over South America. 

 

In addition, the differences between CTR and TOPO groups are due to muting condensational 

heating over mountains and plateaus all over the globe (rather than over the Andean orography 

only). In our simulations, I scrutinized the precipitation responses over South America in the first 

few days, during which the remote influences of shutting down condensational heating from 

other mountainous ranges and plateaus are quite limited. Since I only analyzed the South 

American region, I encourage other researchers to use our datasets to investigate the relationship 
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of rainfall biases between mountainous regions and adjacent lowlands in other parts of the world 

where the dipole patterns of rainfall biases are also quite common as can be seen in Figure 1.1. 

 

Our study adds to the evidence of an interesting positive regional feedback within the SAMS 

system over the Andes-Amazon region. During the wet season, SALLJ transports moisture and 

MSE from the Amazon towards the Andes, increasing the Andean convection and precipitation. 

Based on our experiment, this rainfall increase over the Andes can decrease Amazonian rainfall 

through the vertical advective drying. Amazonian rainfall reduction decreases local ET, which is 

a known effect to further strengthen the Andean rainfall from different perspectives. One view is 

through the lens of CAPE reduction and increased divergence anomalies over the Amazon (Sun 

and Barros 2015a); the other notion is that Amazonian ET reduction help elevate local surface 

Bowen ratio and deepen the boundary layer depth, which leads to a stronger MSE transport 

towards the Andes (Langenbrunner et al. 2019). As a result of the positive feedback, our study 

underscores the importance of looking at the Andes-Amazon system holistically, and the Andes-

Amazon ought to be assessed together in climate change studies. In a warmer climate, Amazonia 

is projected to experience decreases of rainfall (Pascale et al. 2019), a strengthening and 

lengthened dry season (Joetzjer et al. 2013), more frequent and exacerbated meteorological 

droughts (Duffy et al. 2015). Our sensitivity study suggests that future changes of Andean 

convection and precipitation may affect Amazonian hydroclimate through intimate feedbacks. 

For instance, a decrease or increase of Andean rainfall in the future (Neukom et al. 2015; Seiler 

et al. 2013; Urrutia and Vuille 2009) might alleviate or exacerbate the rainfall deficit problem 

over the Amazon. 
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Chapter 5. Conclusion 
 

5.1 Summary of results 

This thesis aims to broaden our knowledge of the role of convection in mediating inter-

component (land-atmosphere) coupling dynamics, as well as inter-regional (Andes-Amazon) 

teleconnections, using two novel numerical modeling approaches – cloud superparameterization 

and a new form of orographic latent heating denial. First, from a global perspective, based on the 

Global Land-Atmosphere Coupling Experiment (GLACE) protocol, I investigated the effects of 

explicit convection on land-atmosphere coupling through the hydrologic pathway. Then, I 

illustrated that explicit convection changes the thermal land-atmosphere coupling for distinct 

reasons over the Arabian Peninsula and the southwestern United States. Finally, in a detailed 

analysis of the Amazon wet season hydroclimate, based on an ensemble hindcast sensitivity 

experiment augmented with mechanism denial, I examined how Andean convection remotely 

controls a portion of Amazonian rainfall. 

 

In Chapter 2, I used a standard technique to quantify the hydrologic land-atmosphere coupling 

strength by synchronizing soil moisture state variables across ensemble simulations known as the 

GLACE protocol. Although this technique is well established and has been applied to standard 

climate models, I am the first to deploy such a strategy to next-generation prototype climate 

simulations, in which convection is “super-parameterized” i.e. explicitly simulated by embedded 

2D Cloud-Resolving-Models (CRMs) in every grid column of the traditional climate model. 

Over weekly-to-subseasonal timescales, comparing to parameterized convection, explicit 

convection reduces the hydrologic land-atmosphere coupling on a global scale during boreal 
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summer. Such reduction is exceptionally substantial over central Eurasia, northern Africa, central 

United States, and tropical South America. The coupling strength reduction primarily comes 

from the atmospheric segment (evapotranspiration–precipitation) rather than the terrestrial 

segment (soil moisture–evapotranspiration). Over seasonal timescales, the hydrologic land-

atmosphere coupling mainly reflects on the response limb (impacts of precipitation on terrestrial 

water storage), rather than the forcing limb (impacts of terrestrial water storage on precipitation), 

and the effects of explicit convection on seasonal coupling are minimal. 

 

In Chapter 3, I showed that unlike its global damping impacts on the hydrologic coupling, 

explicit convection only changes the thermal coupling regionally. Such regional effects are 

evident in both the GLACE-type and the AMIP-type simulations (using metrics of terrestrial 

coupling indexes). Analysis of the underlying mechanism argues that decreased soil moisture–

temperature coupling strength over the Arabian Peninsula occurs because explicit convection 

produces less but more realistic local time-mean rainfall, pushing the soil moisture regime 

further away from the optimal transitional regime that is necessary for strong coupling. In 

contrast, explicit convection enhances the thermal coupling strength over the southwestern 

United States and northern Mexico for different reasons that are as yet unclear. Such regional 

enhancement of thermal coupling is not attributable to local precipitation or soil moisture since a 

broad range of statistical measures suggest a high degree of similarity between two groups. 

Instead, the enlarged thermal coupling over the southwestern United States is related to a 

mysterious surface Bowen ratio enhancement. This led me to a surprising discovery, that explicit 

convection enlarges the land surface Bowen ratio over the majority of global land. On a global-

average sense, this enhancement of the Bowen ratio leads to somewhat better agreements with 
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observationally derived FLUXNET-MTE datasets. Across multiple model version pairs of using 

parameterized vs. explicit convection, climate simulations suggest that the explicit convection 

has a systematic and robust effect on the land surface Bowen ratio enhancement. Furthermore, 

comparing to parameterized convection, explicit convection exhibits a remarkably stronger 

amplification effect on land surface Bowen ratio in a climate with elevated CO2 levels. 

 

Chapter 4 is motivated by a systematic zonal dipole pattern of rainfall biases in CMIP5 

simulations over tropical South America, which I have labeled the “Wet Andes, Dry Amazon” 

(WADA) bias to suggest the potential of coupling between Andean and Amazonian 

hydroclimate. This chapter conceives an experimental design in which the convective forcing 

over the Andes is artificially muted in an experiment group. Based on the control and experiment 

group of simulations, this allows a causatively unambiguous way to separate the effects of 

Andean convective heating on Amazonian rainfall processes. I find that Andean convective 

forcing causes an Amazonian rainfall reduction of -0.57 mm/day averaging over the first 4 days. 

I then attempt to infer the causality from multiple complementary approaches that are widely 

used in modern tropical climate dynamics. Neither low-level moist static energy nor the 

mechanics of moist gross stability can explain the response of Amazonian rainfall. However, 

changes in the moisture budget, especially in the vertical advective term, appear to provide a 

consistent explanation for the reduction of Amazonian rainfall, which can be ultimately traced to 

differences in the vertical velocity field linked to the balanced motions that associated with 

convective heating over the mountains, and their advective consequences. Signals of Amazonian 

responses are less corrupted by growing non-linear feedbacks in the initial period of the 

experiment, and it is a focus on this initial drift structure between experiment and control group 
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that provides easily visible vertical velocity anomalies due to Andean forcing gradually 

expanding eastward, accompanied by tropospheric drying anomalies seen on similar horizontal 

length scales. Assuming linear scaling, our mechanism denial experiment implies that in CESM 

v1 during wet season, 7% of the Amazonian rainfall dry bias is attributable to rainfall wet biases 

over the Andes, though nonlinear feedbacks could either amplify or damp this on longer 

timescales. 

 

5.2 Future research directions 

Implications and suggestions for future work stemming from Chapter 2 

As the climate community moves towards the Global Cloud-Resolving Models (GCRMs) 

(Fukutomi et al. 2016; Randall 2013; Sasaki et al. 2016; Satoh et al. 2019; Stevens et al. 2019), 

the effects of explicit convection found by using the SP framework may be viewed as setting 

expectations for potentially similar behaviors emerging from GCRMs, and attention given to 

results in Chapter 2-3 may help prevent from being caught off guard by unexpected GCRM 

behaviors in the near future. Chapter 2 concludes that during boreal summer, explicit convection 

attenuates the GLACE-type soil moisture–precipitation coupling strength, or the impacts of soil 

moisture on rainfall over subseasonal timescales. For the subseasonal-to-seasonal (S2S) 

prediction community (Brunet et al. 2010; White et al. 2017), this implies that in the era of 

GCRMs in the coming decade, over the mid-latitude regions of transitional soil moisture regime, 

including the agriculturally important central U.S., predictability of rainfall may be more 

dominated by remote oceanic SSTs and atmospheric intra-seasonal oscillations in the tropics like 

the Madden-Julian Oscillation (MJO),  and less should be expected from local soil moisture 

assimilations. 
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Some limitations of Chapter 2 are important to mention. The preliminary work does not 

satisfactorily explain why explicit convection can mute the soil moisture–precipitation coupling 

on a global scale; neither does it provide direct evidence to prove whether or not it is an 

improvement since the GLACE-type diagnostic is not observable. To adequately address these 

limitations, one could take advantage of recent field campaigns (Fast et al. 2019a; Fast et al. 

2019b) and conduct single-column simulations with parameterized vs. explicit convection at the 

U.S. Southern Great Plains site where ample observations are available. The advice is to use 

other methodologies that are more physically interpretable and friendly to observations. For 

instance, to examine the sensitivity of soil moisture–precipitation coupling to the 

parameterization in the mass-flux closure of convection, transpiration of vegetation (Williams 

2019), and representation of agricultural practices (McDermid et al. 2019); to dissect the soil 

moisture–evaporation feedback by considering soil evaporation, transpiration and canopy 

interception separately (Berg and Sheffield 2019); and to utilize the mixing diagram approach on 

quantifications of local coupling (Santanello et al. 2009b). Furthermore, this chapter uncovers 

the systematic effects of explicit convection on soil moisture–precipitation coupling on sub-

seasonal timescales, but the consequences on extreme hydrologic events are not explored. Given 

the role of soil moisture on the intensity and persistence of droughts (Roundy and Wood 2015; 

Wu and Zhang 2013; Zaitchik et al. 2013), it is meaningful to know whether or not explicit 

convection can alter the impacts of soil moisture on extreme hydrologic events like droughts. 

Lastly, in a climate with elevated CO2 levels, GCMs with explicit convection are known to 

behave differently comparing to those with parameterized convection (Arnold et al. 2014; 

Kooperman et al. 2016), it would be interesting to see if explicit convection would simulate soil 
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moisture–precipitation feedbacks and their impacts on future droughts differently in a warmer 

climate by following the CMIP5-GLACE protocol (Lorenz et al. 2016; Seneviratne et al. 2013; 

Zhou et al. 2019) deployed on superparameterized simulations. 

 

Implications and suggestions for future work stemming from Chapter 3 

Chapter 3 suggests that explicit convection enhances soil moisture–temperature coupling over 

the southwestern U.S. and northern Mexico. This is useful context for Numerical Weather 

Prediction (NWP) and S2S communities as the soil moisture assimilation may increase the 

subseasonal predictability of regional near-surface temperature in the GCRMs. Another mystery 

of Chapter 3 is that explicit convection systematically enhances the land Bowen ratio which 

proves to be an improvement on a global-average sense. It is of great intellectual and practical 

benefits to probe the why question since the Bowen ratio has direct implications on surface 

temperature extremes, and future GCRMs may exhibit similar behaviors. Bowen ratio is a 

reflection of the surface energy partitioning, which is extremely complex in modern GCMs. Over 

central U.S. and northeastern Amazonia, the systematic Bowen ratio enhancement effects are 

particularly strong. This may imply that the underlying vegetation transpiration–surface climate 

feedbacks are represented quite differently due to explicit convection [DeMott et al., 2007]. 

Since the transpiration pull is needed for a sustained supply of water for photosynthesis, which 

fixes carbon in the terrestrial biosphere, it would be an intriguing investigation into the regional 

impacts of explicit convection on carbon fixation. 

 

Suggestions for future work stemming from Chapter 3 are summarized as follows. First of all, it 

is worthwhile using a recently launched satellite (e.g., Soil Moisture Active/Passive, or the 
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SMAP) mission for model evaluation purposes  (Dong and Crow 2018). Furthermore, given the 

regionally strong effects of explicit convection on the thermal coupling, a valuable research 

pathway is to scrutinize its consequences on extreme temperature events since soil moisture–

atmosphere feedbacks are known to increase the intensity and duration of heatwave events 

(Fischer et al. 2007a; Lorenz et al. 2010; Seo et al. 2019). Lastly, to investigate the effects of 

explicit convection on soil moisture–temperature feedbacks under climate change scenarios, the 

suggestion is to adopt a recently proposed theoretical approach based on the soil moisture–

evaporative fraction relationship, using which the thermal coupling signal obtained from regular 

climate change simulations can be equivalent to that obtained from the costly CMIP5-GLACE 

simulations (Schwingshackl et al. 2018), which can be challenging to simulate in 

computationally intensive superparameterized models. 

 

Implications and suggestions for future work stemming from Chapter 4 

An orographic dipole structure of rainfall biases in CMIP5 is ubiquitous over the Himalayan 

Mountains – Indian lowland area, the Rocky Mountains – central U.S. area, as well as the 

WADA pattern investigated in Chapter 4, as can be seen in Figure 1.1. This might be related to 

the hybrid sigma coordinate employed in most GCMs. It is a known fact that precipitation in 

GCMs tends to be overestimated over orographic regions and underestimated over adjacent low 

lands due to computational errors of pressure gradient force calculation near steep topographies 

in hybrid sigma coordinate (Li et al. 2014; Maloney and Zhang 2016; Yu et al. 2015; Zou et al. 

2016). Efforts of designing the cut-cell method in representing the topography might be fruitful 

in this regard (Lock et al. 2012; Shaw and Weller 2016). Secondly, our sensitivity results 

emphasize that Andean convection exert influence on Amazonian rainfall through mediations 



 90 

from the dynamic and moisture fields over the Andean east flank in the middle troposphere. 

Model evaluators interested in the Amazonian hydroclimate are encouraged to incorporate 

relevant processes in their evaluation metrics. On the observational side, the ground based 

weather stations are scare over the Andean east flank region (Xavier et al. 2016). A lack of high-

quality observation datasets poses a challenge for model evaluation on the Andean driven 

mechanism. The Amazon Dense Global Navigation Satellite System (GNSS) Meteorological 

Network and the recent GoAmazon2014/2015 campaign (Machado et al. 2018; Martin et al. 

2016; Schiro et al. 2018; Wang et al. 2018) are all located around central Amazonian basin at 

Manaus (60°W). Similar observational efforts are strongly encouraged over the Andean east 

flank region. Thirdly, to better pinpoint the moisture sources and sinks over the Andes-Amazon 

region, this chapter encourages usage of the isotopic analysis (Risi et al. 2013; Wright et al. 

2017) to separate moisture sources from adjacent oceans to rainforest ET since the latter is 

relatively enriched in deuterium; and the trajectory-based methods (Drumond et al. 2008; Jiang 

et al. 2017). 

 

This chapter demonstrates that based on an ensemble sensitivity experiment, for the CESM v1 in 

the CTR simulation, 7% of the Amazon basin-wide rainfall dry bias is attributable to the fast (< 4 

day) response to Andean wet biases during the wet season. It is important to identify if this 

sensitivity grows or decays on longer timescales, as either outcome is possible, and this would 

alter the view of the importance of this teleconnection. Meanwhile, this result has so far only 

been investigated in a single GCM, the CESM. Other researchers can deploy similar mechanism 

denial experiments to be informed of what fraction of the Amazonian rainfall biases, in their 

GCMs, is due to biases from the Andes, as opposed to other sources of biases like SSTs, land 
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parameterizations, convection treatments. This is beneficial for a better allocation of efforts and 

resources for model developments. Our study also adds to evidence pointing to positive regional 

feedbacks within the SAMS system over the Andes-Amazon region, which argue for analyzing 

the Andes-Amazon system holistically. In the future, Amazonia is projected to experience 

rainfall reduction (Pascale et al. 2019), a strengthening and lengthened dry season (Joetzjer et al. 

2013), more frequent and exacerbated meteorological droughts (Duffy et al. 2015). This chapter 

suggests that future changes of Andean precipitation may affect Amazonian hydroclimate 

through complex feedbacks that involve vertical advection of vapor by the circulations induced 

by mountain convective heating, and consequent impacts on the potential buoyancy of 

Amazonian boundary layer air parcels. 
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A. Supplement to Chapter 2 
 

Figure A1 illustrates the soil moisture trajectories in ENS(W) and ENS(S) at one location. Soil 

liquid water (h2osoi_liq, kg/m2) was chosen to represent soil moisture. 
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Figure A1. Using liquid water content time series from ensemble members at one grid point to 

illustrate the implementation of subsurface (deeper than 5cm) soil moisture prescription. Level 0 

and level 1 are above 5cm in depth, level 2-9 deeper than 5cm. Soil liquid water time series 

spread among ensemble members in the writing ensemble (ENS(W)) at all levels and in the 

subsurface reading ensemble (ENS(S)) at level 0 and level 1. Ensemble spread is absent as a 

result of soil liquid water prescription among ensemble members in ENS(S) for level 2-9. 
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In order to add soil moisture writing and reading capabilities to the default land model, 

modifications were made in the following two files: 

1. models/lnd/clm2/src/main/driver.F90 

2. models/lnd/clm2/src/biogeophys/BalanceCheckMod.F90 

 

B. Supplement to Chapter 3 
 

Figure B1 presents how both CAM3.5 and SPCAM3.5 perform against GPCP datasets in terms 

of the mean and standard deviation of boreal summer (JJA) rainfall in 1996-2015 AMIP 

simulations. This analysis also supports the argument that SPCAM3.5 better represents rainfall 

over Arabian Peninsula on two basic statistics. 

 

Figure B2 examines soil moisture at multiple depths over Arabia in ENS(W) in CAM3.5 and 

SPCAM3.5. It suggests that SPCAM has dryer soil moisture at both near-surface and deeper 

levels. 

 

Figure B3 presents summer mean precipitation in ENS(W) over SW US in CAM3.5 and 

SPCAM3.5. Figure B4 is similar to Figure B2 but applied to SW US. Figure B3 and Figure B4 

together implies that "there must be another factor independent of mean precipitation or its 

associated soil moisture abundance that can produce enhanced thermal coupling under SP." 

 

Figure B5 supplements Figure 3.8 in the main article. It exhibits the terrestrial coupling index 

[Dirmeyer, 2011] based on the AMIP simulation, but with removal of drizzle mode with multiple 
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thresholds to determine drizzling. Regional enhancement of coupling over SW US in SPCAM3.5 

is insensitive to the threshold. This further illustrates that the drizzling removal of SP is unlikely 

to explain the enhancement of thermal coupling over SW US. 

 

Table B1 supplements Figure 3.6 in the main text. It supports the idea that soil moisture 

variability in the very dry decile bins is very small in both CAM and SPCAM. Such little 

variability in soil moisture is most likely unable to support a strong coupling between soil 

moisture within these bins and near-surface temperature [Dirmeyer, 2011; Seneviratne et al., 

2010]. 
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Figure B1. AMIP 1996-2015 JJA mean precipitation over Arabia from (a) CAM3.5 and (b) 

SPCAM3.5; anomalies relative to GPCP in (c) CAM3.5 and (d) SPCAM3.5; (e-h) Same as (a-d), 

but for standard deviation of precipitation. Root-mean-square errors are calculated within the 

black box and are shown on top of (c-d), (g-h). Calculation of mean uses monthly precipitation 

data from GPCP v2.3 as in the main article. Calculations of standard deviation uses GPCP 1-

Degree Daily Combination v1.2. 
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Figure B2. Based on ENS(W), box-and-whisker plot of volumetric soil moisture within the 

Arabian box (as outlined in black in Figure 3) at different soil levels in CAM3.5 (blue color) and 

SPCAM3.5 (red color). The lower (upper) end of the whisker is determined by 1.5 interquartile 

range from lower (upper) quartile. 

 

Figure B3. Same as Figure 3.3, but over the Southwestern US and Northern Mexico and here 

𝛼𝐹𝐷𝑅 = 0.15. 
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Figure B4. Same as Figure B2, but over the Southwestern US and Northern Mexico. 
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Figure B5. Based on 1996-2015 AMIP simulation, boreal summer, terrestrial coupling index in 

CAM3.5 (left column) and SPCAM3.5 (right column). Days in which total precipitaion is less 

than (a,b) 0.1, (c,d) 0.01, (e,f) 0.001, (g,h) 0.0001, (i,j) 1.0 × 10−5 mm/day are removed in both 

models. Consistent with Figure 4, soil moisture chosen to be soil liquid water in 𝑘𝑔/𝑚2, at 

0.12m depth. 

 

Table B1. Based on daily samples in ENS(W), over Southwestern US and Northern Mexico 

during boreal summer, standard deviation of volumetric soil moisture (0.007m) within each 

decile bin. Units: mm3/mm3 
Soil 

moisture 

[0.025, 

0.033) 

[0.033, 

0.046) 

[0.046, 

0.063) 

[0.063, 

0.075) 

[0.075, 

0.098) 

[0.098, 

0.151) 

[0.151, 

0.201) 

[0.201, 

0.253) 

[0.253, 

0.307) 

[0.307, 

1.031) 

CAM 3.949 

E-06 

1.780 

E-05 

3.178 

E-05 

7.408 

E-06 

8.543 

E-05 

2.692 

E-04 

1.577 

E-04 

1.483 

E-04 

2.230 

E-04 

1.185 

E-03 

SPCAM 3.404 

E-06 

1.522 

E-05 

3.378 

E-05 

9.822 

E-06 

8.396 

E-05 

2.567 

E-04 

1.545 

E-04 

1.494 

E-04 

2.254 

E-04 

5.388 

E-03 

 

 

Terrestrial	coupling	with	drizzle	removal,	AMIP	1996-2015,	soil	moisture	at	0.12m	depth	



 106 

C. Supplement to Chapter 4 

 

Figure C1. (a) X-axis: 500hPa vertical velocity (averaged over 1982-2008 Dec-Jan-Feb) on the 

east flank of the Andes (see Fig 4.7 red box 2). Y-axis: precipitation averaged over the Amazon 

(see Fig 4.7 red box 1). Units: vertical velocity in hPa/hour, precipitation in mm/day. Different 

symbols represent different CMIP5 models (see Table 4.1). In particular, the black square 

represents observational constraints where precipitation comes from GPCP v2.3, and 500 Omega 

comes from ERA5 reanalysis. Based on these 23 members, Pearson’s r = -0.6349, p-

value=0.001135. A linear regression obtained is y = -1.77x+5.23 (b) X-axis: 500hPa specific 

humidity (averaged over 1982-2008 Dec-Jan-Feb) on the east flank of the Andes (see Fig 4.7 red 

box 2). Y-axis: the same as in (a). Units: specific humidity in g/kg, precipitation in mm/day. The 

black square represents observational constrains where precipitation comes from GPCP v2.3, and 

500hPa specific humidity comes from ERA5 reanalysis. For the pink square, 500hPa specific 

humidity comes from the satellite-derived AIRS dataset. Based on these 24 members, Pearson’s 

R = -0.5467, p-value = 0.005699. A linear regression obtained is y = 0.58x + 3.16. Note that the 

AIRS dataset is only available after 2002 Sep, and here specific humidity from AIRS is the 

2003-2008 Dec-Jan-Feb average (rather than 1982-2008 DJF). For AIRS datasets, the number of 

retrievals is low in cloudy regions (such as ITCZ), which reduces confidence. 

 

Here we show that the vertical velocity and moisture fields in the middle troposphere on the 

Andean east flank have a significant correlation with Amazonian rainfall among CMIP5 AMIP 

simulations, satellite observations, and reanalysis datasets. Admittedly, part of the relationship 

between the Andean east flank 500hPa field and Amazonian rainfall is due to the covariance in 

adjacent boxes. That is, stronger ascending motion over the Amazon likely means stronger 
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upward motion on the Andean east flank, and stronger ascending generally correlates with more 

precipitation. Similar arguments can be made on wetter humidity. Nonetheless, based on our 

sensitivity experiments, the Andean east flank region is where we know that the dynamical 

responses of Andean convective forcing are strong. Therefore, we think the linear relationship 

obtained in Fig C1 may provide a partial diagnostic proxy for the Andean forced component of 

the WADA bias signal. Assuming it is not a coincidence the significant correlation may already 

suggest that realistic representations of the Andean east flank midlevel vertical velocity and 

humidity fields are associated with a model’s skill in simulating Amazonian rainfall. 

 

 

 

Figure C2. Differences between CTR and TOPO group in the vertically integrated column MSE, 

LSE, and DSE. This is evidence that the impacts of energy leakage in the experiment setup is 

minimal. 
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