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Interference Exploitation Precoding for Multi-Level

Modulations: Closed-Form Solutions
Ang Li, Member, IEEE, Christos Masouros, Senior Member, IEEE, Yonghui Li, Senior Member, IEEE,

Branka Vucetic Fellow, IEEE, and A. Lee Swindlehurst, Fellow, IEEE

Abstract—In this paper, we study closed-form interference-
exploitation precoding for multi-level modulations in the down-
link of multi-user multiple-input single-output (MU-MISO) sys-
tems. We consider two distinct cases: first, for the case where the
number of served users is not larger than the number of transmit
antennas at the base station (BS), we mathematically derive
the optimal precoding structure based on the Karush-Kuhn-
Tucker (KKT) conditions. By formulating the dual problem, the
precoding problem for multi-level modulations is transformed
into a pre-scaling operation using quadratic programming (QP)
optimization. We further consider the case where the number
of served users is larger than the number of transmit antennas
at the BS. By employing the pseudo inverse, we show that the
optimal solution of the pre-scaling vector is equivalent to a
linear combination of the right singular vectors corresponding to
zero singular values, and derive the equivalent QP formulation.
We also present the condition under which multiplexing more
streams than the number of transmit antennas is achievable.
For both considered scenarios, we propose a modified iterative
algorithm to obtain the optimal precoding matrix, as well as a
sub-optimal closed-form precoder. Numerical results validate our
derivations on the optimal precoding structures for multi-level
modulations, and demonstrate the superiority of interference-
exploitation precoding for both scenarios.

Index Terms—MIMO, precoding, constructive interference,
Lagrangian, multi-level modulations, closed-form solutions.

I. INTRODUCTION

PRECODING has been widely studied in multi-antenna

wireless communication systems to simultaneously sup-

port data transmission to multiple users [1]. When the channel

state information (CSI) is known at the transmitter side, dirty

paper coding (DPC) that subtracts the interference prior to

transmission achieves the channel capacity [2]. Despite its

promising performance, DPC is generally difficult to imple-

ment in practical wireless systems, due to its impractical
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assumption of an infinite source alphabet and prohibitive

complexity. Therefore, sub-optimal approximations of DPC in

the form of Tomlinson-Harashima precoding (THP) and vector

perturbation (VP) precoding have been proposed in [3] and

[4], respectively. While offering near-optimal performance,

both THP and VP are still non-linear precoding methods and

include a sphere-search process, which makes their complexity

still unfavorable, especially when the number of data streams

is large. Accordingly, low-complexity linear precoding meth-

ods such as zero-forcing (ZF) [5] and regularized ZF (RZF) [6]

have become popular. On the other hand, downlink precoding

based on optimization has also received increasing research

attention [7]-[13]. Among optimization-based precoding meth-

ods, the two most well-known designs are referred to as signal-

to-noise-plus-interference ratio (SINR) balancing [7]-[9] and

power minimization [10]-[12], where SINR balancing aims

to maximize the minimum received SINR subject to a total

transmit power constraint [7], [8] or a per-antenna power

constraint [9], and power minimization targets minimizing the

power consumption at the transmitter side while guaranteeing

a minimum SINR at each receiver [11].

For both the closed-form precoding schemes and the

optimization-based precoding approaches described above, the

CSI at the base station (BS) is exploited to design the pre-

coding strategy that eliminates, avoids or limits interference.

The above approaches ignore the fact that the information in

the transmitted data symbols themselves can also be exploited

in the downlink precoding design on a symbol-by-symbol

basis for further performance improvements. With information

about the data symbols and their corresponding constellations,

the instantaneous interference can be divided into construc-

tive interference (CI) and destructive interference [14]. More

specifically, CI is defined as interference that pushes the

received signals away from the detection thresholds [15],

[16], which provides further benefits for signal detection. A

modified ZF precoding method was proposed in [17] to exploit

the constructive part of the interference while eliminating

the destructive part. A more advanced two-stage interference

exploitation precoding was proposed in [18], where the phase

of the destructive interference was controlled and further ro-

tated such that the destructive interference becomes construc-

tive. Optimization-based interference-exploitation precoding

for PSK modulations has also been proposed in [19] in the

context of vector perturbation precoding, where CI in the form

of symbol scaling is proposed. In [20]-[22], CI precoding

based on the phase-rotation metric is studied, where it is

shown that a relaxed non-strict phase rotation metric is more

http://arxiv.org/abs/1811.03289v1
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advantageous compared to the strict phase rotation in [17],

[18]. For multi-level modulations such as QAM, CI can be

exploited for the outer constellation points, although all the

interference for the inner constellation points is considered

to be destructive, as discussed in [23]-[25] where a symbol-

scaling metric is introduced. Due to the above benefits, CI has

been extended to the area of low-resolution digital-to-analog

converters (DACs) with PSK signaling in [26], as well as

quantized constant envelope precoding with PSK and QAM

signaling in [27]. More recently, it has been revealed in [28]

that there exists an optimal structure for the CI precoding for

PSK modulations. Nevertheless, it is still unclear whether a

similar result exists for multi-level modulations such as QAM,

since CI precoding for PSK modulations is based on the phase-

rotation metric, while the symbol-scaling metric has to be

employed for QAM constellations.

In this paper, we study closed-form interference exploitation

precoding for multi-level modulations, where QAM mod-

ulation is considered as a representative example. Due to

the fact that the conventional phase-rotation CI formulation

is not applicable to QAM constellations, the more general

symbol-scaling metric is employed. We reveal the geometric

connection between the phase-rotation and symbol-scaling

metrics in the CI formulation, based on which we propose

the optimization problem that maximizes the CI effect for the

outer constellation symbols while constraining the inner con-

stellation symbols for multi-level modulations. We first study

the case where the number of users simultaneously served by

the BS is not larger than the number of BS transmit antennas.

Using the Lagrangian and KKT conditions, we analyze the

formulated problem and mathematically derive the structure

of the optimal precoding matrix, which leads to an equiva-

lent simplified optimization problem. By further formulating

the dual problem of this equivalent optimization, we show

that, similar to the case of PSK modulations, interference-

exploitation precoding for multi-level modulations is equiva-

lent to a quadratic programming (QP) optimization, and the

optimal precoding matrix can be expressed as a function of

the dual variables in closed form.

We further extend our analysis to the case where the number

of users simultaneously served by the BS is larger than the

number of BS transmit antennas, in which case conventional

precoding becomes infeasible and the exact inverse included

in the above analysis becomes inapplicable. In this scenario,

we show that interference-exploitation precoding may still be

feasible. To this end, the more generic pseudo inverse of the

channel matrix is employed instead, and we derive the optimal

structure of the precoding matrix. Due to the inclusion of the

pseudo inverse, an additional constraint is further introduced

in the equivalent optimization. Built upon this, the scaling

vector for the constellation symbols is shown to be the non-

zero solution of a linear equation set, which is equivalent to

a linear combination of the singular vectors corresponding to

the zero singular values of the coefficient matrix. Accordingly,

the optimization can be transformed into an optimization on

the weights for each singular vector, which is further shown

to be equivalent to a QP optimization as well. Based on the

equivalent QP formulation, we discuss the condition under

which multiplexing more streams than the number of transmit

antennas is possible with interference exploitation precoding.

For both of the scenarios considered above, we also present

a generic iterative algorithm to efficiently obtain the optimal

precoding matrix for multi-level modulations, where a closed-

form update is included in each iteration. Based on the

above transformation and algorithm, we further develop a sub-

optimal closed-form non-iterative CI precoder. Our analysis

for multi-level modulations in this paper complements the

study on closed-form symbol-level interference-exploitation

precoding in [28], which is not applicable to multi-level

modulations. Simulation results validate our mathematical

derivations and the optimality of the proposed algorithm.

Moreover, the superiority of interference-exploitation pre-

coding over conventional precoding methods for multi-level

modulations is also revealed, especially for the case where

the BS simultaneously serves a larger number of users than it

has the number of transmit antennas.

We summarize the contributions of this paper below:

1) We present a geometric connection between symbol-

scaling and phase-rotation metrics for interference-

exploitation precoding, based on which we construct the

optimization that maximizes the CI effect of the outer

constellation symbols while maintaining the performance

of the inner constellation symbols for multi-level modu-

lations.

2) We perform mathematical analysis on interference-

exploitation precoding for multi-level modulations. We

show that CI precoding for multi-level modulations can

ultimately be simplified into a QP optimization as well.

Compared to CI precoding for PSK modulations where

the optimization is over a simplex, it is shown that

only part of the dual variables need to be constrained

as non-negative in the QP formulation for multi-level

modulations.

3) We further extend our analysis on CI to the case where

the number of served users is larger than the number of

transmit antennas at the BS. Our transformations show

that the optimization for CI precoding in such scenarios

is similar to the conventional case where the number of

users is smaller than or equal to the number of antennas

at the BS, also resulting in a QP optimization. We also

present the condition under which multiplexing more

streams than the number of transmit antennas based on

CI is achievable.

4) We propose an iterative algorithm that is able to obtain the

optimal solution of a generic QP optimization problem

subject to specific constraints within only a few iterations.

Based on this algorithm, the optimal precoding matrix

can be efficiently obtained, for both scenarios considered

in this paper. A sub-optimal closed-form non-iterative

precoder is also presented.

The remainder of this paper is organized as follows: Section

II introduces the system model and illustrates the connection

between the two CI metrics. Section III includes the CI-based

optimization problems for multi-level modulations when the

number of users is smaller than or equal to the number of BS
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transmit antennas, and the extension to the scenario when the

number of users is larger than the number of BS transmit

antennas is studied in Section IV. The modified iterative

algorithm and sub-optimal closed-form precoder are presented

in Section V. Numerical results are provided in Section VI, and

Section VII concludes the paper.

Notation: a, a, and A denote scalar, column vector and

matrix, respectively. (·)∗, (·)T , (·)H , (·)−1, (·)+ and rank {·}
denote conjugate, transposition, conjugate transposition, in-

verse, pseudo inverse, and rank of a matrix, respectively.

diag (·) is the transformation of a column vector into a di-

agonal matrix, and vec (·) denotes the vectorization operation.

A(k, i) denotes the entry in the k-row and i-th column of A.

|·| denotes the absolute value of a real number or the modulus

of a complex number, and ‖·‖2 denotes the ℓ2-norm. Cn×n and

Rn×n represent the sets of n × n complex- and real-valued

matrices, respectively. ℜ{·} and ℑ{·} respectively denote the

real and imaginary part of a complex scalar, vector or matrix.

card {·} denotes the cardinality of a set, and ⊗ represents the

Kronecker product. j denotes the imaginary unit, IK denotes

the K ×K identity matrix, and ei represents the i-th column

of the identity matrix.

II. SYSTEM MODEL AND CONSTRUCTIVE INTERFERENCE

A. System Model

We study a downlink MU-MISO system, where the BS with

Nt transmit antennas is simultaneously communicating with K

single-antenna users in the same time-frequency resource. We

separately consider the scenarios of both K ≤ Nt and K >

Nt. We focus on the downlink precoding designs, and perfect

CSI is assumed throughout the paper. The data symbol vector

is assumed to be from a normalized multi-level modulation

constellation [20], denoted as s ∈ CK×1, and the received

signal at the k-th user can then be expressed as

rk = hT
kWs+ nk, (1)

where hk ∈ CNt×1 denotes the flat-fading Rayleigh channel

vector from user k to the BS with each entry following a

standard complex Gaussian distribution, W ∈ CNt×K is the

precoding matrix, and nk is the additive Gaussian noise at the

receiver with zero mean and variance σ2.

B. Connection between Two CI Metrics for PSK Modulation

In this section, we illustrate the connection between symbol-

scaling and phase-rotation metrics for CI precoding based on

Fig. 1, where we employ QPSK (4QAM) as an example.

Phase Rotation Metric: As discussed in [28], we denote
~OS = sk and ~OA = t · sk, where t = | ~OA|

| ~OS|
is the objective

to be optimized. We further denote ~OB as the received signal

for user k excluding noise, which leads to

~OB = hT
kWs = λksk, (2)

where λk is a complex scalar that represents the effect of

interference on the data symbol for user k. For M-PSK

constellations, the CI constraint is then constructed as [28]
(
λℜ
k − t

)
tan θt ≥

∣
∣λℑ

k

∣
∣ , (3)

where λℜ
k = ℜ (λk), λℑ

k = ℑ (λk), and θt = π
M for M-

PSK constellations. Accordingly, the optimization problem

that maxmizes the distance of the constructive region to the

detection thresholds subject to the total available transmit

power p0 based on the phase-rotation CI metric can be

formulated as [28]

P1 : max
W, t

t

s.t. hT
k Ws = λksk, ∀k ∈ K
(
λℜ
k − t

)
tan θt ≥

∣
∣λℑ

k

∣
∣ , ∀k ∈ K

‖Ws‖22 ≤ p0

(4)

where K = {1, 2, · · · ,K}. We have enforced a symbol-level

power constraint on the precoder, since the exploitation of CI

is dependent on the data symbol s, which will also be shown

mathematically in the following.

Symbol Scaling Metric: Following the coordinate transfor-

mation approach in [26], we first decompose the data symbol

along the detection thresholds for each user k, expressed as

~OS = ~OF + ~OG⇒ sk = sAk + sBk , (5)

where sAk and sBk are the bases that are parallel to the detection

thresholds for each specific constellation symbol, as shown in

Fig. 1. We refer the interested readers to [26] for a detailed

derivation of the expressions for sAk and sBk for generic PSK

constellations. Specifically for QPSK modulation considered

in Fig. 1 as well as QAM modulations in the following part

of the paper, we can obtain

sAk = ℜ{sk} = sℜk , s
B
k = j · ℑ {sk} = j · sℑk . (6)

Following a similar approach to (5), we also decompose the

noiseless received signal for each user k along the same

detection thresholds, and further introduce two real scalars αA
k

and αB
k for sAk and sBk , respectively, which leads to

~OB = ~OD + ~OE ⇒ hT
k Ws = αA

k s
A
k + αB

k s
B
k . (7)

Fig. 1: Symbol-scaling and phase-rotation metric for QPSK

constellation
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It is then observed that the values of these two scalars directly

indicate the effect of the CI. Subsequently, the correspond-

ing optimization based on the symbol-scaling metric can be

constructed as

P2 : max
W

min
k,U

αU
k

s.t. hT
kWs = αA

k s
A
k + αB

k s
B
k , ∀k ∈ K

‖Ws‖22 ≤ p0

U ∈ {A,B}

(8)

Both of the above optimization problems are convex and

can be directly solved with convex optimization tools. Subse-

quently, based on Fig. 1 and the formulation of the above two

optimizations, an important geometrical observation is given,

which demonstrates the connection between the symbol-

scaling and phase-rotation metric.

Observation 1: Since the noiseless received signal is lo-

cated on the boundary of its constructive region, the relation-

ship between the minimum value of
(
αU
k

)∗
in P2 and the

optimal value of t∗ in P1 is expressed as

t∗ = 2
(
αU
k

)∗
∣
∣
∣

(
sUk
)∗
∣
∣
∣ cos

π

M , (9)

where without loss of generality we have assumed user k has

the minimum value of α. Eq. (9) is derived by considering the

isosceles triangle ‘DOA’, where we can obtain

| ~OA| = 2| ~DO| cos∠DOA. (10)

Based on the fact that | ~OA| = t∗, | ~DO| = | ~DA| =
(
αU
k

)∗
∣
∣
∣

(
sUk
)∗
∣
∣
∣, and ∠DOA = π

M , (10) leads to the expression

for t∗ in (9). �

It’s worth noting that while the above discussion only

focuses on QPSK constellations, (9) is in fact generic to any

M-PSK modulation for the connection between the two CI

metrics, and the only difference lies in the expression for

sUk . In the following section, the symbol-scaling CI metric

is employed in the derivation of the optimal precoding matrix

for multi-level modulations.

III. CI PRECODING FOR THE CASE OF K ≤ Nt

In this section, we focus on the common case where K ≤
Nt, and we consider 16QAM modulation as an example of

multi-level modulations. For other multi-level constellations,

the problem formulation and the corresponding analysis for

the symbol-scaling metric readily follows our derivations in

this section in a similar way.

For a generic QAM constellation, we employ the symbol-

scaling metric for CI precoding since there does not exist a

generic expression for the phase-rotation CI metric for QAM

modulations, as shown in Fig. 2 where a 16QAM constellation

is depicted as the example. The symbol-scaling metric in (7)

can be further expressed in vector form as

hT
k Ws = ΩT

k sk, (11)

where we have introduced two column vectors

Ωk =
[
αA
k , α

B
k

]T
, sk =

[
sAk , s

B
k

]T
. (12)

Fig. 2: Constellation point categorization for 16QAM

For QAM constellations, sAk and sBk are also given by (6).

In this work, we consider the interference on the inner

constellation points as only destructive, since the interference

is less likely to be beneficial for these points. To be more

specific, in Fig.2 CI exists for the real part of the constellation

point type ‘B’ and imaginary part of type ‘C’, while both

the real and imaginary part of the constellation point type

‘D’ can be exploited. Accordingly, we propose to construct

the optimization problem that maximizes the CI effect for the

outer constellation points while maintaining the performance

for the inner constellation points, given by

P3 : max
W, t

t

s.t. hT
kWs = ΩT

k sk, ∀k ∈ K
t ≤ αO

m, ∀αO
m ∈ O

t = αI
n, ∀αI

n ∈ I
‖Ws‖22 ≤ p0

(13)

where the set O consists of the real scalars corresponding to

the real or imaginary part of the outer constellation points that

can be scaled, and I consists of the real scalars corresponding

to the real or imaginary part of the constellation points that

cannot exploit CI. Accordingly, we obtain

O ∪ I =
{
αA
1 , α

B
1 , α

A
2 , α

B
2 , · · · , αA

K , αB
K

}
, (14)

and

card {O} + card {I} = 2K. (15)

P3 is a second-order-cone programming (SOCP) problem,

which can be solved via convex optimization tools such as

CVX. Specifically, the optimization objective t is equal to the

value of αI
k in the above optimization, which can also be

viewed as a scaling factor for the constellation. Moreover, if

we further constrain t = αO
m instead of t ≤ αO

m in the above

optimization, the solution of the above optimization problem

will become a ZF precoder.

Before we present the subsequent analysis, we first trans-

form the power constraint included in the above optimization

problem, which greatly simplifies the subsequent derivations.

To be specific, we decompose the precoded signals Ws into

Ws =

K∑

i=1

wisi, (16)
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and similar to the case of PSK [28], we observe that the

distribution of the power among each wisi does not affect

the solution of the above optimization problem, as Ws can

be viewed as a single vector for both constraints that include

W in P3. Therefore, without loss of generality and to be

consistent with our problem formulation for PSK modulation

in [28], we assume that the norm of each term wisi is

identical, and we obtain

‖Ws‖22 = K2 ‖wisi‖22 = K2s∗iw
H
i wisi,

K∑

i=1

s∗iw
H
i wisi = Ks∗iw

H
i wisi,

(17)

which further leads to the equivalent power constraint as

K∑

i=1

s∗iw
H
i wisi ≤

p0

K
. (18)

We then rewrite the above optimization problem P3 in standard

minimization form as

P4 : min
W, t

− t

s.t. hT
k

K∑

i=1

wisi −ΩT
k sk = 0, ∀k ∈ K

t− αO
m ≤ 0, ∀αO

m ∈ O
t− αI

n = 0, ∀αI
n ∈ I

K∑

i=1

s∗iw
H
i wisi ≤

p0

K

(19)

and we express the Lagrangian of P4 as [29]

L (wi, t, δk, µm, νn, δ0) = −t

+

K∑

k=1

δk

(

hT
k

K∑

i=1

wisi −ΩT
k sk

)

+

card{O}
∑

m=1

µm

(
t− αO

m

)

+

card{I}
∑

n=1

νn
(
t− αI

n

)
+ δ0

(
K∑

i=1

s∗iw
H
i wisi −

p0

K

)

,

(20)

where δk, µm, νn, and δ0 are the introduced dual variables,

δ0 ≥ 0 and µm ≥ 0, ∀m ∈ {1, 2, · · · , card {O}}. Each δk
and νn can be complex since they correspond to the equality

constraints.

Based on the Lagrangian in (20), the KKT conditions for

optimality can be expressed as

∂L
∂t

= −1 +
card{O}
∑

m=1

µm +

card{I}
∑

n=1

νn = 0 (21a)

∂L
∂wi

=

(
K∑

k=1

δk · hT
k

)

si + δ0sis
∗
i ·wH

i = 0, ∀i ∈ K (21b)

hT
k

K∑

i=1

wisi −ΩT
k sk = 0, ∀k ∈ K (21c)

µm

(
t− αO

m

)
= 0, ∀αO

m ∈ O (21d)

t− αI
n = 0, ∀αI

n ∈ I (21e)

δ0

(
K∑

i=1

s∗iw
H
i wisi −

p0

K

)

= 0 (21f)

Based on (21b), it is first observed that δ0 6= 0, and with the

premise that δ0 ≥ 0 we obtain δ0 > 0, which further means

that the power constraint is met with equality when optimality

is achieved. Then, we can express wH
i in (21b) as

wH
i = − si

δ0sis
∗
i

(
K∑

k=1

δk · hT
k

)

= − 1

s∗i

(
K∑

k=1

δk

δ0
· hT

k

)

.

(22)

By introducing an auxiliary variable

ϑk = −δHk
δ0

, ∀k ∈ K, (23)

we can express wi as

wi =

(
K∑

k=1

ϑk · h∗
k

)

1

si
, ∀i ∈ K. (24)

The above expression further leads to

wisi =

(
K∑

k=1

ϑk · h∗
k

)

, ∀i ∈ K, (25)

which is constant for any i and consistent with our assumption

in (17).

With the obtained expression for each wi, we further

express the precoding matrix W as

W = [w1,w2, · · · ,wK ]

=

(
K∑

k=1

ϑk · h∗
k

)[
1

s1
,
1

s2
, · · · , 1

sK

]

= [h∗
1,h

∗
2, · · · ,h∗

K ] [ϑ1, ϑ2, · · · , ϑK ]
T

[
1

s1
,
1

s2
, · · · , 1

sK

]

= HHΥŝT ,
(26)

where we have introduced two column vectors

Υ = [ϑ1, ϑ2, · · · , ϑK ]
T
, ŝ =

[
1

s1
,
1

s2
, · · · , 1

sK

]T

. (27)

We express (11) in matrix form as

HWs =
[
ΩT

1 s1,Ω
T
2 s2, · · · ,ΩT

KsK
]T

= Udiag (Ω) sE,
(28)

where Ω ∈ R2K×1 and sE ∈ R2K×1 are expressed as

Ω =
[
ΩT

1 ,Ω
T
2 , · · · ,ΩT

K

]T

=
[
αA
1 , α

B
1 , α

A
2 , α

B
2 , · · · , αA

K , αB
K

]T

=
[
αE
1 , α

E
2 , · · · , αE

2K−1, α
E
2K

]T
,

sE =
[
sT1 , s

T
2 , · · · , sTK

]T

=
[
sA1 , s

B
1 , s

A
2 , s

B
2 , · · · , sAK , sBK

]T

=
[
sE1 , s

E
2 , · · · , sE2K−1, s

E
2K

]T
,

(29)

and the matrix U ∈ CK×2K is constructed as

U =












1 1 0 0 · · · 0 0

0 0 1 1
. . .

...
...

...
...

. . .
. . .

. . .
...

...
...

...
. . .

. . .
. . . 0 0

0 0 · · · 0 0 1 1












= I⊗ [1, 1] . (30)
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By substituting the expression for W in (26) into (28), we

obtain

HHHΥŝT s = Udiag (Ω) sE. (31)

With the premise that K ≤ Nt in this section, HHH is

invertible, and accordingly we obtain Υ as

Υ =
1

K
·
(
HHH

)−1
Udiag (Ω) sE, (32)

which further leads to the expression for the precoding matrix

W as

W =
1

K
·HH

(
HHH

)−1
Udiag (Ω) sEŝ

T . (33)

We then substitute W in (33) into the power constraint, and

we obtain

‖Ws‖22 = p0

⇒ sHWHWs = p0

⇒ sHE diag (Ω)UH
(
HHH

)−1
Udiag (Ω) sE = p0

⇒ ΩT diag
(
sHE
)
UH

(
HHH

)−1
Udiag (sE)

︸ ︷︷ ︸

T

Ω = p0

⇒ ΩTTΩ = p0.

(34)

Since T is Hermitian and positive semi-definite, and since

each entry in Ω is real, (34) can be further transformed into

ΩTTΩ = ΩTℜ{T}Ω = ΩTVΩ = p0, (35)

where V = ℜ{T} is symmetric. With the expression for W in

(33) and the updated power constraint, we are able to construct

an equivalent optimization on Ω, given by

P5 : min
Ω, t

− t

s.t. ΩTVΩ− p0 = 0

t− αO
m ≤ 0, ∀αO

m ∈ O
t− αI

n = 0, ∀αI
n ∈ I

(36)

The optimal precoding matrix for the original optimization P3

is then obtained by substituting the solution of P5 into (33).

In the following, we analyze P5 and derive the closed-form

optimal precoding matrix as a function of the dual variables

of P5.

The Lagrangian of P5 is formulated as

L (Ω, t, δ0, µm, νn) = −t+ δ0
(
ΩTVΩ− p0

)

+

card{O}
∑

m=1

µm

(
t− αO

m

)
+

card{I}
∑

n=1

νn
(
t− αI

n

)
,

(37)

where µm ≥ 0, ∀m ∈ {1, 2, · · · , card {O}}. To simplify

the subsequent KKT conditions, we propose to reorder the

columns and rows of the matrices and vectors included in

the Lagrangian expression in (37). Specifically, we reorder the

expanded symbol vector sE into

sE ⇒ s̃E =
[
s̃TO, s̃

T
I

]T
, (38)

where s̃O ∈ Rcard{O}×1 and s̃I ∈ Rcard{I}×1 are given by

s̃O =
[
s̃1, s̃2, · · · , s̃card{O}

]T
,

s̃I =
[
s̃card{O}+1, s̃card{O}+2, · · · , s̃2K

]T
,

(39)

such that the entries in s̃O correspond to the real or imaginary

part of the outer constellation points that can exploit CI, and

the entries in s̃I correspond to the real and imaginary part

of the inner constellation points that cannot be scaled. The

corresponding scaling vector Ω is accordingly transformed

into

Ω⇒ Ω̃ =
[

Ω̃T
O, Ω̃

T
I

]T

, (40)

where Ω̃O ∈ Rcard{O}×1 and Ω̃I ∈ Rcard{I}×1 are given by

Ω̃O =
[
α̃1, α̃2, · · · , α̃card{O}

]T
,

Ω̃I =
[
α̃card{O}+1, α̃card{O}+2, · · · , α̃2K

]T
.

(41)

We further introduce a ‘Locater’ function that returns the

index of s̃m in the original expanded symbol vector sE, given

by

L (s̃m) = k, if s̃m = sEk . (42)

We can then express s̃E and Ω̃ as

s̃E = FsE, Ω̃ = FΩ, (43)

where the transformation matrix F ∈ R2K×2K that transforms

the original Ω and sE into their reordered forms is given by

F =
[
eL(s̃1), eL(s̃2), · · · , eL(s̃2K)

]T
, (44)

and we note that F is invertible. Similarly, the corresponding

reordered matrix V can be obtained as

Ṽ = FVFT , (45)

where the multiplication of F at the left side and FT at

the right side correspond to the row and column reordering,

respectively. Using the above expressions for s̃, Ω̃ and Ṽ, the

Lagrangian of P5 in (37) can be further transformed into a

simple form, given by

L
(

Ω̃, t, δ0,u1

)

=
(
1Tu1 − 1

)
t+δ0 ·Ω̃T ṼΩ̃−uT

1 Ω̃−δ0p0,

(46)

where 1 = [1, 1, · · · , 1]T ∈ R2K×1, and u1 ∈ R2K×1 is the

dual vector corresponding to the reordered Ω̃, given by

u1 =
[
µ1, µ2, · · · , µcard{O}, ν1, ν2, · · · , νcard{I}

]T
. (47)

Subsequently, the KKT conditions for P5 can be formulated

as

∂L
∂t

= 1Tu1 − 1 = 0 (48a)

∂L
∂Ω̃

= δ0 · 2ṼΩ̃− u1 = 0 (48b)

Ω̃T ṼΩ̃− p0 = 0 (48c)

µm (t− α̃m) = 0, ∀m ∈ {1, 2, · · · , card {O}} (48d)

t− α̃n = 0, ∀n ∈ {card {I} + 1, · · · , 2K} (48e)

Based on (48b), we obtain an expression for Ω̃ as a function

of u1, given by

Ω̃ =
1

2δ0
· Ṽ−1u1, (49)
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where we note that Ṽ is symmetric and invertible. By substi-

tuting the expression for Ω̃ in (49) into the power constraint,

we further obtain δ0 as

(
1

2δ0
· Ṽ−1u1

)T

Ṽ

(
1

2δ0
· Ṽ−1u1

)

= p0

⇒ 1

4δ20
· uT

1 Ṽ
−1ṼṼ−1u1 = p0

⇒ δ0 =

√

uT
1 Ṽ

−1u1

4p0
.

(50)

For the convex optimization P5, it is easy to verify that

Slater’s condition is met [29], which means that the dual gap

is zero. Accordingly, P5 can also be optimally solved via its

dual problem, given by

P6 : D = max
u1,δ0

min
Ω̃,t

L
(

u1, δ0, Ω̃, t
)

. (51)

For the above dual problem, the inner minimization is achieved

by (48a) and (49), and we can further simplify the dual

problem into

D = max
u1,δ0

δ0 · Ω̃T ṼΩ̃+ uT
1 Ω̃− δ0p0

= max
u1,δ0

δ0

4δ20
· uT

1 Ṽ
−1u1 −

1

2δ0
uT
1 Ṽ

−1u1 − δ0p0

= max
u1

− uT
1 Ṽ

−1u1

4

√
uT

1
Ṽ−1u1

4p0

−

√

uT
1 Ṽ

−1u1

4p0
· p0

= max
u1

−
√

p0 · uT
1 Ṽ

−1u1

(52)

Based on the fact that y =
√
x is a monotonic function, the

above dual problem is equivalent to the following minimiza-

tion problem:

P7 : min
u1

uT
1 Ṽ

−1u1

s.t. 1Tu1 − 1 = 0

µm ≥ 0, ∀m ∈ {1, 2, · · · , card {O}}
(53)

which is a QP optimization and can be more efficiently solved

than the SOCP formulation. Moreover, based on the expression

for Ω̃ in (49) and δ0 in (50), we finally obtain the optimal

closed-form precoding matrix W as a function of the dual

vector u1 in the case of K ≤ Nt as

W =

1

K
HH

(
HHH

)−1
Udiag

(
√

p0

uT
1 Ṽ

−1u1

F−1Ṽ−1u1

)

sEŝ
T ,

(54)

where F−1 is to order the obtained Ω̃ into the original Ω,

with F given in (44).

Compared to the final QP formulation for PSK modulation

in [28] that is optimized over a simplex, a key difference for

the case of QAM constellations is that the variable vector

is no longer on a simplex, and only the dual variables that

correspond to the real and imaginary part of the constellation

points that can exploit CI are constrained to be non-negative,

as observed in P7. We note that both QP formulations for PSK

and QAM modulations can be solved by convex optimization

tools. However, for the reasons given above, the more efficient

simplex method that is generally used for solving QP problems

over a simplex and the proposed iterative algorithm in [28] are

not directly applicable to such multi-level modulations.

IV. CI PRECODING FOR THE CASE OF K > Nt

In this section, we further extend our study to the case

where the BS simultaneously serves a number of users larger

than the number of the transmit antennas at the BS, i.e.,

K > Nt. Specifically, our derivations in this section and the

corresponding numerical results show that, by exploiting the

information of the channel as well as the data symbols and by

judiciously constructing the precoding matrix, CI precoding is

able to spatially multiplex more data streams than the number

of transmit antennas. Similar to the case of K ≤ Nt, the

subsequent analysis is generic and can be further extended to

other multi-level constellations.

When K > Nt, the direct inverse included in (32) becomes

infeasible, as the product HHH is rank-deficient. In this case,

the more general pseudo inverse instead of the direct matrix

inverse is employed [30]. Based on (31), we can now express

Υ in the case of K > Nt as

Υ =
1

K
·
(
HHH

)+
Udiag (Ω) sE, (55)

and the obtained precoding matrix W as

W =
1

K
·HH

(
HHH

)+
Udiag (Ω) sEŝ

T . (56)

By substituting the expression for the obtained precoding

matrix W into the power constraint, we can similarly obtain

ΩT diag
(
sHE
)
UH

(
HHH

)+
Udiag (sE)Ω = p0. (57)

Then, one can easily follow a similar approach to that in

Section III to obtain a QP optimization and the corresponding

solution. However, we note that the solution obtained by

following the above procedure is not a valid one for the

original problem, since the inclusion of the pseudo inverse

does not guarantee the equality of the original constraint. To

be more specific, if we consider K ≤ Nt and substitute the

obtained precoding matrix in (33) into (28), we obtain

HWs = Udiag (Ω) sE

⇒H

[
1

K
HH

(
HHH

)−1
Udiag (Ω) sEŝ

T

]

s = Udiag (Ω) sE

⇒Udiag (Ω) sE = Udiag (Ω) sE,
(58)

which is always true. This means that the symbol-scaling

constraint in (28) is already implicitly included in the power

constraint in (34) for the case of K ≤ Nt. However, in the case

of K > Nt where the pseudo inverse is employed, the above

equality may not hold and simply following the approach for

K ≤ Nt will lead to an erroneous solution. Therefore, the
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following additional constraint is further required in the case

of K > Nt to obtain a valid and correct solution:

H

[
1

K
HH

(
HHH

)+
Udiag (Ω) sEŝ

T

]

s = Udiag (Ω) sE

⇒ HHH
(
HHH

)+
Udiag (Ω) sE = Udiag (Ω) sE

⇒
[

HHH
(
HHH

)+ − IK

]

Udiag (Ω) sE = 0

⇒
[

HHH
(
HHH

)+ − IK

]

Udiag (sE)
︸ ︷︷ ︸

P

Ω = 0,

(59)

where the matrix P satifies the following property.

Observation 2: The rank of the coefficient matrix P is

(K −Nt) with probability 1.

Proof: We first consider the matrix A = HHH
(
HHH

)+
,

and we note that rank {A} = Nt with probability 1. Accord-

ingly, we can express the eigenvalue decomposition of A as

A = QΛAQH , (60)

where Q is a unitary matrix. Based on the construction of the

pseudo-inverse [30], ΛA is given by

ΛA = diag
{

[1, · · · , 1, 0, · · · , 0]T
}

, (61)

with all the Nt non-zero eigenvalues equal to 1. By further

expressing the identity matrix IK as

IK = QIKQH , (62)

we define

B = HHH
(
HHH

)+ − IK

= A− IK

= Q (ΛA − IK)QH

= QΛBQ
H ,

(63)

where the last step represents the eigenvalue decomposition

of B. Since ΛB contains (K −Nt) non-zero entries on the

diagonal, we obtain that rank{B} = K −Nt. Subsequently,

based on the observation that both U and diag (sE) are full-

rank, we therefore have

rank {P} = rank {B} = K −Nt (64)

with probability 1, and the proof is complete. �

Based on (59), while it is obvious that Ω = 0 can be the

solution of the above equation set, this is not a valid solution to

the original CI problem. Therefore, this additional constraint

is equivalent to having non-zero solutions Ω for the linear

equation PΩ = 0. Noting that P is complex while Ω is

constrained to be real, we expand P ∈ CK×2K into its real

equivalent PE ∈ R2K×2K , given by

PE =

[
ℜ (P)
ℑ (P)

]

, (65)

and based on Observation 2 we obtain that rank {PE} =
2 (K −Nt) with probability 1. We further express the singular

value decomposition (SVD) of PE as

PE = SΣD̂H , (66)

where D̂ =
[

d̂1, d̂2, · · · , d̂2K

]

is the matrix that consists of

the right singular vectors. Thus, the non-zero solution Ω is

in the null space of PE, and can be expressed as a linear

combination of the right singular vectors that correspond to

zero singular values:

Ω =

2K−rank{PE}
∑

n=1

βn · d̂rank{PE}+n

=

2Nt∑

n=1

βn · d̂2(K−Nt)+n

= Dβ,

(67)

where each βn is real and represents the weight for the

corresponding singular vector, β = [β1, β2, · · · , β2Nt
]
T

, and

D ∈ R2K×2Nt consists of the right singular vectors of PE

that correspond to the zero singular values, given by

D =
[

d̂2(K−Nt)+1, d̂2(K−Nt)+2, · · · , d̂2K

]

= [d1,d2, · · · ,d2K ]
T
,

(68)

where each dT
k then represents the k-th row of D. By

substituting the expression for D into the power constraint

in (57), we further obtain

βT DT diag
(
sHE
)
UH

(
HHH

)+
Udiag (sE)D

︸ ︷︷ ︸

X

β = p0, (69)

which is the valid power constraint for the case of K > Nt.

The reason for the key difference in the power constraint

between the case of K ≤ Nt and K > Nt is that, while

the symbol-scaling constraint in (28) is automatically satisfied

by (34) for the case of K ≤ Nt, it may not hold for the case of

K > Nt and therefore the expression for Ω in (67) is required

to guarantee the symbol-scaling constraint (28) is met for the

original CI precoding.

Based on the above analysis, we have obtained an expres-

sion for Ω as a function of β. Subsequently, we can now

formulate an equivalent optimization on β, given by

P11 : min
β, t

− t

s.t. βTYβ − p0 = 0

t− dT
mβ ≤ 0, ∀αO

m ∈ O
t− dT

nβ = 0, ∀αI
n ∈ I

(70)

where Y = ℜ (X). The Lagrangian of P11 can be expressed

as

L =− t+ δ̃0
(
βTYβ − p0

)
+

card{O}
∑

m=1

µ̃m

(
t− dT

mβ
)

+

card{I}
∑

n=1

ν̃n
(
t− dT

nβ
)

=
(
1Tu2 − 1

)
t+ δ̃0 · βTYβ − uT

2FDβ − δ̃0p0,

(71)

where the dual vector u2 for P11 is given by

u2 =
[
µ̃1, µ̃2, · · · , µ̃card{O}, ν̃1, ν̃2, · · · , ν̃card{I}

]T
. (72)
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W =
1

K
·HH

(
HHH

)+
Udiag

(√
p0

uT
2FDY−1DTFTu2

·DY−1DTFTu2

)

sEŝ
T , (75)

The corresponding KKT conditions are:

∂L
∂t

= 1Tu2 − 1 = 0 (73a)

∂L
∂β

= δ̃0 · 2Yβ −DTFTu2 = 0 (73b)

βTYβ − p0 = 0 (73c)

µ̃m

(
t− dT

mβ
)
= 0, ∀αO

m ∈ O (73d)

t− dT
nβ = 0, ∀αI

n ∈ I (73e)

Then, by following a similar approach to that in Section III,

the dual problem of P11 can be finally formulated into a QP

optimization as well, given by

P12 : min
u2

uT
2

(
FDY−1DTFT

)
u2

s.t. 1Tu2 − 1 = 0

µ̃m ≥ 0, ∀m ∈ {1, 2, · · · , card {O}}
(74)

where we have omitted the details for brevity. The optimal

precoding matrix can then be expressed in closed form as a

function of the dual vector u2, which is shown in (75) at the

top of this page.

A. The Condition for Multiplexing K > Nt Streams

Based on P11 and the above analysis, we can also obtain

an expression for the optimal t in P11 as

t∗ = min
k

dT
k β, ∀k ∈ {1, 2, · · · , 2K} . (76)

Accordingly, we obtain that if t∗ > 0, the obtained scaling

vector Ω and the resulting precoding matrix is a valid solution

to the original CI precoding. Otherwise if t∗ < 0, each

data symbol will be scaled to the other 3 quarters of the

constellation, which will lead to erroneous demodulation.

Therefore, the condition

min
k

(
dT
k β
)
> 0 (77)

determines when multiplexing K > Nt users is achievable.

V. A GENERIC ITERATIVE ALGORITHM FOR

MULTI-LEVEL MODULATIONS

Since not all the variables are constrained to be non-

negative in the QP formulation for multi-level modulations,

as observed in P7 and P12, the iterative algorithm designed

for PSK modulation does not directly apply to the case

of multi-level constellations. Therefore in this section, we

propose an iterative algorithm for a generic QP optimization,

as an extension of the algorithm designed only for PSK

modulations. Specifically, we focus on the following generic

QP optimization

P13 : min
u

uTQu

s.t. 1Tu− 1 = 0

µn ≥ 0, ∀n ∈ {1, 2, · · · , N}
(78)

where Q is symmetric and positive definite, u =
[µ1, µ2, · · · , µM ]

T ∈ CM×1 and N < M . The above QP

formulation can be regarded as a generalization of the QP

formulation for both the case of K ≤ Nt and K > Nt

considered in this paper, as well as for PSK modulations if

M = N . We express the Lagrangian of P13 as

L = uTQu+ q0
(
1Tu− 1

)
−

N∑

n=1

qnµn

= uTQu+ q0 · 1Tu− qT
Eu− q0,

(79)

where qE ∈ CM×1 is given by

qE = [q1, q2, · · · , qN , 0, · · · , 0]T =
[

qT ,01×(M−N)
]T

.

(80)

The corresponding KKT conditions can be obtained as

∂L
∂u

= 2Qu+ q0 · 1− qE = 0 (81a)

1Tu− 1 = 0 (81b)

qnµn = 0, ∀n ∈ {1, 2, · · · , N} (81c)

Based on the above, we obtain the expression for u as

u =
1

2
Q−1 (qE − q0 · 1) =

1

2

(
Q−1qE − q0 · a

)
, (82)

where a = Q−11 represents the sum of all the columns of

Q−1. By substituting the expression for u into (81b), we

obtain q0 as a function of qE:

1T

[
1

2

(
Q−1qE − q0 · a

)
]

− 1 = 0

⇒1

2
· 1TQ−1qE −

q0

2
· 1Ta− 1 = 0

⇒q0 =
1TQ−1qE − 2

1Ta

⇒q0 =
bqE − 2

c
,

(83)

where c = 1Ta denotes the sum of all the entries in Q−1, and

bT = 1TQ−1 is the sum of all the rows of Q−1. Due to the

symmetry of Q, we further obtain b = aT . By substituting q0
into (82), we further obtain u as a function of qE:

u =
1

2
·Q−1qE −

a

2
· bqE − 2

c

=
1

2
·Q−1qE −

abqE

2c
+

a

c

=
1

2

(
Q−1 −Φ

)
qE +

a

c
,

(84)

where Φ = ab
c

. Based on the derived expression for u, the

following two observations can be made.

Observation 3: When K ≤ Nt, ZF precoding can be

viewed as a special case of CI-based precoding, when all the

dual variables are forced to be zero.
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Proof: In this case, by comparing P7 with P13, we obtain

that Q = Ṽ−1 and a = Ṽ1. Then, based on the expression

in (49), we can obtain Ω̃ as a function of qE:

Ω̃ =
1

2δ0
Ṽ−1

[
1

2

(

Ṽ −Φ
)

qE +
a

c

]

=
1

2δ0c
· Ṽ−1a+

1

4δ0

(

I− Ṽ−1Φ
)

qE

=
1

2δ0c
· Ṽ−1Ṽ1+

1

4δ0

(

I− Ṽ−1Φ
)

qE

=
1

2δ0c
· 1+

1

4δ0

(

I− Ṽ−1Φ
)

qE.

(85)

When all the dual variables are zero, qE = 0, and we see that

the scaling value in Ω̃ for each data symbol is identical, which

then leads to the ZF precoder. �

Observation 4: The solution for u in (84) automatically

satisfies 1Tu− 1 = 0, irrespective of the value of qE.

Proof: We calculate 1Tu, which can be expressed as

1Tu =
1

2
· 1TQ−1qE −

1TabqE

2c
+

1Ta

c

=
1

2
· bqE −

c · bqE

2c
+

c

c
= 1,

(86)

which completes the proof. �

Following Observation 4, P13 is equivalent to the following

optimization problem:

P14 : find qE

s.t. u =
1

2

(
Q−1 −Φ

)
qE +

a

c
µnqn = 0, µn ≥ 0, qn ≥ 0, ∀n ∈ {1, 2, · · · , N}

(87)

Subsequently, based on the expression for qE in (80), we

decompose Q−1 and Φ into 2 blocks, given by

Q−1 =
[
Q1 Q2

]
, Φ =

[
Φ1 Φ2

]
, (88)

where the dimension of both Q1 and Φ1 is M × N . Subse-

quently, u in (84) can be further simplified and expressed as

a function of q, given by

u =
1

2
(Q1 −Φ1)q+

a

c

=
1

2
Gq+

a

c
.

(89)

Moreover, noting that only part of the entries in u are

constrained to be non-negative in the original optimization

P13, we further decompose u, Q1, Φ1 and a into

u =

[
uA

uB

]

, G =

[
GA

GB

]

, a =

[
aA
aB

]

, (90)

where uA ∈ CN×1 consists of non-negative dual variables and

can be expressed as

uA =
1

2
GAq+

aA

c
. (91)

Based on the above transformation and the iterative algorithm

proposed in [28], we propose an iterative algorithm for the

generic QP formulation in P13, given in Algorithm 1, where

most of the procedure follows [28]. The proposed algorithm

is applicable to both scenarios K ≤ Nt and K > Nt, by

constructing the coefficient matrix Q as Q = Ṽ−1 in (53)

and as Q = FDY−1DTFT in (74), respectively.

Algorithm 1 Proposed Algorithm for a Generic QP Optimiza-

tion P13

input : Q
output : u∗

i = [ ], I = length (i), N = [1], n = 1, and Iter = 0;

Calculate a = Q−11, c = 1Ta;

Obtain G in (89), u = a
c

and uA = aA

c
;

if min (uA) < 0 then

Set u∗ = u;

else

while min (uA) < 0 and Iter < Itermax do

d = sort (uA);
find µk = dn; Stack N =

[
N 1

]
, i =

[
i k

]
;

Update I;

Construct Z =






G (i1, i1) · · · G (i1, iI)
...

. . .
...

G (iI , i1) · · · G (iI , iI)




;

Set ãA = [aA (i1) , aA (i2) , · · · , aA (iI)]
T

;

Calculate q̃ = − 2
c
· Z−1ãA;

if min (q̃) ≥ 0 then

Update u and uA;

n = 1;

else

find qk = min (q̃) and im = k;

Set i = i (1 : m) and N = N (1 : m);
Update I , Z, ã, q̃, u, and uA;

Update N (m)← N (m) + 1;

Update n = N (m);
end if

Iter← Iter + 1;

end while

Obtain u∗ = u;

end if

A. The Sub-Optimal Closed-Form Precoder

While the algorithm proposed above includes a closed-

form expression within each iteration, it is still an iterative

algorithm in nature. Therefore, we further propose a closed-

form precoder that achieves sub-optimal performance, for both

scenarios considered in this paper. The proposition of this sub-

optimal precoder is based on the observation that there is at

most only one entry in qE that is non-zero for some of the

channel realizations.

It has been demonstrated in Observation 3 that the CI

precoder will reduce to the ZF precoder when qE is a zero

vector. Therefore in this section, we focus on the scenario

where only one entry in qE is non-zero. This corresponds

to the case where only one entry in aA is negative, which

violates the constraints in P13 if qE is a zero vector. Without

loss of generality, we assume d = min (aA) < 0 and k is the

corresponding index, i.e., d = aA (k) = min (aA). We can
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W =







1
K
·HH

(
HHH

)−1
U · diag

{√
p0

1T Ṽ1
· F−11

}

sEŝ
T , if d ≥ 0

1
K
·HH

(
HHH

)−1
U · diag

{√
p0e2

(d·gT

k
+e·1T Ṽ)(d·Ṽ−1gk+e·1)

F−1
(

d · Ṽ−1gk + e · 1
)}

sEŝ
T , if d < 0

(94)

then obtain µk = 0 and qk 6= 0 based on P14. Subsequently,

based on (91), we can further express

µk = uA (k) =
1

2
GA (k, k) qk +

aA (k)

c
= 0

⇒ qk = − 2aA (k)

cGA (k, k)
,

(92)

which is based on the assumption that only one entry in q

is non-zero, otherwise the complementary slackness condition

will not be satisfied. Accordingly, the resulting sub-optimal

solution for u can be obtained based on (89), given by

u =
1

2
gk ·

[

− 2aA (k)

cGA (k, k)

]

+
a

c

= −aA (k) · gk +GA (k, k) · a
cGA (k, k)

= −d · gk + e · a
ce

(93)

where we decompose GA = [g1,g2, · · · ,gN ], gk is the k-th

column of GA, and e = GA (k, k). Based on the obtained

sub-optimal u in (93) and by substituting Q = Ṽ−1, we are

able to express the sub-optimal closed-form CI precoder for

the case of K ≤ Nt in (94) at the top of this page. The

sub-optimal closed-form CI precoder for the case of K > Nt

can be obtained in a similar form and is therefore omitted for

brevity.

VI. NUMERICAL RESULTS

In this section, the numerical results of the proposed

schemes are presented and compared with traditional CI

precoding using Monte Carlo simulations. In each plot, we

assume the total transmit power is p0 = 1, and the transmit

SNR per antenna is thus ρ = 1
/
σ2. For the case of K ≤ Nt,

we compare our proposed iterative schemes with traditional

ZF precoding, RZF precoding, and optimization-based CI

precoding approach. For the case of K > Nt, we compare

our proposed iterative algorithm with RZF precoding and the

optimization-based CI precoding method. Both 16QAM and

64QAM modulations are considered in the numerical results.

The following abbreviations are used throughout this sec-

tion:

1) ‘ZF’: traditional ZF scheme with symbol-level power

normalization for K ≤ Nt [5];

2) ‘RZF’: traditional RZF scheme with symbol-level power

normalization for both K ≤ Nt and K > Nt [6];

3) ‘CI-OPT’: traditional optimization-based CI precoding

based on P3;

4) ‘CI-Iterative’: iterative CI precoding scheme based on

Algorithm 1;

5) ‘CI-CF’: sub-optimal closed-form CI precoder introduced

in Section V-A.

Before we present the detailed bit error rate (BER) results,

in Fig. 3 we first show the average number of iterations

required for the proposed algorithm to achieve the optimality

with an increasing number of users, where we consider the

case of ‘Nt = 12’ and ‘Nt = 16’, as well as the case of

‘Nt = K’. Generally, we observe that the required number

of iterations increases with the number of users, since there

is a higher possibility that more entries in aA are negative.

Comparing the result of ‘Nt = 16’ with ‘Nt = K’, we

observe that the required number of iterations becomes smaller

when K < Nt. This is because the channel becomes closer

to orthogonal when (Nt −K) is larger, in which case it is

very likely that ZF precoding is the optimal solution and the

resulting required number of iterations is 0. Moreover, for the

case of ‘Nt = 12’, we observe a significant increase in the

number of iterations when K ≥ 13, which is because the

scenario is shifted from ‘K ≤ Nt’ to ‘K > Nt’, where the

formulation Q in Algorithm 1 follows (74) instead of (53).

Comparing the results of 16QAM with 64QAM, it is also

observed that the required number of iterations for 64QAM is

smaller than that for 16QAM, as the optimal CI precoding is

more likely to be a ZF precoder for 64QAM. In the following,

we present the BER results for the scenarios of both K ≤ Nt

and K > Nt. For the case of K ≤ Nt, we focus on the

symmetric case K = Nt which is the most challenging.

A. K ≤ Nt

Fig. 4 presents the BER performance for different precoding

schemes with 16QAM modulation, where K = Nt = 8.

As can be observed, the interference-exploitation precoding

achieves an improved performance over ZF precoding for all

SNRs, while also outperforming RZF precoding at high SNR.
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Fig. 3: Average required number of iterations v.s. number of

users K , Nt = 12, Nt = 16 and Nt = K , 2000 trials
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Fig. 5: Uncoded BER v.s. SNR, 16QAM, Nt = K = 12

For high SNRs, we observe a SNR gain of more than 6dB

over ZF and 4dB over RZF. Moreover, it is shown that the

CI precoding based on the iterative algorithm ‘CI-Iterative’

achieves exactly the same performance as the optimization-

based CI precoding ‘CI-OPT’, which validates its optimality in

obtaining the precoding matrix. While the sub-optimal closed-

form precoder ‘CI-CF’ is inferior to optimal CI precoding, we

observe that it also outperforms both ZF precoding and RZF

precoding when the SNR is high.

In Fig. 5, we compare the BER of different precoding

approaches for 16QAM when K = Nt = 12, and a similar

BER trend compared to the case of K = Nt = 8 in Fig.

4 is observed. The optimal CI precoding scheme achieves the

best performance and significantly outperform other precoding

methods in the high SNR regime, where the SNR gain is

as large as 7dB. Compared with Fig. 4, we observe that the

performance gains of CI precoding over traditional ZF-based

precoding schemes are more significant when the number of

users and antennas increases.

We further consider a higher-order 64QAM modulation and

present the corresponding BER result in Fig. 6. Similar to

the case of 16QAM, both the optimal CI precoding and the

sub-optimal closed-form CI precoding methods achieve an
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Fig. 6: Uncoded BER v.s. SNR, 64QAM, Nt = K = 12
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Fig. 7: Uncoded BER v.s. SNR, 16QAM, K > Nt

improved performance over ZF precoding. More importantly,

in contrast to claims that CI precoding may not be promising

for higher-order QAM modulations where only the outer con-

stellation points can exploit CI, we show that the performance

gains of CI precoding over ZF can be as large as 5dB, since CI

precoding not only relaxes the optimization area for the outer

constellation points, but also reduces the noise amplification

factor for the precoder. Both of the above contribute to the

performance improvements over ZF precoding.

B. K > Nt

In this section, we consider the scenario of K > Nt.

Fig. 7 depicts the BER result for (1) K = 9, Nt = 8, (2)

K = 13, Nt = 12, and (3) K = 17, Nt = 16 for 16QAM

modulation. ZF precoding is not applicable in these cases,

and therefore we compare with RZF precoding. When CI

precoding does not return a valid solution, as discussed in

Section IV-A, RZF precoding is employed instead. For all of

the three considered scenarios, we observe that at high SNRs

the average BER performance for CI precoding achieves a

significant performance gain over traditional RZF precoding,

since there is a high probability of a feasible solution for

CI precoding when K − Nt = 1, as illustrated later in Fig.
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9. Moreover, we observe that the performance gains further

increase with an increase in the number of transmit antennas.

We present the BER result with respect to an increasing

number of users in Fig. 8 for 16QAM, where Nt = 12 and

SNR=35dB. ZF precoding does not apply for the case of

K > Nt and therefore does not have a BER result when

K > 12. For both the case of K ≤ Nt and K > Nt, we

observe that CI precoding achieves the best BER performance,

and the performance gains over ZF-based precoding are more

significant when K increases, which is due to the fact that the

optimal CI precoding is more likely to be ZF precoding when

K is small.

In Fig. 9, we present the average feasibility probability for

the case of K > Nt with an increasing number of users,

where the performance of 16QAM and 64QAM modulations

are denoted as solid and dashed lines, respectively. Generally,

we observe that a larger number of antennas at the BS leads to

a higher probability of supporting more users than the number

of antennas at the BS. For example, for 16QAM modulation,

the BS can support 3 more users when Nt = 12 with more than

a 70% feasibility probability, compared to the Nt = 6 case

where the BS can only support at most only 1 additional user

with the same feasibility probability. Specifically, we observe

that the feasibility probability for the case of K = 13 and

Nt = 12 is very close to 100% for 16QAM. A similar trend is

also observed for 64QAM modulation, although the supported

number of users is smaller compared to 16QAM for the same

feasibility probability.

VII. CONCLUSION

In this paper, interference-exploitation precoding for multi-

level modulations is studied. By analyzing the optimization

problems and their corresponding Lagrangian and KKT con-

ditions, we mathematically show that interference-exploitation

precoding is equivalent to a QP optimization, based on which

we derive the optimal precoding matrix as a function of the

variables for the QP optimization as well as a sub-optimal

closed-form precoder. Numerical results show that the optimal

precoding matrix can be efficiently obtained by the proposed
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iterative algorithm, and the superior performance improvement

of interference-exploitation precoding over traditional precod-

ing schemes is also observed for multi-level modulations.
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