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Article

Tyrosine-Based Signals Regulate
the Assembly of Daple,PARD3
Complex at Cell-Cell Junctions
Jason Ear,1,* Anokhi Saklecha,1 Navin Rajapakse,1 Julie Choi,1 Majid Ghassemian,2 Irina Kufareva,3

and Pradipta Ghosh1,4,5,6,7,*

SUMMARY

Polarized distribution of organelles and molecules inside a cell is vital for a range of cellular processes

and its loss is frequently encountered in disease. Polarization during planar cell migration is a special

condition in which cellular orientation is triggered by cell-cell contact. We demonstrate that the pro-

tein Daple (CCDC88C) is a component of cell junctions in epithelial cells which serves like a cellular

‘‘compass’’ for establishing and maintaining contact-triggered planar polarity. Furthermore, these

processes may be mediated through interaction with the polarity regulator PARD3. This interaction,

mediated by Daple’s PDZ-binding motif (PBM) and the third PDZ domain of PARD3, is fine-tuned by

tyrosine phosphorylation on Daple’s PBM by receptor and non-receptor tyrosine kinases, such as

Src. Hypophosphorylation strengthens the interaction, whereas hyperphosphorylation disrupts it,

thereby revealing an unexpected role of Daple as a platform for signal integration and gradient

sensing for tyrosine-based signals within the planar cell polarity pathway.

INTRODUCTION

Epithelial cell-cell adhesion and cell polarity are necessary for proper cell function and tissue organization

(Rodriguez-Boulan and Macara, 2014). Cells along an epithelium are connected together through various

junctional complexes (tight junction, adherens junctions, desmosomes, and gap junctions), which are

essential in establishing the apical and basolateral pole of a cell (referred to as the apical-basal axis)

(Farquhar and Palade, 1963). In addition to an apical-basal polarity, cells are also polarized along the plane

of the epithelium, referred to as planar cell polarity (PCP) (Henderson et al., 2018). Dysregulation of these

cell adhesion complexes and cell polarity can lead to maladies such as inflammatory bowel diseases,

hydrocephalus, abnormal skin barrier function, and tumor initiation and progression (Bhat et al., 2018).

In fact, disruption of cellular junctions is one of the first events during epithelial-to-mesenchymal transition

(EMT), a phenomenon that is encountered during cancer initiation and progression (Bhat et al., 2018; Feigin

and Muthuswamy, 2009). Thus, cell-cell junctions are widely believed to serve as tumor suppressors

(Knights et al., 2012; Martin et al., 2011).

A typical cell junction is composed of a layer of transmembrane molecules that functions for hetero- and

homotypic binding between cells and a layer of molecular scaffolds peripheral to the membrane. These

scaffolds tether transmembrane molecules to key intracellular molecules such as the cytoskeleton or

signaling molecules. Many of these scaffolds contain one or more PDZ domains (Post synaptic density pro-

tein [PSD95], Drosophila disc large tumor suppressor [Dlg1], and Zonula occludens-1 protein [ZO-1]), which

mediate interactions with other proteins that contain a PDZ-binding motif (PBM) (Subbaiah et al., 2011).

Mutations affecting PDZ,PBM interactions have exposed the importance of these junction-localized inter-

actions in the regulation of key tumor cell phenotypes (Subbaiah et al., 2011).

Daple (CCDC88C) is a large, multi-modular PBM-containing scaffold protein (Aznar et al., 2015, 2018). First

discovered in a yeast-two hybrid screen through its ability to bind to the PDZ domain on Disheveled (Dvl),

Daple has emerged as a key modulator of Wnt signaling (Aznar et al., 2015; Ishida-Takagishi et al., 2012).

The extreme C-terminus on Daple contains an ‘‘atypical’’ PBM, which we, and others, demonstrated to be

necessary for the Daple,Dvl interaction (Aznar et al., 2018; Ishida-Takagishi et al., 2012; Kobayashi et al.,

2005). We subsequently showed that Daple binds Gai proteins and triggers GTPase signaling downstream

of theWnt receptor Frizzled-7 upon activation byWnt5a; such signaling is necessary for the activation of the
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b-catenin-independent Wnt signaling pathway (a.k.a. non-canonical Wnt signaling). More recently, we

showed Daple-dependent Wnt signaling is also shaped by Akt and multiple tyrosine kinases (TKs); in

each case, phosphorylation of Daple by these kinases impacted its localization and signaling (Aznar et

al., 2015, 2017, 2018). We also showed that Daple has two opposing roles during colorectal cancer

(CRC) progression; much like the non-canonical Wnt pathway, Daple acts as a tumor suppressor in the

normal epithelium and early during cancer initiation, but it serves as a potent trigger for EMT and tumor

cell invasion later during cancer dissemination. How does one protein serve two seemingly opposing roles,

and how its tumor-suppressive and pro-metastatic functions are segregated remains poorly understood.

Here we show that Daple’s functions are tightly regulated by spatial segregation, which is dictated by its

interactome and the context, i.e., cell type and key phosphomodifications that are triggered by growth

factors. Such fine-tuned regulation of Daple’s subcellular localization and its interactome offers insight

into Daple’s dual role during cancer progression and other cell polarity-associated diseases.

RESULTS AND DISCUSSION

Daple Is Localized on Cell-Cell Junctions in Epithelial Cells and Tissues

To investigate the role of Daple in the normal colonic epithelium, we first studied the expression and sub-

cellular localization of Daple using a previously validated antibody against its C-terminus in a variety of

immunocytochemical approaches. By immunohistochemistry on formalin-fixed paraffin-embedded colon

biopsies, we confirmed thatDaple is indeedexpressed in theepithelial liningof thehuman colon (Figure 1A).

By immunofluorescence staining and confocal imaging of human colon-derived organoids cultured in ma-

trigel, we determined the localization of Daple at a higher resolution; it localizes at the apical side of the

epithelial cells facing the lumen,markedby the tight junction protein, occludin. Findings suggest thatDaple

is on the apical pole of the epithelial cells (Figure 1B). By immunofluorescence on monolayers of cultured

cancer cell lines, we observed Daple at the sites of cell-cell contact (Figure 1C). In the highly polarized

MDCK cells, we observe colocalization with the tight junction marker occludin as well as with the adherens

junctionmarker, b-catenin (Figure 1D). Taken together, these findings demonstrate that a significant pool of

the cytosolic protein Daple localizes to cell-cell junctions. This is in keeping with prior observationsmade by

others using ependymal, inner ear, and MDCK cells (Siletti et al., 2017; Takagishi et al., 2017; Aznar et al.,

2017; Marivin and Garcia-Marcos, 2019; Marivin et al., 2019). These findings suggest that Daple may phys-

ically associate with various junctional complexes to maintain such localization.

Daple Localizes to Cell Junctions in Well-Differentiated CRC Cells, Requires Junctional

Complexes

Next, we examined the subcellular localization of Daple in several CRCs cell lines. Daple was found at cell-

cell junctions in the poorly metastatic CaCo-2 cells but was predominantly cytosolic in the highly metastatic

Sw480 cells (Figure S1A). The total levels of expression of Daple in both cell lines are comparable

(Figure 2A), leading us to conclude that the observed differences in localization are likely due to the

absence of cell junctions in Sw480 cells.

To further investigate this differential localization, we took advantage of the fact that most CRC cell lines

have a mix of well-differentiated non-invasive epithelioid (henceforth, E-type) and poorly differentiated

highly invasive rounded (henceforth, R-type) cells representing transition states of CRC progression (Ciasca

et al., 2016). We studied two well-characterized DLD1 E-type and R-type lines (Vermeulen et al., 1995); the

latter lacks the adherens junction protein, a-catenin. We chose to study this pair because loss of a-catenin

has previously been shown to be associated with a poorly differentiated status of CRCs and a worse prog-

nosis in patients (Figure S1B). Several clones of E-type and R-type cells (see Figure S1C for distinct

Figure 1. Daple Localizes to the Cell-Cell Junctions in Polarized Epithelial Cells

(A) Immunohistochemistry staining on human colon biopsy sections showed that Daple is highly expressed in the colon epithelium.

(B) Human colon-derived organoids were fixed and stained for Daple (red) and occludin (green) and analyzed by confocal microscopy. A representative

image is shown; scale bar, 25 mm.

(C) Various epithelial cell lines (DLD1, HEK293T, MDCK, and HeLa) were fixed, stained for Daple (red) and nucleus (Dapi), and analyzed by confocal

microscopy. Scale bar, 10 mm.

(D) MDCK cells were fixed, stained for Daple (red) and either the tight junction marker, occludin (green, top) or the adherens junction maker, b-catenin

(green, bottom), and analyzed by confocal imaging. Scale bar, 10 mm. Left: Representative images are shown. Right: RGB profile plot of indicated region is

shown.
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Figure 2. Depletion of Daple in the Poorly Migrating DLD1 E-type Cells versus the Highly Invasive R-type Cells Have Differential Effect on Cell

Migration

(A) Immunoblot of whole-cell lysates of Sw480, CaCo-2, and DLD1 colorectal cancer cells for Daple expression.

(B) Immunoblot of whole-cell lysates of DLD1 E-type and R-type cells for Daple and a-catenin expression.

(C) DLD1 E-type, R-type, and R-type cells transiently expressing a-catenin were fixed and immunostained for Daple (red) and a-catenin (green). Scale bar,

5 mm.
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morphology) were isolated and the loss of a-catenin in R-type cells was confirmed by immunoblotting (Fig-

ure S1D). Although both clones appear to express similar levels of Daple protein, as determined by immu-

noblotting (Figure 2B), localization of Daple in these cells looked as different as that previously observed

between CaCo-2 and Sw480; Daple was at cell-cell junctions in the E-type cells but in the cytoplasm in

R-type cells (Figure 2C). It is noteworthy that many components of cell junctions are insoluble in detergents

such as Triton x-100 (Tx100) owing to their association with the cortical actin at the cell periphery. Daple was

detected in Tx100-insoluble fractions in all cell types tested (Figures S2A–S2C), suggesting that regardless

of its junctional localization, Daple remains associated with the actin cytoskeleton.

Next, we carried out a series of studies to dissect whether Daple’s localization to cell-cell junctions is an

active process of recruitment to that site or a passive consequence due to the formation of these junctions.

Transient expression of a-catenin into R-type cells restored the localization of Daple at cell junctions,

mimicking E-type cells (Figure 2C). Conversely, disruption of cell junctions in E-type cells by calcium

depletion (using the calcium-chelator, EGTA) triggered redistribution of Daple from cell junctions to the

cytoplasm (Figure S1E). Prior work showed that activation of PKC in R-type cells (using TPA, tetradecanoyl

phorbol acetate) transiently restores junctions (van Hengel et al., 1997); although we too observed an

increase in the localization of occludin at the junctions upon TPA treatment, Daple did not localize there

(Figure S1F). These findings demonstrate that the assembly and disassembly of adherens junctions is a

key determinant of Daple’s localization at cell junctions. The observation that exogenous expression of

a-catenin, but not TPA treatment, was sufficient to restore Daple’s localization at cell junctions suggests

that Daple’s ability to localize to this subcellular site is an active process of recruitment that may require

interactions with stable junctional structures.

Junction-Localized Daple Enables Contact-Triggered Orientation and Polarized Planar

Migration

To investigate if junction-localized Daple may regulate key cellular phenotypes, we depleted Daple in the

E-type and R-type cells by CRISPR/Cas9 and confirmed by immunoblotting (Figures 2D and S3A–S3C).

Depletion of Daple in E-type did not alter the levels of a-catenin (Figure 2D) and did not have a discernible

impact on the morphology of cell junctions, as evident by localization of the integral membrane protein

occludin and the peripheral tight junction protein ZO-1 (Figure 2E). There was also no discernible impact

on the functional integrity of tight junctions, i.e., regardless of Daple depletion, the paracellular perme-

ability remained unchanged, as determined by measurements of transepithelial electrical resistance

(TEER) on a confluent monolayer of cells (Figure 2F). These findings indicate that loss of Daple may be

dispensable for the morphological or functional integrity of tight junctions in epithelial cells grown in

confluent monolayers. Findings are also consistent with what has been reported by others for tight

junctions in the blood-brain barrier or Daple �/� mice (Takagishi et al., 2017).

Because junctions are also known to serve as signaling microdomains that dictate tumor-sphere growth

and cell migration (Martin et al., 2011; Wu et al., 2011; Bhat et al., 2018; Feigin and Muthuswamy, 2009;

Knights et al., 2012), next we asked if these growth and motility phenotypes are impacted in Daple-

depleted cells. Under the conditions tested, we observed no significant changes in growth either in

anchorage-dependent or in anchorage-independent colony formation assays (Figures 2G–2J). When we

measured the ability of these cells to migrate across a semipermeable membrane across a 0%-to-2% serum

gradient, loss of Daple led to an increase in chemotaxis in the E-type but not in the R-type cells (Figures 2K

and 2L), indicating that loss of junctional Daple induces gradient-responsive migration in 3 dimension (3D).

Figure 2. Continued

(D) Immunoblot of DLD1 E-type and R-type CRISPR/Cas9 clones targeted for Daple confirming depletion.

(E) DLD1 E-type cells depleted of Daple (�/�) were stained for cell junction markers ZO-1 (red) and occludin (green); representative images are shown.

Scale bar, 25 mm.

(F) Transepithelial electrical resistance (TEER) of DLD1 E-type and R-type cells depleted (�/�) or not (+/+) of Daple. Measurements are represented as

percent change relative to E-type (+/+) cells.

(G and H) Anchorage-dependent colony growth assay on DLD1 E-type and R-type depleted (�/�) or not (+/+) of Daple. Bar graphs (H) show quantification of

panels in (G).

(I and J) Anchorage-independent growth assay on DLD1 E-type and R-type cells depleted (�/�) or not (+/+) of Daple. Bar graphs (J) show quantification of

panels in (I).

(K and L) Transwell migration assay on DLD1 E-type and R-type cells toward 2% serum. Bar graphs (L) show quantification of panels in (K). N.S. = Not

significant in (F, H, J, and L).
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Because Daple is an enhancer of non-canonical Wnt signaling (Aznar et al., 2015; Ishida-Takagishi et al.,

2012; Kobayashi et al., 2005), signals that mediate the phenomenon of orderly polarized migration over

2D planes, a.k.a planar cell polarity (PCP) (Henderson et al., 2018; Takagishi et al., 2017), we asked if

junction-localized Daple may impact this phenomenon. PCP is a critical tumor suppressive phenomenon

that maintains homeostasis in the colon crypt by ensuring that the cells newly generated from the crypt

base-localized stem cells migrate along the basement membrane (2D migration on a plane) to constantly

replenish the crypt top-localized terminally differentiated surface epithelial layer, which displays a high turn-

over rate (Fatehullah et al., 2013; Schneeberger et al., 2018). When studying PCP in cell culture, migrating

cells are typically monitored on a planar surface (Gandalovicova et al., 2016; Schmoranzer et al., 2009).

Although this mode of migration is more accurately accessing front-rear polarity, many components in

front-rear polarity is conserved in PCP (Gandalovicova et al., 2016). We utilized one such previously

described planar cell migration model (Kramer et al., 2013) in which cells are first grown in suspension to

form a compact spheroid, then transferred onto an adherent substrate andmonitored by light and confocal

microscopy for polarized radial migration (Figure 3A). We chose fibronectin as the substrate because it is

well accepted as the matrix of choice for PCP studies (Yi et al., 2016; Dohn et al., 2013). Although no differ-

ences were observed between spheroids grown using wild-type and Daple knockout E-type cells (Figures

S3D and S3E), Daple-depleted cells migrated out significantly more than wild-type cells, losing cell-cell con-

tacts (higher birefringence in light microscopy, Figure 3B) covering a greater surface area (Figures 3B and

3C). These migrating cells also displayed a loss of cell-cell contact (marked by the adherens junctionmarker,

E cadherin) and loss of contact-triggered orientation toward the spheroid and instead polarized toward the

free edge, as determined by the relative positions of the nucleus and theGolgi body (marked by the integral

membrane protein, GM130) (Nakamura et al., 1995, 1997). Compared with wild-type cells, a greater number

of Daple-depleted cells positioned their Golgi away from the spheroid, indicating that cells were polarized

toward the free edge, which is consistent with their observed increased motility in both 2D and 3D assays

(Figures 3D and 3E). Overall, these finding implicate Daple in front-rear polarity (and presumably PCP); its

loss disrupted contact-triggered orientation and migration and instead promoted contact-free scattering.

Because others have implicated Daple in regulating apical-basal polarity and apical constriction in epithe-

lial cells (Marivin et al., 2019), taken together, these findings indicate that junction-localizedDaplemay serve

as a nexus between two types of polarity—"apical-basal’’ and ‘‘front-rear.’’ Because Daple serves this role in

the context of sheet-like migration of cells on a planar surface, findings suggest it regulates PCP.

Biotin Proximity Labeling Identifies Various PDZ-Proteins within Daple’s Interactome

We hypothesized that junction-localized Daple may impact PCP via the coordinated regulation of signaling

co-complexes that sense and respond to cell-cell contact via adherens junctions (but may not regulate tight

junction integrity). To gain insights into how/why Daple localizes to the cell junctions and impacts PCP, we

carried out BioID proximity labeling coupled with mass spectrometry (MS) to identify interacting proteins.

We carried out these studies in both in E- and R-type cells and HEK293T cells to specifically understand

which interactions are specific for junction-localized Daple. To this end, Daple was N-terminally tagged

with BirA biotin ligase (Figure S4A) and the construct was rigorously validated using several approaches.

Immunofluorescence studies confirmed that the exogenously expressed tagged construct localized simi-

larly to the endogenous protein—it is found on cell junctions and the perinuclear recycling compartment

(Figures S4B and S4C) as described previously (Aznar et al., 2017). Biotinylation in situ was confirmed by

incubating cell lysates with streptavidin beads and blotting using fluorescent conjugated streptavidin (Fig-

ures 4A and 4B). Immunoblotting and biochemical interaction assays confirmed that the construct was ex-

pressed as full-length protein and retained binding to Dvl (Figures S4D and S4E). Staining for biotinylated

protein in HEK293T cells revealed that the construct can indeed label proteins at cell junctions (Figure 4B).

MS identification of biotinylated proteins in HEK293T, E-type, and R-type cells revealed several novel bind-

ing partners of Daple (Figure 4D). Because Daple’s C-terminal PDZ-binding motif (PBM) was deemed

Figure 3. Loss of Daple Affects Planar Migration of DLD1 E-type Cells

(A) Schematic of workflow for tumor spheroid growth and assessment of radial migration by light and confocal microscopy. Polarization of migrating cells

was monitored by assessing the position of the Golgi (using GM-130) relative to the advancing edge and the nucleus (using DAPI).

(B) Magnified view of the edge of the tumor sphere showing radially migrating sheets of E-type (+/+) and (�/�) cells after 48 h, as visualized by light

microscopy.

(C) Bar graphs show the extent of surface area of sheet-like migration in (B) Data are represented as mean G SEM.

(D and E) Radially migrated cells, as in (C), were fixed and stained for the bona fide Golgi marker GM130 (red) and E-cadherin (green). The ratio of polarized

cells to total cells was quantified (E). Data are represented as mean G SEM.
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essential for its localization to cell junction (Figure 4C), we carried out gene-ontology (GO) analyses on the

MS hits by protein domains (using DAVID GO and INTERPRO domains, with p value < .05 set as significant)

expecting to find PDZ-containing proteins that are enriched or eliminated depending on Daple’s localiza-

tion (Figure 4D). Indeed, we found that several PDZ proteins that are associated with cell junctions were

enriched in the BioIDs from HEK293T and E-type cells but not in R-type cells (Figures 4D and 5A). It is note-

worthy to point out that, although R-type cells did not present a significant enrichment for PDZ proteins,

two proteins containing PDZ domains were identified (Figure 5A). These findings led us to hypothesize

that Daple may be recruited onto cell junctions by its PBM module via its interaction with PDZ proteins.

Henceforth, we directed our efforts at validating in vitro some of the putative PDZ-PBM interactions and

understanding how those interactions may be reversibly regulated to allow context-dependent localization

of Daple at cell junctions.

Daple Directly and Specifically Binds to PDZ Proteins, PARD3, and mPDZ

BioID relies on transient transfection; hence, it is prone to artifacts due to either compromised cell health or

higher than physiologic levels of proteins with resultant altered stoichiometry, and only indicates proximity,

not direct interaction. We sought to validate our BioID ‘‘hits’’ by asking which PDZ proteins identified by

BioID (Figure 5A) directly interact with Daple using recombinant GST-tagged PDZ proteins in in vitro inter-

action assays with purified Daple-CT (aa. 1,650–2,028). Five proteins were prioritized based on the criteria

that they are all bona fide PDZ family of proteins that localize to cell junctions: (1) the Par-3 Family Cell

Polarity Regulator PARD3; (2) the Multiple PDZ Domain Crumbs Cell Polarity Complex Component

mPDZ; (3) the tight junction protein 1, TJP1, a.k.a, zonula occludens (ZO)-1, (4) the tight junction protein

2, TJP2, a.k.a, zonula occludens (ZO)-2, and (5) GAIP-interacting protein, C terminus (GIPC) (Funahashi

et al., 2013; Meerschaert et al., 2009; Varsano et al., 2012; Baliova et al., 2014). Interaction was detected

with PARD3 and mPDZ besides the previously known interacting partner, Dvl. A much weaker interaction

was detected between ZO-1 and Daple (Figure 5B). As suspected, all these interactions were virtually lost

when we used purified Daple-CT lacking the described C-terminal PBM (DPBM) (Figure 5C) or when cell

lysates of exogenously expressed full-length Daple (WT or DPBM) was used in the interaction assays (Fig-

ure 5D). These findings confirm that Daple’s interactions with diverse PDZ proteins are likely to be

mediated via a PDZ,PBM interaction.

Because both PARD3 and mPDZ are molecular scaffolds that have more than one PDZ domain, we asked if

the binding of Daple to these proteins is mediated specifically via one or more of these domains. When we

purified each of the 13 PDZ domains of mPDZ from bacteria as GST-tagged proteins and used them in pull-

down assays, we found that Daple preferentially bound the third PDZ domain on mPDZ (Figures S5A and

S5B). We took a slightly different approach in the case of PARD3, which contains three PDZ domains (Fig-

ure 5E). First, we confirmed that binding between Daple and PARD3 is specific to PARD3’s PDZ domains

(Funahashi et al., 2013), via in vitro protein interaction assays with various GST-tagged PARD3 truncation

constructs and recombinant His-Daple-CT. Daple specifically binds to the PARD3 construct that contains

the PDZ domains (Figure 5E). Next we determined which of the three PDZ domains Daple binds to, by

investigating GST-tagged Daple-CT interaction with PARD3 constructs from which individual PDZ domains

were deleted (Zhang et al., 2016). Only deletion of the third PDZ (PDZ3) on PARD3 led to loss of binding to

Daple (Figure 5F). Taken together with our prior in vitro binding studies, we conclude that Daple directly

binds to both PARD3 and mPDZ. In each case, the PBM on Daple is required, and the interaction occurs via

the ability of the PBM to bind the third PDZ domains of PARD3 or mPDZ. In doing so, Daple’s appears to

display a high degree of specificity because it binds to only one of 13 PDZ modules on mPDZ and one of

three modules in PARD3 (Figures 5F and S5). Thus, the Daple,PBM recognition is specific to a limited set of

PDZ proteins and domains.

Figure 4. Biotin Proximity Labeling Identifies an Enrichment of PDZ Proteins within Daple’s Interactome in E-type, but not in R-type Cells

(A) Schematic summarizing the workflow of biotin proximity labeling study carried out using exogenously expressed myc-BirA-Daple in various cell lines.

Immunoblot with Alexa Fluor 680 conjugated streptavidin confirmed biotinylation of affinity purified proteins.

(B) HEK293T cells transfected with myc-BirA-Daple and treated with biotin were stained with Alexa Fluor 594 conjugated streptavidin and antibodies against

the myc-tag (green). Asterisk, pericentriolar localization; arrow, PM localization. Scale bar, 5 mm.

(C) DLD1 E-type (+/+), E-type (�/�), or Daple (�/�) cells ectopically expressing Daple-WT or Daple-PBM deficient mutants (DPBM) were stained for Daple

(red) and occludin (green). Right: RGB plot of region indicated in merge panels.

(D) Top: Venn Diagram showing overlap of affinity-captured proteins identified by mass spectrometry between biotin-treated or no-biotin-treated control

samples. Bottom: Bar graph summarizing identified proteins (exclusive to plus biotin conditions) grouped by protein domain using DAVID GO analysis.

Top domains categories are shown.
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Daple, PARD3, and G-Protein Can Form Ternary Complexes

Prior work inDrosophila has demonstrated the importance of PARD3 andGai in regulating cell polarity and

centrosome positioning (Hampoelz et al., 2005; Chia et al., 2008). Because Daple binds and modulates Gai

activity (Aznar et al., 2015), and we now find that it binds PARD3 and regulates PCP, we hypothesized that

the Daple,PARD3 interaction may allow scaffolding of G proteins to PARD3 and hence coordinate the

establishment of PCP. We began by asking if the newly discovered Daple,PARD3-PDZ interaction affects

the Daple,Gai interaction. We had previously described an unexpected allosteric phenomenon in which

the Daple,Dvl-PDZ and the Daple,Gai interactions are mutually exclusive, i.e., ternary complexes between

all three proteins, Gai,Daple,Dvl is not feasible (Aznar et al., 2018). To our surprise, such allostery was not

observed in the case of PARD3; instead, we found that Gai3 bound PARD3 exclusively in the presence of

Daple, and not directly, indicative of the formation of tertiary Gai,Daple,PARD3 complexes (Figure 5G).

This suggests that despite both interactions (Daple,Dvl and Daple,PARD3) occurring via the same Daple’s

PBM, the exact mechanism of bindingmay differ between various PDZ domains. Moreover, context-depen-

dent interaction of Daple’s PBM with one (Dvl) or the other (PARD3) may impede or enable, respectively,

Daple’s ability to bind and modulate G-protein signaling.

Tyrosine Phosphorylation of Daple’s PBM Shapes Its PDZ-Interactome, Localization to Cell

Junctions

The two tyrosines immediately adjacent to Daple’s PBM have previously been shown to serve as a platform

for convergence of signaling downstream of multiple receptor and non-receptor tyrosine kinases (TKs) like

Src (Aznar et al., 2018) (Figure 6A). We asked if these phosphoevents can dictate which PDZ proteins bind

Daple. As shown previously, tyrosine phosphorylation of Daple’s PBM by Src reduced binding of Daple to

Dvl (Aznar et al., 2018); by contrast, phosphorylation enhanced binding to PARD3 under the same condi-

tions (Figures 6B and 6C). We dissected the relative contributions of single phosphorylations at either

Y2023 or Y2025 using GST-tagged Daple-PBM (aa. 2,008–2,028) and a previously published strategy of

using phosphomimicking mutants (Tyr[Y] to Glu[E]) (Aznar et al., 2018). Mutating either tyrosine residue

to glutamate alone did not decrease binding to PARD3; instead, Y2023E enhanced binding to PARD3 (Fig-

ures 6D and 6E). By contrast, mutating either Y to E was sufficient to disrupt binding to Dvl (Figures 6D and

6E). The dual phosphomimicking Daple construct bound neither PARD3 nor Dvl. In converse experiments,

where GST-PARD3 or GST-Dvl is used to pull down His-Daple-CT, we see similar findings, in that Daple

Y2023E alone was sufficient to disrupt the Daple,Dvl interaction (consistent with prior report [Aznar et

al., 2018]) but not the Daple,PARD3 interaction (Figures S6A–S6C). Findings from GST-pull-down assays

were recapitulated in coimmunoprecipitation studies in cells; immune complexes showed that PARD3

interacts with ectopically expressed Daple-WT or Daple-FA (F1675A, a previously described G-protein

binding deficient mutant) but not with Daple-DPBM or the dual phosphomimick Daple-Y2023/2025E

mutant (Figure 6F). This dual phosphomimic mutant failed to localize to cell junctions (Figure 6G), which

is consistent with the defect we observed earlier in the case of the Daple-DPBMmutant (Figure 4C). Finally,

cells retain the ability to localize PARD3 onto junctions in the absence of Daple (Figure S6D), suggesting

that Daple is recruited onto junctions by PDZ domain proteins.

Based on these findings, a picture emerges in which single phosphorylation at Y2023 or Y2025 may be sufficient

to disrupt Daple,Dvl, but not Daple,PARD3 interaction, whereas dual site phosphorylation disrupts both. We

Figure 5. Daple Directly and Selectively Binds to the Third PDZ Module of PARD3 via Its C-terminal PBM and Can Form Ternary Co-complex with

Gai3

(A) Table of PDZ proteins identified by mass spectrometry in BioID studies in Figure 4.

(B) Pull-down assays using purified GST-tagged PDZ domains PARD3, mPDZ, ZO-1, ZO-2, and Dvl immobilized on glutathione beads and soluble

recombinant His-Daple-CT. Bound Daple-CT was determined by immunoblotting.

(C) Pull-down assays using GST-tagged PARD3, mPDZ, or Dvl PDZ domains used in binding assays with purified His-Daple-CT-WT or His-Daple-CT-DPBM.

(D) Pull-down assays using GST-tagged proteins, as above, where lysates of transiently transfected HEK293T cells were used as source of full-length Daple-

WT or Daple-DPBM.

(E) Top: Schematic shows the modularity of various GST-PARD3 constructs used (N1-N4). Bottom: Pull-down assays using various GST-PARD3 regions with

Daple-CT. GST-PARD3-bound Daple-CT was analyzed by immunoblotting.

(F) Schematic shows the modularity of various FLAG-PARD3 constructs exogenously expressed in cells and used as source of PARD3 for pull-down assays.

Bottom: Pull-down assays using various FLAG-tagged PARD3 constructs with recombinant GST-Daple-CT. Daple-CT-bound PARD3 proteins (left) and input

lysates for FLAG-PARD3 (right) were analyzed by immunoblotting (left and right, respectively).

(G) Pull-down assays with GST-tagged PARD3 or Dvl PDZ proteins immobilized on glutathione beads and various His-tagged proteins, either alone or in

combination, as indicated. Bound complexes and inputs were analyzed by immunoblotting.
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Figure 6. Tyrosine Phosphorylation on Daple’s PBM Regulates Its Ability to Bind PARD3

(A) Schematic summarizing published work of Daple’s PBM and its tyrosine phosphorylation site by RTKs (i.e., EGFR) or non-RTKs (i.e., Src) (Aznar et al., 2018).

(B and C) Daple-CT phosphorylated in vitro by recombinant Src kinase was used in GST-pull-down assays with PARD3-PDZ domains or Dvl-PDZ domain.

Bound proteins are analyzed for Daple-CT using total (B) or phospho-specific (C) Daple antibody.

(D and D0) GST-tagged phosphomimicking Daple mutants (Y2023E, Y2025E, or double Y2023/2025E) were used in pull-down assays with lysates of

transfected HEK293T as source for FLAG-PARD3-full length or PARD3-DPDZ3. Bound proteins are analyzed by immunoblotting in (D). Inputs of cell lysates

used in pull-down assay were analyzed by immunoblotting in D’.

(E) GST-tagged construct as in (D), used in pull-down assays with lysates of transfected HEK293T as source for Dvl. Bound proteins are analyzed by immunoblotting.

(F) Co-immunoprecipitation assays investigating the binding between FLAG-PARD3 and various Daple mutants (WT, F1675A [FA], DPBM, or Y2023/2025E

[2YE]). Proteins were exogenously expressed in HEK293T cells followed by cell lysis and IP using anti-FLAG antibody or control IgG.

(G) E-type (�/�) cells transiently expressing Daple-WT, Daple-Y2025E, or Daple-Y2023/2025E stated for Daple (red) and occludin (green). Right: RGB plot of

indicated region indicated in merge panels.
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Figure 7. Summary of Findings: Phosphoregulated Assembly of PARD3,Gai3,Daple, Dvl,Daple and Gai3,Daple Complexes at Cell-Cell Junctions

Fine Tunes Planar Cell Migration

(A) Table summarizing the interactome of Daple’s PBM with various PDZ domains and the impact of various mutations tested in this work. NT, not tested.

(B) Homology models of Daple’s PBM bound to PDZ domains of PARD3, mPDZ, or Dvl.
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previously showed that neither phosphoevent, alone or in combination, impacts Daple’s ability to bind Gai or

FDZ (Aznar et al., 2018) (Figure 7A). We conclude that graded phosphorylation of Daple’s PBM may regulate

the composition ofDaple-bound complexes andmay contribute, inpart, to thedynamic spatial temporal control

over their assembly/disassembly by tyrosine-based signals. To confirm if these events regulate planar migration,

we generated ‘‘rescue’’ cell lines in which Daple-WT or two specificmutants that cannot bind PARD3were stably

expressed in Daple-depleted DLD1 cells. We noted that the levels of expression of Daple constructs were well

above endogenous levels (Figure S6E) and that the constructs were expressed heterogeneously (Figure S6F).

When we set out to carry out the polarized radial migration assays from the edge of tumor spheroids, we noted

that all ‘‘rescue’’ cell lines failed to form true compact spheroids like the parental line (Figure S6G). Because

compact spheroids are a pre-requisite to study planar migration in the setting of intact junctions (Kramer

et al., 2013), and because of the importance of physiologic stoichiometry of signaling and scaffolding proteins

(Wu et al., 2011; Bernick et al., 2010; Wang et al., 2014), we did not proceed with radial migration assays in these

lines. Future studies with sophisticated methods will be needed, e.g., genetic knockin of the specific mutations

so that endogenous levels can be achieved through its natural promoter. Given these limitations observed in cell

lines, and in light of recently published in vivo findings using Xenopus laevis (Marivin and Garcia-Marcos, 2019),

we conclude that the impact of phosphoevents we observe here on Daple-bound complexes in vitro may

contribute to dynamic regulation of Daple-dependent signaling at cell-cell junctions in the epithelium.

Homology Modeling Reveals Subtle Differences between Various Daple-PBM,PDZ

Complexes

To rationalize why some Daple-PBM,PDZ interactions were more sensitive to tyrosine phosphorylations

(Dvl and mPDZ) than others (PARD3), we carried out 3D homology modeling using a previously solved

structure of the PDZ domains of PARD3, Dvl, and mPDZ, in complex with peptide ligands. Both Y2023

and Y2025 form hydrogen bonds (H-bonds) with Dvl, which explains why the removal of the hydroxyl group

(through phosphorylation, Y > E, or Y > F mutation) on either tyrosine abolishes Daple interaction with Dvl

(Figure 7B). Only Y2025 on Daple forms an H-bond with mPDZ (to Q442), explaining similar detrimental

effects of Y2025E and Y2025F on mPDZ binding to Daple. Similar to what was observed on Dvl, the

Y2025E mutant showed a greater decrease in binding compared with Y2025F (Figure 7C). Homology

modeling studies suggested that neither of the tyrosine residues contributes substantially to Daple’s

interaction with the third PDZ domain of PARD3. This explains why mutation of either Y2023 or Y2025 to

E or to F does not cause a loss of binding between Daple and PARD3 (Figure 7D). The increase in binding

between PARD3 and Daple-Y2023E mutant and phosphorylated Daple can be explained by the increase in

charge interaction between Y2023 and R609 on PARD3 (Figures 6B–6D and 7B).

The models also shed additional insights into the subtle differences in Daple’s ability to bind diverse PDZ

domains: instead of the tyrosines, the key determinant of Daple binding to PARD3 and mPDZ is E2024,

which forms a salt bridge with K606 and K622 (PARD3) and with K408 (mPDZ). Because Dvl lacks basic

residues in the corresponding positions, the salt bridge is absent in the Daple,Dvl complex; however,

E2024 appears to engage with the backbone of I282 (Dvl) via H-bonding. In keeping with these

modeling-based predictions, GST-Daple-PBMwith an E2024mutation to Alanine (A) or Lysine (K) also abol-

ished binding to PARD3 and Dvl (Figures S7A and S7B). In the reciprocal assays, when GST-PDZ protein was

used to pull down full length Daple form cell lysates, Daple-E2024A and E2024K mutants showed

decreased binding to all three PDZ proteins, albeit to variable degrees (Figure S7C). The varying degrees

of Daple,PARD3 or Daple,Dvl interactions observed in pull-down assays interchangeably using one

binding partner as bacterially expressed GST protein and another from cell lysates suggest that the

interaction in cells may be more complex (i.e., subjected to additional posttranslational modifications)

than what can be reconstituted in in vitro studies.

Figure 7. Continued

(C) Pull-down assay carried out using GST-tagged PDZ domains of mPDZ (PDZ3), PARD3, and Dvl immobilized on glutathione S transferase beads and

lysates of transiently transfected HEK293T cells as source for WT and mutants of myc-Daple (Daple-WT, phosphomimicking Daple-Y2025E, or

unphosphorylated Daple-Y2025F). Immunoblots show bound proteins and confirm expression of Daple in cell lysates (input).

(D) GST pull-down assay carried out using GST-tagged PDZ domains of PARD3 and Dvl and lysates of transiently transfected HEK293T cells as source for WT

and mutants of myc-Daple. Bound proteins were visualized by immunoblotting.

(E) A protein-protein interaction network built using STRING (Snel et al., 2000; Szklarczyk et al., 2019) depicts how Daple may regulate various closely related

biological processes via its interactions with PARD3, Dvl, and Gai. Mutual exclusivity between complexes (red lines) and the impact of tyrosine

phosphorylation in each interaction (bolt, inhibitory effect) is shown.
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Together, our findings indicate that, despite the overall shared modality of binding between Daple and

the three PDZ proteins, subtle differences exist between the Daple-PBM,PDZ interface assembled in

each case. These differences could account for their differential sensitivity to disruption by tyrosine

phosphorylations at the two sites on Daple’s PBM. Furthermore, a STRING (Snel et al., 2000; Szklarczyk

et al., 2019) protein-protein interaction network shows that the disruptive phosphoevents on

Daple’s PBM could provide a molecular basis for how tyrosine-based signals can initiate or terminate

conditional and contextual scaffolding of key proteins within discrete pathways and cellular processes

(Figure 7E).

DISCUSSION

The major discovery we report here is that junction-localized Daple scaffolds PDZ-containing polarity

regulator PARD3 to maintain contact-triggered polarization during migration in 2D planes. We also

demonstrate how growth factors may shape these scaffolding functions of Daple via their ability to trigger

two key tyrosine phosphoevents targeting Daple’s PBM. These phosphoevents dictate the localization of

Daple, as well as its interactome: Daple that is not phosphorylated or hypophosphorylated (i.e., only on

one tyrosine) may bind PARD3 and localize to the junctions; however, Daple that is hyperphosphorylated

(i.e., on both tyrosines) may not bind either; instead, it localizes to the cytoplasm and may continue to

modulate G protein signaling downstream of Wnt/FZD. Overall, our findings show that unphosphorylated

Daple has maximal localization at cell-cell junctions; dually phosphorylated Daple (by Src family of kinases)

cannot localize to junctions; the mono-phosphorylated Daple has an intermediate hypomorphic

characteristic.

These mechanistic studies, in conjunction with our prior work elucidating the effects of growth factor RTKs

and growth factor stimulated non-RTKs on Daple (Aznar et al., 2018), support the following working model

in which the Daple,PARD3 interaction may serve as a critical determinant of localization of Daple at cell

junctions. Once at junctions, Daple may orchestrate what appears to be a graded response to varying

concentrations of growth factors: When growth factor concentrations are low (presumably triggering

low-grade RTK activation), hypophosphorylated Daple bound to PARD3 promotes contact-triggered

polarization during migration; however, when growth factors are high, hyperphosphorylated Daple

dissociates from PARD3 and potentiates contact-free cell scattering.

Our findings also shed light into the two seemingly opposite ways inwhichDaple influences cancer initiation and

progression; it acts as tumor suppressor in the normal epithelium andduring early stageswhile supporting EMT/

invasion during late stages (Aznar et al., 2015; Dunkel et al., 2018). This bifaceted role is shared by two other

prominent signaling pathways—TGF-b and the non-canonical b-catenin-independent signaling that is triggered

byWnt5A/FZD7 (Akhurst and Derynck, 2001; McDonald and Silver, 2009). By scaffolding both these pathways to

cell junctions (see Figure 7E), Daple may enable these growth factor signals to support seemingly opposite re-

sponses in cells with orwithout stable junctions. Cells with junctions, such as normal epitheliumor in early-staged

well-differentiated tumors, elicit contact-triggered orientation and contact-dependent planar migration. By

contrast, cells without junctions, such as poorly differentiated tumors, elicit contact-free migration/EMT. Thus,

it is possible that the seemingly opposing roles of Daple may be due to the presence or absence of cell-cell

junctions and Daple’s localization to those junctions.

As for the relevance of our findings during development, it is noteworthy that mutations in Daple (that eliminate

its PBM) have been identified in patients with non-syndromic hydrocephalus and depletion of Daple in animal

models lead to hydrocephalus as well as ear/hearing defects (Drielsma et al., 2012; Siletti et al., 2017; Takagishi

et al., 2017; Marivin and Garcia-Marcos, 2019; Marivin et al., 2019). Underlying both conditions is a failure to

polarize the cells and position the cilia. Our work provides mechanistic insights into how Daple may maintain

contact-triggered cellular orientation in polarized cells with intact junctions. It is possible that the mechanisms

we delineate here in colon epithelial cells are fundamental and hold true in other instances.

Limitations of the Study

There may be other PDZ domain proteins that bind to Daple’s PBM that was not identified in our screens

because of the context of our experimental design (i.e., steady-state culture conditions). Performing similar

proteomic studies under various context such as ligand stimulation or using various cell types may expand

the repertoire of PDZ interactome to Daple.
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Overexpression studies are prone to artifacts owing to mislocalization of proteins and saturation of key

binding partners. Genetic knockins of specific mutants may overcome such limitations with overexpression

systems and may help in further elucidating the specific functions of key tyrosine residues on Daple’s PBM.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

DATA AND CODE AVAILABILITY

We have not generated software, and raw data of MS hits are available upon request from authors.
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Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.100859.
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Figure S1-Related to Figure 2. Daple localization and expression in colorectal cancer cell 
lines.  
A) CaCo-2 (top) and Sw480 (bottom) colorectal cancer cells were fixed with methanol, stained for 

Daple (red), occludin (green) and nucleus (DAPI; blue) and analyzed by confocal microscopy. 

Representative images are shown. Scale Bar, 25µm. B) A Kaplan Meier Plot was generated using 

OncoLnc (www.oncolnc.org) to compare the disease-free survival rates of patients with colorectal 

tumors with high vs. low levels of α-catenin expression. OncoLnc links The Cancer Genome Atlas 

(TCGA; NCI) survival data to mRNA levels (Anaya, 2016). High and low expression is defined as 

patients with top 25% and bottom 25% expression level, respectively. C) Parental DLD1 cells 

were diluted onto tissue culture plates to produce isolated colonies and imaged by light 

microscopy. Representative images of those colonies are shown. D) Whole cell lysates from 

clonally isolated colonies were analyzed for expression of Daple, E-cadherin, b-catenin, a-

catenin, tubulin and GAPDH by immunoblotting (IB). E) EGTA (30 mins) was used to deplete 

calcium levels and disrupt cell junctions in DLD1 E-type cells. After treatment, cells were fixed 

and stained for Daple (red) and occludin (green) and assessed by confocal microscopy. 

Representative images are shown. Scale Bar, 25µm F) TPA (3 hours) was used to activate PKC 

and transiently restore junctions in R-type cells. Post treatment, cells were fixed and stained for 

Daple (red) and occludin (green). Although junctions were restored (as determined by occludin 

staining), Daple was not recruited to cell-cell junctions. Scale Bar, 25µm. 

 

  



 
 



Figure S2-Related to Figure 2. Subcellular fractionation studies on colorectal cancer cells 
reveal a pool of Daple that is on membrane and is detergent insoluble.  
A) Schematic and workflow for subcellular fractionation used in panels B (CaCo-2 and Sw480 

cells) and C (DLD1 E-type and R-type cells). Nuclear free cell homogenates (PNS, post nuclear 

supernatant) in detergent free buffer was spun at 100,000 g to isolate cell membrane (P100, pellet 

100,000 g) from cytosol (S100, supernatant 100,000 g). P100 fraction was then resuspended in 

buffer containing detergent, Triton Tx-100, and centrifuged at 120,000 g to isolate detergent 

soluble (Tx-100) from detergent insoluble (Insol.) fractions. B-C) Daple expression was 

determined in various cellular fractions by immunoblotting (IB). As controls, Gai3 and E-cadherin 

was used to confirm membrane enrichment, whereas tubulin was used to determine cytosol 

enrichment. Membrane associated ZO-1 and PARD3 was observed in Tx-100 insoluble fractions 

whereas E-cadherin, b-catenin, and a-catenin was observed in both Tx-100 soluble and insoluble 

fractions. C) Lower panels show higher loading volume of P100, Tx-100, and Insoluble fractions 

of DLD1 E-type and R-type cells. Actin and Tubulin was used to confirm presence of cytoskeletal 

proteins. Caveolin-1 was used to confirm presence of lipid rafts.  

 

  



 
 



Figure S3-Related to Figure 2. Characterization and validation of Daple CRISPR/Cas9 
knockout 
A) Schematic illustrating Cas9 target site on Exon 5 of Daple (top). PCR of region flanking target 

site using genomic DNA from various cell clones from Cas9 selection (bottom). B) Representative 

mutations identified through TOPO-TA cloning and sequencing of amplicons in (A). C) DLD1 E-

type and R-type cell clones were fixed and stained for Daple (red). Scale bar, 25µm. D) Graph 

showing the volume of DLD1 E-type (+/+ and -/-) spheroids in panel E over time, as determined 

by ImageJ. E) Daple depleted DLD1 E-type and R-type cells were grown in agarose-coated plates 

for 7 days and serially imaged by light microscopy. Representative images of spheroids are 

shown. Scale bar, 1mm.  

 

  



 
 



Figure S4-Related to Figure 4. Validation of the Daple construct that was used in biotin 
proximity labeling.  
A) Schematic showing the domain composition of a myc-BirA-tagged Daple construct that was 

used for proximity labeling (Figure 5). B) HEK293T cells expressing myc-BirA-Daple were fixed 

and stained for Daple (red) or myc-tag (green) and analyzed by confocal microscopy. 

Representative images are shown. Scale bar, 25 µm. C) HEK293T cells were stained for 

endogenous Daple (red) and g-tubulin (green). Scale bar, 5 µm. Asterisk = pericentriolar 

localization; arrow = PM localization. D) GST-pulldown assays were carried out using GST-tagged 

PDZ domain of Dvl and lysates of HEK293T cells with exogenously expressed myc-BirA-Daple. 

Immunoblots show myc-BirA-Daple bound to GST-Dvl-PDZ and confirm expression in cell lysates 

used in interaction assay. E) Co-Immunoprecipitation assays were carried out on lysates of 

HEK293T cells exogenously expressing myc-BirA-Daple and Dvl using anti-myc IgG or control 

IgG. Immunoblots show interaction of myc-BirA-Daple and Dvl in cells and confirm expression in 

cell lysates (input).  

 

  



 
 



Figure S5-Related to Figure 5. Daple binds directly to mPDZ; the interaction is mediated 
via Daple’s PBM and the third PDZ module on mPDZ.  
A) Various GST-tagged PDZ domains on mPDZ were immobilized onto glutathione S transferase 

beads and used in an interaction assay with recombinant His-Daple-CT. Immunoblots show 

interaction of purified Daple-CT with the 3rd, but not the other PDZ modules of mPDZ. B) mPDZ 

domains were bound to beads, as in (A), and used to pulldown myc-Daple from HEK293T cells. 

Immunoblots show bound proteins and confirm expression of Daple in cell lysates used in binding 

assay (input).  

 

  



 
 



Figure S6-Related to Figure 6. Impact of Daple and its tyrosine phosphorylation on binding 
and localization of PARD3. 
A-B) GST-tagged PDZ domain of PARD3 (A) or Dvl (B) were immobilized onto glutathione S 

transferase beads and used in an interaction assay with recombinant His-Daple-CT WT, Y2023E, 

Y2023F, Y2025E, or Y2025F. Interaction was determined through immunoblotting for Daple. C) 
GST-tagged PDZ domains of PARD3 used to pulldown ectopically expressed full length Daple-

WT, Y2023E, Y2023F, Y2025E, Y2025F, Y2023/2025E, or Y2023/2025F in HEK293T cell 

lysates. Immunoblot for Daple show reveal loss of binding specifically in double 

phosphomimicking mutants. D) E-type (+/+) and E-type (-/-) cells were stained for Daple (red) and 

PARD3 (green). Scale Bar, 5µm. Right: RGB plot of indicated region in merge panels. E) Stable 

rescue lines of DLD1 E-type (-/-) cells expressing recombinant Daple-WT, DPBM, or 

Y2023/2025E were immunoblotted to determine expression levels. F) Stable lines, as described 

in F, were grown as spheroids as described in E and imaged on day 7. Selected regions show an 

inability to produce a compact spheroid and the presence of loose cells at the periphery. G) Stable 

rescue lines, as in F, were stained for Daple (red). Scale bar, 10µm. 

 
 

  



 



Figure S7-Related to Figure 7. Impact of E2024 on Daple’s ability to bind PDZ-domain 
containing proteins. 
A-B) GST-tagged Daple-PBM-WT, E2024A, and E2024K used to pulldown full length PARD3 (A) 

or Dvl (B) ectopically expressed in HEK293T cells. C) GST-tagged PDZ domain of PARD3, Dvl, 

or mPDZ (PDZ3) used to pulldown ectopically expressed full length Daple-WT, E2024A, or 

E2024K in HEK293T cell lysates. 
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Key Resource Table 
REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Rabbit polyclonal anti-Daple Millipore Sigma ABS515 

Rabbit polyclonal anti-phospho Daple 21st Century Biochemicals N/A 

Rabbit polyclonal anti-Gai3 (C-10) Santa Cruz Biotechnology N/A 

Rabbit polyclonal anti-ZO1 GeneTex GTX108613 

Rabbit polyclonal anti-ZO1 GeneTex GTX108627 

Rabbit polyclonal anti-PARD3 Proteintech 11085-1-AP 

Rabbit polyclonal anti-E-cadheren Santa Cruz Biotechnology sc-7870 

Rabbit polyclonal anti-b-tubulin Santa Cruz Biotechnology sc-9104 

Rabbit polyclonal anti-GM130 Cell Signaling Technology 12480S 

Mouse Monoclonal anti-occludin ThermoFisher Scientific 33-1500 

Mouse monoclonal anti-b-catenin Santa Cruz Biotechnology sc-7963 

Mouse monoclonal anti-GAPDH Santa Cruz Biotechnology sc-365062 



Mouse monoclonal anti-aE-catenin Santa Cruz Biotechnology sc-9988 

Mouse monoclonal anti-FLAG Millipore Sigma MAB3118 

Mouse monoclonal anti-FLAG (hybridoma) Purified in house N/A 

Mouse monoclonal anti-HIS GenScript A00186-100 

Mouse monoclonal anti-GST GenScript A00865 

Mouse monoclonal anti-Myc Cell Signaling Technology 2276S 

Mouse monoclonal anti-Myc (hybridoma) Purified in house N/A 

Mouse monoclonal anti-phosphotyrosine BD Biosciences 610000 

Mouse monoclonal anti-Dvl Santa Cruz Biotechnology sc-166303 

Mouse monoclonal anti-PARD3 Novus Biologicals MAB8030 

Mouse monoclonal anti-a-tubulin Santa Cruz Biotechnology sc-5286 

Goat anti-Rabbit IgG (680) LI-COR Biosciences 926-68071 

Goat anti-Rabbit IgG, Alexa Fluor 594 

conjugated 

ThermoFisher Scientific A11072 

Goat anti-Mouse IgG (800) LI-COR Biosciences 926-32210 

Goat anti-Mouse IgG, Alexa Fluor 488 

conjugated 

ThermoFisher Scientific A11017 

Biological Samples and Cell Lines 

DLD1 ATCC CCL-221 

CaCo-2 ATCC HTB-37 

Sw480 ATCC CCL-228 

MDCK ATCC CCL-34 

HeLa ATCC CCL-2 

HEK293T ATCC CRL-11268 

Colonoids (healthy normal) HUMANOID (Human organoid 

research Core, UCSD) 

n/a 

Chemicals, Recombinant Proteins, and Plasmids 

Streptavidin, Alexa Fluor® 680 conjugate ThermoFisher Scientific S21378 

Streptavidin, Alexa Fluor® 594 conjugate ThermoFisher Scientific S11227 

Streptavidin Magnetic Beads ThermoFisher Scientific 88816 

Biotin Sigma-Aldrich B4639-500MG 

DAPI (4',6-Diamidino-2-Phenylindole, 

Dilactate) 

Thermo Fisher Scientific D3571 

Fibronectin Thermo Fisher Scientific PHE0023 

TPA (12-O-Tetradecanoylphorbol 13-

acetate, PMA, Phorbol 12-myristate 13-

acetate) 

Sigma-Aldrich P1585 

pSpCas9(BB)-2A-Puro (PX459) V2.0 Addgene 62988 

pME-BirA This paper N/A 

p3E-Daple This paper N/A 

p3E-Daple-CT-WT (a.a. 1650-2028) This paper N/A 

p3E-Daple-CT-DPBM (a.a. 1650-2025) This paper N/A 

pcsDest2-BirA-Daple This paper N/A 

pDEST17-Daple- CT-WT (a.a. 1650-2028) This paper N/A 



pDEST17-Daple-CT-DPBM (a.a. 1650-

2025) 

This paper N/A 

pGEX-4T-Daple-CT-WT (a.a. 2000-2018) This paper N/A 

pGEX-4T-Daple-CT-DPBM (a.a. 2000-2018) This paper N/A 

pGEX-4T-Daple-CT-Y2023E (a.a. 2000-

2018) 

This paper N/A 

pGEX-4T-Daple-CT-Y2025E (a.a. 2000-

2018) 

This paper N/A 

pGEX-4T-Daple-CT-Y2023/2025E (a.a. 

2000-2018) 

This paper N/A 

pGEX-4T-Daple-CT-E2024A (a.a. 2000-

2018) 

This paper N/A 

pGEX-4T-Daple-CT-E2024K (a.a. 2000-

2028) 

This paper N/A 

pGEX-4T-Daple-CT-WT (a.a. 1650-2028) Aznar, et. al., 2015 N/A 

pET28b-Daple-CT-WT (a.a. 1650-2028) Aznar, et. al., 2015 N/A 

myc-pcDNA 3.1 (+) - Daple-WT (full length) Aznar, et. al., 2015 N/A 

myc-pcDNA 3.1 (+) - Daple-DPBM (full 

length) 

Aznar, et. al., 2015 N/A 

myc-pcDNA 3.1 (+) - Daple-FA (full length) Aznar, et. al., 2015 N/A 

myc-pcDNA 3.1 (+) - Daple-Y2025E (full 

length) 

Aznar, et. al., 2018 N/A 

myc-pcDNA 3.1 (+) - Daple-Y2025F (full 

length) 

Aznar, et. al., 2018 N/A 

myc-pcDNA 3.1 (+) - Daple-2YE (full length) Aznar, et. al., 2018 N/A 

myc-pcDNA 3.1 (+) - Daple-2YF (full length) Aznar, et. al., 2018 N/A 

pGEX-5X-1 mPDZ PDZ 1-13 Baliova M, et. al., 2014 N/A 

pcDNA3.1-N-term FLAG-PARD3 (full 

length) 

Peng Zhang, et. al., 2016 N/A 

pcDNA3.1-N-term FLAG-PARD3 (ΔPDZ 1) Peng Zhang, et. al., 2016 N/A 

pcDNA3.1-N-term FLAG-PARD3 (ΔPDZ 2) Peng Zhang, et. al., 2016 N/A 

pcDNA3.1-N-term FLAG-PARD3 (ΔPDZ 3) Peng Zhang, et. al., 2016 N/A 

GST-PARD3-1N Norimichi Itoh, et. al., 2010 N/A 

GST-PARD3-2N Norimichi Itoh, et. al., 2010 N/A 

GST-PARD3-3N Norimichi Itoh, et. al., 2010 N/A 

GST-PARD3-4N Norimichi Itoh, et. al., 2010 N/A 

GST-ZO-1 PDZ 1-3 Kris Meerschaert, et. al., 2009 N/A 

GST-ZO-1 PDZ 1 Kris Meerschaert, et. al., 2009 N/A 

GST-ZO-1 PDZ 2 Kris Meerschaert, et. al., 2009 N/A 

GST-ZO-1 PDZ 3 Kris Meerschaert, et. al., 2009 N/A 

GST-ZO-2 PDZ 1 Kris Meerschaert, et. al., 2009 N/A 

GST-ZO-2 PDZ 2 Kris Meerschaert, et. al., 2009 N/A 

GST-ZO-2 PDZ 3 Kris Meerschaert, et. al., 2009 N/A 

pGEX4T3-GIPC-PDZ Tal Varsano, et. al., 2012 N/A 

GST-mPDZ (PDZ 1 through 13) Martina Baliova, et. al., 2014 N/A 



Software 

ImageJ National Institute of Health https://imagej.net/Welcome 

DAVID 6.8 DAVID Bioinformatics Resources https://david.ncifcrf.gov/home.jsp 

String Snel B, et. al., 2000 string-db.org 

OncoLnc Anaya J. 2016 http://www.oncolnc.org 

Molsoft ICM v3.8-6 Molsoft LLC http://www.molsoft.com/index.html 

 

Cell culture and DLD1 E-type and R-type isolation 

All DLD1 cells were cultured using RMPI media containing 10% FBS. Cells were routinely 

passaged at a dilution of 1:5 to 1:10. HEK293T cells were cultured using DMEM media containing 

10% FBS and routinely passaged at a dilution of 1:10.  

 

For E-type and R-type isolation, parental stock of DLD1 cells were resuspended into single cells 

and plated sparsely onto 10cm tissue culture plates so that individual colonies can be picked. E-

type and R-type cells can be distinguished morphologically under microscope through analyzing 

the amount of light passing through between cells. Further validation of proper E-type and R-type 

isolation was confirmed through immunoblotting for a-catenin. 

 

Isolation, expansion and culture of organoids from human colons  

Intestinal crypts were isolated from the colonic tissue specimen by digesting with Collagenase 

type I [2 mg/ml; Life Technologies Corporation, NY) and cultured in stem-cell enriched conditioned 

media with WNT 3a, R-spondin and Noggin (Mahe et al., 2015, Sato et al., 2009, Miyoshi and 

Stappenbeck, 2013). Briefly, after digestion with Collagenase the crypts were filtered with a cell 

strainer and washed with DMEM/F12 with HEPES, supplemented with 10% FBS. After adding 

collagenase I solution containing gentamicin (50 µg/ml, Life Technologies Corporation, NY) and 

mixing thoroughly, the plate was incubated at 37° C inside a CO2 incubator for 10 min with 

vigorous pipetting between incubations and monitoring constantly by light microscopy to confirm 

by direct observation the dislodgement of the intestinal crypts from the tissues. The collagenase 

was inactivated with DMEM/F12 with HEPES, supplemented with 10% FBS and filtered using a 

70 µm cell strainer over a 50 ml centrifuge tube. Filtered tissue was spun down at 200xg for 5 

min, and the media was aspirated. The epithelial units were suspended in matrigel. Cell-matrigel 

suspension (15 µl) was placed at the center of the 24-well plate on ice and placed on the incubator 

upside-down for polymerization.  After 10 min, 500 μl of 50% conditioned media (CM) was added. 

CM was prepared from L-WRN cells [ATCC® CRL-3276™ (Miyoshi and Stappenbeck, 2013)] 

with Wnt3a, R-spondin and Noggin. Y27632 (ROCK inhibitor, 10 μM) and SB431542 (an inhibitor 



for TGF-β type I receptor, 10 μM) were added to the media. For human enteroids, additional 

supplements (purchased from Cell Applications Inc. San Diego, CA) were added to the above 

media. The medium was changed every 2-3 days and the enteroids were expanded as needed 

for experimentation. 

 

Immunofluorescence and Confocal Microscopy, Image analysis 

Cells or organoids were fixed at using -20°C methanol for 20 to 30 mins, rinse with PBS, then 

permeabilized for 1hr using blocking/permeabilization buffer (0.4% Triton X-100 and 2 mg/ml BSA 

dissolved in PBS). Primary antibody and secondary antibody were diluted in blocking buffer and 

incubation was carried out for 1 hr each. Coverslips were mounted using Prolong Gold (invitrogen) 

and imaged using a Leica SPE CTR4000 with a 63X objected and 1AU aperture. Where z-stacks 

was performed, images were taken at 0.5 µm slices.  

 

Image Processing 

All images were processed on ImageJ software (NIH) and assembled into figure panels using 

Photoshop and Illustrator (Adobe). RGB plots were generated by exporting ROI plot values and 

graphing into Excel (Microsoft). 

 

Cell Fractionation 

Cells expressing were harvested and suspended in homogenization buffer (10 mM sodium 

phosphate buffer [pH 7.2], 1 mM MgCl2, 30 mM NaCl, 1 mM DTT, and 0.5 mM 

phenylmethylsulfonyl fluoride, supplemented with protease and phosphatase inhibitors), and 

homogenized using a 30-gauge needle. Crude membranes from the homogenate were pelleted 

by centrifugation of post-nuclear supernatant at 100,000 × g for 60 min at 4°C in a TLA-41 fixed-

angle rotor in a TLA-100 table-top ultracentrifuge (Beckman Coulter, Krefeld, Germany). Pelleted 

membranes were washed in homogenization buffer before resuspension in cell lysis buffer 

containing 0.4% Tx-100.  

 

Immunoblotting 

For immunoblotting, protein samples were prepared in Laemmli sample buffer, separated by SDS-

PAGE and transferred onto 0.4µm PVDF membrane (Millipore). After transfer, membranes were 

blocked with 5% Non-fat milk or 5% BSA (for phosphoprotein blotting) in PBS. Primary antibodies 

were prepared in blocking buffer contain 0.1% Tween-20 and incubated with blots overnight at 



4°C. After primary antibody incubation, blots were incubated with secondary antibodies for one 

hour at room temperature and imaged using a Li-Cor Odyssey imaging system.  

 

Daple CRISPR/Cas9 Gene Editing and Validation 

Daple target genomic DNA sequence was cloned into PX-459 vector and transfected into DLD1 

cells. Puromycin was added to cells 30 hours post transfection for selection. When untransfected 

control plates showed 95 to 100% cell death, cells were washed with PBS and fresh media (with 

no puromycin) was added to allow cells to recover for 8 hours. Following recovery, cells were 

resuspended and plated sparsely onto 10 cm plates so that individual cell colonies could be picked 

into 12-well plates and screened for indels.  

 

In order to identify cell clones harboring mutations in gene coding sequence, genomic DNA was 

extracted using 50 mM NaOH and boiling at 95°C for 60mins. After extraction, pH was neutralized 

by the addition of 1.0 M Tris-pH 8.0 (10% volume). Crude genomic extract was then used in PCR 

reactions with primers flanking the protospacer adjacent motif (PAM) sequence. Amplicons were 

analyzed for indels using TBE-PAGE gels. Sequence of mutation was determined by cloning 

amplicons into sequencing vector using TOPO-TA cloning (Invitrogen). 

 

Transwell Migration Assay 

Transwell plates (24-well; 8.0 µm pore size; Corning) were used for chemotactic cell migration 

assays. Cells were trypsinized, resuspended in media containing no FBS, and placed into 

Transwells (200,000 cells/well). Transwells were then placed into plates containing no FBS and 

cells were allowed to settle for 30 mins. Inserts were then transferred into chambers containing 

2% FBS overnight to trigger chemotactic migration. For fixing and staining of cells, transwells 

were first rinsed with PBS, then fixed using 3% paraformaldehyde in PBS for 15 mins. After 

fixation, transwells was rinsed with PBS, then permeabilized using 100% methanol for 15 mins, 

followed by rinsing in distilled water. Staining of cells were carried about by submerging transwell 

membrane in a 2% crystal violet solution for 30 mins, then rinse using distilled water. Non-

migrated cells in upper chamber was removed using cotton swab.  

 

Anchorage-dependent and Anchorage-independent Colony Growth Assays 

Anchorage-dependent growth assays were monitored on regular tissue culture plastics. Cells 

were resuspended and plated at 1,000 cells per well in a 6-well plate and incubated for 



approximately 10 days in 10% FBS media. Cells were then fix and permeabilized using 100% 

methanol. Cells were stained with 2% crystal violet and then rinsed using distilled water.  

 

Anchorage-independent growth was performed by growing cells in a suspension of agar. A base 

layer of agar was prepared by dissolving 0.6% agarose in RPMI media containing 10% FBS, and 

then placing 3.0 ml of the solution into a 6.0 cm plate. Base layer was allowed to cool and set at 

room temperature for 1 hr before cell layer was added. For the cell layer, 5,000 cells were 

resuspended in 3.0 ml of 0.5% low melting agarose dissolved in RPMI media containing 10% FBS 

and then slowly placed on top of base layer with the precaution of avoiding air bubbles. Cell layer 

was allowed to cool and set at room temperature for 60 mins prior to transferring to 4°C for 10 

mins. Plates were then placed into 37°C incubator with 5% CO2 overnight, then 0.5 ml of RPMI 

media with 10% FBS was added on top and occasionally replaced to keep cells hydrated. Cells 

were grown for approximately 3 to 4 weeks. Cells were stained using 0.05% crystal violet 

dissolved in 10% ethanol. Staining solution was placed on cells for 60 mins at room temperature. 

Solution was then gently removed, and cells were washed several times with distilled water.  

 

For both aforementioned colony growth assays, images were acquired by light microscopy and 

colonies were counted using ImageJ (NIH).  

 

Measurement of trans-epithelial electrical resistance (TEER) 

TEER of DLD1 cells was measured by culturing cells on a 0.4 µm pore size 12-mm polycarbonate 

Transwell Filter (Corning) followed by measurements using an epithelial voltohmmeter (Millicel-

ERS resistance meter, Millipore). Cells were plated at approximately 1.5 X 105 cells per filter. 

Cells were grown for 5 days to allow for the establishment of a confluent monolayer.  

 

Biotin Proximity Labeling 

Cells were plated 24 hrs prior to transfection with Daple-BirA construct. Thirty hours post 

transfection, cells were incubated with 50 µM biotin for 16 hrs. Prior to lysis, cells were rinsed two 

times with PBS, then lysed by resuspending in lysis buffer containing (50 mM Tris, pH 7.4, 500 

mM NaCl, 0.4% SDS, 1 mM dithiothreitol, 2% Triton X-100, and 1× Complete protease inhibitor) 

and sonication. Cell lysates were then cleared through centrifugation at 20,000 X g for 20 mins. 

Supernatant was then collected and incubated with Streptavidin Dynabeads overnight at 4°C. 

Beads were then washed twice with 2% SDS, once with wash buffer 1 (0.1% deoxycholate, 1% 

Triton X-100, 500 mM NaCl, 1 mM EDTA, and 50 mM HEPES, pH 7.5), followed with once wash 



using wash buffer 2 (250 mM LiCl, 0.5% NP-40, 0.5% deoxycholate, 1 mM EDTA, and 10 mM 

Tris, pH 8.0), and once with 50mM Tris pH 8.0. Biotinylated complexes were then eluted using 

sample buffer containing excess biotin and heating to 100°C.  

 

For co-immunoprecipitation of protein-protein complexes from cell lysates, cells were first lysed 

in cell lysis buffer (20 mM HEPES, pH 7.2, 5 mM Mg-acetate, 125 mM K-acetate, 0.4% Triton X-

100, 1 mM DTT, 500 μM sodium orthovanadate, phosphatase inhibitor cocktail (Sigma-Aldrich) 

and protease inhibitor cocktail (Roche Life Science)) using a 28G syringe, followed by 

centrifugation at 10,000Xg for 10mins. Cleared supernatant was then used in binding reaction 

with immobilized GST-proteins for 4 hours at 4°C. After binding, bound complexes were washed 

four times with 1 ml phosphate wash buffer (4.3 mM Na2HPO4, 1.4 mM KH2PO4, pH 7.4, 137 

mM NaCl, 2.7 mM KCl, 0.1% (v:v) Tween 20, 10 mM MgCl2, 5 mM EDTA, 2 mM DTT, 0.5 mM 

sodium orthovanadate). Bound proteins were then eluted through boiling at 100°C in sample 

buffer. Prior to mass spectrometry identification, eluted samples were run on SDS-PAGE and 

proteins were extracted by in gel digest. 

 
In Gel Digest 

Protein digest and mass spectrometry was perform as previously described(Shevchenko et al., 

1996). The gel slices were cut to 1mm by 1 mm cubes and destained 3 times by first washing with 

100 ul of 100 mM ammonium bicarbonate for 15 minutes, followed by addition of the same volume 

of acetonitrile (ACN) for 15 minutes.  The supernatant was and samples were dried in a speedvac. 

Samples were then reduced by mixing with 200 µl of 100 mM ammonium bicarbonate-10 mM DTT 

and incubated at 56C for 30 minutes. The liquid was removed and 200 ul of 100 mM ammonium 

bicarbonate-55mM iodoacetamide was added to gel pieces and incubated at room temperature 

in the dark for 20 minutes. After the removal of the supernatant and one wash with 100 mM 

ammonium bicarbonate for 15 minutes, same volume of ACN was added to dehydrate the gel 

pieces. The solution was then removed and samples were dried in a speedvac. For digestion, 

enough solution of ice-cold trypsin (0.01 ug/ul) in 50 mM ammonium bicarbonate was added to 

cover the gel pieces and set on ice for 30 min. After complete rehydration, the excess trypsin 

solution was removed, replaced with fresh 50 mM ammonium bicarbonate, and left overnight at 

37°C. The peptides were extracted twice by the addition of 50 µl of 0.2% formic acid and 5 % ACN 

and vortex mixing at room temperature for 30 min. The supernatant was removed and saved. A 

total of 50 µl of 50% ACN-0.2% formic acid was added to the sample, which was vortexed again 

at room temperature for 30 min. The supernatant was removed and combined with the 



supernatant from the first extraction. The combined extractions are analyzed directly by liquid 

chromatography (LC) in combination with tandem mass spectroscopy (MS/MS) using 

electrospray ionization.  

 
LC-MS analysis 

Trypsin-digested peptides were analyzed by ultra high pressure liquid chromatography (UPLC) 

coupled with tandem mass spectroscopy (LC-MS/MS) using nano-spray ionization. The 

nanospray ionization experiments were performed using a Orbitrap fusion Lumos hybrid mass 

spectrometer (Thermo) interfaced with nano-scale reversed-phase UPLC (Thermo Dionex 

UltiMate™ 3000 RSLC nano System) using a 25 cm, 75-micron ID glass capillary packed with 

1.7-µm C18 (130) BEHTM beads (Waters corporation).  Peptides were eluted from the C18 column 

into the mass spectrometer using a linear gradient (5–80%) of ACN (Acetonitrile) at a flow rate of 

375 μl/min for 1h. The buffers used to create the ACN gradient were: Buffer A (98% H2O, 2% 

ACN, 0.1% formic acid) and Buffer B (100% ACN, 0.1% formic acid). Mass spectrometer 

parameters are as follows;  an MS1 survey scan using the orbitrap detector (mass range (m/z): 

400-1500  (using quadrupole isolation), 120000 resolution setting, spray voltage of 2200 V, Ion 

transfer tube temperature of 275 C, AGC target of 400000, and maximum injection time of 50 ms) 

was followed by data dependent scans (top speed for most intense ions, with charge state set to 

only include +2-5 ions, and 5 second exclusion time, while selecting ions with minimal intensities 

of 50000 at in which the collision event was carried out in the high energy collision cell (HCD 

Collision Energy of 30%), and the fragment masses where analyzed in the ion trap mass analyzer 

(With ion trap scan rate of turbo, first mass m/z was 100, AGC Target 5000 and maximum injection 

time of 35ms). Protein identification and label free quantification was carried out using Peaks 

Studio 8.5 (Bioinformatics solutions Inc.) 

 

Gene Ontology Analysis 

Identified proteins unique to plus biotin samples, but not in minus biotin samples, were analyzed 

using DAVID and functional annotation was grouped by INTERPRO protein domains for GO 

analysis. Classification with p-value less than 0.5 was set as significant.    

 

Recombinant Protein Purification 

Both GST and His-tagged proteins were expressed in E. coli stain BL21 (DE3) and purified as 

previously described. Briefly, cultures were induced using 1mM IPTG overnight at 25°C. Cells 

were then pelleted and resuspended in either GST lysis buffer (25 mM Tris-HCl, pH 7.5, 20 mM 



NaCl, 1 mM EDTA, 20% (vol/vol) glycerol, 1% (vol/vol) Triton X-100, 2×protease inhibitor cocktail) 

or His lysis buffer (50 mM NaH2PO4 (pH 7.4), 300 mM NaCl, 10 mM imidazole, 1% (vol/vol) Triton 

X-100, 2×protease inhibitor cocktail). Cells were lysed by sonication, and lysates were cleared by 

centrifugation at 12,000 X g at 4°C for 30 mins. Supernatant was then affinity purified using 

glutathione-Sepharose 4B beads (GE Healthcare) or HisPur Cobalt Resin (Thermo Fisher 

Scientific), followed by elution, overnight dialysis in PBS, and then storage at -80°C.  

 

In Vitro GST-Pulldown and In-cellulo Co-immunoprecipitation (CoIP) Assays 

Purified GST-tagged proteins from E. coli were immobilized onto glutathione-Sepharose beads 

and incubated with binding buffer (50 mM Tris-HCl (pH 7.4), 100 mM NaCl, 0.4% (v:v) Nonidet P-

40, 10 mM MgCl2, 5 mM EDTA, 2 mM DTT, 1X Complete protease inhibitor) for 60mins at room 

temperature. For GST-pulldown assays with recombinant proteins, the proteins were diluted in 

binding buffer and incubated with immobilized GST-proteins for 90mins at room temperature.  

 

In Vitro Kinase Assays 

In vitro kinase assays were performed using recombinant His-tagged Daple-CT (1650 to 2028) 

proteins purified from E. coli (BL21) and 50 ng of active GST-tagged recombinant Src Kinase 

(SignalChem, Canada). Substrates and kinase were mixed into tyrosine kinase buffer (60 mM 

HEPES pH 7.5, 5 mM MgCl2, 5 mM MnCl2, 3 μM sodium orthovanadate) and reaction was started 

by adding 1.0 mM ATP. Reactions was incubated at 25°C for 60 mins, and then used in 

subsequent pulldown assays or terminated using Laemmli Sample Buffer or boiling at 100°C. 

 

Spheroid Formation and Radial Migration Assays on Fibronectin 

Spheroids were produced by adding 4,000 cells into a 96-well plate precoated with 1% agarose 

and grown for 5 days, when well defined spheroids and necrotic core can be observed. For 

migration assay, the spheroids were transferred on coverslips coated with fibronectin (5 µg/ml) 

and the extent of radial migration was measured after 24 hrs by serial imaging of the spheroid by 

light microscopy. The area of migration was assessed by measuring surface area covered by 

cells and subtracting surface area of spheroids. Polarization towards the free-edge, and away 

from the tumor spheroid, was determine by the position of the Golgi towards the free-edge.  

 
Molecular modeling 

A structure of mouse PARD3 (PDZ3) with the C-terminus of mouse Cadherin-5 (QEELII, PDB 

2koh (Tyler et al., 2010)), and a structure of human mPDZ (PDZ3) with the C-terminus of the PM 



Ca-transporting ATPase 4 (ETSV, PDB 2iwn (Elkins et al., 2007)) were used as docking 

templates. The Daple PBM peptide (2021-VWYEYGCV-2028) was modeled ab initio. Although 

many PDZ domains recognize their target PBM peptides via a canonical anti-parallel b-sheet 

interaction with alternating residue backbone H-bonding pattern, this is not the case for Dvl (e.g. 

PDB 3cbx (Zhang et al., 2009)). Consequently, the published model of Dvl2 in complex with Daple 

PBM (Aznar et al., 2018) featured a kink in the peptide backbone. In this work, we explored the 

possibility of a similar kink in the complexes of Daple PBM with PARD3 (PDZ3) and mPDZ 

(PDZ3). For this, three options for H-bonding pattern between the backbones of the peptide and 

the target PDZ domain were tested by the modeling procedure: one skipping Daple V2028/hn 

bonding to Dvl I280/o (which corresponds to PARD3 V603/o and mPDZ I389/o), another skipping 

Daple Y2025/o and G2026/o bonding to Dvl I282/hn (which corresponds to PARD3 V605/hn and 

mPDZ I391/hn), and the third without H-bond skipping. For each H-bonding pattern, soft harmonic 

distance restraints were imposed between backbone atoms of Daple PBM peptide and the 

corresponding backbone atoms of the target PDZ domain. After this, the system consisting of the 

fully flexible peptide and the PDZ domain with flexible side-chains was thoroughly sampled using 

biased probability Monte Carlo sampling in internal coordinates as implemented in ICM(Abagyan 

and Totrov, 1994). The objective function included full-atom van der Waals term calculated using 

the Lennard-Jones potential and capped at 20 kcal/mol, hydrogen bonding term, electrostatics, 

torsional strain, and a penalty for the backbone distance restraints. Multiple poses generated by 

the docking procedure for each target domain were merged in a single list and rank-ordered by 

the predicted energy excluding the distance restraint penalty. Top-scoring conformation of each 

complex was selected for further analysis. 

 
Statistical Analysis and Replicates 

Graphs comparing E-type and R-type, with or without Daple, are represented as the mean ± 

standard error of the mean (SEM). Student’s t-test was used to determine significance with P 

values of < 0.05 set as the threshold for statistical significance. Where statistical analysis was 

performed, experiments were performed in triplicates. 
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