
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Directory Assisted Routing of Content in Information-Centric Networks

Permalink
https://escholarship.org/uc/item/4sb4c49w

Author
John, Nitish

Publication Date
2020

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-NoDerivatives License, availalbe at
https://creativecommons.org/licenses/by-nc-nd/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4sb4c49w
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
SANTA CRUZ

DIRECTORY ASSISTED ROUTING OF CONTENT IN
INFORMATION-CENTRIC NETWORKS

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER ENGINEERING

by

Nitish John

September 2020

The Dissertation of Nitish John
is approved:

Prof. J.J. Garcia-Luna-Aceves, Chair

Prof. Martine Schlag

Prof. Brad R. Smith

Quentin Williams
Interim Vice Provost and Dean of Graduate Studies

Copyright © by

Nitish John

2020

Table of Contents

List of Figures v

List of Algorithms viii

Abstract ix

Dedication xi

Acknowledgments xii

1 Introduction 1

2 Related Work 6
2.1 Name Resolution and DNS . 6
2.2 Content-Oriented Network . 8
2.3 Information-Centric Network (ICN) 9
2.4 Loop-free Scalable Routing in ICN 16
2.5 Compact & Prefix Routing . 17
2.6 Information Naming & Lookup 19
2.7 Content Retrieval . 22

3 DARCI: Directory Assisted Routing of Content in ICN 26
3.1 Basic Operation . 28
3.2 Name Resolution System . 31

3.2.1 Information Stored & Exchanged 32
3.2.2 Directory Trie . 36
3.2.3 Trie Maintenance . 41

3.3 Publish and Subscribe . 47
3.3.1 Publish Operation . 47
3.3.2 Subscribe Operation . 50
3.3.3 Content Encoding . 52

3.4 Content Routing . 53

iii

3.5 Simulation . 57
3.6 Performance Comparison . 59
3.7 Summary . 67

4 MIDAR: Multi-Instantiated contents with Directory Assisted Rout-
ing 68
4.1 Basic Operation . 69
4.2 Multi-Instance Publish & Subscribe 73

4.2.1 Information Stored & Exchanged 73
4.2.2 MIDR Example . 75

4.3 Simulation . 81
4.4 Performance Comparison . 83
4.5 Summary . 91

5 ACED: Adaptive Cache Enabled Directory Assisted Routing 93
5.1 Basic Operation . 95
5.2 ACED . 96

5.2.1 Information Stored & Exchanged 98
5.2.2 ACED Example . 98

5.3 Simulation . 104
5.4 Performance Comparison . 106
5.5 Summary . 107

6 Conclusion 110

Bibliography 114

iv

List of Figures

2.1 Name Resolution in Legacy DNS: Resolvers translate names to ad-
dresses by following a chain of delegations iteratively (2-5) or re-
cursively (6-7) . 7

2.2 CDN servers . 8
2.3 Interval Routing . 17
2.4 Prefix Label Routing . 18
2.5 Example content name mapping in DHT with consistent hashing . 20
2.6 Example content name mapping in Hilbert Curve 20
2.7 Example HTML content with sub-resources 22
2.8 Content retrieval in Internet . 23
2.9 Content retrieval in a DHT network 24
2.10 Content retrieval in NDN . 25

3.1 Content retrieval in DARCI . 27
3.2 Basic operation of DARCI . 29
3.3 Directory Router Initialization in DARCI 34
3.4 Start of HELLO messages in DARCI 35
3.5 Directory router discovery and initial trie formation in DARCI . . 38
3.6 Stabilized trie in DARCI with root directory a 40
3.7 Example link failure & recovery in DARCI 44
3.8 Trie root a unreachable in DARCI 45
3.9 New trie root i elected in DARCI 46
3.10 Content publish in DARCI . 47

v

3.11 Content subscribe in DARCI . 50
3.12 HCN and ICN naming architecture comparison and effect on per-

formance . 53
3.13 Content routing in DARCI . 54
3.14 DARCI simulation in 59 node British Telecom NA topology . . . 57
3.15 DARCI simulation: Throughput (Mbps) with 20K Names 59
3.16 DARCI simulation: Throughput (Mbps) with 5K Names 60
3.17 DARCI simulation: Throughput (Mbps) with 500 Names 60
3.18 DARCI simulation: Throughput (Mbps) with 20 Names 61
3.19 DARCI simulation: Delay (µs) with 20K Names 61
3.20 DARCI simulation: Delay (µs) with 5K Names 62
3.21 DARCI simulation: Delay (µs) with 500 Names 62
3.22 DARCI simulation: Delay (µs) with 20 Names 63
3.23 DARCI simulation: Hop count with 20K Names 63
3.24 DARCI simulation: Hop count with 5K Names 64
3.25 DARCI simulation: Hop count with 500 Names 64
3.26 DARCI simulation: Hop count with 20 Names 65
3.27 DARCI simulation: Table size LT+NDT, FIB & PIT 66

4.1 Basic operation of MIDAR . 70
4.2 Publishing in MIDAR . 76
4.3 Subscribing in MIDAR . 78
4.4 Content routing in MIDAR . 80
4.5 MIDAR simulation: 59 node BT North America topology 81
4.6 MIDAR simulation: Throughput (Mbps) with 50K Names 83
4.7 MIDAR simulation: Throughput (Mbps) with 20K Names 84
4.8 MIDAR simulation: Throughput (Mbps) with 5K Names 84
4.9 MIDAR simulation: Throughput (Mbps) with 500 Names 85
4.10 MIDAR simulation: Throughput (Mbps) with 20 Names 85
4.11 MIDAR simulation: Delay (µs) with 50K Names 86
4.12 MIDAR simulation: Delay (µs) with 20K Names 86

vi

4.13 MIDAR simulation: Delay (µs) with 5K Names 87
4.14 MIDAR simulation: Delay (µs) with 500 Names 87
4.15 MIDAR simulation: Delay (µs) with 20 Names 88
4.16 MIDAR simulation: Hop count with 50K Names 88
4.17 MIDAR simulation: Hop count with 20K Names 89
4.18 MIDAR simulation: Hop count with 5K Names 89
4.19 MIDAR simulation: Hop count with 500 Names 90
4.20 MIDAR simulation: Hop count with 20 Names 90

5.1 Basic operation of ACED . 97
5.2 ACED Cache Progression . 99
5.3 ACED simulation: 1998 World Cup Total Traffic (April 30-July 26) 105
5.4 ACED simulation: 1998 World Cup flash-crowd (April 30-May 5) 105
5.5 ACED simulation: Throughput (Mbps) 107
5.6 ACED simulation: Delay (µs) . 108
5.7 ACED simulation: Hop count . 108

vii

List of Algorithms

1 DARCI: Process HELLO message at router u 37

2 DARCI: Process ENROLL-DIRECTORY at directory router t 39

3 DARCI: Process ENROLL-DIRECTORY-ACK at directory router u . . 39

4 DARCI: Process UPDATE-DIRECTORY message at directory router u 41

5 DARCI: Process HELLO-DIRECTORY message at directory router u 43

6 DARCI: Process UPDATE-DIRECTORY message at directory router u 45

7 DARCI: Transform function at directory a 49

8 DARCI: Process PUBLISH message at directory a 49

9 DARCI: Process LOOKUP message at directory o 51

10 DARCI: Process DATA-REQUEST message at directory o 55

11 DARCI: Process DATA-REQUEST message at router c 56

12 DARCI: Process DATA-REPLY message at d 56

13 ACED: Process DATA-REQUEST message at router i 102

14 ACED: Process DATA-REPLY message at i 103

15 ACED: CANOP pack-unpack at i 104

viii

Abstract

Directory Assisted Routing of Content in Information-Centric Networks

by

Nitish John

The Internet’s original architecture is on resource sharing by addressing hosts

within a single network. As the number of addressable hosts within separate net-

works increased, a distributed Domain Name System (DNS) resolved hierarchical

hostnames into the host’s physical Internet addresses. Hence, we perceive the ori-

gins of the Internet to be host-centric. As the Internet evolved with the adoption

of name resolution, application and user-generated information grew exponen-

tially. The dire need to bring information closer and faster to users ushered in the

implementation of the content distribution network (CDN). CDN works by redi-

recting users to closest hosts by assuming the user’s location the same as resolver’s

- an unreliable assumption that would often cost in performance. User experience

matters in delivering content. The demands of Quality of Service (QoS), security,

and scalability from today’s Internet, which has evolved into the implementation

of patches on top of a fundamental host-centric architecture, introduces multi-fold

challenges and complications in architectural evolution and robustness.

Recent advances in pivoting from host-centric to information-centric architec-

ture ushers in a clean slate approach whereby information is treated as first-class

addressable entity. This direction, known as Information-Centric Network (ICN),

addresses efficiency, scalability, and robustness required to distribute and manip-

ulate the ever-increasing information generated by applications and connected

devices on the Internet. In this dissertation, we begin by studying the goals of an

ICN. ICN proposes uniquely named data as the core Internet principle. We re-

view various surveys on existing ICN architectural proposals and focus on Named

ix

Data Networking (NDN) - which is one of the widely pursued architectures in

the research community and industry. We introduce Directory Assisted Routing

of Content in Information-centric network (DARCI), Multi-Instantiated contents

with Directory Assisted Routing (MIDAR) in ICN and Adaptive Cache Enabled

Directory (ACED) assisted routing in ICN.

DARCI is a new protocol for information addressing, discovery, and routing

where information names are mapped to distributed directories in a trie with pre-

fix labels using a space-filling curve (SFC). DARCI combines information name

and mapping to intervals and prefix labels to create a stateless, scalable, reliable,

and efficient name resolution and routing of information between publisher and

subscriber. DARCI achieves lookup speed in the order of magnitude higher than

the non-deterministic Longest Prefix Match lookup on variable-length content

name string by transforming content names to locality preserving codes of fixed

length integers. MIDAR adapts the DARCI protocol to enhance further and scale

information name resolution and routing for multiple instances of information.

Routers and directories use the compact routing in intervals and prefix labels to

analytically decide on the next direction for the request or response by combining

knowledge of intervals and prefix reachability at a given node. ACED furthers

DARCI and MIDAR to achieve an unconventionally efficient caching method-

ology where caches opt to become authoritative owners of selective information

temporarily. Such a cache node registers the information name with the directory

trie. Subsequent information name resolution will receive the cache node as one of

the publishers. Subscribers and intermediate nodes use this information to reach

the closest copy of the requested content. DARCI, MIDAR, and ACED has been

extensively evaluated against NDN, using real-world network topology and traffic

data.

x

Dedication

To my beloved wife, Harriet, for her patience,

to our children Nathan, Evangelina & Daniel for their infinite forgiveness

and to our parents for their unwavering sacrifice in supporting my family as I

juggled graduate school and a full time job.

xi

Acknowledgments

Returning to graduate school as a doctoral student while also working in the

industry was not a trivial undertaking. Throughout this journey, Professor J. J.

Garcia-Luna-Aceves has been my North star, keeping me on course and never

letting me give up when challenges multiplied. His guidance, encouragement, and

honest feedback pushed me to develop and deliver the best of my skills. The

greatest gift I received is an invitation to celebrate 50 years of ALOHA System

& the Future of Networking on January 24th, 2020. Through him, I met the

founding members and inventors of “Wireless & Internet Communication” - Frank

Kuo, Norm Abramson, Bob Kahn, Vint Cerf, Richard Binder, Don Nielson, and

Fouad Tobagi. It was my honor to attend and witness the past, helping define

the future. It is humbling to cherish this association with such esteemed founding

members through Professor J. J. Garcia-Luna-Aceves.

I thank Professors Martine Schlag and Brad Smith, who, despite their busy

schedules, found time to serve as committee members and provide feedback. I

thank Professors Katia Obraczka and Roberto Manduchi for the warm welcome I

received to the email I sent when searching for a graduate research school. I thank

the past and present peers in Computer Communication Research Group (CCRG)

- James Mathewson, Dhananjay Sampath, Turhan Karadeniz, Ehsan Hemmati,

and Ramesh Srinivasan. I also thank Graduate Student Advising office, Emily

Gregg, Alicia Haley, and Lisa Stipanovich for their patience in guiding me and

Chantal Herrera, who made sure I received the code to register for Independent

Study before the deadlines.

To my loving wife Harriet and our children, Nathan, Evangelina, and Daniel -

it is your compassion and love that keeps me going. To our parents who traveled

across the world to be with us and help support our family - Thank you.

xii

Chapter 1

Introduction

The modern-day Internet architecture is a host-centric communication model.

Early days of the Internet accessed valuable computing resources. With the suc-

cessful testing of TCP, hosts within various mini-networks were able to communi-

cate with each other. Domain Name Systems (DNS) helped users identify hosts

using human-readable names. A DNS lookup process requested machine address-

able information given a host’s human-readable identification. This initial success

in ease of host lookup and reachability of one host from another host ushered an

era of exponential growth for user applications and user-generated information.

Uses of the Internet shifted from using the Internet for accessing valuable comput-

ing resources to accessing information across hosts. Organically, this phenomenon

produced an exponential growth in the number of connected hosts (or devices) and

also in the amount of information created. For example, Cisco Visual Networking

Index reports the number of devices connected to IP networks will be 28.5 billion

by 2022[1]. In another report, Cisco predicts an annual global cloud IP traffic to

reach 19.5 ZB (1.6 ZB per month) by the end of 2021; with the total amount of

data created (and not necessarily stored) by any device reaching 847 ZB per year

by 2021[2]. Data created is two orders of magnitude higher than the data stored.

1

Hence, a new architecture for the Internet of the future must put "information" at

the core of its design to alleviate the modern problems seen with scaling content

distribution, mobility, security, caching, and trust in host-centric networks.

To adapt the original Internet architecture to meet the demands of informa-

tion distribution, various modifications to DNS systems were proposed and im-

plemented [3][4][5][6][7][8][9][10][11]. It is quite clear to this point that all efforts

are to expedite the name resolution to a host address in order to retrieve infor-

mation for user. By the mid 1990’s, distributed content stores known as Content

Distribution Network (CDN) with content replicas were strategically placed in

various geographies to induce proximity to users. CDN’s rely on DNS for request

routing and replica server selection. For this, CDN relies on the IP address of

the client’s local DNS resolver. This builds upon the flawed assumption that in

the absence of knowledge regarding the client’s actual network location, its re-

solver’s location provides the best approximation. Such an assumption may yield

a worse end to end web performance [12]. Users care about information and not

its location. Users respond to faster access to information [13][14]. Unfortunately,

today’s application and network architecture for delivering faster content to users

is one medley of patches on top of a fundamental Internet architecture that is not

information-centric [15].

Recent advances in pivoting from host-centric to information-centric archi-

tecture ushers in a clean slate approach whereby information is treated as first-

class addressable entity. This direction, known as Information-Centric Network

(ICN), addresses efficiency, scalability, and robustness required to distribute and

manipulate the ever-increasing information generated by applications and con-

nected devices on the Internet. ICN proposes uniquely named data as the core

Internet principle. Various ICN architectures proposed and studied[16][17][18]

2

have information requested, routed and delivered without addressing its host.

These architectures address the common core principles of ICN but with differ-

ent approaches. A widely adopted architecture is the Named Data Networking

(NDN)[19][20]. NDN allows consumers to issue an Interest in the content object

(CO) by addressing CO’s name. NDN content routers maintain three tables: a

stateful Pending Interest Table (PIT) that aggregates Interests for a CO, Forward-

ing Information Base (FIB) that maps the next hop to CO name prefix used to

forward Interest towards publishers and Content Store (CS) to cache COs locally.

Considering the future predictions on the growth of content created and on the

number of devices connected [1][2], the vast size of the naming space imaginable

poses a significant scalability challenge for name resolution, routing and caching.

In this thesis, we propose a new name resolution and routing protocol that ad-

heres to ICN’s goals. The results of extensive simulation with on-path caching and

no caching comparing NDN and DARCI validates that DARCI scales efficiently

as the number of uniquely addressable named information within the network

increases. In chapter 2, we summarize a previous survey on ICN architectures

and briefly summarizes key points of the design. We focus on the architecture of

NDN and the role of FIB & PIT in the routing of contents. We highlight previous

research that points out the challenges in scaling FIB and PIT sizes at internet

scale. Such prior work has laid the foundation for a stateless design of routing

protocol that can scale as the number of uniquely addressable content increases

in ICN. We also describe the building blocks that make up the sense of direction

(SD) used by request and response packets in DARCI. ICN treats information

as first-class citizens, as addressable and routable. Hence, merely implementing a

simple lookup of named information lacks contribution to optimized and efficient

range queries. To the best of our knowledge, there is no approach where name

3

resolution systems provide an elementary form of range query in ICN. However,

unlike various literature in research that pairs the use of directory with Distributed

Hash Table (DHT) for mapping content/services to identifiers, DARCI uses Space

Filling Curve (SFC)[21] for mapping names to code space. DARCI configures a

set of specialized routers called Directories into a trie. Instead of DHT, DARCI

Directory trie uses the code space for a given space-filling curve and distributes

it among trie members. The intervals allocated to trie members and their prefix

labels create a compact routing direction for the request and response packets.

Chapter 3 introduces Directory Assisted Routing of Contents in ICN (DARCI)

and describes the details and operation of the DARCI routing protocol. Special-

ized routers called directories form a trie to partition code space. The trie acts as

the de-centralized communication backbone in DARCI. We assume that the over-

all system is aware of the space used for SFC code. All routers maintain multiple

loop-free routes to Directories using sequence numbered distances. Directories

use Trie Access Protocol (TAP) to maintain membership and to distribute code

spaces. Publishers, subscribers, and Directories use Object Publish Update and

Subscribe (OPUS) protocol for information name resolution.

Chapter 4 introduces Multi-Instantiated contents with Directory Assisted Rout-

ing in ICN (MIDAR) and describes the adaptation and working of DARCI name

resolution and routing protocol for multi-instantiated information in ICN. MI-

DAR eliminates signaling overhead with zero-flooding and by embedding sense of

direction for the requested copy of information instance.

Chapter 5 introduces Adaptive Cache Enabled Directory Assisted Routing of

contents in ICN (ACED) and describes an unconventional approach to caching

popular information in ICN. ACED solves quite a few problems seen with various

cache implementations such as complex computations for determining eviction

4

strategy, sub-optimal eviction policy-induced churn, and lack of support for multi-

instantiated copies of content in a network. ACED builds upon DARCI and

MIDAR, uses intervals and prefixes for compact routing in name resolution and

request of contents in ICN.

5

Chapter 2

Related Work

2.1 Name Resolution and DNS

As more hosts connected to the Internet, the Domain Name System (DNS)

was introduced to scale and distribute the resolving of hierarchical hostnames into

an Internet address. As the number of user and application generated contents

increased, the number of virtual neighborhoods addressable by 32 or 128-bit num-

bers called Internet Protocol(IP) addresses increased. DNS became the signpost[4]

in the virtual world, serving as the navigation infrastructure across the Internet.

Fig. 2.1 shows the working of a legacy DNS [7] based name resolution. A client

querying for “soe.ucsc.edu” sends a lookup message to its local resolver. If the lo-

cal resolver cannot find the requested name, it forwards the query to the upstream

server. If this server is unable to determine the authoritative name server for the

requested hostname, it sends the query to the root server. The root server will

refer the resolver to the appropriate authoritative server for the domain immedi-

ately below the root and to which the zone belongs. The resolver will then query

this server and thus stepping down the tree from the root of the desired zone. A

shown in the figure, resolvers translate names to addresses by following a chain of

6

delegations iteratively (2-5) or recursively (6-7). Following a chain of delegations

to resolve queries incurs delay. The legacy DNS uses aggressive caching in order

to reduce the latency of query resolution.

1

2

3 4
5

6

7

8
Resolver

Root Name Server
.edu gTLD

Name Server
Authoritative Name Server

for soe.ucsc.edu

Client querying for
“soe.ucsc.edu”

Figure 2.1: Name Resolution in Legacy DNS: Resolvers translate names to
addresses by following a chain of delegations iteratively (2-5) or recursively (6-7)

In a host-centric network, the Zipf-like distribution is the analytical founda-

tion for Web traffic analysis. Craig and Shang [22] has found that DNS lookup

time takes away more than 20% of the web object retrievals in Web traffic. Low

cache hit rates cause this low performance due to heavy-tailed Zipf-like query dis-

tribution in DNS [5]. There are various research work proposed to improve the

latency incurred in resolving names to the host address have. Some of the improve-

7

ments are CoDNS[7], Disposable Domains[8], DNS Lie[9], Domain Sharding[10]

and EDNS to send client subnet in DNS queries[23]. The complexity introduced

by such after-thought architectural additions in the form of patches further hinders

the path to efficiency improvements.

2.2 Content-Oriented Network

Resolver R1

Resolver
R2

CDN S1

Client C1

CDN
S2

Client C2

CDN S3

NORTH AMERICA

EUROPE

ASIA

Origin Server

Figure 2.2: CDN servers

DNS systems increased reachability to a plethora of user and application gen-

erated content. Web protocols such as HTTP enabled access to contents with

reduced latency with improved caching. However, traditional caching is limited in

8

the way it scales for various content types such as audio, video, and images. The

inefficiency of basic caching overloaded content providing servers at busy times.

Content Distribution Network (CDN) was created to alleviate the load on origin

servers by delivering content on behalf of the origin server. The servers in CDN

are either colocated in the same site as origin server or at different global locations

with either some of all of the origin server’s content cached among the servers.

For client requests for content, the CDN uses the address of the resolver as a hint

to the client’s location and chooses the server close to the client - geographically

or topologically. In Fig. 2.2, client C2 in ASIA uses resolver R2 in Europe to

reach the closest CDN server. R2 redirects C2 to S3 in Europe, assuming C2 is in

the same region as R2. Krishnamurthy et al. [12] studied the cost in performance

by assuming the user’s location to be that of its resolver’s address. To address

this issue, Chen, Sitaraman, and Torres [24] proposed scalable mapping using

the EDNS0 [23] client-subnet extension of the DNS protocol. In EDNS0 client-

subnet extension, recursive resolvers provide the client subnet as part of the DNS

query. Resolvers use this information to make optimized routing decisions. A dis-

advantage of EDNS0 client-subnet extension, as mentioned in [23] Section 11.3,

is where an arbitrary resolver or malicious client provides false information to

reverse-engineer the algorithms in nameservers to calculate tailored responses.

2.3 Information-Centric Network (ICN)

It is evident that users care for contents irrespective of its location. Users ex-

perience matters when it comes to delivering faster access to information [13][14].

This demanded Quality of Service (QoS), security and scalability from Internet.

Today’s application and network architecture for delivering faster contents to users

is built using patches on top of a fundamental Internet architecture that is not

9

scalable and not information-centric [15]. Information-centric Network (ICN) ad-

dresses improved efficiency, scalability and robustness by treating information as

uniquely addressable entity.

Several ICN architectures [16][17][18] propose to replace the current host-

centric model in order to address the challenges and shortcomings mentioned in

our Introduction1. Some of the ICN projects include DONA [25], PURSUIT [26]

and its predecessor Publish-Subscribe Internet Routing Paradigm (PSIRP) [27],

Scalable & Adaptive Internet soLutions (SAIL) [28] and its predecessor 4WARD

[29], COntent Mediator architecture for content aware nETworks (COMET) [30],

CONVERGENCE [31], the US funded projects Named Data Networking (NDN)

[19] and its predecessor Content Centric Networking (CCN) [32] and Mobility-

First [33], as well as the French funded project ANR Connect [34] which adopts

the NDN architecture. One of the architectural differences among most of these is

how name resolution and data routing are done. We see two approaches: coupled

and decoupled. In the coupled approach, the information requested is sent to the

information provider, which returns the information to the host by following the

reverse path over which request was forwarded. In the decoupled approach, the

name resolution function does not influence the data routing path. Another key

functionality that differentiates various implementation of ICN is in the approach

taken to name information. The two approaches used are hierarchical structured

naming and flat naming. Naming, name resolution, data routing and caching

mechanism contributes as key architectural differentiators for ICN implementa-

tions.

DONA [25] uses flat names that are self-certifying to identify information. The

name resolution mechanism is implemented as an overlay that maps its flat names

to corresponding information. Each piece of information is assigned a flat name

10

consisting of the cryptographic hash of the host’s public key and a label that

uniquely identifies the information with respect to the host. DONA assumes that

clients interested in a piece of information will learn about its name through some

trusted external mechanisms (e.g., a search engine). DONA supports coupled and

decoupled name resolution and data routing. Publishing host sends Register

message with objects name to its local Resolution Handler (RH). The local RH

stores a pointer to the object and propagates this registration to RHs in its parent

and peering domains based on established routing policies. This causes registra-

tions to be replicated in all RHs to tier-1 providers. Since tier-1 providers are

peers, RHs located at tier-1 providers are aware of all registrations in the entire

network. Subscribers trying to locate information send out Find message to its

local RH, which also propagates this message to its parent according to its routing

policies until a matching registration entry is found. After that, future requests

follow the pointers created by the registrations in order to reach the publisher

eventually. In a coupled option, the publisher on receiving Find returns data

on reverse path generated by Find. In the decoupled option, the publisher on

receiving Find causes data to be directly sent to the subscriber using regular IP

routing and forwarding. DONA supports on-path caching via RH infrastructure.

The Named Data Networking (NDN) [20] project funded by the US Future

Internet Architecture program is further developing what PARC pioneered ICN as

the Content Centric Networking (CCN) [32]. Names in NDN are hierarchical and

may be similar to URLs used on the Internet today. Unlike Internet URL where

the prefix identifies a DNS name, each name component can be anything, including

a dotted human-readable string or a hash value. A request for named information

is considered a match if any information has the requested name as a prefix.

For example, a request for /newsmedia.info/today/index.html can be matched

11

to /newsmedia.info/today/index.html/stream_1/segment_4. All messages in

NDN are forwarded hop-by-hop by Content Routers (CRs). Name resolution and

data routing in NDN uses three data structures at CRs: Forwarding Information

Base (FIB), the Pending Interest Table (PIT) and the Content Store (CS). The

FIB maps information names to output interfaces that should be used to forward

an Interest message towards the publisher. The PIT tracks incoming interfaces

from which Interest messages arrive. The CS serves as a local storage cache for

information objects that have passed through the CR. When an Interest arrives,

the CR looks for the longest matching prefix in its CS. If a match is found, it is

immediately sent back through the incoming interface in a Data message. If a

match is not found, the CR performs a longest prefix match on its FIB in order

to decide the direction for this Interest message to be forwarded. On finding an

entry in FIB, the CR pushes the Interest message to the corresponding interface

and records the incoming interface in PIT. When the Interest message reaches

the publisher node, the Interest message is discarded, and the information is

returned in a Data message hop-by-hop manner based on the state maintained

in the PITs. A CR on receiving the Data message first stores it in its CS, then

looks up the longest prefix match in its PIT. On finding a match in PIT, the CR

forwards the Data message packet to interfaces and deletes the entry from the

PIT. For cases where there is no entry in PIT, the CR drops the Data packet.

Name resolution and routing in NDN are coupled. The Data messages follow the

pointers left in the PITs by Interest messages, thus making routing symmetric.

NDN natively supports on-path caching.

PURSUIT [27], [26] names object flatly by a unique pair of IDs, the scope ID

and the rendezvous ID. The scope ID groups related information objects while the

rendezvous is the actual identity for a piece of information. An information object

12

can belong to multiple scopes, but they must always belong at least one scope.

PURSUIT architecture consists of three separate functions: rendezvous, topology

management and forwarding. Name resolution is handled by rendezvous function

by a collection of Rendezvous Nodes (RNs) and Rendezvous Network (RENE)

implemented as a hierarchical DHT. PURSUIT uses Bloom filter to encode de-

livery paths into source routes. Name resolution and data routing are decoupled

in PURSUIT, since name resolution is performed by RENE, while data routing

is organized by the Topology Managers and executed by the Forwarding Nodes.

PURSUIT supports both on-path and off-path caching.

SAIL [28], [29] architecturally combines elements present in the NDN and

PURSUIT. The naming of information in SAIL is flat. Although they follow

a defined pattern such as ni://A/L UTI scheme in which names consist of an

authority part A and a local part L. Thus, SAIL names can be considered flat

for comparison purposes at the router, and it can also be considered hierarchical

when used for routing (similar to NDN). Name resolution and routing in SAIL

can be done as coupled or decoupled or hybrid operation. In coupled operation, a

routing protocol is used for advertising object names and populating the routing

tables in CRs, as in NDN. A distinction from NDN is that instead of PIT, the

GET messages accumulate routing directions along their path, which are simply

reversed at the publisher or cache to reach the subscriber. In decoupled operation,

a Name Resolution System (NRS) is used to map object names to locators that

can be used to reach the corresponding information object, such as IP addresses.

A subscriber sends a GET message to its local NRS, which consults the global

NRS in order to return a locator for the object. Finally, the subscriber sends a

GET message using the returned locator, and the publisher responds with DATA

message.

13

COMET [30] allows for optimizing information source selection and distribu-

tion by mapping information to appropriate hosts or servers based on transmission

requirements, user preferences, and network state [35]. The Content Mediation

Plane (CMP) bridges information and infrastructure by mediating between net-

work providers and information servers. COMET has two distinct designs for

CMP: a coupled design called Content-Ubiquitous Resolution and Delivery Infras-

tructure for Next Generation Services (CURLING)[36], which is an ICN architec-

ture with coupled name resolution and routing. A decoupled approach enhances

information delivery without fundamentally changing the underlying Internet[37].

COMET does not have a defined naming nomenclature for contents; however, all

contents are assigned names when registered with the Content Resolution System

(CRS). CRS aggregates names for related information. In a coupled approach, a

publisher sends Register message to CRS. CRS assigns a name to the incoming

content and records metadata, such as IP address. This information is propagated

upstream in the AS hierarchy using Publish messages so that each CRS ends up

with a pointer to its child CRS that sent the Publish message. Publish message

can be restricted by the publisher. Subscriber interested in content sends Con-

sume message to its local CRS, which is similarly propagated upwards in the CRS

hierarchy until it reaches a CRS that has information about that name. When

a match is found, Consume message follows pointers in the CRSs to reach the

actual publisher. A forwarding state is installed at each CRS as the Consume

message travels to the publisher. The publisher uses these pointers to return data

to the subscriber. COMETs decouple approach is very similar to DNS. The pub-

lisher sends Register message to its local CRS. The local CRS assigns a name

within its allocated namespace and prevents propagation of Register further

upstream. A subscriber sends Consume message to its local CRS, which sends

14

to the root CRS for resolving towards publisher’s CRS. The subscriber uses Path

Configurator (PC) to contact the publisher’s CRS to retrieve the publisher’s lo-

cation. Subscriber’s PC contacts publisher’s PC requesting a source route from

the subscriber to publisher. This source route is returned to the subscriber who

uses it to request information. The publisher uses the reverse source route to

return information requested by the subscriber. The decoupled approach has

a dependency on DNS like architecture for CRS and PC - thus making names

location-dependent.

CONVERGENCE [31] assigns a unique Versatile Digital Item (VDI) container

to all kinds of digital information. It uses Content Network (CONET) [38] to al-

low publishers to publish VDIs and for subscribers to express interest in those

VDIs. CONVERGENCE object names consist of a namespace ID and a name

part, whose format is determined by the namespace ID. Naming can be flat,

hierarchical, or URLs. The exact properties of the names depend on the names-

pace used. CONVERGENCE architecture has many similarities with NDN. Sub-

scribers issue Interest messages requesting an information object, which are

forwarded hop-by-hop by Border Nodes (BN) to publishers or Internal Nodes

(IN) that provide caching. Publishers respond with Data messages which follow

the reverse path. Name resolution and routing is coupled; however, each step of

the path taken by Interest and Data message may not be a single hop but

an entire IP path. Hence path in CONVERGENCE followed by Interest and

Data message are not necessarily symmetric. CONVERGENCE tries to reduce

the state it maintains in BNs by reducing the number of name-based routing in-

formation it stores. This resembles a routing cache. For Interest message that

cannot be forwarded, an external Name Resolution System (NRS) is consulted.

As Interest message propagates, they accumulate the network address of the

15

BNs they pass, allowing the publisher to route the Data message by reversing

this path information. The name-based routing tables at BNs may be populated

by routing protocol for name prefixes, e.g., OSPF, as in NDN.

2.4 Loop-free Scalable Routing in ICN

NDN is a widely adopted ICN architecture. The developers of this architecture

[20][39][40] have argued that Interests can be forwarded correctly towards an in-

tended node advertising a name prefix covering the content name, that routers can

aggregate Interests so that a router can forward an Interest for the same content

only once, and that Interest loops are detected whenever they occur. This claim

has been researched and proven incorrect in SIFAH[41][42] and CCN-ELF[43]; it

shows that Interest loops may go undetected when Interests from different con-

sumers for the same content aggregates and Interests forwarded along routing

loops, which may occur due to rankings of routes, failures, mobility, or conges-

tion. SIFAH proved that there exists no correct Interest forwarding strategy that

allows aggregation and detects Interest looping by identifying Interests uniquely.

Loop-free routing is crucial in ICN. CORD [44] and ODRV [45] guarantees multiple

loop-free routes to publisher directories by using sequence-numbered distances.

Considering the future predictions on the growth of content created and on the

number of devices connected [1][2], the vast size of the naming space imaginable

poses a significant scalability challenge for name resolution. Several results have

reported regarding the large PIT sizes required for NDN to operate at Internet

scale in benign scenarios[46][47][48][49][50][51]. This calls for alternatives where

stateless routing without large routing table (like PIT and FIB in NDN) but

with compact routing metadata can work decoupled from locating the source of

the requested content. New approaches like DART[52][53], CCN-GRAM[54] and

16

CCN-RAMP[55] have been proposed as alternatives to PIT for Information-centric

network.

As users of the Internet transition from an “always-connected” to an “information-

sharing” society, addressing information retrieval for efficiency and scalability is

critical. A name resolution system decoupled from data plane in a network scales

better than coupled approach because: (1) The growth in content and an un-

bounded number of data names will result in uncontrollable growth of stateful

table like FIB (2) Unlike name-based routing that does not guarantee discovery of

content, name resolution system guarantees discovery in a limited number of hops

[18] and (3) Name resolution routing performs optimization separately from the

data plane. The architects of the widely used ICN architecture, NDN, validates

the merits of decoupled approach as they propose SNAMP [56], an enhancement

to scale the coupled NDN forwarding. SNAMP maps data names to set of globally

routable names to retrieve data at times when routers do not know from where to

retrieve data using application data names alone. Through SNAMP, NDN tries

to make up for the deficiency in converging routing to a limited number of hops -

a drawback of coupled name-based routing as highlighted in [18].

2.5 Compact & Prefix Routing

1 2 3 5 4

[2,5] [1] [3,5] [1,2] [4,5] [1,3] [4] [1,5]

Figure 2.3: Interval Routing

17

00

0

000

01

001 010

Figure 2.4: Prefix Label Routing

In the compact Interval Routing Scheme (IRS)[57], routing tables are designed

to be minimal. IRS assigns each node a suitable address from the interval [1...n].

Each link is assigned a label which represents a unique interval from [0...n]. Fig.

2.3 is an example network with interval assignment from [1, 5]. A packet at node

2 destined for an address 5 in the interval selects the link with interval [3, 5] to

forward. The size of the routing table at a node is the number of links incident

on that node.

Prefix Routing Scheme (PRS)[58] in a network assigns a label consisting of a

string over some alphabet Σ, to each node. In PRS, each node has a routing table

with a distinct label li consisting of a string of symbols. For a message at node u

destined for v, where u 6= v, the routing table of labels l1,, ld is searched for the

longest string li such that li is prefix of v. The message is routed via the link that

matched the longest prefix. Fig. 2.4 is an example network with nodes labeled

with prefixes. A message at node 00 destined for 010 searches 00’s routing table

to discover node (0 ⋂ 010) = 0 as the longest prefix match. Node 00 forwards

the message to node 0. At node 0, longest prefix match is (01 ⋂ 010) = 01, the

message is forward to node 01. Node 01 forwards message to destination neighbor

18

010.

2.6 Information Naming & Lookup

Whether flat or hierarchical, an information name in its simplest form is a unit

content or a collection of various kinds. For example, “soe.ucsc.edu/darci/paper”

is a unit content whereas “soe.ucsc.edu/darci/media” is a collection of contents like

“soe.ucsc.edu/darci/images”, “soe.ucsc.edu/dari/videos” and “soe.ucsc.edu/darci/audio”.

Rather than considering each information name separately, there is an implicit un-

derstanding of the chances that two or more names are spacially closer to each

other. Prior proposals like Chord[59], CAN[60], Pastry[61], and Tapestry[62] that

mapped the content name to publishers used Distributed Hash Table (DHT). DHT

is the building block for scalable Peer-to-peer (P2P) systems were given a key, an

efficient lookup to locate the peer node storing the key can be done. While DHT

has benefits of being distributed, defines simple primitives, is scalable and self-

organizing, it has drawbacks that make it unsuitable for use in optimizing name

resolution systems for ICN. They are ill-equipped in supporting range queries.

This is primarily due to loss of data locality. It is destroyed by uniform hashing

used in DHTs. The hashing distributes keys uniformly and hence cannot rely on

any structural properties of the keyspace, such as an ordering among keys[63][64].

DHT’s are mostly implemented with a host-centric networking mindset. Because

DHTs perform a lookup of keys with lost locality, content retrieval mechanism de-

livers specific data and not a range of data. In a DHT overlay network, each node

in the DHT keeps track of resources that fall within its key range. This solution

has load-balancing problems. A large number of resources may have the same key

value, which could lead to overburdening some nodes in DHT. Another issue with

DHT systems is that the path on the overlay network between two nodes can be

19

significantly different from the unicast path between those two nodes on the un-

derlying network. As a result, lookup and routing latency in such overlay systems

can be quite high and can adversely impact the performance of applications built

on top of such systems for Information-centric networks.

Hash(/hello/world/greetings) % N = w

Hash(/hello/world/media/0) % N = x
Hash(/hello/world/media/1) % N = y

Hash(/hello/world/media/2) % N = z

w

x

y

z

DHT Node DHT Node

DHT Node

DHT Node

Figure 2.5: Example content name mapping in DHT with consistent hashing

Figure 2.6: Example content name mapping in Hilbert Curve

In ICN, contents are uniquely addressable and routable. Names in NDN, unlike

fixed-length IP addresses, have variable length without a limit on the upper bound.

Without a fixed length, the name lookup on a variable-length string cannot achieve

wire-speed. The cost of lookup time is linearly proportional to the variable-length

content name, rather than a deterministic time using hashing techniques. The

20

Longest Prefix Matching (LPM) algorithms used in a host-centric network with

fixed length numeric IP address at wire speed are rendered inefficient for variable-

length content name strings. In NDN, the PIT size estimate [49] is given by λ∗T ,

where λ is the wire speed, and T is the time each entry exists in the PIT. For

λ = 40 Gbps and 500 ms ≤ T ≤ 1 second, a worst-case scenario where average

Internet latency is substantially greater than 80 ms can result in PIT containing

between 30 and 60 million entries. PIT is subject to 3 basic operations: Insert,

Update, and Delete. These operations on an already large PIT exponentially adds

to the delay in lookup at wire speed.

We consider an encoding function that is locality preserving and one that pro-

duces a code of fixed length integer. Space-filling curve (SFC) such as Hilbert

Curve transforms a 2-D input of information name and its metadata into a 1-D

code preserving locality, i.e., two neighboring points in one dimension are neigh-

bors in the other dimension after folding. SFC supports a direct lookup (a DHT

functionality) and a range query. It is possible to achieve wire-speed with the dis-

crete approximation of the Hilbert Curve implemented as iterations rather than

recursion. Lookup based on a fixed-length integer is memory-efficient as these

codes are fetched in one call to the DRAM. A fixed-length integer code allows for

cheaper routers with less power consumption.

Fig.2.5 is a simplified example of DHT nodes arranged in a ring. Consistent

hashing for content and sub-resources in Fig. 2.7 are mapped randomly to distinct

nodes. DHT’s hash partitioning loses spatial locality of the keys and hence is

inefficient for answering ad hoc range queries, e.g., prefetching all contents with

a given prefix. Fig.2.6(a) is an example transform that maps name prefixes of

content and sub-resources in Fig.2.7 to identifiers in a 2-D plane. Hilbert Curve

in Fig.2.6(b) transforms the 2-D code space to 1-D code space. Fig.2.6(c) is a trie

21

with Hilbert Curve code intervals. Sub-resources that are neighbors and mapped

to code 10-12 is assigned to node b.

2.7 Content Retrieval

Figure 2.7: Example HTML content with sub-resources

Fig. 2.7 is an example content named /hello/world/media/greetings. To ren-

der this content for a user, sub-resources /hello/world/media/0, /hello/world/-

media/1 and /hello/world/media/2 has to be retrieved. This is an example of

content with chained dependency on other contents in order for it to be utilized.

Fig. 2.8 is a simplified example of content retrieval in the current Internet.

A subscriber first resolves the name for the content by issuing a DNS query for

/hello/world/media/greetings. On receiving the hosting server’s address, the sub-

scriber issues a GET request to fetch the content for /hello/world/media/greet-

ings. On receiving the content (content data in Fig. 2.7), the subscriber decodes

22

/h
el

lo
/w

or
ld

/m
ed

ia
/g

re
et

in
gs

/h
el

lo
/w

or
ld

/m
ed

ia
/0

/h
el

lo
/w

or
ld

/m
ed

ia
/1

/h
el

lo
/w

or
ld

/m
ed

ia
/2

/hello/world/media/greetings

/hello/world/media/0

/hello/world/media/1

/hello/world/media/2

DNS

Origin Server S1

Subscriber

1

2

3 4

Figure 2.8: Content retrieval in Internet

the data to create a list of sub-resources required to render the content for the

user. For each sub-resource, the subscriber issues a separate DNS query. On

receiving the host address for the hosting server, the subscriber issues separate

requests to fetch each sub-resource content. Typically, the subscriber has to wait

till it receives all sub-resources before it can compile and render the content for

the user. In this example, it took eight requests for all contents to be received.

Fig. 2.9 is a simplified example that uses DHT for name resolution. A sub-

scriber first resolves the name for the content by issuing GET for /hello/world/-

media/greetings towards H1 in the DHT overlay. H5 responds to H1 with the

value containing the address of the hosting server. H1 replies to the subscriber

with the address to the server. On receiving the address for the hosting server,

the subscriber issues a GET request to fetch the content for /hello/world/medi-

a/greetings. On receiving the content (content data in Fig. 2.7), the subscriber

23

1

2

3
4

Figure 2.9: Content retrieval in a DHT network

decodes the data to create a list of sub-resources that are required to render the

content for the user. For each sub-resource, the subscriber issues a GET query.

On receiving the host address for the hosting server, the subscriber issues separate

requests to fetch each of the sub-resource content. Typically, the subscriber has to

wait till it receives all sub-resources before it can compile and render the content

for the user. In this example, it took eight requests for all contents to be received.

Fig. 2.10 is a simplified example that uses NDN for content retrieval. The sub-

scriber sends out data requests for named content /hello/world/media/greetings

towards connected router R1. Assuming all nodes in NDN have learned about

neighborhood prefixes, the content request is forwarded by FIB to reach S1. S1

replies with the content in the reverse path. On receiving the content (content

data in Fig. 2.7), the subscriber decodes the data to create a list of sub-resources

24

Figure 2.10: Content retrieval in NDN

that are required to render the content for the user. For each sub-resource, the

subscriber sends a data request to router R1. At various routers in NDN, prior

knowledge of prefix in the FIB is used to route the request to server S1. An inter-

mediate router R4 or R5 with a locally saved cached copy of the requested content

replies via the reverse path. Typically, the subscriber has to wait till it receives

all sub-resources before it can compile and render the content for the user. In this

example, it took four requests for all contents to be received.

25

Chapter 3

DARCI: Directory Assisted

Routing of Content in ICN

As a design choice, DARCI decouples the name resolution system from the

data plane. A name resolution system in a network guarantees the discovery of

content within a bounded number of hops[18]. The building blocks of DARCI’s

name resolution system are (1) a trie of specialized routers called directory (2)

a globally known linearly ordered code space and a locality preserving encoding

function to encode content names and information to content publishers (3) a

global labeling scheme for all connected directory routers in a trie (4) an interval

assignment scheme using locality preserving function such as Hilbert Curve for

all connected directory routers in a trie. The routing of content name resolution

query and response is implicit. Labels and intervals of the directory router decide

on forwarding to the next neighbor. The data plane uses information received in

content name resolution to route content request and response hop by hop towards

the directory router nearest to the destination.

Fig. 3.1 is a simplified example that uses DARCI for content retrieval us-

ing a content name range within a locality. The subscriber sends a LOOKUP

26

Origin Server
 S1

Subscriber

R1

D4

R2

D1

D2

D3

/h
ello

/w
orld

/m
edia/g

re
etin

gs

R3

R4

/h
ello

/w
orld

/m
edia/0

 -

/h
ello

/w
orld

/m
edia/2

LOOKUP

LOOKUP

LOOKUP

DATA-REQUEST
DATA-REPLY

DATA-REQUEST

DATA-REPLY

DATA-REQUESTDATA-REPLY

DATA-REQUEST
DATA-REPLY

/h
ello

/w
orld

/m
edia/0

 -

/h
ello

/w
orld

/m
edia/2

/h
ello

/w
orld

/m
edia/g

re
etin

gs

Figure 3.1: Content retrieval in DARCI

message for /hello/world/media/greetings to the connected router R1 towards

subscriber’s anchor directory D1. Directory D2 replies with the address of the

hosting server. The subscriber sends DATA-REQUEST for /hello/world/media/-

greetings towards S1’s anchor directory D4. On receiving the content, as shown

in Fig. 2.7, the subscriber decodes the data to create a list of sub-resources.

These sub-resources are required to render the content for the user. For each

sub-resource, subscriber resolves names with LOOKUP message containing name

range /hello/world/media/0 to /hello/world/media/2. Directory D2 replies with

all known mapping within the code range for /hello/world/media/0 to /hello/-

world/media/2. Subscriber on receiving the mapping of content name to location

27

for all sub-resources issues DATA-REQUEST for the content name ranges /hel-

lo/world/media/0 to /hello/world/media/2 towards the anchor directory D4 of

S1. S1 replies with the requested range of contents (in an application-specific

delimited format) towards the anchor directory D4 of the subscriber. In DARCI,

for this example, it took four requests for all contents to be received. However, as

the number of sub-resources that share the same prefix increases, DARCI scales

better than NDN due to the capability of locality preserving SFC such as Hilbert

Curve allowing compressing of name ranges within a locality.

3.1 Basic Operation

DARCI assumes that (1) all routers and hosts in the network have a position

independent globally unique identifier, which can be flat or hierarchical (2) parent

directory router in the trie assigns prefix label to its child directories (3) all direc-

tory routers use a global locality preserving encoding function F and an interval

of code space [α, ω] where α < ω (4) named objects NO are uniquely address-

able with names that are flat or hierarchical (5) routers cache name resolution

responses and contents opportunistically.

Fig. 3.2 illustrates how DARCI operates. DARCI first builds a content name

resolution system. The name resolution system in DARCI is a trie of specialized

routers called directory router. Publishers publish content to the network by

registering it with the trie. Subscribers learn about the available content in a

network by looking up the content name in the trie. In the simplified example,

a, c and g are directories in a trie with a as the root. a is a parent directory to

directories c and g. Directories maintain an authoritative interval of code that

is either global if it is a root or a sub-interval from within a parent’s interval.

In the simplified example, a being the root is authoritative for a global interval

28

 g:g:01:1:0:sn_g
 a:a:0 :1:1:sn_a

 c:b:00:2:0:sn_c
 g:g:01:1:0:sn_g

 a:b: 0:2:1:sn_a

{NO_1,P1,‘00’,‘01’,ts}

Figure 3.2: Basic operation of DARCI

[0,50]. a allocates sub-intervals [0,15] and [16,25] to directories c and g respectively.

Directories use a globally known locality preserving encoding function like Hilbert

Curve to encode content name to one of the codes in the global interval. A

consistent global prefix labeling scheme labels the directories in a trie. The root

directory a begins with prefix “0”. It assigns labels “00” and “01” to its child

directories c and g.

All routers send sequence numbered HELLO messages to its 1-hop neighbors.

Routers and directories store their neighborhood information and sequence num-

bers in neighbor table NT. All routers maintain a sequence-numbered sn distance

to directories within r hops. Only a directory can update the sequence num-

29

ber in its following updates. Such a route is loop-free, proved in CORD[44] and

ODVR[45]. Routers and directories store sequence numbers in their persistent

storage, sequencing increments with every update. On a reset or routing state ini-

tialization, sn = 0 and distance to directory is ∞. Routers and directories store

shortest distance to neighbor directories in diretory table DT. HELLO messages

periodically send all updates to a router’s neighbor table to neighbors.

Publisher P1 publishes content NO_1 with code F (NO_1) = 40 to its anchor

directory c. Anchor c forwards publish message towards authoritative directory a

with interval [0, 50] using interval routing. A CAT a entry consists of the content

name prefix NO_1, local publisher ID P1, prefix label of the publisher’s anchor

(00) and landmark directory (01), and a timestamp (ts). Subscriber S1 requesting

content NO_1 sends a name resolution LOOKUP message to anchor directory a.

Anchor directory a replies to S1 with the mapping of content name to the local

ID of the publisher and prefixes of its anchor and landmark directories.

Content routing in the data plane is assisted by the name resolution system

of DARCI and the publish-subscribe signaling between routers and directories in

a trie. Subscriber S1 derives the direction for the shortest path by comparing

the known prefix labels for content NO_1 with the prefix labels in its DT. S1

sends a DATA-REQUEST with the content name, prefix labels of its anchor,

and landmark directories towards publisher P1 via directory g with the prefix

“01”. Publisher P1 replies with DATA-REPLY with requested content towards

subscriber S1. P1 derives the direction for the shortest path to S1 by sending

DATA-REPLY in the direction of a directory with the longest prefix match. In

the example, P1 sends DATA-REPLY towards g. Local router f delivers the

content to subscriber S1.

The operation of DARCI in the control plane is independent of the data

30

plane after a router learns of the prefix labels of anchor and landmark directories.

Routers forward data requests and reply messages in the path of the longest prefix

match to reach the destination without the need to maintain long stateful tables.

3.2 Name Resolution System

DARCI first builds a name resolution system to store mapping of content

names to its publishers in the network. Routers exchange sequence numbered

HELLO messages with its immediate neighbors. All routers maintain loop-free

routes to neighboring directory routers within r hops away using sequence num-

bered distances. Neighboring directories connect to form a trie with a root that is

elected by a globally known policy. Forwarding chooses a neighbor router with the

shortest distance to directory router on the trie or to a directory router with the

most recent sequence number reported. Fig. 3.3 is an example network with a,

i, o, t and u as directory routers. HELLO messages between neighboring routers

send the distances to all known neighbor directory routers. Directory routers on

discovering neighboring directories select its parent by using a globally known

policy. For directory routers t & u without a parent directory, t is a parent to u if

lexicographically |t| < |u| within r hops of u, and if u learns of t before knowledge

of any other lexicographically smaller directory router. A directory router in a

trie has one or all of the following roles:

As an anchor directory (A) to which subscribers and publishers register

their presence.

As an authoritative directory (U) that owns a contiguous range of codes,

this range is delegated to U by its parent directory.

31

As a landmark directory (L) that a publisher or subscribe learns through

neighbor HELLO messages.

3.2.1 Information Stored & Exchanged

A router directory a maintains the following tables: (a) a neighbor table [NT]a

listing router a’s immediate neighbors; (b) a directory table [DT]a to store routing

information to known directory routers as learned from neighbor HELLO; (c)

a child directory table [CDT]a to store child directories of a (d) a named object

routing information [NORI]a table to store named object NO routing information

for each known named object seen by router a; (e) a cached named object pointer

[CANOP]a at router a to store the mapping of NO names to the pointer to the

cached data store; (f) a code allocation table [CAT]a to store space-filling curve

code allocation for registered NO at router a.

For router a, the entry in [NT]a has neighbor ID and sequence number sn.

The information stored in [DT]a for each discovered directory router i consists of

router ID |i| for router i, next hop neighbor b ∈ [NT]a that has shortest path to

directory router i, the prefix label 〈i〉 for router i, distance to directory router i

via b, a boolean field to store root status of the directory and sequence number

sni. The tuples in [CDT]a consists of columns for an ordinal, child directory

router ID, code interval allocated, and last updated timestamp. The entry in

[NORI]a stores routing information for each known named object that passes

through router directory a. Each row specifies the prefix of named object NO?,

directional vector, a boolean showing whether the prefix NO? for named object

is cached in a’s [CANOP]a and timestamp ta. Directional vector for each NO?

consists of publisher ID, prefix label of publisher’s anchor directory, set of prefix

labels of publisher’s landmark directories, and a timestamp. [NORI]a entries are

32

purged after a pre-configured time to live (TTL). Routers opportunistically cache

contents in the network. The [CANOP]a database keeps track of named object

mapping to its corresponding storage pointer. A [CANOP]a entry consists of

named object prefix NO?, a pointer to content storage PTR and a timestamp ta.

A directory router a maintains its authoritative range of code in code allocation

table [CAT]a. In a given code space, directory router a is assigned a range by its

parent. Directory a is the authoritative directory for named objects that maps to

one of the codes in the range. The two scenarios where [CAT]a stores mappings

for named objects that map to codes outside of the assigned authoritative range

are: (1) when directory a is the local directory to a nearby publisher and (2) when

a decides to cache a copy of a named object and become an authoritative cached

copy for that named content. In [CAT]a, a code points to Named Object Profile

Set (NOPS). A NOPS for a given named object NO? published by host H is a

set of one or more Named Object Profile (NOP), which consists of the following

tuples:

(NOPNO?)a = (H,AH ,LH[0...γ], snH , ta)[0...λ]

Where AH is the anchor directory for publisher node H, LH[0...γ] is a list of γ

landmark directory L prefixes known by publisher node H at the time of registering

and publishing with its anchor directory AH , snH is a sequence number generated

by publisher node H and ta is the timestamp generated for this record by directory

a. For a given named object, up to λ Named Object Profiles can exist, where λ

is bounded by storage resource at directory router a.

Non-directory routers are an integral part of directory trie. They facilitate

efficient and robust routing of name resolution requests and contents by using

knowledge of surrounding directory routers. A router b maintains (a) a neighbor

33

table [NT]b listing router b’s immediate neighbors; (b) a directory table [DT]b

storing routing information to known directory routers as learned from neighbor

HELLO; (c) a named object routing information [NORI]b table to store named

object NO routing information for each known named object seen by router a;

(d) a cached named object pointer [CANOP]b at router b to store the mapping of

NO names to a pointer to the cached data store.

b

f

a

g
e

j

h

m n

q
t

i

k

p

c

o

u

d

w

s

y

l

x

r
z

v
parent:i
prefix:0
code:[α,ω]

parent:a
prefix:0
code:[α,ω]

parent:u
prefix:0
code:[α,ω]

parent:o
prefix:0
code:[α,ω]

parent:t
prefix:0
code:[α,ω]

Figure 3.3: Directory Router Initialization in DARCI

All directory router initializes by assigning itself as its parent and root, a

root prefix label “0” and assigns the global code space [α, ω] where α < ω. An

example initialization for directory routers a, i, o, t and u is shown in Fig. 3.3 .

Every router in the network periodically sends sequence numbered HELLO to its

neighbor. For directory router a the HELLO message contains the router ID a,

ID of root directory a, parent of a as a, label prefix “0” and sequence number sna.

34

b

f

a

g
e

j

h

m n

q
t

i

k

p

c

o

u

d

w

s

y

l

x

r
z

v
α ω

α ω

α ω

α ω
α ω

Figure 3.4: Start of HELLO messages in DARCI

For router b the HELLO message contains the router ID b, ID of root directory

known, list of all known directory routers from its DT, and sequence number

snb. An example instant showing the start of neighbor HELLO in some part of

the network is shown in Fig. 3.4. Routers populate their NT and DT as they

receive HELLO from their neighbors. Every router builds the shortest sequence

numbered loop-free route to all known neighbor directory routers. In Fig. 3.4, on

receiving HELLO from directory router a, b saves a tuple {a:a:“0”:1:1:sna} in

its DT, where the columns of this tuple are directory ID, next hop, prefix label,

distance, root status of a and the latest known sequence number for the directory

respectively. Router b enters a tuple {a:sna} in its NT, where the columns of this

tuple are neighbor router ID and the latest known sequence number from that

neighbor. Router e discovers two ways to reach directory router a: (1) via router

35

b with a distance of 2 hops and (2) directly to a with a distance of 1 hop. For

a given sequence number, e selects the shortest path towards a. Router e saves

a tuple {a:a:“0”:1:1:sna} in its DT. Directory router t receives HELLO from

neighbors n and q. Router t discovers two ways to reach directory router u: (1)

via neighbor router n with a distance of 3 hops to u and (2) via neighbor router q

with a distance of 5 hops to u. For a given sequence number, t selects the shortest

distance offered by neighbor router n as the next hop towards u, saves a tuple

{u:n:“0”:3:1:snu} in its DT. Algorithm 1 describes the processing of HELLO

messages at directory routers. Lines 27 to 34 of the algorithm are skipped for

routers that are not a directory.

A router b updates its DT b for the next hop towards a directory if it receives a

HELLO message with the latest sequence number but with shorter distance than

what it has currently stored in DT b. A link failure to next hop towards a directory

triggers an update for the next hop. The router deletes all entries for the failed

next hop router, discovers from HELLO messages the next router with the most

recent sequence number that offers the shortest distance to a directory. In Fig.

3.4, a link failure to a from b deletes entries to all directories in DT b with a as

the next hop. Router b discovers from e via HELLO a route to directory a with

the most recent sequence number. It adds an entry in DT b towards directory a

and with e as the next hop.

3.2.2 Directory Trie

DARCI uses a trie of directory routers to partition global code space. Unlike

a tree that partitions data set, nodes in trie represent a particular set of keys.

Because a trie uses space, which is a constant independent of the actual data set,

there is some implicit knowledge about the location of a key. DARCI routes name

36

Algorithm 1 DARCI: Process HELLO message at router u
1: input: NT u, DT u, NORIu, CANOP u, message;
2: procedure ProcessHello
3: nbr[..]← getAllNeighborsFrom(message);
4: dir[..]← getAllDirectoriesFrom(message);
5: for all n ∈ nbr[..] do . Update NT
6: if n ∈ NT u AND n.seqNum > FindInNT(n).seqNum then
7: removeNeighborFromNT(n);
8: end if
9: addNeighborToNT(n, n.seqNum);

10: end for
11: for all d ∈ dir[..] do . Update DT
12: entry ← findDirectoryInDT(d);
13: if entry 6= ∅ then
14: if entry.seqNum = d.seqNum then
15: if entry.distance > d.distance then
16: removeDirectoryFromDT(d);
17: addDirectoryToDT(d);
18: end if
19: else if entry.seqNum < d.seqNum then
20: removeDirectoryFromDT(d);
21: addDirectoryToDT(d);
22: end if
23: else
24: addDirectoryToDT(d);
25: end if
26: end for
27: if self = DIRECTORY then . For directory router only
28: if self.ID ≡ myParent().ID() then . Check for parent
29: parentID ← getLexicallySmallestAndClosestDirectoryFromDT();
30: if parentID 6= ∅ then
31: sendEnrollDirectory(parentID);
32: end if
33: end if
34: end if
35: end procedure

resolution packets using the location of partition or intervals and prefix label of the

directory router. The hop by hop routing eliminates stateful routing table lookups.

In Fig. 3.4, directory router u discovers neighboring directory t. Directory u

37

b

f

a

g
e

j

h

m n

q
t

i

k

p

c

o

u

d

w

s

y

l

x

r
z

v

parent:a
prefix:00
code:[δ,π]

parent:a
prefix:0
code:[α,ω]

parent:t
prefix:00
code:[α,ρ]

parent:a
prefix:01
code:[ρ,ω]parent:t

prefix:0
code:[α,ω]

Neighbor HELLO

 f:sn
f

 e:sn
e

 a:sn
a

 a:a:0:1:1:sn
a

 i:f:00:2:0:sn
i

 b:sn
b

 i:sn
i

 a:b:0:2:1:sn
a

 i:i:00:1:0:sn
i

 u:sn
u

 n:sn
n

 z:sn
z

 u:u:00:1:0:sn
u

 t:n:0:2:1:sn
t

 q:sn
q

 n:sn
n

 u:n:00:3:0:sn
u

Neighbor Table (NT)

Directory Table (DT)

 r:sn
r

 x:sn
x

 y:sn
y

 t:r:0:3:1:sn
t

Trie Signal Path

CDT at ‘a’
 0 : i : [δ,π] : t

i
 1 : o : [ρ,ω] : t

o

α < δ < π < ρ < ω

 d:sn
d

 o:sn
o

 a:d:0:3:1:sn
a

 o:o:01:1:0:sn
o

CDT at ‘t’
 0 : u : [α,ρ] : t

u

Figure 3.5: Directory router discovery and initial trie formation in DARCI

initiates an ENROLL-DIRECTORY message to notify t an intent to be its child

directory. r forwards ENROLL-DIRECTORY message towards t using loop-free

routing. On receiving ENROLL-DIRECTORY, directory t updates [CDT]t with

the ID of the child directory u, assigns a subset of code interval from its interval

and inserts a timestamp. Directory t replies to u with ENROLL-DIRECTORY-

ACK. The ENROLL-DIRECTORY-ACK message contains a prefix label and a

code interval for u.This acknowledgment travels a loop-free route to u via n. Fig.

3.5 shows prefix label and interval assignments by directory t to u. Algorithm

2 and 3 describes the processing of directory enrollment and acknowledgment

messages at directory routers t and u respectively.

In Fig.3.5 more HELLO messages from routers reach various routers. Di-

38

Algorithm 2 DARCI: Process ENROLL-DIRECTORY at directory router t
1: input: NT t, DT t, CDT t, NORI t, CANOP t, CAT t, message;
2: procedure ProcessEnrollDirectory
3: x← getDirectoryIDFrom(message);
4: p← assignPrefix(x);
5: [smin : smax]← assignCodeAllocation(x);
6: sendEnrollDirectoryAck();
7: updateCDT();
8: updateCAT();
9: end procedure

Algorithm 3 DARCI: Process ENROLL-DIRECTORY-ACK at directory router u
1: input: NT u, DT u, NORIu, CANOP u, CAT u, message;
2: procedure ProcessEnrollDirectoryAck
3: x← GetDirectoryIDFrom(message);
4: myPrefix← GetPrefixFrom(message);
5: [smin : smax]← GetCodeAllocationFrom(message);
6: updateCAT(); . Update code allocation table
7: for all childDirectories ∈ CDT u do . Update child directories if any
8: reallocateCodeSpace();
9: reassignPrefixLabels();

10: sendUpdateDirectory();
11: end for
12: end procedure

rectories a, i and o store distance towards root directory. Directory routers in

their default initialized state where it is the root and the parent periodically

scans its DT to find a parent directory. Directory router o selects directory a as

the lexicographically smallest and closest parent directory and sends ENROLL-

DIRECTORY towards a via neighbor i. The CDT a for directory a contains entry

for directory router i and o at ordinal 0 and 1 respectively. Directory a assigns

prefix label to its child directory i using the following transform:

〈i〉 = T (〈a〉⊕
S (i))

where 〈i〉 is the label for directory i, 〈a〉 is the label for directory a, S is a

39

transform function to convert ordinal of entry for directory i in CDT a to a label

and ⊕ is a label concatenation operator. In Fig. 3.5, directory router a assigns

label “00” and “01” to directories i and o respectively. Each child directory in

CDT a is assigned a non-overlapping interval of code by directory a satisfying the

following condition: for any two interval [δ, π] and [ρ, ψ] out of [α, ω]

{[δ, π] ∩ [ρ, ψ] = ∅ | δ < π, ρ < ψ, [δ, π] ⊆ [α, ω] and [ρ, ψ] ⊆ [α, ω]}

b

f

a

g
e

j

h

m n

q
t

i

k

p

c

o

u

d

w

s

y

l

x

r
z

v

parent:a
prefix:00
code:[α,δ]

parent:a
prefix:0
code:[α,ω]

parent:t
prefix:020
code:[ρ,φ]

parent:a
prefix:01
code:[ε, λ]parent:a

prefix:02
code:[μ,φ]

Neighbor HELLO

 f:sn
f

 e:sn
e

 a:sn
a

 a:a:0:1:1:sn
a

 i:f:00:2:0:sn
i

 b:sn
b

 i:sn
i

 a:b:0:2:1:sn
a

 i:i:00:1:0:sn
i

 u:sn
u

 n:sn
n

 z:sn
z

 u:u:020:1:0:sn
u

 t:n:02:2:0:sn
t

 a:n:0:4:1:sn
a

 q:sn
q

 n:sn
n

 a:q:0:3:1:sn
a

 u:n:020:3:0:sn
u

Neighbor Table (NT)

Directory Table (DT)

Trie Signal Path

CDT at ‘a’
 0 : i : [α,δ] : t

i
 1 : o : [ε, λ] : t

o
 2 : t : [μ,φ] : t

o

α < δ < ε < λ < μ < ρ < φ < ω

 d:sn
d

 o:sn
o

 a:d:0:3:1:sn
a

 o:o:01:1:0:sn
o

CDT at ‘t’
 0 : u : [ρ,φ] : t

u

Figure 3.6: Stabilized trie in DARCI with root directory a

In Fig. 3.6, directory router t learns about directory i and a new root a. It

also learns from neighbor router q a path to root a within r hops. Directory

router t sends ENROLL-DIRECTORY towards a via neighbor q. Root directory

40

a allocates interval for t, generates a prefix label, and creates a new tuple in

CDT a. Root a replies to t with sequence numbered ENROLL-DIRECTORY-

ACK message via router e. Router t updates its root and parent directory, its

label prefix, and code interval. All children of directory t is reassigned new label

prefix and interval. Updated child directory information is sent to all children in

sequence numbered UPDATE-DIRECTORY message. In Fig. 3.6, u receives a

new prefix label of “020” from t. Algorithm 6 describes processing of UPDATE-

DIRECTORY message at directory u.

Algorithm 4 DARCI: Process UPDATE-DIRECTORY message at directory router u
1: input: NT u, DT u, NORIu, CANOP u, CAT i, message;
2: procedure ProcessUpdateDirectory
3: x← GetDirectoryIDFrom(message);
4: [smin : smax]← GetCodeAllocationFrom(message);
5: updateDT();
6: for all code in message do
7: updateCAT();
8: end for
9: for all childDirectories do

10: reallocateCodeSpace();
11: reassignPrefixLabels();
12: sendUpdateDirectory();
13: end for
14: end procedure

3.2.3 Trie Maintenance

The directory trie in DARCI acts as a communication highway for name res-

olution and content routing. Directories maintain trie membership with frequent

exchange of signaling between directories and with neighbor routers.

41

Inter Directory Signaling

Directories signal each other by sending HELLO-DIRECTORYmessages. Such

a message from t to u contains parent of t, its label prefix, and interval. If u is a

child of t, on receiving HELLO-DIRECTORY, it verifies the parent-child lineage

by way of t’s prefix label check. For any other router directory that is in its ini-

tialized state with itself as its parent and not as the root of trie will initiate an

ENROLL-DIRECTORY message towards t. To reduce the churn caused by re-

active nature of directories to find better parent directory as it receives neighbor

HELLO updates, DARCI prevents a directory router from sending ENROLL-

DIRECTORY if it already has connectivity to a parent. The only exception is

when the directory router fails to receive HELLO-DIRECTORY message within

a configured time ∆ and its neighbors report no route to parent. Such a directory

initializes itself as its parent, updates the interval to [α, ω], assigns prefix label 0,

and sends re-allocations to its child directories. For non-root directory i, it selects

the next lexicographically smallest directory with the shortest distance from i in

[DT] to send ENROLL-DIRECTORY. Algorithm 5 describes the processing of

the HELLO-DIRECTORY message at directory router u.

Link Failures and Recovery

Neighbor HELLO messages detect link failures. Routers update the route

to root directory from other neighbors. Directory routers proactively initiate

HELLO-DIRECTORY towards its parent directory on detecting link failures. If

the root is reachable, but the distance to root is greater than r hops, the directory

router sends ENROLL-DIRECTORY to the lexicographically smallest directory

router in its CDT. The new parent allocates interval for the child directory, gen-

erates a prefix label, and creates a new tuple in its CDT. The parent directory

42

Algorithm 5 DARCI: Process HELLO-DIRECTORY message at directory router u
1: input: NT t, DT t, CDT t, NORI t, CANOP t, CAT t, message;
2: procedure ProcessHelloDirectory
3: x← GetDirectoryIDFrom(message);
4: if self ≡ myParent() then
5: if |x| < |self | then . A new parent?
6: sendEnrollDirectory(x);
7: end if
8: else if x == myParent() then
9: if myPrefix (prefixOf(x) then

10: sendEnrollDirectory(x);
11: end if
12: else if isChildDirectory(x) then
13: if self 6= parent(x) then
14: removeChildDirectory(x);
15: reallocateCodeSpace();
16: reassignPrefixLabels();
17: for all childDirectories do
18: sendUpdateDirectory();
19: end for
20: end if
21: end if
22: updateNT();
23: updateDT();
24: end procedure

replies to the child directory with a sequence numbered ENROLL-DIRECTORY-

ACK message. The child directory updates its root and parent directory, its label

prefix, the code interval, and reassigns prefixes and intervals for all its child direc-

tories. The directory sends updated child directory information to all children in

a sequence numbered UPDATE-DIRECTORY message. Parent directory routers

purges entries with expired timestamp. In Fig. 3.7, the loss of link between m

and g, q and j, and j and n triggers ENROLL-DIRECTORY message from direc-

tory router t to the parent i. Directory router i assigns prefix label 000 with an

interval [α, λ] where α < λ. Directory router u receives new prefix label 0000 and

an interval [α, δ] from its parent t. Directory router a purges entry for t from its

43

 u:u:0000:1:0:sn
u

 t:n:000:2:0:sn
t

 a:k:0:4:1:sn
a

b

f

a

g
e

j

h

m n

q
t

i

k

p

c

o

u

d

w

s

y

l

x

z

v

root:a
parent:a
prefix:00
code:[α,ρ]

root:a
parent:a
prefix:0
code:[α,ω]

root:a
parent:t
prefix:0000
code:[α,δ]

root:a
parent:a
prefix:01
code:[ε, λ]

parent:i
prefix:000
code:[α,λ]

Neighbor HELLO

 f:sn
f

 e:sn
e

 a:sn
a

 a:a:0:1:1:sn
a

 i:f:00:2:0:sn
i

 b:sn
b

 i:sn
i

 a:b:0:2:1:sn
a

 i:i:00:1:0:sn
i

 u:sn
u

 n:sn
n

 z:sn
z

 q:sn
q

 n:sn
n

 a:q:0:6:1:sn
a

 u:n:0000:3:0:sn
u

Neighbor Table (NT)

Directory Table (DT)

Trie Signal Path

CDT at ‘a’
 0 : i : [α,ρ] : t

i
 1 : o : [ε, λ] : t

o
 2 : t : [μ,φ] : t

o

α < δ < ε < λ < μ < ρ < φ < ω

 d:sn
d

 o:sn
o

 a:d:0:3:1:sn
a

 o:o:01:1:0:sn
o

CDT at ‘t’
 0 : u : [α,δ] : t

u

r

Figure 3.7: Example link failure & recovery in DARCI

CDT. Fig. 3.7 shows NT and DT for routers b, f , t, r, and l.

Alternate Root Election

Neighboring directory routers detect loss of root directory in HELLO and

HELLO-DIRECTORY messages. Child directories update NT and DT and ini-

tialize itself as the root and parent directory. Neighbor routers update NT and DT

with the new root directory ID. Newly transitioned root directories reassign label

prefixes and intervals to all child directories and send UPDATE-DIRECTORY

message. More than one newly transitioned root directories converge to one root

when each directory knows of other roots. A transitioned root directory selects

the lexicographically smallest known root directory as its parent. Fig. 3.8 and

44

Algorithm 6 DARCI: Process UPDATE-DIRECTORY message at directory router u
1: input: NT u, DT u, NORIu, CANOP u, CAT i, message;
2: procedure ProcessUpdateDirectory
3: x← GetDirectoryIDFrom(message);
4: [smin : smax]← GetCodeAllocationFrom(message);
5: updateDT();
6: for all code in message do
7: updateCAT();
8: end for
9: for all childDirectories do

10: reallocateCodeSpace();
11: reassignPrefixLabels();
12: sendUpdateDirectory();
13: end for
14: end procedure

b

f

a

g
e

j

h

m n

q
t

i

k

p

c

o

u

d

w

s

y

l

x

r
z

v

root:i
parent:i
prefix:0
code:[α, ω]

parent:t
prefix:000
code:[α,λ]

root:o
parent:o
prefix:0
code:[α, ω]

parent:a
prefix:00
code:[α,μ]

Neighbor HELLO

 f:sn
f

 e:sn
e

 a:sn
a

 a:a:0:1:1:sn
a

 i:f:0:2:1:sn
i

 b:sn
b

 i:sn
i

 a:b:0:2:1:sn
a

 i:i:0:1:1:sn
i

 u:sn
u

 n:sn
n

 z:sn
z

 u:u:000:1:0:sn
u

 t:n:00:2:0:sn
t

 i:n:0:5:1:sn
i

 q:sn
q

 n:sn
n

 i:q:0:3:1:sn
i

 u:n:000:3:0:sn
u

Neighbor Table (NT)

Directory Table (DT)

Trie Signal Path

α < δ < ε < λ < μ < ρ < φ < ω

 d:sn
d

 o:sn
o

 a:d:0:3:1:sn
a

 o:o:0:1:1:sn
o

CDT at ‘t’
 0 : u : [α,λ] : t

u

CDT at ‘i’
 0 : t : [α,ρ] : t

t

Figure 3.8: Trie root a unreachable in DARCI

45

b

f

a

g
e

j

h

m n

q
t

i

k

p

c

o

u

d

w

s

y

l

x

r
z

v

root:i
parent:i
prefix:01
code:[φ,ω]

Neighbor HELLO
Neighbor Table (NT)

Directory Table (DT)

Trie Signal Path

α < δ < ε < λ < μ < ρ < φ < ω

 d:sn
d

 o:sn
o

 i:k:0:6:1:sn
i

 o:o:0:1:1:sn
o

root:i
parent:i
prefix:0
code:[α, ω]

parent:t
prefix:000
code:[α,λ]

parent:a
prefix:00
code:[α,μ]

 f:sn
f

 e:sn
e

 i:f:0:2:1:sn
i

 b:sn
b

 i:sn
i

 i:i:0:1:1:sn
i

 u:sn
u

 n:sn
n

 z:sn
z

 u:u:000:1:0:sn
u

 t:n:00:2:0:sn
t

 i:n:0:5:1:sn
i

 q:sn
q

 n:sn
n

 i:q:0:3:1:sn
i

 u:n:000:3:0:sn
u

CDT at ‘t’
 0 : u : [α,λ] : t

u

CDT at ‘i’
 0 : t : [α,ρ] : t

t
 1 : o : [φ,ω] : t

o

Figure 3.9: New trie root i elected in DARCI

3.9 exemplifies alternate root election. At the loss of root a, neighbor routers b

and f updates i of unreachability. Similarly, router c, d, and l updates directory

o. Directories i and o initializes as its root and parent and claims the global

code space [α, ω]. Directory t discovers router i as the nearest root and send

ENROLL-DIRECTORY message. Directory t updates its prefix label and code

interval, reassigns new prefix label and code interval to all its children, and sends

UPDATE-DIRECTORY message to child directory u. In Fig. 3.9, root directory

changes are propagated to directory o. Directory o sends ENROLL-DIRECTORY

to the lexicographically smallest root i. Directory router i assigns prefix label and

code interval for o. Directory o updates its prefix label and code interval, and

points to i as the new root.

46

3.3 Publish and Subscribe

3.3.1 Publish Operation

b

f

a

g
e

j

h

m n

q
t

i

k

p

c

o

u

d

w

s

y

l

x

r
z

v

α δ

α ω

ρ φ

ε λ

φ

α δ
ε λ
φF π

π
χ

ω

π
..
φ

α δ ε λ ρ φ ω
α ω

Figure 3.10: Content publish in DARCI

Publishing in DARCI consists of publishers forwarding PUBLISH messages to

their neighbor router. The PUBLISH message contains the content name prefix,

a local ID of the publisher, and a sequence number. Fig. 3.10 is an example of

publisher P0 connected to router b. Neighbor router b forwards the local publish

47

message to the closest directory router a in the trie by adding labels of directory

routers within its r hops. The local publish path towards directory a is labeled

with L in Fig. 3.10. The directory router a on receiving the local publish message

becomes the anchor directory A for the publisher P0. Directory a replies to pub-

lisher P0 with PUBLISH-ACK. The local reply path for PUBLISH-ACK is labeled

LR in Fig. 3.10. Local routers and directory for a publisher maintain a loop-free

path to the publisher using neighbor HELLO. These routes are periodically re-

freshed based on HELLO intervals. Anchor directory a computes the space-filling

curve code for the content name using the transform F (NO) = π, where F is as

described in Algorithm 7. The mapping of content name to a publisher in the local

publish message is registered in anchor directory a’s CAT a. Directory a retrieves

the interval for π by looking in the CDT a. In the example in Fig. 3.10, π ∈ [µ, φ]

is in an interval assigned to directory t. The publish message is forwarded in the

trie towards the prefix 02 of authoritative directory t. Fig. 3.10 shows the trie

path for publish and reply to t and a with label T and TR respectively. Each

router in the trie path from a to t forwards the PUBLISH message and caches the

mapping (e.g., NORIe at router e). Fig. 3.10 shows the local and authoritative

registration of the mapping in CAT a and CAT t pointing to named object profile

(NOP). Publishers periodically refresh the content they own by sending PUBLISH

messages towards the trie via their neighbor router. For a set of already published

and unchanged contents, publishers send a compressed message that contains the

signature to identify the set of unchanged content names. Periodic refresh by

publishers addresses updates in mapping to anchor directory prefixes when trie

structure changes. Algorithm 8 describes the processing of PUBLISH message at

anchor directory router a.

48

Algorithm 7 DARCI: Transform function at directory a
1: input: M ; . Hilbert Curve Index
2: input: Σ; . Set of symbols and corresponding codes Ξ
3: input: T ; . A tranform, convert string of symbols to string of code from Σ
4: input: message;
5: procedure GetCode
6: C ← GetContentName(message);
7: X = 0 . X coordinate in 2D
8: Y = 0 . Y coordinate in 2D
9: Y ← STRLEN(C);

10: X ←TO_NUMBER(T (C)) . X < 2M , X ∈ N
11: H = HC(M,X, Y);
12: return H;
13: end procedure

Algorithm 8 DARCI: Process PUBLISH message at directory a
1: input: NT a, DT a, CDT a, NORIa, CANOP a, CAT a, message;
2: procedure ProcessPublish
3: a← GetAnchorDirectoryFrom(message);
4: l[..]← GetLandmarkDirectoriesFrom(message);
5: PubID ← GetPublisherLocalID(message);
6: c← GetContentNameFrom(message);
7: sc ← F (c); . Compute code in SFC
8: updateNORI(c, PubID, a, l[]); . Cache in local routing table
9: NOP ← CreateNamedObjectProfileFor(c, PubID, a, l[]);

10: if a = ∅ then . A local publisher
11: updateCAT(NOP); . Update local code allocation table
12: sendLocalPublishAck(PubID); . Always ACK local publisher
13: message← UpdateMessageWithSourceAnchor(message, MyPrefix());
14: end if
15: if sc ∈ [smin : smax] then . Is this my authority?
16: updateCAT(NOP);
17: if ← GetInterfaceTowardsAnchorPrefix(a);
18: sendPublishAck(if , a); . Ack to Anchor directory
19: else
20: if ← GetInterfaceForIntervalWith(sc);
21: forwardPublish(if , message); . Interface with interval sc
22: end if
23: end procedure

49

3.3.2 Subscribe Operation

b

f

a

g
e

j

h

m n

q
t

i

k

p

c

o

u

d

w

s

y

l

x

r
z

v

parent:a
prefix:00
code:[α,δ]

parent:a
prefix:0
code:[α,ω]

parent:t
prefix:020
code:[ρ,φ]

parent:a
prefix:01
code:[ε, λ]

parent:a
prefix:02
code:[μ,φ]

Subscribe Path

Trie Signal Path

Subscriber S0

Publisher P0

π “/ucsc/darci”
χ
...
ω

{P0, 0, 00, sn
p
, t

1
}

Directory Node

Router Node

Local Publish Code

Authoritative Range

CATa

μ
π “/ucsc/darci”
...
φ

{P0, 0, 00, sn
p
, t

1
}

CATt

Q

“/ucsc/darci”

CDT at ‘a’
 0 : i : [α,δ] : t

i
 1 : o : [ε, λ] : t

o
 2 : t : [μ,φ] : t

t

Q

Q

Q

QQ

Q

Q

Q

Q

QR
QR

QR

QR
QR

QR

QR

QR

QR

α < δ < ε < λ < μ < ρ < φ < ω

Global Code Space
[α,ω]

“/ucsc/darci”

“/ucsc/darci” * 0 t
0

{P0, 0, 00, sn
p
, t

1
}

F (“/ucsc/darci”) = π

NORId

Figure 3.11: Content subscribe in DARCI

Subscribers register with neighbor routers using HELLO messages. All neigh-

bor and directory routers within "r" hops maintain a loop-free sequence num-

bered route to subscribers. A subscriber interested in content sends a LOOKUP

message containing the name of the content, a local ID of the subscriber, and

a sequence number to its neighbor router. The neighbor router forwards the

LOOKUP message to the closest directory. This directory is the anchor direc-

50

Algorithm 9 DARCI: Process LOOKUP message at directory o
1: input: NT o, DT o, CDT o, NORIo, CANOP o, CAT o, message;
2: procedure ProcessLookup
3: a← GetAnchorDirectoryFrom(message);
4: SubID ← GetSubscriberIDFrom(message);
5: c← GetContentNameFrom(message);
6: sc ← F (c); . Compute code in SFC
7: if c ∈ NORIo then . In NORI?
8: NOP ← CreateNOPFromNORIFor(c);
9: if a = MyPrefix() then . Is this from local host

10: if ← GetInterfaceForDestination(SubID);
11: sendLookupReply(if , NOP);
12: return;
13: else
14: if ← GetInterfaceTowardsAnchorPrefix(a);
15: sendLookupReply(if , NOP);
16: return;
17: end if
18: end if
19: if sc ∈ CAT o then
20: NOP ← LookupInCAT(c);
21: if ← GetInterfaceTowardsAnchorPrefix(a);
22: sendLookupReply(if , NOP);
23: return;
24: end if
25: if sc ∈ [smin : smax] then . Am I the Authoritative?
26: if sc ∈ CAT o then
27: NOP ← LookupInCAT(c);
28: if ← GetInterfaceTowardsAnchorPrefix(a);
29: sendLookupReply(if , NOP);
30: return;
31: end if
32: end if
33: if ← GetInterfaceTowardsAnchorPrefix(a);
34: sendLookupReply(if , CONTENT-UNAVAILABLE);
35: end procedure

tory for the subscriber. At the anchor directory, the code for requested content

is computed and checked for its availability in the local cache. The anchor di-

rectory sends LOOKUP-REPLY with the mapping to the subscriber. Anchor

51

directory determines the direction for the interval in which the code is. It marks

the LOOKUP message with its label prefix as the source of the request and for-

wards the LOOKUP message using interval routing in the trie towards the au-

thoritative directory that owns the interval. The authoritative directory replies

with LOOKUP-REPLY containing the mapping for the requested content. The

LOOKUP-REPLY follows the trie path towards the source anchor directory prefix

using prefix label routing. Intermediate routers in trie that forward the LOOKUP-

REPLY opportunistically cache the mapping information in its NORI table. An-

chor directory on receiving LOOKUP-REPLY updates its NORI table and for-

wards it to the subscriber. Fig. 3.11 is an example of subscriber S0 connected to

router v and requesting content “/ucsc/darci”. Anchor directory o computes the

space-filling curve code for the content name using the transform F (NO) = π,

where F is as described in Algorithm 7. π /∈ [ε, λ], anchor directory o forwards

the LOOKUP message to its parent directory a. The LOOKUP message path

from anchor directory o to authoritative directory t through trie using interval

routing is labeled Q in the figure. The LOOKUP-REPLY message path from t to

anchor directory o via trie using prefix label routing is labeled QR in the figure.

Intermediate router d in the trie stores the mapping information in its NORId

table. Algorithm 9 describes processing of LOOKUP message at directory o.

3.3.3 Content Encoding

DARCI’s naming can support any naming nomenclature - whether flat or hier-

archical. Fig. 3.12 compares information domain naming in host-centric network

(HCN) architecture and the corresponding optimal way of naming in an ICN ar-

chitecture. Column three in the figure shows the Hilbert Curve code for each

of the names in DARCI’s ICN architecture. For an HCN, resolving the address

52

from “0041.ace.darci” to “0050.ace.darci” takes 10 DNS requests and responses.

Range queries in DARCI LOOKUP can request name resolution by specifying

the start and end of the name prefix. For example, a LOOKUP can request all

mappings between “0041.ace.darci” to “0050.ace.darci” so that a web page can

request resources to compile and render in a browser. Column 4 lists the compute

time to generate Hilbert Curve code on a machine with Dual-core processors at

1GHz clock frequency and memory of 512MB. DARCI thus inherently supports

the basic range query of named objects.

Figure 3.12: HCN and ICN naming architecture comparison and effect on per-
formance

3.4 Content Routing

A subscriber receives mapping to requested content via LOOKUP-REPLY.

The subscriber sends a DATA-REQUEST message to its neighbor router by em-

bedding the mapping of content name to its locator and landmark prefixes. At ev-

ery hop, routers inspect the destination prefixes and determine the shortest route

to reach them. Routing prioritizes on reaching anchor prefix. If no path exists, the

53

b

f

a

g
e

j

h

m n

q
t

i

k

p

c

o

u

d

w

s

y

l

x

r
z

v

α δ

α ω

ρ φ

ε λ

φ

π
χ

ω

π
..
φ

α δ
ε λ
φ

α δ ε λ ρ φ ω
α ω

Figure 3.13: Content routing in DARCI

default path is to forward the DATA-REQUEST message to the neighbor direc-

tory router with the longest prefix match towards a publisher’s anchor directory

prefix. Intermediate routers check the cache CANOP for a local copy of the re-

quested content. Routers reply with a cached copy in the DATA-REPLY message

towards the subscriber’s anchor prefix. If trie is the shortest path derived to reach

the publisher’s anchor directory, then the DATA-REQUEST message is forwarded

hop by hop using prefix label routing. An intermediate router or directory can

54

Algorithm 10 DARCI: Process DATA-REQUEST message at directory o
1: input: NT o, DT o, CDT o, NORIo, CANOP o, CAT o, message;
2: procedure ProcessDataRequestAtDirectory
3: ap ← GetPubAnchorDirectoryFrom(message);
4: lp[]← GetPubLandmarkDirectoriesFrom(message);
5: as ← GetSubAnchorDirectoryFrom(message);
6: ls[]← GetSubLandmarkDirectoriesFrom(message);
7: c← GetContentNameFrom(message);
8: sc ←H (c); . Compute code in SFC
9: if ap = GetPrefix(self) then . Am I the Anchor

10: if sc ∈ CAT o then . Locally aware?
11: NOP ← GetNOPFor(c);
12: if c ∈ CAT o then . In cache?
13: data← GetFromCANOP(c);
14: sendDataReply(data, as, ls[]);
15: else
16: if ← RouteToNextHopTowardsPublisher(NOP);
17: forwardToPublisher(if);
18: end if
19: else
20: sendError(CONTENT-UNREACH, as, ls[]);
21: end if
22: else
23: if ← RouteToNextHopTowardsAnchor(ap, lp[]); . Get interface
24: forwardDataRequest(if);
25: end if
26: end procedure

redirect the DATA-REQUEST to a shorter path if one is available after consult-

ing its NT and DT. DATA-REQUEST message on reaching the publisher’s anchor

directory is forward to the publisher via the local routers. Publisher replies with

requested content in the DATA-REPLY message. The neighbor router determines

the next hop to reach the prefix of the subscriber’s anchor directory. The default

next hop is towards the closest directory router with the longest prefix match to-

wards a subscriber’s anchor directory prefix. Intermediate routers and directories

opportunistically cache content data in their CANOP cache. The anchor directory

55

Algorithm 11 DARCI: Process DATA-REQUEST message at router c
1: input: NT c, DT c, NORIc, CANOP c, message;
2: procedure ProcessDataRequestAtRouter
3: ap ← GetPubAnchorDirectoryFrom(message);
4: lp[]← GetPubLandmarkDirectoriesFrom(message);
5: as ← GetSubAnchorDirectoryFrom(message);
6: ls[]← GetSubLandmarkDirectoriesFrom(message);
7: c← GetContentNameFrom(message);
8: if c ∈ CANOP c then . In cache?
9: data← GetFromCANOP(c);

10: sendDataReply(data, as, ls[]);
11: else
12: if ← RouteToNextHopTowardsAnchor(ap, lp[]); . Get interface
13: forwardToAnchor(if);
14: end if
15: end procedure

Algorithm 12 DARCI: Process DATA-REPLY message at d
1: input: NT d, DT d, NORId, CANOP d, message;
2: procedure ProcessDataReply
3: SubID ← GetSubscriberIDFromMessage(message);
4: c← GetContentNameFrom(message);
5: data← GetDataFrom(message);
6: if SubID = MyID() then
7: sendToApplication(c, data);
8: return;
9: end if

10: UpdateCANOP(c, data); . Add or update cache
11: as ← GetSubAnchorDirectoryFrom(message);
12: ls[]← GetSubLandmarkDirectoriesFrom(message);
13: if ← RouteToNextHopTowardsAnchor(as, ls[]); . Get interface
14: forwardDataReply(if);
15: end procedure

on receiving DATA-REPLY forwards to the subscriber via local routers. Fig. 3.13

shows an example of subscriber S0 requesting content “/ucsc/darci”. The DATA-

REQUEST and DATA-REPLY, in this example topology, follow the trie path, as

shown in the figure. Router d on receiving DATA-REPLY updates its NORId

56

table with a pointer to the cache location in CANOP d that stores a copy of “/uc-

sc/darci”. Router d replies to any future LOOKUP or DATA-REQUEST messages

for content “/ucsc/darci” and replies with DATA-REQUEST with a cached copy

from its CANOP d. Algorithm 10 describes processing of DATA-REQUEST at

directory router o. Algorithm 11 describes processing of DATA-REQUEST at an

intermediate router c. Algorithm 12 describes the processing of DATA-REPLY at

intermediate router d where it updates the local cache with a copy of requested

content.

3.5 Simulation

Figure 3.14: DARCI simulation in 59 node British Telecom NA topology

57

We implemented DARCI in ns-3 version 3.27[65] and used ns-3 implementation

of NDN[66] for comparing performance metrics of average throughput, average de-

lay, and average round trip hop count as seen by subscriber nodes for an increasing

number of content names. We derived a 59 node fixed topology as shown in Figure

3.14 from “BT North America” dataset[67]. Six unique information name object

files each 200K, 50K, 20K, 5K, 500 and 20 names were derived from web traffic

dataset[68]. The simulation ran for 3 hours with 5 different seed values, with

subscribers requesting 25 names per second. Publisher applications on publishers

36-43 were allowed to start publishing the contents they owned before subscriber

applications began requesting information. Publishers are assigned the list of

unique names such that a given publisher in DARCI and NDN had the same set

of names. Subscribers 44-58 were aware of the complete name list, out of which

each subscriber randomly selects names. We compare performance metrics for

name data files 20K, 5K, 500, and 20. We evaluate the two protocols in a wired

network with fixed topology. In DARCI, we use a maximum distance of 2 hops

for a publisher or a subscriber to select an anchor directory. Nodes in DARCI and

NDN are connected using point-to-point CSMA links with a data rate of 1Gbps,

delay of 6.5 ms, and MTU size of 1400. For NDN, the size of the content store

is 100 for on-path caching and set to a size of 1 for no caching scenarios. The

caching policy for NDN is LRU. For DARCI, the size of CANOP is set to 100

for on-path caching and set to 0 for no caching scenarios. The caching policy in

DARCI is LRU, and the routing strategy is “/localhost/nfd/strategy/multicast”.

The subscribers and publishers are nodes with no caching enabled. We perform

two sets of simulations. The first set uses name data files 20K, 5K, 500, and 20 at

25 requests per second to measure average throughput, delay and hop count for

on-path and no caching in DARCI and NDN. The second set of simulations profiles

58

the growth in the size of PIT and FIB in NDN against LT and NDT in DARCI

as the uniquely addressable content names in the network increase for datasets

200K, 50K, 20K, 5K, 500 and 20 with subscribers requesting at 25 requests per

second.

3.6 Performance Comparison

Figure 3.15: DARCI simulation: Throughput (Mbps) with 20K Names

Figures 3.15-3.18 summarizes average throughput as seen by subscribers for 4

name datasets with on-path and no caching for DARCI and NDN. We see that

as the number of uniquely addressable names in the network increases, average

throughput decreases for DARCI and NDN with on-path and no caching. How-

ever, DARCI produces better throughput compared to NDN. For Figure 3.18, no

caching in DARCI produces better throughput than NDN with no caching. For

on-path caching, our analysis of DARCI implementation revealed that since traffic

59

Figure 3.16: DARCI simulation: Throughput (Mbps) with 5K Names

Figure 3.17: DARCI simulation: Throughput (Mbps) with 500 Names

in DARCI is always from the cache, our cache implementation required optimiza-

tion. With only 20 uniquely know global names, contents are all cacheable within

60

Figure 3.18: DARCI simulation: Throughput (Mbps) with 20 Names

Figure 3.19: DARCI simulation: Delay (µs) with 20K Names

a content store of size 100. The results for no caching prove that interval routing

in DARCI requires minimal lookup compared to FIB and PIT in NDN, it gives

61

Figure 3.20: DARCI simulation: Delay (µs) with 5K Names

Figure 3.21: DARCI simulation: Delay (µs) with 500 Names

better throughput in DARCI for scenarios when requests have to be serviced by

publishers. Figures 3.19-3.22 summarizes average delay as seen by subscribers for

62

Figure 3.22: DARCI simulation: Delay (µs) with 20 Names

Figure 3.23: DARCI simulation: Hop count with 20K Names

4 name datasets with on-path and no caching for DARCI and NDN. For on-path

caching, the average delay as seen by subscribers in NDN increases rapidly com-

63

Figure 3.24: DARCI simulation: Hop count with 5K Names

Figure 3.25: DARCI simulation: Hop count with 500 Names

pared to DARCI. The number of FIB and PIT lookups in NDN increases as the

number of uniquely addressable contents increases while the requests per second

64

Figure 3.26: DARCI simulation: Hop count with 20 Names

and the size of the content store remain constant in the four scenarios. On the

contrary, DARCI’s interval routing and prefix labels provide a direction at each

hop without any costly lookups. In Figure 3.22, on-path caching produces the low-

est delay because contents are retrievable from immediate neighbors due to cache

being big enough to hold the 20 unique content names. Figures 3.23-3.26 sum-

marizes average round trip hop count as seen by subscribers for 4 name datasets

with on-path and no caching for DARCI and NDN. For Figures 3.23,3.24,3.25

where cache size is smaller than globally addressable content names, DARCI al-

most consistently maintains the optimum hop count for on-path and no caching

scenarios. On the contrary, NDN sees a higher hop count for no caching than

on-path caching as the number of globally addressable content names increases.

DARCI attributes this consistency to the embedded directional hints carried by

the request and response packets. DARCI produces much better consistency in

scalability, efficiency, and robustness as the number of addressable content names

65

Figure 3.27: DARCI simulation: Table size LT+NDT, FIB & PIT

increases. Figure 3.27 compares the growth in table sizes as the number of ad-

dressable contents in the network increases. We monitor all nodes and capture

the largest size of LT+NDT, FIB, and PIT table observed for the duration of

the simulation. Because DARCI’s LT and NDT are a constant size for all the

runs, DARCI scales efficiently as the number of contents increases. We see that

the FIB and PIT sizes grow dramatically compared to LT and NDT for datasets

5K and more. This correlates with Figures 3.15,3.16 and Figures 3.19,3.20 where

66

throughput decreases and delay increases for NDN for datasets 20K and 5K.

3.7 Summary

We introduced Directory Assisted Routing of Content in ICN. DARCI routes

ICN packets to destination without the need for maintaining stateful tables. Sub-

scribers and publishers issuing requests and responses for a content prefix carry

content identifiers such as Landmark Directory prefixes and Anchor Directory pre-

fixes that aide in scalable, robust, and efficient routing at each hop. By simulation

using a real-world fixed topology, we see that DARCI performs and scales in order

of magnitude larger than NDN.

67

Chapter 4

MIDAR: Multi-Instantiated

contents with Directory Assisted

Routing

In this chapter, we introduce Multi-Instantiated contents with Directory As-

sisted Routing (MIDAR) protocol. As we discussed in chapter 1, the host-centric

approach today focuses on reachability to a destination that hosts the contents. In

doing so, various algorithmic approaches resort to computing path to a single des-

tination using routing tables and overlays. Various examples of algorithmic design

to route to multi-instantiated destinations based on routing to single instance des-

tination have been proposed in [69],[70],[71],[72],[73],[74]. Routing to replicated

copies of content in ICN has been surveyed in [16],[17],[18]. In MIDR[75], the

authors assert that using algorithms designed for routing to single destination re-

sults in unnecessary signaling overhead and complexity, reduced scalability, and

incorrectness. As the Internet evolves into an Information-centric network, name

resolution and routing of contents with contents being uniquely addressable are

68

essential parts of ICN. In one of the first proposals for name-based routing, Di-

rected Diffusion[76] uses sender-initiated approaches for multicasting, relying on

the flooding of content requests due to requestor’s lack of knowledge of the loca-

tions of copies of contents. Various ICN architectures as surveyed in [16] either

use source routing by way of routers flooding link-state advertisements describing

the status of links or prefixes of information for which routers have local copies or

by adopting content routing modalities based on distributed hash tables (DHT).

It is evident from prior works that re-using algorithms designed for single instance

information copies to address multiple instances of information creates more sig-

naling overhead and less reliable solution.

Following the definition in [75], a multi-instantiated destination is a non-empty

set of entities denoted with the same unique identifier consisting of a string of

alphanumeric symbols. Such an identifier can be drawn from either a flat or

hierarchical naming space and can have fixed or variable length depending on

the application. MIDAR achieves name resolution and routing to such multi-

instantiated destinations by eliminating signaling overhead with zero-flooding and

by deriving directions for routing using prefixes of neighbor directories for the

publisher of the requested copy of information instance.

4.1 Basic Operation

MIDAR assumes that (1) all routers and hosts in the network have a position

independent globally unique identifier, which can be flat or hierarchical (2) parent

directory router in the trie assigns prefix label to its child directories (3) all direc-

tory routers use a global locality preserving encoding function F and an interval

of code space [α, ω] where α < ω (4) named objects NO are uniquely address-

able with names that are flat or hierarchical (5) routers cache name resolution

69

b

a

c

d
e

f

i h

g

NO_1

R:a, P:a, Pr:’0’

R:a, P:a, Pr:’00’

R:a, P:a, Pr:’01’

Directory

Router

int-a[0,50]

PUBLISH

int-c[0,15]

int-g[16,25]

P

S Subscriber

Publisher

S1’s anchor: a/‘0’

P1’s anchor: c/‘00’

 g:g:01:1:0:sn_g
 a:a:0 :1:1:sn_a

Dir Table at ‘f’

 a:b: 0:2:1:sn_a
Dir Table at ‘c’

P1

S1

NO_1

P2

PUBLISH

Neighbor HELLO

PUBLISH to Directory

LOOKUP message

LOOKUP-REPLY message

DATA-REQUEST message

DATA-REPLY message

 c:b:00:2:0:sn_c
 g:g:01:1:0:sn_g

Dir Table at ‘a’

{NO_1,P1,‘00’,‘01’,ts}
{NO_1,P2,‘01’,‘00’,ts}

Code Allocation Table (CAT) at ‘a’

Figure 4.1: Basic operation of MIDAR

responses and contents opportunistically.

Fig. 4.1 illustrates how MIDAR operates. MIDAR first builds a content name

resolution system. The name resolution system in MIDAR is a trie of specialized

routers called directory router. Publishers publish content to the network by

registering it with the trie. Subscribers learn about the available content in a

network by looking up the content name in the trie. In the simplified example,

a, c and g are directories in a trie with a as the root. a is a parent directory to

directories c and g. Directories maintain an authoritative interval of code that

is either global if it is a root or a sub-interval from within a parent’s interval.

In the simplified example, a being the root is authoritative for a global interval

70

[0,50]. a allocates sub-intervals [0,15] and [16,25] to directories c and g respectively.

Directories use a globally known locality preserving encoding function like Hilbert

Curve to encode content name to one of the codes in the global interval. A

consistent global prefix labeling scheme labels the directories in a trie. The root

directory a begins with prefix “0”. It assigns labels “00” and “01” to its child

directories c and g.

All routers send sequence numbered HELLO messages to its 1-hop neighbors.

Routers and directories store their neighborhood information and sequence num-

bers in neighbor table NT. All routers maintain a sequence-numbered sn distance

to directories within r hops. Only a directory can update the sequence num-

ber in its following updates. Such a route is loop-free, proved in CORD[44] and

ODVR[45]. Routers and directories store sequence numbers in their persistent

storage, sequencing increments with every update. On a reset or routing state ini-

tialization, sn = 0 and distance to directory is ∞. Routers and directories store

shortest distance to neighbor directories in diretory table DT. HELLO messages

periodically send all updates to a router’s neighbor table to neighbors.

Publishers P1 and P2 connect to neighbor router i and h. P1 identifies the

closest directory as its anchor directory. P1 sends a PUBLISH message to its

router i with the content prefix and prefix label of its anchor directory and land-

mark directories. Similarly, publisher P2 publishes NO_1 to its anchor directory

g. After registering the mapping in its CAT , g forwards the PUBLISH message to

its parent directory a by interval routing. The CAT for a in the figure shows two

entries for NO_1 exists - one for each publisher P1 and P2 with their respective

anchor and landmark directory prefixes.

A subscriber S1 requesting content NO_1 sends a name resolution LOOKUP

message to its closest directory a on the trie. If a is also the anchor directory for

71

the publisher of content NO_1 then a replies to S1 with the mapping of content

name to the local ID of the publisher and prefixes of its anchor and landmark

directories. Directory a replies to S1 with LOOKUP-REPLY with all known

instances of NO_1. It returns from its CAT the local ID P1 and P2 of publishers

P1 and P2 and their corresponding anchor and landmark directory prefixes.

Content routing in the data plane is assisted by the name resolution system

of DARCI and the publish-subscribe signaling between routers and directories

in a trie. In the example, S1 receives mapping of NO_1 to P1 and P2. S1

derives the direction for the shortest path by comparing the known prefix labels for

content NO_1 with the prefix labels in its DT. S1 sends a DATA-REQUEST with

the content name, prefix labels of its anchor, and landmark directories towards

publisher P2 via directory g with the prefix “01”. Publisher P2 replies with DATA-

REPLY with requested content towards subscriber S1. P2 derives the direction for

the shortest path to S1 by sending DATA-REPLY in the direction of a directory

with the longest prefix match. In the example, P2 sends DATA-REPLY towards

g. Local router f delivers the content to subscriber S1.

The operation of MIDAR in the control plane is independent of the data

plane after a router learns of the prefix labels of anchor and landmark directories.

Routers forward data requests and reply messages in the path of the longest prefix

match to reach the destination without the need to maintain long stateful tables.

MIDAR’s support for multi-instantiated contents in the network automatically

creates load-balancing of traffic as data request, and response gets routed to the

closest prefix labels of destination anchors.

72

4.2 Multi-Instance Publish & Subscribe

MIDAR extends DARCI’s use of directory trie to partition the global code

space to map multiple instances of content. Unlike peer to peer or FIB mech-

anisms that does not scale when it comes to multiple instances of contents and

for scenarios where contents are created as a result of flash-crowd at Internet

scale[46][47][48][49][50][51], the directory trie retains the map of contents within

the network with reduced signaling overhead by allowing publishers to periodically

update its ownership of the content by using directed publish messages towards

the trie as described in chapter 3.

4.2.1 Information Stored & Exchanged

We use the same notations as found in chapter 3. A router directory a main-

tains the following tables: (a) a neighbor table [NT]a listing router a’s immediate

neighbors; (b) a directory table [DT]a to store routing information to known direc-

tory routers as learned from neighbor HELLO; (c) a child directory table [CDT]a

to store child directories of a (d) a named object routing information [NORI]a

table to store named object NO routing information for each known named ob-

ject seen by router a; (e) a cached named object pointer [CANOP]a at router a to

store the mapping of NO names to the pointer to the cached data store; (f) a code

allocation table [CAT]a to store space-filling curve code allocation for registered

NO at router a.

The adaptation to DARCI’s information storage to support MIDAR is in allow-

ing [NORI]a and [CAT]a to support multiple instances of destination information

object. One of the main aspects of MIDAR is the ability to distribute code spaces

amongst its directory routers that form the trie. MIDAR uses space filling codes

to map named objects and named object profiles. For a given code space, direc-

73

tory router a is assigned a range by its parent for which a is the authoritative

responder for any query for named objects that maps to one of the codes in that

range. For publisher nodes x and y as authoritative publishers of named object

NO?, the code generated C at each directory router to determine the interval

direction for publishing is respectively

CNO?

x = S(NO?,Ax,Lx[0...n])

CNO?

y = S(NO?,Ay,Ly[0...n])

Where for publisher nodes x and y, Ax & Ay are the anchor directory, Lx[0...n] &

Ly[0...n] are a list of n landmark directories L prefixes known by publisher nodes at

the time of registering and publishing with its respective anchor directory Ax &

Ay.

In [CAT]a, a code points to Named Object Profile Set (NOPS). A NOPS for

a given named object NO? published by node p is a set of one or more Named

Object Profile (NOP), which consists of the following tuples:

(NOPNO?)a = (p,Ap,Lp[0...n], (sn)p, ti)[0...m]

WhereAp is the anchor directory for publisher node p, Lp[0...n] is a list of n landmark

directory L prefixes known by publisher node p at the time of registering and

publishing with its anchor directory Ap, (sn)p is a sequence number generated by

publisher node p and ta is the time-stamp generated for this record by Directory

a. For a given named object, up to m Named Object Profiles can exist, thus

supporting multi-instances of named objects in network.

MIDAR allows opportunistic caching of contents in the network. The [CANOP]a

database keeps track of named object mapping to its corresponding storage pointer.

A [CANOP]a entry consists of named object prefixNO?, a pointer to content stor-

74

age PTR and a timestamp ta. [NORI]a at node a for MIDAR supports multiple

entries for Named Object Profile NOPNO? based on destinations.

Non-directory routers are an integral part of directory trie. They facilitate

efficient and robust routing of name resolution requests and contents by using

knowledge of surrounding directory routers. A router b maintains (a) a neighbor

table [NT]b listing router b’s immediate neighbors; (b) a directory table [DT]b

storing routing information to known directory routers as learned from neighbor

HELLO; (c) a named object routing information [NORI]b table to store named

object NO routing information for each known named object seen by router a;

(d) a cached named object pointer [CANOP]b at router b to store the mapping of

NO names to a pointer to the cached data store.

4.2.2 MIDR Example

Publish Operation

Publishing in MIDAR consists of publishers forwarding PUBLISH messages to

their neighbor router. The PUBLISH message contains the content name prefix,

a local ID of the publisher, and a sequence number. Fig. 4.2 is an example of

publisher P0 connected to router b and publisher P1 connected to the router.

Neighbor router b and s for P0 and P1 forwards the local publish message to

the closest directory router a and t respectively in the trie by adding labels of

directory routers within its r hops. The local publishing path is labeled L in Fig.

4.2. The directory router a on receiving the local publish message becomes the

anchor directory A for the publisher P0. Directory a replies to publisher P0 with

PUBLISH-ACK. The local reply path for PUBLISH-ACK is labeled LR in Fig.

4.2. Local routers and directory for a publisher maintain a loop-free path to the

publisher using neighbor HELLO. These routes are periodically refreshed based

75

b

f

a

g
e

j

h

m n

q
t

i

k

p

c

o

u

d

w

s

y

l

x

r
z

v

parent:a
prefix:00
code:[α,δ]

parent:a
prefix:0
code:[α,ω]

parent:t
prefix:020
code:[ρ,φ]

parent:a
prefix:01
code:[ε, λ]

parent:a
prefix:02
code:[μ,φ]

Publish Path

Trie Signal Path

Subscriber S0

Publisher P0

Directory Node

Router Node

Local Publish Code

Authoritative Range

L
L

LRLR
T

T

T

T

TR

TR

TR

TR
“/ucsc/darci”

CDT at ‘a’
 0 : i : [α,δ] : t

i
 1 : o : [ε, λ] : t

o
 2 : t : [μ,φ] : t

tF (“/ucsc/darci”) = π

π “/ucsc/darci”
χ
...
ω

{P0, 0, 00, sn
p
, t

1
}

CATa

μ
π “/ucsc/darci”
...
φ

{P0, 0, 00, sn
p0

, t
1
}

CATt

α < δ < ε < λ < μ < ρ < φ < ω

Global Code Space
[α,ω] “/ucsc/darci” * 0 t

0

{P0, 0, 00, sn
p
, t

1
}

NORIe

Publisher P1

“/ucsc/darci”

L
LR

LR

Subscriber S1

{P1, 02, 00, sn
p2

, t
2
}

L

Figure 4.2: Publishing in MIDAR

on HELLO intervals. Anchor directory a computes the space-filling curve code

for the content name using the transform F (NO) = π, where F is as described

in Algorithm 7. The mapping of content name to a publisher in the local publish

message is registered in anchor directory a’s CAT a. Directory a retrieves the

interval for π by looking in the CDT a. In the example in Fig. 4.2, π ∈ [µ, φ] is in

an interval assigned to directory t. The publish message is forwarded in the trie

towards the prefix 02 of authoritative directory t. Fig. 4.2 shows the trie path

76

for publishing and replies to t and a with label T and TR, respectively. Each

router in the trie path from a to t forwards the PUBLISH message and caches the

mapping (e.g., NORIe at router e). Fig. 3.10 shows the local and authoritative

registration of the mapping in CAT a and CAT t pointing to named object profile

(NOP). Directory router t is the anchor and authoritative directory for publisher

P1. The [CAT]t with two NOP for multi-instantiated “/usc/darci” is shown in

Fig. 4.2. Directory t replies to publisher P1 with PUBLISH-ACK. The local

reply path for PUBLISH-ACK is labeled LR in Fig. 4.2. Publishers periodically

refresh the content they own by sending PUBLISH messages towards the trie via

their neighbor router. For a set of already published and unchanged contents,

publishers send a compressed message that contains the signature to identify the

set of unchanged content names. Periodic refresh by publishers addresses updates

in mapping to anchor directory prefixes when trie structure changes.

Subscribe Operation

Subscribers register with neighbor routers using HELLO messages. All neigh-

bor and directory routers within "r" hops maintain a loop-free sequence num-

bered route to subscribers. A subscriber interested in content sends a LOOKUP

message containing the name of the content, a local ID of the subscriber, and

a sequence number to its neighbor router. The neighbor router forwards the

LOOKUP message to the closest directory. This directory is the anchor direc-

tory for the subscriber. At the anchor directory, the code for requested con-

tent is computed and checked for its availability in the local cache. The an-

chor directory sends LOOKUP-REPLY with the mapping to the subscriber. An-

chor directory determines the direction for the interval in which the code is. It

marks the LOOKUP message with its label prefix as the source of the request

77

b

f

a

g
e

j

h

m n

q
t

i

k

p

c

o

u

d

w

s

y

l

x

r
z

v

parent:a
prefix:00
code:[α,δ]

parent:a
prefix:0
code:[α,ω]

parent:t
prefix:020
code:[ρ,φ]

parent:a
prefix:01
code:[ε, λ]

parent:a
prefix:02
code:[μ,φ]

Subscribe Path

Trie Signal Path

Subscriber S0

Publisher P0

π “/ucsc/darci”
χ
...
ω

{P0, 0, 00, sn
p
, t

1
}

Directory Node

Router Node

Local Publish Code

Authoritative Range

CATa

μ
π “/ucsc/darci”
...
φ

CATt

Q

“/ucsc/darci”

CDT at ‘a’
 0 : i : [α,δ] : t

i
 1 : o : [ε, λ] : t

o
 2 : t : [μ,φ] : t

t

Q

Q

Q

QQ

Q

Q

Q

Q

QR
QR

QR

QR
QR

QR

QR

QR

QR

α < δ < ε < λ < μ < ρ < φ < ω

Global Code Space
[α,ω]

“/ucsc/darci”

“/ucsc/darci” * 0 t
0

{P0, 0, 00, sn
p
, t

1
}

F (“/ucsc/darci”) = π

NORId

{P0, 0, 00, sn
p0

, t
1
}

Publisher P1

“/ucsc/darci”

Subscriber S1

{P1, 02, 00, sn
p2

, t
2
}

Q

Q

QQ

QR QR

QR

QR

QR

“/ucsc/darci”

Figure 4.3: Subscribing in MIDAR

and forwards the LOOKUP message using interval routing in the trie towards

the authoritative directory that owns the interval. The authoritative directory

replies with LOOKUP-REPLY containing the mapping for the requested content.

The LOOKUP-REPLY follows the trie path towards the source anchor directory

prefix using prefix label routing. Intermediate routers in trie that forward the

LOOKUP-REPLY opportunistically cache the mapping information in its NORI

table. Anchor directory on receiving LOOKUP-REPLY updates its NORI table

78

and forwards it to the subscriber. Fig. 4.3 is an example of subscribers S0 and

S1 connected to routers v and x, and requesting content “/ucsc/darci”. Anchor

directory o and u for S0 and S1 respectively computes the space-filling curve code

for the content name using the transform F (NO) = π, where F is as described

in Algorithm 7. π /∈ [ε, λ], anchor directory o forwards the LOOKUP message to

its parent directory a. Anchor directory u for S1 forwards the LOOKUP message

to its parent directory t. The LOOKUP message path from anchor directory to

the authoritative directory through trie using interval routing is labeled Q in the

figure. The LOOKUP-REPLY message path to subscriber’s anchor directory via

trie using prefix label routing is labeled QR in the figure. Intermediate router d

in the trie stores the mapping information in its NORId table.

Content Routing

A subscriber receives all mappings for requested content via LOOKUP-REPLY.

Fig. 4.4 is a routing example for multi-instantiated content in the trie. Subscribers

S0 and S1 finds the shortest path to reach the anchor directories of publishes P0

and P1. Subscriber S0 sends a DATA-REQUEST message to its neighbor router

v by embedding the content name’s mapping to its locator and landmark prefixes.

Subscriber S1 learns from its NT that publisher P1 is within r hops; sends a

DATA-REQUEST message to its neighbor router w by embedding the mapping

of content name to its locator and landmark prefixes. At every hop, routers in-

spect the destination prefixes and determine the shortest route to reach them.

Routing prioritizes on reaching anchor prefix. If no path exists, the default path

is to forward the DATA-REQUEST message to the neighbor directory router with

the longest prefix match towards a publisher’s anchor directory prefix. Interme-

diate routers check the cache CANOP for a local copy of the requested content.

79

b

f

a

g
e

j

h

m n

q
t

i

k

p

c

o

u

d

w

s

y

l

x

r
z

v

parent:a
prefix:00
code:[α,δ]

parent:a
prefix:0
code:[α,ω]

parent:t
prefix:020
code:[ρ,φ]

parent:a
prefix:01
code:[ε, λ]

parent:a
prefix:02
code:[μ,φ]

Routing Path

Trie Signal Path

Subscriber S0

Publisher P0

π “/ucsc/darci”
χ
...
ω

{P0, 0, 00, sn
p
, t

1
}

Directory Node

Router Node

Local Publish Code

Authoritative Range

CATa

“/ucsc/darci”

CDT at ‘a’
 0 : i : [α,δ] : t

i
 1 : o : [ε, λ] : t

o
 2 : t : [μ,φ] : t

t

α < δ < ε < λ < μ < ρ < φ < ω

Global Code Space
[α,ω]

“/ucsc/darci”

“/ucsc/darci” * 1 t
0

{P0, 0, 00, sn
p
, t

1
}

NORId

BLOB(“/ucsc/darci”) t
0

CANOPd

μ
π “/ucsc/darci”
...
φ

CATt

{P0, 0, 00, sn
p0

, t
1
}

{P1, 02, 00, sn
p2

, t
2
}

Publisher P1

“/ucsc/darci”

“/ucsc/darci”
Subscriber S1

Figure 4.4: Content routing in MIDAR

Routers reply with a cached copy in the DATA-REPLY message towards the sub-

scriber’s anchor prefix. If trie is the shortest path derived to reach the publisher’s

anchor directory, then the DATA-REQUEST message is forwarded hop by hop

using prefix label routing. An intermediate router or directory can redirect the

DATA-REQUEST to a shorter path if one is available after consulting its NT

and DT. DATA-REQUEST from S0 follows the trie path from o to publisher P0

via anchor directory a. However, DATA-REQUEST path from S1 follows local

80

routers x to reach publisher P1 via s. Publisher replies with requested content

in the DATA-REPLY message. The neighbor router determines the next hop

to reach the prefix of the subscriber’s anchor directory. The default next hop

is towards the closest directory router with the longest prefix match towards a

subscriber’s anchor directory prefix. The anchor directory on receiving DATA-

REPLY forwards to the subscriber via local routers. DATA-REPLY is forwarded

via local routers to destination if a subscriber is known to the publisher within r

hops. Intermediate routers and directories opportunistically cache content data

in their CANOP cache.

4.3 Simulation

Figure 4.5: MIDAR simulation: 59 node BT North America topology

81

We implemented MIDAR in ns-3 version 3.27[65] and used the NDN imple-

mentation [66] for validating protocol correctness and to compare performance

metrics of average throughput, average delay and average round trip hop count as

seen by subscriber nodes for increasing number of content names. We derived a 59

node fixed topology as shown in Figure 4.5 from “BT North America” dataset[67].

Five unique information name object files each 50K, 20K, 5K, 500 and 20 names

were derived from web traffic dataset[68]. The simulation ran for 3 hours with 5

different seed values, with subscribers requesting 25 names per second. Publisher

applications on publishers 36-43 were allowed to start publishing the contents they

owned before subscriber applications began requesting information. Publishers are

assigned the list of unique names such that a given publisher in MIDAR and NDN

had the same set of names. Additionally, as shown in figure 4.5, 8 publishers were

virtually split into two zones such that for a given information name, there were

at least 2 publishers one in each zone. Our intention here was to allow subscribers

in either zone to reach the closest instance of the requested information dynami-

cally. Subscribers 44-58 were aware of the complete name list, out of which each

subscriber randomly selects names. We compare performance metrics for name

data files 20K, 5K, 500, and 20. We evaluate the two protocols in a wired net-

work with fixed topology. In MIDAR, we use a maximum distance of 2 hops for

a publisher or a subscriber to select an anchor directory. Nodes in MIDAR and

NDN are connected using point-to-point CSMA links with a data rate of 1Gbps,

delay of 6.5 ms, and MTU size of 1400. For NDN, the size of the content store

is 100 for on-path caching and set to a size of 1 for no caching scenarios. The

caching policy for NDN is LRU. For MIDAR, the size of CANOP is set to 100

for on-path caching and set to 0 for no caching scenarios. The caching policy in

DARCI is LRU, and the routing strategy is “/localhost/nfd/strategy/multicast”.

82

The subscribers and publishers are nodes with no caching enabled.

4.4 Performance Comparison

Figure 4.6: MIDAR simulation: Throughput (Mbps) with 50K Names

Figures 4.6,4.7,4.8,4.9,4.10 shows throughput seen by subscribers for 5 differ-

ent data sets. For 20 names dataset, we see the throughput for MIDAR and NDN

with cache enabled to be higher than for cache disabled. Since the cache is large

enough to hold all the names, we see nearly consistent throughput with 20 names

because subscribers are returned a cached copy of the information with a round

trip hop count of 2. However, when the cache is disabled, the request for infor-

mation has to reach the destination instance. MIDAR’s throughput computation

includes the round trip time taken for name resolution and round trip time to

receive the requested information. For Figures 4.6,4.7,4.8,4.9 with cache enabled

and disabled, the rate of decrease in throughput as the number of addressable

83

Figure 4.7: MIDAR simulation: Throughput (Mbps) with 20K Names

Figure 4.8: MIDAR simulation: Throughput (Mbps) with 5K Names

information names increase in the network is smaller in MIDAR compared to the

large difference seen in NDN. This is because, in MIDAR, the name resolution

84

Figure 4.9: MIDAR simulation: Throughput (Mbps) with 500 Names

Figure 4.10: MIDAR simulation: Throughput (Mbps) with 20 Names

through opus-lookup returns information on all known multiple instances of in-

formation destination. Subscribers in MIDAR derives a direction for request by

85

Figure 4.11: MIDAR simulation: Delay (µs) with 50K Names

Figure 4.12: MIDAR simulation: Delay (µs) with 20K Names

86

Figure 4.13: MIDAR simulation: Delay (µs) with 5K Names

Figure 4.14: MIDAR simulation: Delay (µs) with 500 Names

87

Figure 4.15: MIDAR simulation: Delay (µs) with 20 Names

Figure 4.16: MIDAR simulation: Hop count with 50K Names

comparing its own known Anchor Directory and Landmark Directories with each

of the known destination Anchor Directory and Landmark Directories as returned

88

Figure 4.17: MIDAR simulation: Hop count with 20K Names

Figure 4.18: MIDAR simulation: Hop count with 5K Names

by opus-lookup-reply. Note that a subscriber derives a direction, and it is not an

assured shortest path. The request packet carries with it prefix labels of publisher

89

Figure 4.19: MIDAR simulation: Hop count with 500 Names

Figure 4.20: MIDAR simulation: Hop count with 20 Names

anchor directory and landmark directories such that at each hop, there is always

an opportunity to optimize the routing until the request reaches the publisher.

90

The correctness of this design in MIDAR is proved by the simulation results in

Figures 4.11-4.20. Figures 4.16,4.17,4.18,4.19,4.20 shows that both MIDAR and

NDN for cache enabled have almost similar round trip hop count measures for

data set sizes over 5K names. However, the corresponding delay measurements

show that MIDAR incurs far less delay than NDN. In NDN, a smaller round trip

hop count does not necessarily mean smaller delay because of PIT’s pending in-

terests. On the other hand, in MIDAR, the decoupling of name resolution and

interval routing for stateless lookup, request, and response allow for faster routing

with minimal overhead. Another key observation from the simulation results is

that MIDAR scales far better in terms of delay and throughput than larger drops

seen in NDN as the number of addressable information names increases in the

network.

4.5 Summary

We introduced MIDAR for multi-instantiated information name resolution and

routing in ICN. By decoupling the name resolution from the routing plane, MI-

DAR achieves greater scalability in deriving the initial the direction for routing

by comparing its known anchor directory and landmark directories with each of

the known destination anchor directory and landmark directories it has learned

via name resolution. By way of extensive simulation, we have shown that MIDAR

scales better than NDN when the number of addressable information increases.

MIDAR incurs an order of magnitude far less control overhead than NDN, which

relies on mechanisms like broadcast to populate FIB. The increase in delay, as

seen in NDN, could be explained by the architecture of NDN [19] where routers

manage traffic load by managing the Interest forwarding rate on a hop-by-hop ba-

sis; where it throttles or stops sending Interest packets to a neighbor. In MIDAR,

91

forwarding is instantaneous in order to maintain stateless functioning. Simulation

comparison between MIDAR and NDN on a real-world topology validates the ef-

ficiency and scalability of MIDAR as the number of addressable contents and the

number of instances of those contents increases in an ICN.

92

Chapter 5

ACED: Adaptive Cache Enabled

Directory Assisted Routing

In this chapter, we introduce Adaptive Cache Enabled Directory Assisted

Routing of Content in ICN (ACED). The preamble of ICN[77] states the indepen-

dence of data from location, application, storage, and the means of transporta-

tion. By way of uniquely addressing data, in-network caching and replication

becomes an essential design area for network performance improvement. Whether

host-centric or information-centric, caching of in-need data close to the subscriber

has always been the de-facto design to increase network performance. As dis-

cussed in chapter 1, the exponential growth of user-generated content proved that

fetching content from the source for every request is never optimal. Web per-

formance significantly increases when contents are cached between the subscriber

and publisher[78][79][80]. The several key advantages of any caching are [81]:

1. Network traffic and congestion decreases with web caching thereby increas-

ing bandwidth

2. Publisher load is greatly reduced as it does not need to serve all requests

93

3. For documents not found in the cache, the traffic to reach publishers flows

much faster due to the reduced number of overall requests to publishers

Various caching mechanisms have been proposed for ICN to improve network

efficiency. Apart from the basic caching policies such as First In First Out (FIFO),

Least Recently Used (LRU) and Least Frequently Used (LFU) for ICN, caching

schemes based on path and data information[82], caching schemes based on ICN

network parameters such as distance from the source, reachability of the router,

frequency of content access[83] and caching schemes that assigns a transporta-

tion cost to every node in the network which is derived as a function of cache

hit probability of the content at a particular node[84] have been proposed. Au-

thors of [85] have used cache hit/miss ratio to characterize the performance of

cache and propose a multi-path routing strategy and later concluded that while

simple randomized policies may perform almost as well as more complex ones, a

multi-path routing may play against a content-centric network efficiency. Drawing

upon the observation of these prior work, we focus exclusively on “adaptive” load

sharing by the cache anywhere between the publisher and subscriber. That way,

a cache can opportunistically take on the role of a multi-instantiated publisher

as it reaches full utilization. Understanding that it is ever impossible to design

a big enough cache to contain all possible contents available in a network, cache

in ACED is more of a congestion sink such that for traffics not being served by

the cache experiences much less congestion reaching publishers. Besides, ACED

is an extension of MIDAR, it inherently supports multi-path strategy by using

Directory assisted derived direction for routing. By way of extensive simulation,

we show that ACED performs and scales much better than NDN[66].

94

5.1 Basic Operation

Fig. 5.1 illustrates the basic operation of ACED.We extend the basic operation

of DARCI 3.1 and MIDAR 4.1 by modifying the cache at each router to transform

from a transient cache to temporarily an authoritative publisher of content. All

routers send sequence numbered HELLO messages to its 1-hop neighbors. Routers

and directories store their neighborhood information and sequence numbers in

neighbor table NT. All routers maintain a sequence-numbered sn distance to

directories within r hops. Only a directory can update the sequence number

in its following updates. Such a route is loop-free, proved in CORD[44] and

ODVR[45]. Routers and directories store sequence numbers in their persistent

storage, sequencing increments with every update. On a reset or routing state

initialization, sn = 0 and distance to directory is ∞. Routers and directories

store the shortest distance to neighbor directories in directory table DT. HELLO

messages periodically send all updates to a router’s neighbor table to neighbors.

Every entry in the cache [CANOP]e at router e has a state γ which is either

fluid or crystallized. In the example, router e has been forwarding contents NO_-

1 and NO_2 and, hence, caching it in [CANOP]. The γ for each content in

the cache is set to fluid upon entry. Contents NO_1 and NO_2 in e’s cache

is in fluid state for as long as (t − t?) ≤ λ, where t is the current timestamp,

t? is the entry time of the content in the cache and λ is a pre-determined and

configurable interval. Cache entries in fluid are subject to eviction policy based

on cache utilization. For any content NO_1 or NO_2 in fluid state and (t− t?) >

λ transitions to crystallized mode. In a crystallized state, the router e is the

authoritative publisher of contents NO_1 and NO_2. Router e follows the publish

protocol as described in DARCI 3.1 and MIDAR 4.1 by sending PUBLISH message

to its closest anchor directory - in the example, this being directory a. Fig.

95

5.1 shows the code allocation table [CAT]a with entries for contents published

by router e. Subscriber S1 querying for NO_1 sends LOOKUP message to its

anchor directory a. Directory a replies with LOOKUP-REPLY and all known

mappings for content NO_1. Subscriber S1 derives the shortest path to publisher

by comparing information received in LOOKUP-REPLY and its neighbor table

and directory table. For S1, router e is the closes publisher for content NO_1. S1

sends DATA-REQUEST to its neighbor router f towards router e. Router e replies

to S1 with the requested content in DATA-REPLY. ACED, similar to DARCI and

MIDAR, thus relies on the interval routing for forwarding name resolution packets

and on prefix label routing using longest prefix match for forwarding replies and

data requests.

Crystallized cache entries maintains its state for as long as (t− t?) ≤ ρ, where

t is the current timestamp, t? is the last known transition or reset timestamp

of the content in the cache from fluid to crystallized, and ρ is a pre-determined

and configurable interval. Further cache hits for content name NO_1 while in

crystallized state resets t? = t. Cache in router e does not apply eviction policy

to entries in crystallized state. NO_1 transitions from crystallized to fluid for

condition (t − t?) > ρ, resetting t? = t. Router e stops updating the mapping to

the directory trie and falls back to functioning as a cache. MIDAR, unlike other

cache proposals in ICN thus reduces the churn caused due to focus on eviction

policy. By focusing on best-effort cache retention, router e reduces the number of

requests that reach upstream nodes towards directories or publishers.

5.2 ACED

ACED extends MIDAR implementation of multi-instantiated Directory as-

sisted routing for contents in ICN. Unlike prior work where complex algorithms

96

{NO_1,P1,‘00’,‘01’,ts}
{NO_1, e, ‘0’,‘00’‘01’,ts}
{NO_2,P2,‘01’,‘00’,ts}
{NO_2,e,‘0’,‘00’‘01’,ts}

 g:g:01:1:0:sn_g
 a:a:0 :1:1:sn_a

 c:b:00:2:0:sn_c
 g:g:01:1:0:sn_g

 a:b: 0:2:1:sn_a

Figure 5.1: Basic operation of ACED

make up the cache replacement policy, ACED uses simple affinity by tracking

when an entry stays inside the cache. Any new entry into cache is considered

fluid. For a pre-determined and configurable time λ, any entry that has been

resident of cache for more than λ while not evicted during the period λ is con-

sidered crystallized. The cache tracks crystallized entries using a pre-determined

and configurable time ρ. While an entry is in crystallized state, any cache hit for

that entry resets the ρ thus extending the crystallized state. The entry returns to

fluid state when ρ expires without being reset by cache hits for that entry.

97

5.2.1 Information Stored & Exchanged

Our implementation of [CANOP]i as cache for router i in ACED is an exten-

sion of queue. The [CANOP]i queue keeps track of a named object mapping to

its corresponding pointer to storage blob. A [CANOP]i entry consists of named

object prefix NO?, a pointer to data store blob PTR, a state γ which could be

either fluid or crystallized and a time-stamp ti. [CANOP]i maintains knowledge

of its usable size by using Λ to store the ordinal in the queue beyond which any

crystallized entries are not evicted unless they transition to fluid state. A router

with crystallized entries in cache publish towards the Directory trie each of the

entries as if it were the authoritative publisher.

5.2.2 ACED Example

Figure 5.2 show the state transition of cache entry from crystallized to fluid

and vice-versa. Figure 5.2 (i) at t = t1 is a snapshot of cache where there are two

entries a and d. Let t?a and t?d be the time a and d entered the cache. γ holds the

state for each entry. a and d is in fluid state because of the satisfying condition:

t− t?a < λ; γ = fluid

t− t?d < λ; γ = fluid
(5.1)

At t = t7 in Figure 5.2 (ii), the cache has 6 entries. Contents a and d how-

ever transitions from fluid to crystallized state because of the following satisfying

condition:

t− t?a ≥ λ; γ = crystallized

t− t?d ≥ λ; γ = crystallized
(5.2)

At every crystallization event, the queue packs the crystals to front of the queue

and resets the queue marker Λ to point to the top of the queue right after the

98

a d
1 2 3 4 5 6 7 8 9

a b c d e f
1 2 3 4 5 6 7 8 9

a d b c e f g h i
1 2 3 4 5 6 7 8 9

a d b c e f g h i
1 2 3 4 5 6 7 8 9

t=t1

t=t7

t=t7

t=t15

a d b c e f g h i
1 2 3 4 5 6 7 8 9

t=t20

a d b c e f g h i
1 2 3 4 5 6 7 8 9

t=t20

Crystallized Fluid

(i)

(ii)

(iii)

(iv)

(v)

(vi)

Figure 5.2: ACED Cache Progression

last packed crystallized entry. This is shown in Figure 5.2 (iii) where a and d are

packed to the front of the queue. The queue marker Λ now points to 3. t?a and t?d

now holds the time at which a and d transitioned state. At t = t7, the following

are the conditions of entries:

99

t− t?a ≤ ρ; γ = crystallized

t− t?d ≤ ρ; γ = crystallized

t− t?b < λ; γ = fluid

t− t?c < λ; γ = fluid

t− t?e < λ; γ = fluid

t− t?f < λ; γ = fluid

t− t?g < λ; γ = fluid

t− t?h < λ; γ = fluid

t− t?i < λ; γ = fluid

(5.3)

Figure 5.2 (iv) shows the state of cache when it is fully crystallized. The queue

marker Λ is at the end of the queue. In a fully utilized and crystallized mode,

the cache does not perform evictions. ACED thus avoids unnecessary churns in

cache due to frequent evictions. We do understand that frequent evictions may

be indicative of highly popular contents more than what the cache can hold,

however, reducing the churn and redirecting those requests to caches upstream to

the publisher or to the publisher results in better performance as we see in our

simulation results. At t = t15, the following is the state of the packed entries:

100

t− t?a ≤ ρ; γ = crystallized

t− t?d ≤ ρ; γ = crystallized

t− t?b ≤ ρ; γ = crystallized

t− t?c ≤ ρ; γ = crystallized

t− t?e ≤ ρ; γ = crystallized

t− t?f ≤ ρ; γ = crystallized

t− t?g ≤ ρ; γ = crystallized

t− t?h ≤ ρ; γ = crystallized

t− t?i ≤ ρ; γ = crystallized

(5.4)

Figure 5.2 (v) at t = t20 the entry at location 9 expired on the timer while in

crystallized state. This entry transitions back to fluid state. t?i now stores the

time at which the transition from crystallized to fluid happened. This transition

event triggers packing of the queue. Figure 5.2 (vi) shows the queue marker Λ

after packing to point to 9. The satisfying conditions for Figure 5.2 (vi) are:

101

t− t?a ≤ ρ; γ = crystallized

t− t?d ≤ ρ; γ = crystallized

t− t?b ≤ ρ; γ = crystallized

t− t?c ≤ ρ; γ = crystallized

t− t?e ≤ ρ; γ = crystallized

t− t?f ≤ ρ; γ = crystallized

t− t?g ≤ ρ; γ = crystallized

t− t?h ≤ ρ; γ = crystallized

t− t?i < λ; γ = fluid

(5.5)

Algorithm 13 ACED: Process DATA-REQUEST message at router i
1: input: NT i, DT i, NORI i, CANOP i, message;
2: procedure ProcessDataRequestAtRouter
3: ap ← GetPubAnchorDirectoryFrom(message);
4: lp[]← GetPubLandmarkDirectoriesFrom(message);
5: as ← GetSubAnchorDirectoryFrom(message);
6: ls[]← GetSubLandmarkDirectoriesFrom(message);
7: c← GetContentNameFrom(message);
8: if c ∈ CANOP i then . In cache?
9: entry ← GetFromCANOP(c);

10: if entry.γ = crystallized then
11: entry.t? = CurrentTimestamp(); . Reset timestamp
12: end if
13: sendDataReply(entry.data, as, ls[]);
14: else
15: if ← RouteToNextHopTowardsAnchor(ap, lp[]); . Get interface
16: forwardToAnchor(if);
17: end if
18: end procedure

Algorithms 13, 14 and 15 describe the implementation of ACED. The procedures

102

Algorithm 14 ACED: Process DATA-REPLY message at i
1: input: NT i, DT i, NORI i, CANOP i, message;
2: procedure ProcessDataReply
3: subID ← GetSubscriberIDFromMessage(message);
4: c← GetContentNameFrom(message);
5: data← GetDataFrom(message);
6: if subID = MyID() then
7: sendToApplication(c, data);
8: return;
9: end if

10: if c ∈ CANOP i then
11: entry ← GetFromCANOP(c);
12: if entry.γ = crystallized then
13: entry.t? = CurrentTimestamp(); . Reset timestamp
14: end if
15: else
16: UpdateCANOP(c, data); . Add or update cache
17: end if
18: as ← GetSubAnchorDirectoryFrom(message);
19: ls[]← GetSubLandmarkDirectoriesFrom(message);
20: if ← RouteToNextHopTowardsAnchor(as, ls[]); . Get interface
21: forwardOpusDataReply(if);
22: end procedure

ProcessDataRequestAtRouter and ProcessDataReply resets the timestamp for

any crystallized entries if it is referenced in response to data request. The proce-

dure CANOP-Pack-Unpack is periodically called on the queue to update the states

of each entry. The outcome is an updated position of Λ that separates crystallized

entries from fluid entries.

Router node with fully crystallized cache sends PUBLISH message to its closes

anchor directory. Anchor directory computes the code for each content name and

forwards PUBLISH message using interval routing on directory trie. ACED’s

publish, subscribe and routing follows similar operation as described in MIDAR

publish 4.2.2, subscribe 4.2.2 and routing 4.2.2.

103

Algorithm 15 ACED: CANOP pack-unpack at i
1: input: NT i, DT i, NORI i, CANOP i;
2: procedure CANOP-Pack-Unpack
3: Λ← GetQueueMarker(CANOP i);
4: Q← GetQueue(CANOP i);
5: for i← Λ to SizeOfQueue(CANOP i) do . Pack queue
6: ts_now ← GetCurrentTimestamp();
7: if (ts_now −Q[i].t?) ≥ λ AND Q[i].γ = fluid then
8: temp_entry ← Q[i];
9: Q[i]← Q[Λ];

10: Q[Λ]← temp_entry;
11: Q[Λ].γ ← crystallized;
12: Λ + +;
13: end if
14: end for
15: for j ← 1 to Λ− 1 do . Unpack queue
16: ts_now ← GetCurrentTimestamp();
17: if (ts_now −Q[j].t?) ≥ ρ AND Q[j].γ = crystallized then
18: temp_entry ← Q[j];
19: Q[j]← Q[Λ− 1];
20: Q[Λ− 1]← temp_entry;
21: Q[Λ− 1].γ ← fluid;
22: Λ−−;
23: end if
24: end for
25: end procedure

5.3 Simulation

We implemented ACED in ns-3 version 3.27[65] and used ns-3 implementation

of NDN[66] for comparing performance metrics of average throughput, average

delay, and average round trip hop count as seen by subscriber nodes for an in-

creasing number of content names. We derived a 59 node fixed topology as shown

in Figure 3.14 from “BT North America” dataset[67]. To stress the adaptive cache

design, we used one of the largest website workload data sets captured during the

1998 World Cup[86]. During this time, the site received 1.35 billion requests. This

104

Figure 5.3: ACED simulation: 1998 World Cup Total Traffic (April 30-July 26)

Figure 5.4: ACED simulation: 1998 World Cup flash-crowd (April 30-May 5)

data set allows for simulating flash-crowd content requests. The characteristic of

requests for this period is as shown in Figure 5.3. For our simulation, we take

a subset of this data from 4/30/1998 21:30 to 5/5/1998 23:59; which totals to

5, 597, 207.00 requests5.4. The data set captures the timestamp of the request, a

unique identifier for the client that issued the request, a unique identifier to track

105

the requested URL, the number of bytes sent back as response and the HTTP

method used for the request (e.g., POST, GET). For the subset of the data set,

we divided the number of requested URLs among the 8 publishers. All subscribers

were made aware of the global URL list. At each minute, the total client requests

per minute were equally divided among the subscribers. The distribution of con-

tent to publishers and the distribution of request initiation to subscribers were

programmed equally for ACED, DARCI, and NDN. The simulation was ran for 6

days by generating traffic pattern from the data set 4/30/1998 21:30 to 5/5/1998

23:59. We evaluate the three protocols in a wired network with fixed topology.

In DARCI and ACED, we use a maximum distance of 2 hops for a publisher or a

subscriber to select an anchor directory. Nodes in ACED, DARCI and NDN are

connected using point-to-point CSMA links with a data rate of 1Gbps, delay of

6.5 ms, and MTU size of 1400. For NDN, the size of the content store is 100 for

on-path caching and set to a size of 1 for no caching scenarios. The caching policy

for NDN is LRU. For DARCI and ACED, the size of CANOP is 100 for on-path

caching and is 0 for no caching scenarios. The caching policy in DARCI is LRU,

and the routing strategy is “/localhost/nfd/strategy/multicast”. The subscribers

and publishers are nodes with no caching enabled. For ACED, the value of λ is

to 3 minutes, and the value of ρ is 10 minutes.

5.4 Performance Comparison

Figures 5.5, 5.6 and 5.7 compares the results of ACED with NDN and DARCI.

ACED performs far better than DARCI and NDN in all 3 metrics. The increase

in throughput in ACED is not entirely due to higher cache hits rather a co-

ordinated effort between the chain of crystallized caches upstream towards the

publisher. Our analysis on the performance of ACED implementation revealed

106

further opportunities for performance improvement in the algorithm used to pack

crystallized entries in the queue. Given the flash-crowd traffic pattern, we see

from Figure 5.7 that ACED requests, on average, travels less hop count than

NDN. Since the cache size of 100 is relatively smaller than the total number of

addressable contents in the network, NDN during flash-crowd sees higher eviction

rates in its LRU implementation of cache policy. On the contrary, when a cache

is crystallized, the churn due to eviction is deterred for that cache, whereas the

next popular content takes advantage of being crystallized in the cache next hop

towards the publisher.

Figure 5.5: ACED simulation: Throughput (Mbps)

5.5 Summary

In this chapter, we introduced Adaptive Cache Enabled Directory Assisted

Routing of Content in ICN (ACED). Caching in any form is a design de-facto

107

Figure 5.6: ACED simulation: Delay (µs)

Figure 5.7: ACED simulation: Hop count

for performance improvements in a network. The preamble of ICN[77] states the

independence of data from location, application, storage, and the means of trans-

108

portation. By way of uniquely addressing data, in-network caching and repli-

cation becomes an essential design area for network performance improvement.

ACED solves quite a few problems seen with various cache implementations such

as complex computations for determining eviction strategy, sub-optimal eviction

policy-induced churn, and lack of support for multi-instantiated copies of the con-

tent. ACED builds upon DARCI and MIDAR, uses a derived direction from the

interval and prefix labels to aide the name resolution and routing of contents in

ICN. The simulation results on real-world flash-crowd data and comparing with

DARCI and NDN results validate the efficiency and scalability of ACED.

109

Chapter 6

Conclusion

Information exchange in communication is an ever-evolving paradigm for cen-

turies. Discovering and routing information in early centuries in the form of

smoke and light reflected signals to the modern-day always connected and inter-

networked communication between two computers explicitly had "information-

centricity" masked by "host-centricity". As inter-connections matured in modern-

day host-centric Internet architecture, it ushered an era of exponential growth

in user applications and user-generated information. Uses of the Internet shifted

from using the Internet for accessing compute resources to accessing information

across hosts. Users have moved far beyond the universal desire to be connected

and reachable to an insatiable desire to be part of an "information-network" and

"information-dissemination". To address this ever-growing information from dis-

covery to routing, a new approach called Information-Centric Networking (ICN)[77]

has been proposed with the core philosophy of being able to uniquely and securely

identify information by its name. Various ICN architectures support information

addressing independent from the location of information and means of transporta-

tion. One of the differences among most of the proposed architectures for ICN

is in the name resolution and data routing. We see two approaches: coupled

110

and decoupled. In the coupled approach, the information provider returns infor-

mation following the reverse path over which request traveled. In the decoupled

approach, the name resolution function does not influence the data routing path.

Another key functionality that differentiates various implementation of ICN is in

the approach taken to information naming. The two approaches used are hier-

archically structured naming and flat naming. Naming, name resolution, data

routing, and caching mechanism contributes as key architectural differentiators

for ICN implementations.

In Chapter 3 we introduced DARCI. In order to build an architecture to sup-

port ICN, we looked into components that allow scalability and extensibility as

the number of addressable information increased in the network. Prior research in

host-centric networking that focused on efficiency amid scarcity of resources looked

into concepts of Interval Routing[57] and Prefix Label Routing[87][58]. To address

the ever-growing information by uniquely naming without mandating users to

follow a rigid naming convention, two-way encoding such as space-filling curve

(SFC)[21] (e.g., Hilbert curve) is chosen over simple one-way hashing. By en-

coding content names to Hilbert curve codes of fixed-length integers while also

preserving the lexicographical closeness to other similar names, DARCI achieves

memory efficient and wire-speed lookup performance in the order of magnitude

much higher than the non-deterministic delay in LPM lookup on variable-length

names. Addressing content names using fixed length codes allows cheap routers

with much less power consumption and storage. To address the first two pillars

of ICN architecture, viz. naming and name resolution, DARCI arranges special-

ized routers called directories, that maintain the mapping between information

name and authoritative publishers, in a trie. The Directory trie partitions the

code space for a given SFC such that each Directory owns intervals within the

111

code space that maps information name to a unique code. Also, each Directory in

the trie is prefix labeled. Name resolution thus uses the code generated from the

requested information name and uses the code, the prefix labels of its parent and

children, and the knowledge of intervals at links on the Directory to forward the

messages. DARCI decouples name resolution and routing. The intervals built on

SFC code ranges and the prefix labels assigned to each Directory derive a direction

for information routing. Unlike a host-centric network where a message packet

explicitly carries source and destination address identifiers, DARCI data packets

for ICN carry the name of the content and the best-effort information regarding

Anchor Directory A and Landmark Directory L of the publisher.

In Chapter 4 we introduced MIDAR. Building upon DARCI’s architecture,

MIDAR supports name resolving and routing for multi-instantiated information

in an ICN. While users are oblivious to which copy they receive, MIDAR abstracts

name resolution and routing by extending the coding function of SFC to generate

a 1 dimensional SFC code from 3 dimensional input of information name, Anchor

Directory A and Landmark Directory L. Name resolution returns all records for a

given name. Subscribers perform an informed and optimized decision to request

the closest copy based on a direction derived by comparing Anchor Directory A

and Landmark Directory L of all known instances with that of subscriber’s Anchor

Directory A and Landmark Directory L.

In Chapter 5 we introduced ACED. To address the fourth pillar of ICN viz:

caching, ACED modifies the cache behavior by acknowledging that no cache de-

sign can be large enough to cache all available information within a network. Most

cache design proposals for ICN focuses on algorithms to better determine eviction

strategy; ACED retains cache entries. To this effect, cache in ACED, when occu-

pied by "crystallized" entries, transforms into a transient publisher that performs

112

publishing to the Directory trie like any other authoritative publisher. Cache in

ACED works in tandem with Authoritative Directory U to reduce the number of

name resolution and data request traffic that reaches publishers.

DARCI, MIDAR, and ACED are compared with NDN using real-world net-

work topology[67] and real-world network traffic representative of web information

retrieval [68] and flash-crowd[86].

An architecture to support, scale, and evolve the Future Internet is found in

DARCI. The modular approach to design opens up a vast opportunity to further

this architecture to build optimization components. Edge caching provides more

significant gain during flash-crowd. Further research is required in designing local

protocols so that Anchor directories are aware of caches at the edge with specific

contents. Further research in modeling the minimum number of directories needed

to balance with the NORI name cache provided by intermediate routers in the

network is required. DARCI platform can further study the impact of mobility on

performance, the feasibility of multiple namespaces separated code spaces to map

content names, securing contents and content names, effects of various caching

policies on performance, and policy-based routing of contents.

113

Bibliography

[1] Cisco. Cisco annual internet report (2018-2023) white paper. 2020.

[2] Cisco. Cisco global cloud index: Forecast and methodology. 2018.

[3] RFC. Domain Name System (DNS) IANA Considerations. 2011.

[4] National Research Council. Signposts in Cyberspace: The Domain Name
System and Internet Navigation. The National Academies Press, Washing-
ton, DC, 2005.

[5] Jaeyeon Jung et al. Dns performance and the effectiveness of caching.
IEEE/ACM Transactions on Networking, 10(5):589–603, 2002.

[6] V. Ramasubramanian et al. The design and implementation of a next gener-
ation name service for the internet. In Proceedings of the 2004 Conference on
Applications, Technologies, Architectures, and Protocols for Computer Com-
munications, SIGCOMM’04, pages 331–342, New York, NY, USA, 2004.
Association for Computing Machinery.

[7] K. Park et al. Codns: Improving dns performance and reliability via coop-
erative lookups. In Proceedings of the 6th Conference on Symposium on Op-
erating Systems Design & Implementation - Volume 6, OSDI 2004, page 14,
USA, 2004. USENIX Association.

[8] Y. Chen et al. Dns noise: Measuring the pervasiveness of disposable domains
in modern dns traffic. In Proceedings of the 2014 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN’14,
pages 598–609, USA, 2014. IEEE Computer Society.

[9] Paul Vixie. What dns is not. Queue, 7(10):10–15, November 2009.

[10] Steve Souders. Sharding dominant domains. 2009.

[11] J.S. Otto et al. Content delivery and the natural evolution of dns: Remote
dns trends, performance issues and alternative solutions. In Proceedings of
the 2012 Internet Measurement Conference, IMC’12, pages 523–536, New
York, NY, USA, 2012. Association for Computing Machinery.

114

[12] B. Krishnamurthy et al. On the use and performance of content distri-
bution networks. In Proceedings of the 1st ACM SIGCOMM Workshop on
Internet Measurement, IMW’01, pages 169–182, New York, NY, USA, 2001.
Association for Computing Machinery.

[13] Steve Souders. High performance web sites: 14 rules for faster loading pages.
2009.

[14] James Hamilton. The cost of latency. 2009.

[15] M. Handley. Why the internet only just works. BT Technology Journal,
24(3):119–129, July 2006.

[16] G. Xylomenos et al. A survey of information-centric networking research.
IEEE Communications Surveys Tutorials, 16(2):1024–1049, 2014.

[17] B. Ahlgren et al. A survey of information-centric networking. IEEE Com-
munications Magazine, 50(7):26–36, 2012.

[18] M. F. Bari et al. A survey of naming and routing in information-centric
networks. IEEE Communications Magazine, 50(12):44–53, 2012.

[19] L. Zhang et al. Named data networking. SIGCOMM Comput. Commun.
Rev., 44(3):66–73, July 2014.

[20] Named Data Networking. http://www.named-data.net/.

[21] Hans Sagan. Space Filling Curves. Springer-Verlag New York, 1994.

[22] Craig Wills and Hao Shang. The contribution of dns lookup costs to web
object retrieval. 09 2000.

[23] RFC 7871. Client Subnet in DNS Queries. 2016.

[24] Fangfei Chen, Ramesh K. Sitaraman, and Marcelo Torres. End-user map-
ping: Next generation request routing for content delivery. SIGCOMM
Comput. Commun. Rev., 45(4):167âĂŞ181, August 2015.

[25] Teemu Koponen, Mohit Chawla, Byung-Gon Chun, Andrey Ermolinskiy,
Kye Kim, Scott Shenker, and Ion Stoica. A data-oriented (and beyond)
network architecture. ACM SIGCOMM Computer Communication Review,
37:181–192, 10 2007.

[26] FP7 PURSUIT project. https://www.fp7-pursuit.eu/.

[27] FP7 PSIRP project. http://www.psirp.org/.

[28] FP7 SAIL project. https://sail-project.eu/.

115

[29] FP7 4WARD project. http://www.4ward-project.eu/.

[30] FP7 COMET project. http://www.comet-project.org/.

[31] FP7 CONVERGENCE project. http://www.ictconvergence.eu/.

[32] Content Centric Networking project. http://www.ccnx.org/.

[33] NSF Mobility First project. http://mobilityfirst.winlab.rutgers.edu/.

[34] ANR Connect project. http://anr-connect.org/.

[35] G. Garcia, A. Beben, F. J. Ramon, A. Maeso, I. Psaras, G. Pavlou, N. Wang,
J. Sliwinski, S. Spirou, S. Soursos, and E. Hadjioannou. Comet: Content
mediator architecture for content-aware networks. In 2011 Future Network
Mobile Summit, pages 1–8, 2011.

[36] W. K. Chai, N. Wang, I. Psaras, G. Pavlou, C. Wang, G. Garcia de Blas,
F. J. Ramon-Salguero, L. Liang, S. Spirou, A. Beben, and E. Hadjioannou.
Curling: Content-ubiquitous resolution and delivery infrastructure for next-
generation services. IEEE Communications Magazine, 49(3):112–120, 2011.

[37] COMET Project. (2011 December) COMET deliverable 3.2: Final specifi-
cation of mechanisms protocols and algorithms for the content mediation
system. http://www.COMET-project.org/deliverables.html.

[38] Andrea Detti, Nicola Melazzi, Stefano Salsano, and Matteo Pomposini.
Conet: A content centric inter-networking architecture. 08 2011.

[39] C. Yi et al. Adaptive forwarding in named data networking. SIGCOMM
Comput. Commun. Rev., 42(3):62–67, June 2012.

[40] C. Yi et al. A case for stateful forwarding plane. Comput. Commun.,
36(7):779–791, April 2013.

[41] J. J. Garcia-Luna-Aceves et al. A fault-tolerant forwarding strategy for
interest-based information centric networks. In 2015 IFIP Networking Con-
ference (IFIP Networking), pages 1–9, 2015.

[42] J. J. Garcia-Luna-Aceves et al. Enabling correct interest forwarding and re-
transmissions in a content centric network. In 2015 ACM/IEEE Symposium
on Architectures for Networking and Communications Systems (ANCS),
pages 135–146, 2015.

[43] J. J. Garcia-Luna-Aceves. Eliminating undetected interest looping in
content-centric networks. In 2015 6th International Conference on the Net-
work of the Future (NOF), pages 1–6, 2015.

116

[44] J. J. Garcia-Luna-Aceves et al. Cord: Content oriented routing with di-
rectories. In 2015 International Conference on Computing, Networking and
Communications (ICNC), pages 785–790, 2015.

[45] J. J. Garcia-Luna-Aceves and Ehsan Hemmati. ODVR: A unifying approach
to on-demand and proactive loop-free routing in ad-hoc networks. In 28th
International Conference on Computer Communication and Networks, IC-
CCN 2019, Valencia, Spain, July 29 - August 1, 2019, pages 1–11. IEEE,
2019.

[46] A. Dabirmoghaddam et al. Characterizing interest aggregation in content-
centric networks. In 2016 IFIP Networking Conference (IFIP Networking)
and Workshops, pages 449–457, 2016.

[47] H. Dai et al. On pending interest table in named data networking. In 2012
ACM/IEEE Symposium on Architectures for Networking and Communica-
tions Systems (ANCS), pages 211–222, 2012.

[48] Y. Wang et al. Scalable name lookup in ndn using effective name compo-
nent encoding. In 2012 IEEE 32nd International Conference on Distributed
Computing Systems, pages 688–697, 2012.

[49] M. Varvello et al. On the design and implementation of a wire-speed pending
interest table. In 2013 IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), pages 369–374, 2013.

[50] H. Yuan et al. Scalable pending interest table design: From principles
to practice. In IEEE INFOCOM 2014 - IEEE Conference on Computer
Communications, pages 2049–2057, 2014.

[51] M. Virgilio et al. Pit overload analysis in content centric networks. In
Proceedings of the 3rd ACM SIGCOMM Workshop on Information-Centric
Networking, ICN’13, pages 67–72, New York, NY, USA, 2013. Association
for Computing Machinery.

[52] J. J. Garcia-Luna-Aceves. A more scalable approach to content centric
networking. In 2015 24th International Conference on Computer Commu-
nication and Networks (ICCCN), pages 1–8, 2015.

[53] J. J. Garcia-Luna-Aceves et al. A light-weight forwarding plane for content-
centric networks. CoRR, abs/1603.06044, 2016.

[54] J. J. Garcia-Luna-Aceves et al. Content-centric networking using anonymous
datagrams. In 2016 IFIP Networking Conference (IFIP Networking) and
Workshops, pages 171–179, 2016.

117

[55] J. J. Garcia-Luna-Aceves et al. Content-centric networking at internet scale
through the integration of name resolution and routing. In Proceedings of
the 3rd ACM Conference on Information-Centric Networking, ACM-ICN’16,
pages 83–92, New York, NY, USA, 2016. Association for Computing Ma-
chinery.

[56] Alexander Afanasyev, Cheng Yi, Lan Wang, Beichuan Zhang, and Lixia
Zhang. Snamp: Secure namespace mapping to scale ndn forwarding. In In
Proc. of Global Internet Symposium, 2015.

[57] V. Leeuwen et al. Interval routing. Comput. J., 30(4):298–307, August 1987.

[58] Erwin M. Bakker, Jan [van Leeuwen], and Richard B. Tan. Prefix rout-
ing schemes in dynamic networks. Computer Networks and ISDN Systems,
26(4):403 – 421, 1993.

[59] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari
Balakrishnan. Chord: A scalable peer-to-peer lookup service for internet
applications. In Proceedings of the 2001 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communications, SIG-
COMM âĂŹ01, page 149âĂŞ160, New York, NY, USA, 2001. Association
for Computing Machinery.

[60] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Shenker. A scalable content-addressable network. In Proceedings of the 2001
Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications, SIGCOMM’01, pages 161–172, New York, NY,
USA, 2001. Association for Computing Machinery.

[61] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object
location and routing for large-scale peer-to-peer systems. volume 2218, pages
329–350, 01 2001.

[62] Ben Zhao, John Kubiatowicz, and Anthony Joseph. Tapestry: a fault-
tolerant wide-area application infrastructure. Computer Communication
Review, 32:81, 01 2002.

[63] Y. Tang, S. Zhou, and J. Xu. Light: A query-efficient yet low-maintenance
indexing scheme over dhts. IEEE Transactions on Knowledge and Data
Engineering, 22(1):59–75, 2010.

[64] Sriram Ramabhadran, Sylvia Ratnasamy, Joseph Hellerstein, and Scott
Shenker. Prefix hash tree: An indexing data structure over distributed
hash tables. 01 2004.

[65] ns 3. Discrete-event network simulator. v3.27.

118

[66] ndnSIM. Named Data Networking simulator. v2.7.

[67] R. Bowden et al. Cold: Pop-level network topology synthesis. In Proceed-
ings of the 10th ACM International on Conference on Emerging Networking
Experiments and Technologies, CoNEXT’14, pages 173–184, New York, NY,
USA, 2014. Association for Computing Machinery.

[68] M. Meiss et al. Modeling traffic on the web graph. volume 6516, pages
50–61, 12 2010.

[69] A. Ballardie. Rfc2201: Core based trees (cbt) multicast routing architecture,
1997.

[70] S. Deering, D. L. Estrin, D. Farinacci, V. Jacobson, Ching-Gung Liu,
and Liming Wei. The pim architecture for wide-area multicast routing.
IEEE/ACM Transactions on Networking, 4(2):153–162, 1996.

[71] Hitesh Ballani and Paul Francis. Towards a global ip anycast service. In
Proceedings of the 2005 Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communications, SIGCOMM’05, pages
301–312, New York, NY, USA, 2005. Association for Computing Machinery.

[72] Dina Katabi and John Wroclawski. A framework for scalable global ip-
anycast (gia). In Proceedings of the Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communication, SIG-
COMM âĂŹ00, page 3âĂŞ15, New York, NY, USA, 2000. Association for
Computing Machinery.

[73] B. N. Levine and J. J. Garcia-Luna-Aceves. Improving internet multicast
with routing labels. In Proceedings 1997 International Conference on Net-
work Protocols, pages 241–250, 1997.

[74] S. Weber and Liang Cheng. A survey of anycast in ipv6 networks. IEEE
Communications Magazine, 42(1):127–132, 2004.

[75] J. J. Garcia-Luna-Aceves. Routing to multi-instantiated destinations: Prin-
ciples and applications. In Proceedings of the 2014 IEEE 22nd Interna-
tional Conference on Network Protocols, ICNP’14, pages 155–166, USA,
2014. IEEE Computer Society.

[76] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva.
Directed diffusion for wireless sensor networking. IEEE/ACM Transactions
on Networking, 11(1):2–16, 2003.

[77] https://irtf.org/icnrg. Information-Centric Networking Research Group IC-
NRG. 2020.

119

[78] Ramón Cáceres, Fred Douglis, Anja Feldmann, Gideon Glass, and Michael
Rabinovich. Web proxy caching: The devil is in the details. SIGMETRICS
Perform. Eval. Rev., 26(3):11–15, December 1998.

[79] Bradley Duska, David Marwood, and Michael Feeley. The measured access
characteristics of world-wide-web client proxy caches. 08 2000.

[80] Thomas Kroeger, Darrell Long, and Jeffrey Mogul. Exploring the bounds
of web latency reduction from caching and prefetching. 12 1997.

[81] Jia Wang. A survey of web caching schemes for the internet. SIGCOMM
Comput. Commun. Rev., 29(5):36–46, October 1999.

[82] Liangzhong Yin and Guohong Cao. Supporting cooperative caching in ad
hoc networks. In IEEE INFOCOM 2004, volume 4, pages 2537–2547 vol.4,
2004.

[83] B. Panigrahi, S. Shailendra, H. K. Rath, and A. Simha. Universal caching
model and markov-based cache analysis for information centric networks. In
2014 IEEE International Conference on Advanced Networks and Telecom-
muncations Systems (ANTS), pages 1–6, 2014.

[84] Vasilis Sourlas, Paris Flegkas, and Leandros Tassiulas. A novel cache aware
routing scheme for information-centric networks. Computer Networks, 59:44
– 61, 2014.

[85] Dario Rossi. Caching performance of content centric networks under multi-
path routing (and more). 2011.

[86] Martin Arlitt and Tai Jin. Workload characterization of the 1998 world cup
web site. https://www.hpl.hp.com/techreports/1999/HPL-1999-35R1.html,
1999.

[87] N. Santoro et al. Labelling and implicit routing in networks. Comput. J.,
28:5–8, 1985.

[88] N. Santoro. Sense of direction, topological awareness and communication
complexity. SIGACT News, 16(2):50–56, July 1984.

[89] N. Santoro et al. Sense of direction: Definitions, properties, and classes.
Networks, 32(3):165–180, 1998.

[90] M. Tang et al. Compact routing on random power law graphs. In 2009
Eighth IEEE International Conference on Dependable, Autonomic and Se-
cure Computing, pages 575–578, 2009.

120

[91] A. Afanasyev et al. Interest flooding attack and countermeasures in named
data networking. In 2013 IFIP Networking Conference, pages 1–9, 2013.

[92] M. Wählisch et al. Lessons from the past: Why data-driven states harm fu-
ture information-centric networking. In 2013 IFIP Networking Conference,
pages 1–9, 2013.

[93] M. Wählisch et al. Backscatter from the data plane - threats to stability
and security in information-centric network infrastructure. Comput. Netw.,
57(16):3192–3206, November 2013.

[94] J. K. Lawder et al. Querying multi-dimensional data indexed using the
hilbert space-filling curve. SIGMOD Rec., 30(1):19–24, March 2001.

[95] Hilbert D. Uber die stetige Abbildung einer Linie auf ein Flachenstuck.
Springer, Berlin, Heidelberg, 1935.

[96] S. Shailendra, S. Sengottuvelan, H. K. Rath, B. Panigrahi, and A. Simha.
Performance evaluation of caching policies in ndn - an icn architecture. In
2016 IEEE Region 10 Conference (TENCON), pages 1117–1121, 2016.

[97] Ioannis Psaras, Richard G. Clegg, Raul Landa, Wei Koong Chai, and
George Pavlou. Modelling and evaluation of ccn-caching trees. In Jordi
Domingo-Pascual, Pietro Manzoni, Sergio Palazzo, Ana Pont, and Caterina
Scoglio, editors, NETWORKING 2011, pages 78–91, Berlin, Heidelberg,
2011. Springer Berlin Heidelberg.

[98] Somaya Arianfar, Pekka Nikander, and Jorg Ott. Packet-level caching for
information-centric networking. 01 2010.

[99] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari
Balakrishnan. Chord: A scalable peer-to-peer lookup service for internet
applications. SIGCOMM Comput. Commun. Rev., 31(4):149–160, August
2001.

[100] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew
Levine, and Daniel Lewin. Consistent hashing and random trees: Dis-
tributed caching protocols for relieving hot spots on the world wide web.
In Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory
of Computing, STOC âĂŹ97, pages 654–663, New York, NY, USA, 1997.
Association for Computing Machinery.

121

	List of Figures
	List of Algorithms
	Abstract
	Dedication
	Acknowledgments
	Introduction
	Related Work
	Name Resolution and DNS
	Content-Oriented Network
	Information-Centric Network (ICN)
	Loop-free Scalable Routing in ICN
	Compact & Prefix Routing
	Information Naming & Lookup
	Content Retrieval

	DARCI: Directory Assisted Routing of Content in ICN
	Basic Operation
	Name Resolution System
	Information Stored & Exchanged
	Directory Trie
	Trie Maintenance

	Publish and Subscribe
	Publish Operation
	Subscribe Operation
	Content Encoding

	Content Routing
	Simulation
	Performance Comparison
	Summary

	MIDAR: Multi-Instantiated contents with Directory Assisted Routing
	Basic Operation
	Multi-Instance Publish & Subscribe
	Information Stored & Exchanged
	MIDR Example

	Simulation
	Performance Comparison
	Summary

	ACED: Adaptive Cache Enabled Directory Assisted Routing
	Basic Operation
	ACED
	Information Stored & Exchanged
	ACED Example

	Simulation
	Performance Comparison
	Summary

	Conclusion
	Bibliography

