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ABSTRACT OF THE THESIS

Taming the Long Tail of Deep Probabilistic Forecasting

by

Mayank Sharan

Master of Science in Computer Science

University of California San Diego, 2023

Professor Rose Yu, Chair

Deep probabilistic forecasting is gaining attention across numerous applications. From

weather prognosis, electricity consumption estimation, traffic flow prediction, to autonomous

vehicle trajectory prediction. However, existing approaches focus on improving on average

metrics without addressing the long-tailed distribution of errors. This thesis identifies long

tail behavior in the error distribution of state-of-the-art deep learning methods for probabilistic

forecasting. We analyze potential sources and explanations for this behavior. Further, we

present two loss augmentation methods to mitigate tailedness pf error distributions: Pareto

Loss and Kurtosis Loss. Both methods modify the loss using the concept of moments to

penalize higher loss samples. Kurtosis Loss uses a symmetric measure, the fourth moment,

xi



while Pareto Loss uses an asymmetric measure of right-tailedness and models loss using a

Generalized Pareto Distribution (GPD). We demonstrate the performance of our methods on

several real-world datasets, including time series and spatiotemporal trajectories, achieving

significant improvements on tail error metrics, while maintaining and even improving upon

average error metrics.
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Introduction

Probabilistic forecasting is one of the most fundamental problems in time series and

spatiotemporal data analysis, with broad applications in energy, finance, and transportation. Deep

learning models [Li et al., 2019, Salinas et al., 2020, Rasul et al., 2021a] have emerged as state-

of-the-art approaches for forecasting rich time series and spatiotemporal data with uncertainty. In

several forecast competitions, such as the M5 forecasting competition [Makridakis et al., 2020],

Argoverse motion forecasting challenge [Chang et al., 2019], and IARAI Traffic4cast contest

[Kreil et al., 2020], almost all the winning solutions are based on deep neural networks.

Despite encouraging progress, we observe that the forecasting error for deep learning

models has long-tail behavior. This means that a significant amount of samples are very difficult

to forecast. These samples have errors much larger than the average. Figure 1 visualizes an

example of long-tail behavior for a motion forecasting task. Existing works often measure

forecasting performance by averaging across test samples. However, average performance

measured by metrics such as root mean square error (RMSE) or mean absolute error (MAE) can

be misleading. A low RMSE or MAE may indicate good average performance, but it does not

prevent the model from behaving disastrously in critical scenarios.

From a practical perspective, the long-tail behavior in forecasting error is alarming.

In motion forecasting, the long tail could correspond to crucial events in driving, such as

turning maneuver and sudden stops. Failure to accurately forecast in these scenarios would

pose paramount safety risks in route planning. In electricity forecasting, these high errors could

be during short circuits, power outages, grid failures, or sudden behavior changes. Focusing

solely on average performance would ignore the electric load anomalies, significantly increasing

1



Figure 1. Log-log error distribution plot for trajectory prediction on the ETH-UCY dataset
using SoTA (Traj++EWTA). We see the long tail in error upto 2 orders of magnitude higher
than the average. Also shown is a tail sample with predictions from our method(teal) and
Traj++EWTA(purple).

maintenance and operational costs.

Long-tailed learning is heavily studied in classification settings, with a focus on class

imbalance. There is also rich literature for heavy-tailed time series [Kulik and Soulier, 2020].

However, long tail there usually refers to distribution of the data, not distribution of the error. We

refer the reader to Table 2 in [Menon et al., 2020] and the survey paper [Zhang et al., 2021] for a

complete review. Most common approaches to address the long-tail data distribution include post-

hoc normalization [Pan et al., 2021], data resampling [Chawla et al., 2002, Torgo et al., 2013],

loss engineering [Lin et al., 2017, Lu et al., 2018], and learning class-agnostic representations

[Tiong et al., 2021]. These approaches implicitly assume strong correspondence between data

and error. Hence, they are not directly applicable to forecasting, as we do not have pre-defined

classes or the prediction error before training. [Makansi et al., 2021] observed similar long-tail

error in trajectory and proposed to use Kalman filter prediction performance to measure sample

2



difficulty. However, Kalman filter is a different model class and its difficulties do not translate to

deep neural networks used for forecasting.

In this paper, we address the long-tail behavior in prediction error for deep probabilistic

forecasting. We present two loss augmentation methods: Pareto Loss and Kurtosis Loss. Kurtosis

Loss is based on a symmetric measure of tailedness as a scaled fourth moment of a distribution.

Pareto Loss uses the Generalized Pareto Distribution (GPD) to fit the long-tailed error distri-

bution. The GPD can be described as a weighted summation of shifted moments, which is an

asymmetric measure of tailedness. We investigate these measurements as loss regularization and

reweighting approaches for probabilistic forecasting tasks. We achieve significantly improved

tail performance compared to the base model and baselines. Interestingly, we also observe better

average performance in most settings.

In summary, our contributions are

• We identify long-tail behavior in forecasting error for deep probabilistic models.

• We investigate principled approaches to address this long-tail behavior and propose two

novel methods: Pareto Loss and Kurtosis Loss.

• We significantly improve the tail errors on four real world forecasting tasks, including two

time series and two spatiotemporal trajectory forecasting datasets.

3



Chapter 1

Background

This chapter aims to provide some background and a gentle introduction to some key

components of this work. Hopefully, this serves as a bridge of understanding for the uninitiated.

1.1 Forecasting models

Simply put, forecasting is making predictions for the future based on past and present

data. Forecasting tasks are based on types of data from simple to complex. One of the simplest

examples is predicting the next day of the week given the current day of the week. Since, this

follows a strict set of rules it hardly seems like a prediction and more of a certainty. However,

there are much more uncertain settings such as forecasting stock prices, the trajectory of a vehicle

or weather.

Figure 1.1. An illustration of what a forecast might look like

4



Figure 1.1 illustrates a sample forecast. Here the x axis is the different time steps at

which the data is recorded and y axis is the value of the metric. The blue line is the behavior of

the metric in the past and using that pattern we have made a prediction for the future timestemps

shown as the green line. The data corresponding to the blue line is called the history and the

data corresponding to the green line is called the forecast. The number of time steps for which a

forecast is generated is known as the forecasting horizon. Forecasting is used for a wide range of

applications. To name a few

• Economic forecasting such as inflation, GDP to guide monetary policy

• Energy forecasting to plan for generation and integrating renewable power

• Safety related such as earthquake prediction, flood forecasting

• Weather forecasting and meteorology for a wide range of usages

The class of methods tasked with producing these forecasts can be broadly categorized

into qualitative and quantitative methods. Qualitative methods rely on subjective judgement

and are often applicable in very specialized settings. Our focus here is to examine quantitative

methods which generate forecasts as a function of past data and are known as forecasting models.

These models can be as simple as moving averages to complex frameworks such as ARIMA or

neural networks.

1.2 Probabilistic models

Events in the real world often have uncertainty associated with them. Models can be

divided two categories based on the type of predictions they make. Point prediction models

and probabilistic prediction models. Probabilistic models provide a lot more information than a

point model does. They provide an expected prediction and a distribution for that prediction so

that confidence intervals can be built and the user of the model has more information regarding
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the range of outcomes to expect. On the other hand point models provide a single prediction

outcome which is often the maximum likelihood prediction as per the model. For example,

if your food delivery app tells you that your food is expected at a certain time that is a point

prediction. However, if it gives you range from the earliest likely time of arrival to the latest

likely time of arrival or, in a very mathematically inclined world, a gaussian distribution of the

expected delivery time delivery, that would be a probabilistic prediction.

Probabilistic models are often more complex and require more data to learn than point

models. Nevertheless, their nature often demands their usage in situations where guarantees

and confidence intervals are needed. They are used for fault detection, traffic monitoring, robot

control, speech recoognition, forecasting and much more.

1.3 Deep Probabilistic Forecasting models

Neural networks have been around since the 1940s. With improvements in compute

power and numerous breakthroughs they have grown to find widespread application in pattern

recognition and mathematical modeling. Over the last decade or so neural networks with multiple

hidden layers or large number of parameters have established new performance benchmarks in

a diverse set of machine tasks, often surpassing human performance. These models are called

deep neural networks and the associated field is known as deep learning.

Forecasting models that use deep neural network architectures to generate probabilistic

forecasts are known as deep probabilistic forecasting models. They are the state of the art

in numerous forecasting settings. These models however do have certain limitations that we

discover, analyze and mitigate in this work.
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Chapter 2

Related Work

2.1 Deep probabilistic forecasting

There is a flurry of work on probabilistic forecasting using deep neural networks.

A common practice is to combine classic time series models with deep learning, resulting

in DeepAR [Salinas et al., 2020], Deep State Space [Rangapuram et al., 2018], Deep Factors

[Wang et al., 2019] and normalizing Kalman Filter [de Bézenac et al., 2020]. Others introduce

normalizing flow [Rasul et al., 2021b], denoising diffusion [Rasul et al., 2021a] and particle fil-

ter [Pal et al., 2021] to deep learning. For probabilistic trajectory forecasting, a few recent

works propose to approximate the conditional distribution of future trajectories given the

past with explicit parameterization [Tang and Salakhutdinov, 2019, Luo et al., 2020], CVAE

[Sohn et al., 2015, Lee et al., 2017, Salzmann et al., 2020] or implicit models such as GAN

[Gupta et al., 2018, Liu et al., 2019a]. Nevertheless, most existing works focus on average

performance, the issue of long-tail in error distribution is largely overlooked in the community.

2.2 Long-tailed learning

The main efforts to address the long-tail in error in learning revolve around reweigh-

ing, resampling, loss function engineering, and two-stage training, but mainly for classifica-

tion. Rebalancing during training is done in the form of synthetic minority oversampling

[Chawla et al., 2002], oversampling with adversarial examples [Kozerawski et al., 2020], in-
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verse class frequency balancing [Liu et al., 2019b], balancing using effective number of samples

[Cui et al., 2019], or balance-oriented mixup augmentation [Xu et al., 2021].

Another direction involves post-processing in form of either normalized calibration

[Pan et al., 2021] or logit adjustment [Menon et al., 2020]. An important direction is loss

modification approaches such as Focal Loss [Lin et al., 2017], Shrinkage Loss [Lu et al., 2018],

and Balanced Meta-Softmax [Ren et al., 2020]. Others use two-stage training [Liu et al., 2019b,

Cao et al., 2019] or separate expert networks for the imbalance [Zhou et al., 2020, Li et al., 2020,

Wang et al., 2021].

We refer the readers to [Zhang et al., 2021] for an extensive survey. [Tang et al., 2020] in-

dicated SGD momentum can contribute to the aggravation of the long-tail problem and suggested

de-confounded training to mitigate its effects. [Feldman, 2020, Feldman and Zhang, 2020] per-

formed theoretical analysis and suggested label memorization in a long-tail distribution as a

necessity for the network to generalize.

2.3 Imbalanced Regression

A few methods were developed for imbalanced regression. Many approaches are modifi-

cations of SMOTE (Synthetic Minority Oversampling Technique), such as, adapted to regression

SMOTER [Torgo et al., 2013], augmented with Gaussian Noise SMOGN [Branco et al., 2017],

or [Ribeiro and Moniz, 2020] extending for the prediction of extremely rare values.

[Steininger et al., 2021] proposed DenseWeight, a method based on Kernel Density Esti-

mation for better assessment of the relevance function for sample reweighing. [Yang et al., 2021]

proposed a distribution smoothing over label (LDS) and feature space (FDS) for imbalanced

regression. [Prasad et al., 2018, Zhu and Zhou, 2021] worked on robust regression approaches

applicable to point forecast. GARCH [Bollerslev, 1986] and AFTER [Cheng et al., 2015] ad-

dressed heavy-tailed error in forecasting but both are statistical models, and not applicable to

deep learning.
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A concurrent work is [Makansi et al., 2021] where they also notice the long-tail error

distribution for trajectory prediction. They use Kalman filter [Kalman, 1960] performance as a

difficulty measure and propose contrastive learning to mitigate the tail problem. However, the

tail samples of Kalman Filter differ from that of deep learning models.

Most methods in long-tailed learning operate on known heavy-tailedness in data, whereas

our focus is to mitigate the unknown long tail in the error distribution of test samples without

any specific assumption on the data distribution. This is essential to our problem setting and

techniques.
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Chapter 3

Methodology

We first identify the long-tail error distribution in probabilistic forecasting. Then, we

propose two novel methods, Pareto Loss and Kurtosis Loss, to mitigate the long tail in error.

3.1 Long-tail in probabilistic forecasting

Given input xt ∈ Rdin and output yt ∈ Rdout respectively, probabilistic forecasting task

aims to predict the conditional distribution of future states y = (yt+1, . . . ,yt+h) given current and

past observations x = (xt−k, . . . ,xt) as:

p(yt+1, . . . ,yt+h|xt−k, . . . , ,xt) (3.1)

where k is the length of the history and h is the prediction horizon. The maximum

likelihood prediction –mean when the predicted distribution is a Gaussian– can be denoted as

ŷ = (ŷt+1, . . . , ŷt+h).

Long tailed error distributions for deep learning models manifest in numerous real

world datasets. This is evident in four benchmark forecasting datasets studied in this work

(Time series: Electricity [Dua and Graff, 2017], Traffic [Dua and Graff, 2017]; Trajectory: ETH-

UCY [Pellegrini et al., 2009, Lerner et al., 2007], nuScenes [Caesar et al., 2020]). Figure 3.1

shows the long-tailed error distribution for time series datasets for DeepAR [Salinas et al., 2020]
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Figure 3.1. Log-log error distribution plots. Time series datasets (upper half) use DeepAR,
trajectory datasets (bottom half) use Traj++EWTA. This clearly illustrates the long tail in error
distribution.

and for trajectory datasets using Trajectron++EWTA [Makansi et al., 2019]. We follow the

literature and use Normalized deviation (ND) and Final Displacement Error (FDE) to measure

the performance. Log scale is used to improve the visibility of the tail.

We also observe that the samples forming the tail in error vary across methods and even

across different runs of the same model. For example, we trained 2 DeepAR [Salinas et al., 2020]

models on the same Electricity forecasting dataset from UCI repository [Dua and Graff, 2017].

We observe that the sets of samples with the top 5% error values have only 3.5% samples

common to both models. This shows that the tail in the data does not necessarily correspond to

the tail in error. We do further experiments to validate this hypothesis. They are discussed in
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Section 4.2.2 and Section 5.1.

The fact that it is impossible to identify a fixed set of tail samples means that we

cannot simply reweigh ( [Cui et al., 2019, Fan et al., 2017]) or resample ( [Torgo et al., 2013,

Branco et al., 2017]) these samples before training. The variation of tail samples between models

also invalidates the approach taken by [Makansi et al., 2021]. Mitigating the long tail in error

requires an approach that is independent of the data distribution and is adaptive during training.

Thus, we propose using tail-sensitive loss augmentations that adapt the model to also improve on

samples with tail errors.

3.2 Pareto Loss

Long tail distributions naturally lend themselves to analysis using Extreme Value Theory

(EVT). EVT [McNeil, 1997] shows that long tail behavior of a distribution can be modeled as a

generalized Pareto distribution (GPD). The probability distribution function (pdf) of the GPD is:

f(ξ ,η ,µ)(a) =
1
η

(
1+ξ

(
a−µ

η

))−( 1
ξ
+1)

⇒ f(ξ ,η)(a) =
(

1+
ξ a
η

)−( 1
ξ
+1)

(3.2)

where the parameters are location (µ), scale (η) and shape (ξ ). Without loss of generality,

µ can be set to 0. We can drop the scaling term 1
η

as the pdf will be scaled using a hyperparameter.

The idea behind our Pareto Loss is to fit the GPD pdf in (3.2) to the final loss distribution

and use it to increase the emphasis placed on the tail samples during training. We denote the loss

function of a given model, base loss, as l. In probabilistic forecasting, a commonly used loss is

Negative Log Likelihood (NLL) loss: li =− log(p(y(i)|x(i))) where ⟨x(i),y(i)⟩ is the ith training

sample.

Our goal is to reduce the long-tail error measured by, e.g. MSE. This means that using

NLL to fit the GPD might not lead to the intended prioritization of samples. Thus, we propose

using an auxiliary loss l̂, which is better correlated with the evaluation metric used, to fit the
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GPD. The choice of auxiliary loss is completely up to the model designer and could be the base

loss itself in settings where it correlates well with the evaluation metric. See Appendix F for

further details.

There are two main classes of loss augmentation methods to mitigate tail errors: regular-

ization [Ren et al., 2020, Makansi et al., 2021] and reweighting [Lin et al., 2017, Lu et al., 2018,

Yang et al., 2021]. Inspired by these, we propose two variations of the Pareto Loss using the

GPD fitted on l̂: Pareto Loss Margin (PLM) and Pareto Loss Weighted (PLW).

PLM is based on margin-based regularization [Ren et al., 2020, Liu et al., 2016], which

assigns larger additive penalties to tail samples using the fitted GPD. For a given hyperparameter

λ , PLM is defined as,

lplm = l +λ ∗ rplm(l̂), rplm(l̂) = 1− f(ξ ,η)(l̂) (3.3)

An alternative is to reweigh the loss terms using the fitted GPD. For a given λ , PLW is

defined as,

lplw = wplw(l̂)∗ l, wplw(l̂) = 1−λ ∗ f(ξ ,η)(l̂) (3.4)

3.3 Kurtosis Loss

Use cases requiring higher emphasis on the extreme tail need an even more skewed

measure of heavy-tailedness. For such cases we propose using Kurtosis, which is the scaled

fourth moment relative to its mean. It assesses the propensity of a distribution to have extreme

values within its tails. To increase the emphasis on tail samples, we use this measure as a

margin-based regularization term in our proposed Kurtosis Loss. For a given hyperparameter λ

and using the same notations as Sec.3.2, Kurtosis Loss is defined as,

lkurt = l +λ ∗ rkurt(l̂), rkurt(l̂) =

(
l̂ −µl̂

σl̂

)4

(3.5)
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where µl̂ and σl̂ are the mean and standard deviation of the auxiliary loss (l̂) for a batch

of samples.

We do not use a reweighting based approach with kurtosis as there is no upper bound

to the kurtosis value. This could lead to convergence issues due to very high weights for some

samples.

3.4 Connection between Pareto and Kurtosis Loss

Kurtosis Loss and Pareto Loss are both based on moments of a distribution. Pareto

Loss is a weighted sum of shifted moments, while Kurtosis Loss is the scaled fourth moment.

Specifically, let b = ξ a
η

and c =−( 1
ξ
+1), then the Taylor expansion for the GPD pdf in (3.2) is,

(1+b)c = 1+ cb+
c(c−1)

2!
b2 +

c(c−1)(c−2)
3!

b3 + · · · (3.6)

For c < 0 or equivalently ξ <−1 or ξ > 0, the coefficients are positive for even moments

and negative for odd moments (odd and even powers of b). Even moments are always symmetric

and positive, whereas odd moments are positive only for right-tailed distributions. Since we use

the negative of the pdf, it yields an asymmetric measure of the right-tailedness of the distribution.

Kurtosis Loss uses the fourth moment. This is a symmetric and positive measure. GPD

and kurtosis are visualized in Appendix E. Kurtosis emphasizes extreme values in the tail.

Our experiments also show that it is more effective in controlling the extremes in the error

distribution.
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Chapter 4

Experiments

We evaluate our methods on multiple benchmark datasets from two probabilistic fore-

casting tasks: time series forecasting (1D) and trajectory prediction (2D).

4.1 Setup

4.1.1 Datasets

For time series forecasting, we use electricity and traffic datasets from the UCI ML

repository [Dua and Graff, 2017] used in [Salinas et al., 2020] as benchmarks. We also generate

numerous synthetic 1D time series datasets to further our understanding of the potential causes

of long tail distribution. We generate 4 different sets of datasets which will be described in the

following sections.

For trajectory prediction, we use two benchmark datasets: a pedestrian trajectory dataset

ETH-UCY (which is a combination of ETH [Pellegrini et al., 2009] and UCY [Lerner et al., 2007]

datasets) and a vehicle trajectory dataset nuScenes [Caesar et al., 2020]. Further details regard-

ing the datasets are available in Appendix A.

4.1.2 Baselines

We compare with SoTA baselines in long tail mitigation for different tasks:

• Contrastive Loss: [Makansi et al., 2021] uses contrastive loss as a regularizer to group
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examples together. The grouping is based on Kalman Filter prediction errors as a measure

of sample difficulty.

• Label Distribution Smoothing (LDS): [Yang et al., 2021] uses a symmetric kernel to

smooth the label distribution and use its inverse to reweigh the loss terms.

• Shrinkage Loss: [Lu et al., 2018] uses a sigmoid-based function to reweigh loss terms.

This deprioritizes lower loss values.

• Focal Loss: [Lin et al., 2017] uses L1 loss to reweigh the loss terms. Additional power of

the loss term increases the steepness of the loss function.

Focal Loss, Shrinkage Loss, and LDS were originally proposed for classification and/or

regression and required adaptation to be applied to the forecasting task. See Appendix B for

details.

4.1.3 Evaluation Metrics

We use metrics in accordance with literature [Walters et al., 2021, Salzmann et al., 2020,

Makansi et al., 2021]: Average Displacement Error (ADE), which is the average L2 distance

between total predicted trajectory and ground truth, and Final Displacement Error (FDE) which

is the L2 distance for the final timestep. For time series forecasting, we use the metrics

from DeepAR [Salinas et al., 2020] and use Normalized Deviation (ND) and Normalized Root

Mean Squared Error (NRMSE). We also report Continuous Ranked Probability Score (CRPS)

[Gneiting and Ranjan, 2011] for the time series datasets, a more suitable metric for probabilistic

forecasting.

Apart from the above-mentioned average performance metrics, we introduce metrics to

capture the tail errors. We adapt the Value-at-Risk (VaR (4.1)) tail metric from financial domain:

VaRα(E) = inf{e ∈ E : P(E ≥ e)≤ 1−α} (4.1)
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VaR at level α ∈ (0,1) is the smallest error e such that the probability of observing error

greater than e is less than 1−α , where E is the error distribution. This evaluates to the α th

quantile of the error distribution. We measure VaR at three different levels: 0.95, 0.98, and

0.99. Additionally, we report the maximum error representing the worst-case performance. We

present tail metrics on the complete error distribution as there is no fixed set of tail samples

across different methods (See Section 3.1).
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Figure 4.1. Top Row: Ground truth distribution for synthetic datasets. Middle Row: ND error
distribution using AR. Bottom Row : ND error distribution using DeepAR. Datasets (L to R):
Sine, Gaussian, Pareto. Note: the x-axes for plots in the same column or y-axes for plots in the
same row are not for the same range of values.
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4.2 Synthetic Dataset Experiments

4.2.1 Different distribution datasets

To understand the impact of long tail data on long tail in error, we perform experiments

on three synthetic datasets. These datasets are generated using different base distributions to

get different degrees of tail in data. We generate Sine, Gaussian and Pareto datasets. The task

is to forecast 8 steps ahead given a history of 8 time steps. We use AutoRegression (AR) and

DeepAR [Salinas et al., 2020] as models to perform this task. The top row in Figure 4.1 shows

that among the datasets, only Gaussian and Pareto exhibit tail in the data distribution. The data

distribution is available here because the datasets were generated synthetically.

On the Sine dataset, we observe long tail error for DeepAR but not for AR. This is

especially significant as there is no long tail in the data distribution. On Gaussian and Pareto

datasets, DeepAR leads to a heavier tail than AR, suggesting that the long tail in data also

contributes to long tail in error. The difference between AR and DeepAR error distributions also

invalidates the assumption made by [Makansi et al., 2021]. Using the prediction performance

from Kalman Filter is not a good indicator of sample tailedness for deep neural networks. The

complete results for these datasets are available in appendix L.

4.2.2 1-step Forecasting

The results we get in Section 4.2.1 while interesting are not conclusive. There are

numerous factors that can lead to the outcomes, which we do not control. Such as, since we are

forecasting for 8 time steps, certain sequences may be more unlikely which may not be reflected

in a simple data distribution. So for clearer insights we designed 1-step forecasting experiments.

The task is to forecast 1 step ahead given a history of 7 time steps. This design takes away

confounding factors and allows us to examine the exact prediction distribution vs the error.

Another factor that complicates our previous experiment is the complexity of the history.

We do not control how complex or varied the history data in each time series is. This could also
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impact whether the model is able to predict well. So we generated 3 sets of datasets with different

history complexities. The first set (same-history) has identical sinusoidal history for all series

in the dataset. This is a sanity check dataset as for the same input, the model would predict the

same value and we would see the tail in error directly correspond to the tail in data. The second

set (different-sine) has different sinusoidal histories for each series in the dataset. Sinusoid is a

fixed sequential function and thus relatively easier to model. The third set (different-gaussian)

has different autoregressive histories for each series in the dataset generated using Gaussian

sampling. These histories are a bit more difficult to model than a sinusoidal series as they are

generated using sampling.

The final factor is the tailedness of the data we need to predict. We use different

distributions to simulate different severities of tail in data in Section 4.2.1. However, it is better

to use the same distribution and have different tail lengths to ensure that similar structure in

data is maintained. To this end, we generate 5 different datasets in each set (same-history,

different-sine, and different-gaussian) using different generalized pareto distributions to sample

the point to be predicted. These pareto distributions have different shape parameters and scaling

ratios to generate data with different severities of tail. The percentile measures for each of these

distributions is shown in Table 4.1 which illustrates the difference in severity of tail in data. The

shape of these distributions is shown in Figure 4.2.

Table 4.1. Data statistics for the different pareto distributions used to generate the point to predict
for 1-step forecasting datasets. The median stays similar across all distributions however the
percentiles above 90 increase significantly. This is due to the longer tail of the distribution.

DISTRIBUTION NAME SHAPE RATIO MEDIAN 90th %TILE 95th %TILE 99th %TILE

PARETO 0.1 3 0.1 3 0.64 1.39 1.60 1.91
PARETO 0.1 2 0.1 2 0.70 1.97 2.33 2.87
PARETO 0.1 1 0.1 1 0.70 2.47 3.33 5.74
PARETO 0.3 1 0.3 1 0.75 3.13 4.57 9.65
PARETO 0.5 1 0.5 1 0.80 4.02 6.43 17.3
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Figure 4.2. Data distribution for the prediction point generated using different generalized pareto
distributions. Top Row: Pareto 0.1 3, Pareto 0.1 2; Middle Row: Pareto 0.1 1, Pareto 0.3 1;
Bottom Row: Pareto 0.5 1. The increasing severity of the tail can be seen in these plots.

Details of the generation process for these datasets can be found in Appendix G. We use

DeepAR [Salinas et al., 2020] as the model to perform the forecasting tasks in this experiment

for consistency with other experiments. We examine the error distribution across the different

factors of history complexity and prediction data tail length to gain a better understanding of the

phenomenon. The results for these experiments are presented and discussed in Section 5.1.
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4.3 Real-World Experiments

4.3.1 Time Series Forecasting

We present average and tail metrics using ND and NRMSE for the time series forecasting

task on electricity and traffic datasets in Tables 5.2 and 5.3 respectively. All methods use

DeepAR [Salinas et al., 2020], one of the SoTA in probabilistic time series forecasting, as the

base model. The task for both datasets is to use a 1-week history (168 hours) to forecast for 1

day (24 hours) at an hourly frequency. The base model exhibits long tail behavior in error on

both datasets (see Figure 3.1). The tail of the error distribution is significantly longer for the

traffic dataset as compared to the electricity dataset. This is evident from comparing the tail error

values to the average error. The auxiliary loss used here is MAE to correlate with L1 metrics like

ND. DeepAR can have intrinsic variation on re-training so results in Table 5.2 are averaged over

3 runs.

4.3.2 Trajectory Forecasting

We present experimental results on ETH-UCY and nuScenes datasets in Tables 5.4 and

5.5 respectively. Following [Salzmann et al., 2020] and [Makansi et al., 2021] we calculate

model performance based on the best out of 20 guesses. On both datasets, we compare with

several long-tail baselines using Trajectron++EWTA [Makansi et al., 2021] as a base model due

to its SoTA average performance on these datasets. The auxiliary loss used here is MAE with

MSE to correlate with L2 metrics like ADE and FDE.
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Chapter 5

Results and Discussion

5.1 1-step Forecasting Experiments

For each of the 1-step forecasting datasets we analyze ND error and the Spearman

Correlation coefficient between the error and the pdf of the prediction point data. The intent is to

examine the effect the long tail of data has on the long tail of error. We choose to analyze this

with ND error as it is linear with respect to the prediction label making the analysis clearer.

5.1.1 Same-History Datasets

These datasets are designed to establish a baseline and a sanity check for long tail

behavior. Since the history is identical for all series the predictions made by the model will be as

well. This leads to linearly increasing error on either side of the prediction. The prediction label

vs ND error plots (Figure 5.1) show this.

5.1.2 Different-Sine Datasets

These datasets are designed to compare tail errors across distributions given simple

sinusoidal histories. As expected, the prediction by the model is not identical for different

samples. This leads to variation in error for similar prediction labels. The relation between label

and error is not as simple as for the Same-History datasets (Section 5.1.1) but roughly follows

the same pattern. The prediction label vs ND error plots are available in Figure 5.2.
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Figure 5.1. Prediction label vs ND error for the same history datasets. Top Row: Pareto 0.1 3,
Pareto 0.1 2, Pareto 0.1 1; Bottom Row: Pareto 0.3 1, Pareto 0.5 1. We can see that the error
directly corresponds to the label as the model makes identical predictions.
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Figure 5.2. Prediction label vs ND error for the different sine datasets. Top Row: Pareto 0.1 3,
Pareto 0.1 2, Pareto 0.1 1; Bottom Row: Pareto 0.3 1, Pareto 0.5 1. We can see that the error
has some correspondence to the label but with variation. We see higher variance in datasets with
shorter tail.
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5.1.3 Different-Gaussian Datasets

These datasets are designed to generate histories more complex than the sinuosoidal ones.

More complex histories introduces further variation in error for similar labels reducing the direct

relation between the label and error. This is illustrated in the prediction label vs ND error plots

shown in Figure 5.3.
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Figure 5.3. Prediction label vs ND error for the different gaussian datasets. Top Row:
Pareto 0.1 3, Pareto 0.1 2, Pareto 0.1 1; Bottom Row: Pareto 0.3 1, Pareto 0.5 1. The corre-
spondence of error to the label while still there is much lower. We see much higher variance in
datasets with shorter tail.

5.1.4 Correlating Long tails in Data and Error

We are looking to quantify the impact of long tail in data on the long tail in error. This

quantification can be achieved by computing correlation between the two. The correlation

between the pdf of the prediction label and the corresponding error would represent this relation.

Rarer samples or ones with lower pdf should have higher errors and vice versa. This relation

however is not necessarily linear. This leads to the choice of computing the Spearman correlation

coefficient between the pdf of the labels and the ND error. Since we expect error to increase
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for lower pdf values the correlation will be negative and more negative values represent higher

correlation. The results of this analysis are present in Table 5.1

Table 5.1. Spearman correlation coefficient values between label pdf and ND error for 1-step
forecast datasets. The correlation is higher for longer tail datasets and reduces as we make the
history more complex.

DISTRIBUTION NAME SAME-HISTORY DIFFERENT-SINE DIFFERENT-GAUSSIAN

PARETO 0.1 3 -0.192 -0.232 -0.222
PARETO 0.1 2 -0.371 -0.379 -0.475
PARETO 0.1 1 -0.419 -0.427 -0.514
PARETO 0.3 1 -0.505 -0.493 -0.454
PARETO 0.5 1 -0.798 -0.774 -0.628

We can see that the correlation between pdf and error increases as the length of the tail

increases. We can also see that different-gaussian has significantly lower correlation in the longer

tail datasets than different-sine or same-history. This shows that with complex histories which

are typical for real world datasets we can expect long tail in data to explain some part of the long

tail in error. However, most correlations are lower than 0.5 in magnitude indicating that there are

other factors contributing to the long tail in error as well.

This is the reason why we choose to mitigate the long tail in error directly rather than

attempt improvements by adjusting for the long tail in data. The long tail in data is not only hard

to identify in complex settings like time series forecasting but as illustrated by our experiments

not sufficient to understand the problem either. Approaches focusing on long tail error are

agnostic to the cause of the error and work to reduce the long tail in error irrespective. In contrast,

methods focusing on long tail in data limit the improvements to only the long tail in error caused

by the long tail in data but not the other factors.
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Table 5.2. Performance on Electricity Dataset (ND/NRMSE/CRPS). All our methods improve
on the average as well as tail metrics. Baseline methods are worse on average and inconsistent
on the tail. All methods use DeepAR as the base model. Results indicated as Top 3 and Best.
All results have been averaged across 3 runs with different seeds, standard deviation available in
Appendix I

METHOD METRIC MEAN↓ VaR95 ↓ VaR98 ↓ VaR99 ↓ MAX↓

BASE MODEL ND 0.0600 0.0793 0.2251 0.4356 4.2777
NRMSE 0.3069 0.0991 0.2533 0.5430 5.5994

CRPS 142 463 1138 1996 30705

CONTRASTIVE LOSS ND. 0.0696 0.0954 0.2419 0.4646 4.5286
NRMSE 0.3345 0.1138 0.2778 0.5504 5.6761

CRPS 167 521 1266 2363 31835

FOCAL LOSS ND 0.0639 0.0859 0.2505 0.4456 4.3217
NRMSE 0.3110 0.1062 0.2922 0.5342 5.4843

CRPS 150 474 1195 2103 30224

SHRINKAGE LOSS ND 0.0673 0.0888 0.2328 0.4568 4.5911
NRMSE 0.3247 0.1103 0.2871 0.5213 5.6334

CRPS 156 480 1199 2240 28398

LDS ND 0.0632 0.0920 0.2287 0.4620 3.8626
NRMSE 0.2980 0.1152 0.2790 0.5322 5.0126

CRPS 151 496 1185 2110 29959

KURTOSIS LOSS (OURS) ND 0.0578 0.0827 0.2132 0.4044 3.6565
NRMSE 0.2801 0.1023 0.2564 0.4958 4.7673

CRPS 140 455 1105 1952 26946

PLM (OURS) ND 0.0580 0.0791 0.2018 0.3990 3.7827
NRMSE 0.2897 0.1011 0.2396 0.4844 5.0230

CRPS 141 449 1111 2044 28992

PLW (OURS) ND 0.0581 0.0793 0.2191 0.3917 3.5673
NRMSE 0.2789 0.1013 0.2569 0.4973 4.7328

CRPS 140 454 1099 1953 26273

5.2 Real World Experiments

5.2.1 Cross-task consistency

As shown in Tables 5.2, 5.3, 5.4 and 5.5, our proposed approaches, Kurtosis Loss and

PLM, are the only methods improving on tail metrics across all tasks. Our methods typically
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Table 5.3. Performance on the Traffic Dataset (ND/NRMSE/CRPS). PLM (Ours) delivers best
overall results, improving on average and tail metrics. Among baseline methods, contrastive loss
is most consistent. Regularization methods in general fare better than re-weighting methods due
to a very long tail. All methods use DeepAR as the base model. Results indicated as Top 3 and
Best

METHOD METRIC MEAN↓ VaR95 ↓ VaR98 ↓ VaR99 ↓ MAX↓

BASE MODEL ND 0.1741 0.6866 25.5840 32.1330 84.1582
NRMSE 0.4465 1.2283 6.0283 7.5988 18.8103

CRPS 0.0068 0.0211 0.0412 0.0691 0.8524

CONTRASTIVE LOSS ND 0.2052 0.7463 24.3737 30.5117 81.1716
NRMSE 0.4667 1.2956 5.7747 7.2342 18.3360

CRPS 0.0079 0.0235 0.0450 0.0802 0.8517

FOCAL LOSS ND 0.4903 1.1553 26.7537 30.1506 52.8272
NRMSE 0.7302 1.6485 6.5880 7.3660 13.7985

CRPS 0.0183 0.0463 0.0639 0.0933 0.8471

SHRINKAGE LOSS ND 0.2431 0.8380 25.3381 32.9147 85.2713
NRMSE 0.5114 1.3099 6.0418 7.8882 19.0771

CRPS 0.0093 0.0316 0.0511 0.0732 0.8573

LDS ND 0.4763 1.4781 28.9162 38.4263 126.5733
NRMSE 0.7829 1.8702 6.8826 9.2061 27.3684

CRPS 0.0175 0.0564 0.0802 0.1074 0.8530

KURTOSIS LOSS (OURS) ND 0.2022 0.7653 25.3752 31.4677 62.9173
NRMSE 0.4892 1.4072 6.0263 7.3369 13.7783

CRPS 0.0081 0.0243 0.0409 0.0682 0.8491

PLM (OURS) ND 0.1594 0.7115 24.5911 30.331 90.3169
NRMSE 0.4600 1.3881 5.6779 7.0033 20.5736

CRPS 0.0065 0.0185 0.0429 0.0822 0.8463

PLW (OURS) ND 0.3751 1.0495 25.4471 31.6621 65.759
NRMSE 0.6238 1.4914 6.0552 7.3491 13.8938

CRPS 0.0126 0.0361 0.0501 0.0716 0.8571

deliver 10-15% improvement on tail metrics and sometimes as high as 40% (See Appendix H).

These are significant improvements with no sacrifice on average performance for any task. In

fact, in some tasks our methods have better average performance as well.

The generality of our methods is shown by their success on all studied tasks. Our tasks

have different base models (DeepAR, Trajectron++EWTA), data representations (1D: Time
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Table 5.4. Macro-averaged performance on the ETH-UCY Dataset (ADE/FDE). Our approaches
improve tail performance better than existing baselines. The improvements are most significant
for far-future prediction (FDE). PLM improves well across prediction horizon (ADE). All
methods utilize Trajectron++EWTA as the base model. Results indicated as Top 3 and Best.

METHOD MEAN↓ VaR95 ↓ VaR98 ↓ VaR99 ↓ MAX↓

BASE MODEL 0.16/0.33 0.43/1.05 0.60/1.53 0.76/1.89 1.63/3.95
CONTRASTIVE 0.17/0.34 0.43/1.03 0.62/1.56 0.79/1.89 1.67/4.02
FOCAL LOSS 0.16/0.32 0.40/0.89 0.54/1.28 0.66/1.57 1.50/3.50
SHRINKAGE LOSS 0.16/0.33 0.43/1.05 0.58/1.50 0.74/1.84 1.66/3.95
LDS 0.17/0.35 0.44/1.04 0.57/1.45 0.78/1.86 1.69/3.85
KURTOSIS LOSS (OURS) 0.17/0.34 0.46/0.98 0.59/1.25 0.67/1.47 1.22/2.77
PLM (OURS) 0.16/0.30 0.38/0.81 0.52/1.20 0.63/1.49 1.30/3.20
PLW (OURS) 0.21/0.36 0.46/0.84 0.55/1.08 0.63/1.32 1.25/2.93

Table 5.5. Average performance on the nuScenes Dataset (ADE/FDE). Our methods improve
tail performance for far-future prediction (FDE) better than existing baselines. All methods
utilize Trajectron++EWTA as the base model. Results indicated as Top 3 and Best.

METHOD MEAN↓ VaR95 ↓ VaR98 ↓ VaR99 ↓ MAX↓

BASE MODEL 0.19/0.34 0.65/1.49 1.00/2.49 1.32/3.34 7.07/11.42
CONTRASTIVE 0.19/0.35 0.65/1.51 1.01/2.58 1.36/3.46 6.82/10.48
FOCAL LOSS 0.19/0.33 0.56/1.09 0.85/1.95 1.11/2.65 6.55/11.71
SHRINKAGE LOSS 0.19/0.32 0.62/1.32 0.96/2.31 1.25/3.17 6.39/10.26
LDS 0.19/0.32 0.62/1.26 0.94/2.23 1.20/2.99 5.20/10.53
KURTOSIS LOSS (OURS) 0.20/0.38 0.65/1.35 0.85/1.82 1.03/2.27 5.39/7.52
PLM (OURS) 0.19/0.33 0.62/1.32 0.95/2.31 1.25/3.18 6.10/10.96
PLW (OURS) 0.24/0.37 0.60/1.00 0.82/1.49 1.01/2.01 7.51/9.91

series, 2D: Trajectory), base losses (GaussianNLL for Time series, EWTA for Trajectory), and

forecasting horizons. Our methods provide consistent improvement on tail metrics for all tasks.

In comparison, Focal Loss performs well on trajectory datasets but fails on time series datasets.

Contrastive Loss only performs well on Traffic dataset. LDS and Shrinkage Loss do not compare

to the best results for any dataset and perform worse than the base model on the time series

datasets.

We illustrate some difficult examples, examples with large errors common across methods,
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for all real world datasets in Figure 5.4 to demonstrate the improvement in the quality of forecast

for our methods.

5.2.2 Re-weighting vs Regularization

As mentioned in Section 3.2, we can categorize loss modifying methods into two classes:

re-weighting (Focal Loss, Shrinkage Loss, LDS and PLW) and regularization (Contrastive Loss,

PLM and Kurtosis Loss). Re-weighting multiplies the loss for tail samples with higher weights.

Regularization adds higher regularization values for samples with higher loss.

We notice that re-weighting methods perform worse as the long-tail in error worsens. In

scenarios with longer tails, the weights of tail samples can be very high. Overemphasizing tail

examples might hamper the learning for other samples. Notice the significantly worse average

performance of Focal loss for the traffic dataset in Table 5.3. Shrinkage Loss limits this issue by

bounding the weights but fails to show tail improvements in longer tail scenarios (electricity and

traffic datasets). Our proposed PLW is the best reweighting method on most datasets, likely due

to bounded weights.

In contrast, regularization methods are consistent across all tasks on both tail and average

metrics. The additive nature of regularization limits the impact tail samples have on the learning.

This enables these methods to handle different severities of long-tail without degrading the

average performance.

5.2.3 Choosing between PLM and Kurtosis Loss

Kurtosis Loss performs better on extreme tail metrics, VaR99 and Max. Higher kurtosis

puts more emphasis on extreme samples in the tail. It is also important to note that the magnitude

of kurtosis varies significantly for different distributions, making the choice of hyperparameter

(See (3.5)) critical. Further analysis available in Appendix D.

PLM is the most consistent method across all tasks. As noted by [McNeil, 1997] GPD is

well suited to model long tail error distributions. PLM rewards examples moving away from the
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tail towards the mean with significantly lower margin values. PLM margin values saturate beyond

a point in the tail providing similar penalties for long-tail samples. Comparatively, Kurtosis

Loss is sensitive to extreme samples in the tail. This shows in performance with Kurtosis Loss

performing better on VaR99 and Max, and PLM performing better on VaR95 and VaR98. The

choice between the methods depends on the objective. If the preference is to mitigate extreme

samples, then Kurtosis Loss is better. Otherwise, if the preference is to improve on the tail

overall, then PLM is better.

5.2.4 Tail error and long-term forecasting

Based on the trajectory prediction results in Tables 5.4 and 5.5 we observe that the error

reduction for tail samples is more visible in FDE than in ADE. This indicates that the magnitude

of the observed error increases with the forecasting horizon. The error compounds through

prediction steps making far-future predictions inherently more difficult. Larger improvements

in FDE indicate that both Kurtosis and Pareto Loss ensure that high tail errors (stemming from

large, far-future prediction errors measured by FDE) are decreased.

Accurate long-term forecasting is a central goal of deep probabilistic forecasting. As we

can see in Figure 5.5, the tail of error distribution is more pronounced with longer horizons.

Thus, methods addressing the tail performance are necessary in order to ensure the practical

applicability and reliability of future long-term prediction models.
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Figure 5.4. Visualization of overlapping tail samples for Electricity (top row left half), Traffic
(top row right half), ETH-UCY (bottom row left half) and nuScenes (bottom row right half)
datasets. The shaded region represents the confidence interval of the prediction. The difficulty
here is a departure from historical behavior. This manifests as sudden increases or decreases in
the 1D time series datasets and as high velocity trajectories with sharp turns for the trajectory
datasets. These samples represent critical events in real world scenarios where the performance
of the model is of utmost importance. Our methods perform significantly better on such samples.
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Figure 5.5. Distribution of the top 5% error values (FDE) for different horizons for the ETH-
UCY (Zara1) dataset. Predictions obtained using Trajectron++EWTA. The trend shows that the
long tail in error gets worse as the forecasting horizon increases due to compounding.
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Chapter 6

Conclusion

We identify and address the problem of long-tail in error distribution for deep probabilistic

forecasting. We propose Pareto Loss (Margin and Weighted) and Kurtosis Loss, two novel

moment-based loss augmentation approaches, increasing emphasis on tail samples adaptively.

We demonstrate their practical effects on two spatiotemporal trajectory datasets and two time

series datasets using different base models. Our methods achieve significant improvements on

tail metrics over existing baselines without degrading average performance. Both proposed losses

can be easily integrated with existing approaches in deep probabilistic forecasting to improve

their performance on tail metrics.

Future directions include more principled ways to tune hyperparameters, extensions

to deterministic time series forecasting models, and theoretical analysis for the source of the

long-tail error. Based on our observations, we suggest evaluating tail metrics apart from average

performance in machine learning tasks to identify potential long tail issues across different tasks

and domains.
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Appendix A

Dataset description

The ETH-UCY dataset consists of five subdatasets, each with Bird’s-Eye-Views: ETH,

Hotel, Univ, Zara1, and Zara2. We present macro-averaged 5-fold cross-validation results in our

experiment section, as is common in the literature [Makansi et al., 2021, Salzmann et al., 2020].

The nuScenes dataset includes 1000 scenes of 20 second length for vehicle trajectories recorded

in Boston and Singapore.

The electricity dataset contains electricity consumption data for 370 homes over the

period of Jan 1st, 2011 to Dec 31st, 2014 at a sampling interval of 15 minutes. We use the

data from Jan 1st, 2011 to Aug 31st, 2011 for training and data from Sep 1st, 2011 to Sep 7th,

2011 for testing. The traffic dataset consists of occupancy values recorded by 963 sensors at a

sampling interval of 10 minutes ranging from Jan 1st, 2008 to Mar 30th, 2009. We use data from

Jan 1st, 2008 to Jun 15th, 2008 for training and data from Jun 16th, 2008 to Jul 15th, 2008 for

testing. Both time series datasets are downsampled to 1 hour for generating examples.

The synthetic datasets are generated as 100 different time series consisting of 960

time steps. Each time series in the Sine dataset is generated using a random offset θ and a

random frequency ν both selected from a uniform distribution U [0,1]. Then the time series is

sin(2πνt +θ) where t is the index of the time step. Gaussian and Pareto datasets are generated

as order 1 lag autoregressive time series with randomly sampled Gaussian and Pareto noise

respectively. Gaussian noise is sampled from a Gaussian distribution with mean 1 and standard
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deviation 1. Pareto noise is randomly sampled from a Pareto distribution with shape 10 and

scaling 1.
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Appendix B

Method adaptation

Time Series forecasting

DeepAR uses Gaussian Negative Log Likelihood as the loss which is unbounded. Due

to this many baseline methods need to be adapted in order to be usable. For the same reason,

we also need an auxiliary loss (l̂). We use MAE loss to fit the GPD, calculate kurtosis, and to

calculate the weight terms for Focal and Shrinkage loss. For LDS we treat all labels across time

steps as a part of a single distribution. Additionally, to avoid extremely high weights (O(108)) in

LDS due to the nature of long tail we ensure a minimum probability of 0.001 for all labels.

Trajectory forecasting

We adapt Focal Loss and Shrinkage Loss to use EWTA loss [Makansi et al., 2019] in

order to be compatible with Trajectron++EWTA base model. LDS was originally proposed for a

regression task and we adapt it to the trajectory prediction task in the same way as for the time

series task. We use MAE to fit the GPD, due to the Evolving property of EWTA loss.
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Appendix C

Implementation details

Time Series forecasting

We use the DeepAR implementation from https://github.com/zhykoties/TimeSeries as

the base code to run all time series experiments. The original code is an AWS API and not

publicly available. The implementation of contrastive loss is taken directly from the source code

of [Makansi et al., 2021].

Trajectory forecasting

For the base model of Trajectron++EWTA [Makansi et al., 2021] we have used the

original implementation provided by the original authors. The implementation of contrastive

loss is taken directly from the source code of [Makansi et al., 2021].

The experiments have been conducted on a machine with 7 RTX 2080 Ti GPUs.
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Appendix D

Hyperparameter Tuning

We observe during our experiments that the performance of Kurtosis Loss is highly

dependent on the hyperparameter λ (See (3.5)). Results for different values of λ on the electricity

dataset for Kurtosis Loss are shown in TableD.1. We also show the variation of ND and NRMSE

with the hyperparameter value in Figure D.1. We can see that there is an optimal value of the

hyperparameter and the approach performs worse with higher and lower values.

For both ETH-UCY and nuScenes datasets we have used λ = 0.1 for Kurtosis Loss,

and λ = 1 for PLM and PLW. For both electricity and traffic datasets, we use λ = 1 for PLM,

λ = 0.5 for PLW and λ = 0.01 for Kurtosis Loss.
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Table D.1. Electricity Dataset evaluation for base model (ND/NRMSE) and different Kurtosis
Loss hyperparameters. The value of λ is denoted in [] with the method name. The base model is
DeepAR. Results indicated as Best and Better than base model

METHOD METRIC MEAN↓ VAR95 ↓ VAR98 ↓ VAR99 ↓ MAX↓

BASE MODEL ND 0.0584 0.0796 0.2312 0.4429 4.1520
NRMSE 0.2953 0.0972 0.2595 0.5263 5.4950

KURTOSIS LOSS [0.001] ND 0.0581 0.0815 0.2087 0.3936 4.2381
NRMSE 0.3046 0.1014 0.2325 0.4756 5.7144

KURTOSIS LOSS [0.005] ND 0.0574 0.0767 0.2147 0.4138 3.6767
NRMSE 0.2843 0.0999 0.2617 0.4792 5.0062

KURTOSIS LOSS [0.01] ND 0.0567 0.0842 0.2151 0.4120 3.2738
NRMSE 0.2631 0.1046 0.2732 0.4779 4.2613

KURTOSIS LOSS [0.1] ND 0.0677 0.0954 0.2269 0.4579 3.8772
NRMSE 0.3073 0.1184 0.2768 0.5419 5.1345
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Figure D.1. Left: Variation of ND by hyperparameter for Kurtosis Loss. Right: Variation of
NRMSE by hyperparameter for Kurtosis Loss.
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Appendix E

Pareto and Kurtosis

Figure E.1 illustrates different GPDs for different shape parameter values. Higher shape

value models more severe tail behavior.
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Appendix F

Auxiliary loss

In this section, we present mathematical intuition behind the usage of auxiliary loss in our

methods. We will examine a setting where the base loss for a probabilistic model is GaussianNLL

loss and the evaluation metric is MSE. For simplicity, we will assume 1-step prediction on 1D

data however the analysis can be easily extended to multi step prediction and multi dimensional

data.

Consider 2 training samples,

Past observations : x(1) = (x(1)t−k, . . . ,x
(1)
t ); x(2) = (x(2)t−k, . . . ,x

(2)
t )

1-step prediction ground truth : y(1) = (y(1)t+1); y(2) = (y(2)t+1)

Model prediction : µ
(1)
t+1,σ

(1)
t+1; µ

(2)
t+1,σ

(2)
t+1

We will drop t+1 from the notation for simplicity and clarity as there is only one step

prediction. Since, the maximum likelihood prediction for a gaussian is the mean, the MSE is

calculated using the predicted mean.

MSE : (y(i)−µ
(i))2 (F.1)

The GaussianNLL loss is calculated as the negative log likelihood of the ground truth as

per the predicted distribution. Simplifying the expression gives us,

GaussianNLL loss : ln(σ (i)
√

2π)+
1
2

(
y(i)−µ(i)

σ (i)

)2

(F.2)
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We want to determine the conditions under which the GaussianNLL loss will be higher

for sample 1 as compared to sample 2 while the MSE for sample 2 will be higher than sample 1

or vice versa. We will call this a loss-metric inversion. This condition can be written as:

(GaussianNLL(1)−GaussianNLL(2))(MSE(1)−MSE(2))< 0 (F.3)

Consider the scenario where, MSE(1) > MSE(2). This can be expressed as,

(y(1)−µ
(1))2 = k(y(2)−µ

(2))2 where k > 1 (From (F.1)) (F.4)

The corresponding condition to satisfy is,

(GaussianNLL(1)−GaussianNLL(2))< 0 (From (F.3))

=⇒ ln(
σ (1)

σ (2)
)+

1
2

(y(1)−µ(1)

σ (1)

)2

−

(
y(2)−µ(1)

σ (2)

)2
< 0 (From (F.2))

=⇒ 1
2
(y(2)−µ

(2))2
(

k
σ (1)2 −

1
σ (2)2

)
< ln(

σ (2)

σ (1)
) (From (F.4))

Consider, σ (1) = cσ (2), where c > 0

1
2

(
y(2)−µ(2)

σ (2)

)2(
k
c2 −1

)
< ln(

1
c
)

For simplicity let’s represent 1
2

(
y(2)−µ(2)

σ (2)

)2
as a single variable m.

m
(

k
c2 −1

)
+ ln(c)< 0

For a fixed k the minima for the LHS is achieved for c =
√

2km. The value of the LHS at

minima is,
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2
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e2m−1

)
Since the numerator in the log form is linear in m and the denominator is exponential in

m the minima can be less than zero for suitable values of m.

This shows that there can be pairs of samples with loss-metric inversion. This means

that regularization and reweighting values can be completely different from intended unless

an auxiliary loss is used, which preserves the order w.r.t. the evaluation metric. This lack of

correlation is illustrated in Fig F.1 for the DeepAR model on the electricity dataset.
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Figure F.1. Comparing GaussianNLL loss to Normalized Deviation metric for DeepAR on
the electricity dataset. We can see that there are a large number of samples which have high
GaussianNLL but low ND and vice versa. This illustrates the need of an auxiliary loss for correct
emphasis on samples.
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Appendix G

1-Step Forecast Dataset Generation

For each dataset we generated 4000 training samples and 1000 test samples. Each sample

consisted of 7 history points generated using either a sinusoidal process or

G.1 Sinusoidal History Generation

Sinusoidal time series is quite simple to generate. We randomly sample parameters from

uniform distribution and then use a mixture of sin and cos with those parameters to generate the

data at different timesteps. The parameters and their ranges are:

• 4 ≤ period (pd) ≤ 20

• 0 ≤ phase (ph) ≤ π

• 0 ≤ weight (w) ≤ 1

The generation equation is,

xt = w(sin(
2πt
pd

+ ph))+(1−w)(cos(
2πt
pd

+ ph))

For the same-history datasets we generate a single history with a randomly picked set of

parameters while for the different-sine datasets we generate a different set of parameters for each

series to be generated.
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G.2 Gaussian History Generation

Gaussian time series data is generated as follows:

xt+1 = 0.5∗ xt +gs

where

gs ∼ N (1,1)

We set the mean to be 1 so that most sampled values are positive. Additionally, to

generate the first point in the time series we use the same equation where as we do not have x−1

we instead use a randomly picked value from a uniform distribution on [0,1]

G.3 Pareto Label Generation

The labels for all datasets are sampled from a pareto distribution. This is relatively

straightforward. For a given shape ξ , we use the pareto distribution with pdf,

f (x,ξ ) = (1+ξ x)−
ξ+1

ξ

For different ratios, to reduce the length of the tail we divide all samples greater than a

threshold (much higher than the median) by the ratio. This reduces the length of the tail without

altering the median much or significantly changing the shape of the distribution.
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Appendix H

Percentage Improvements

We present percentage improvements compared to the base model for the different

datasets.

Table H.1. Percentage improvements over the base method (DeepAR) on Electricity Dataset
(ND/NRMSE). Results indicated as error reduction (green) and increase (red) in %.

METHOD METRIC MEAN↓ VaR95 ↓ VaR98 ↓ VaR99 ↓ MAX↓

CONTRASTIVE LOSS ND 15.94 20.26 7.43 6.67 5.86
NRMSE 8.99 14.79 9.66 1.24 1.37

FOCAL LOSS ND 6.44 8.32 11.27 2.30 1.03
NRMSE 1.34 7.16 15.34 1.72 2.06

SHRINKAGE LOSS ND 12.17 11.94 3.42 4.86 7.33
NRMSE 5.80 11.26 13.33 4.10 0.61

LDS ND 5.28 16.06 1.57 6.06 9.71
NRMSE 2.90 16.21 10.13 2.10 10.48

KURTOSIS LOSS (OURS) ND 3.72 4.33 5.29 7.16 14.52
NRMSE 8.72 3.16 1.21 8.80 14.86

PLM (OURS) ND 3.28 0.21 10.36 8.40 11.57
NRMSE 5.58 1.98 5.41 10.89 10.29

PLW (OURS) ND 3.22 0.00 2.68 10.09 16.61
NRMSE 9.10 2.19 1.42 8.52 15.48
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Table H.2. Percentage improvements over the base method (DeepAR) on Traffic Dataset
(ND/NRMSE). Results indicated as error reduction (green) and increase (red) in %.

METHOD METRIC MEAN↓ VaR95 ↓ VaR98 ↓ VaR99 ↓ MAX↓

CONTRASTIVE LOSS ND 17.86 8.70 4.73 5.05 3.55
NRMSE 4.52 5.48 4.21 4.80 2.52

FOCAL LOSS ND 181.62 68.26 4.57 6.17 37.23
NRMSE 63.54 34.21 9.28 3.06 26.64

SHRINKAGE LOSS ND 39.63 22.05 0.96 2.43 1.32
NRMSE 14.54 6.64 0.22 3.81 1.42

LDS ND 173.58 115.28 13.02 19.59 50.40
NRMSE 75.34 52.26 14.17 21.15 45.50

KURTOSIS LOSS (OURS) ND 16.14 11.46 0.82 2.07 25.24
NRMSE 9.56 14.56 0.03 3.45 26.75

PLM (OURS) ND 8.44 3.63 3.88 5.61 7.32
NRMSE 3.02 13.01 5.81 7.84 9.37

PLW (OURS) ND 115.45 52.85 0.54 1.47 21.86
NRMSE 39.71 21.42 0.45 3.29 26.14

Table H.3. Percentage improvements over the base method (Trajectron++EWTA) on ETH-UCY
Dataset (ADE/FDE). Results indicated as error reduction (green) and increase (red) in %.

METHOD MEAN↓ VaR95 ↓ VaR98 ↓ VaR99 ↓ MAX↓

CONTRASTIVE 6.25/3.03 0.00/1.90 3.33/1.96 3.95/0.00 2.45/1.77
FOCAL LOSS 0.00/3.03 6.98/15.24 10.00/16.34 13.16/16.93 7.98/11.39
SHRINKAGE LOSS 0.00/0.00 0.00/0.00 3.33/1.96 2.63/2.65 1.84/0.00
LDS 6.25/6.06 2.33/0.95 5.00/5.23 2.63/1.59 3.68/2.53
KURTOSIS LOSS (OURS) 6.25/3.03 6.98/6.67 1.67/18.30 11.84/22.22 25.15/29.87
PLM (OURS) 0.00/9.09 11.63/22.86 13.33/21.57 17.11/21.16 20.25/18.99
PLW (OURS) 31.25/9.09 6.98/20.00 8.33/29.41 17.11/30.16 23.31/25.82
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Table H.4. Percentage improvements over the base method (Trajectron++EWTA) on nuScenes
Dataset (ADE/FDE). Results indicated as error reduction (green) and increase (red) in %.

METHOD MEAN↓ VaR95 ↓ VaR98 ↓ VaR99 ↓ MAX↓

CONTRASTIVE 0.00/2.94 0.00/1.34 1.00/3.61 3.03/3.59 3.54/8.23
FOCAL LOSS 0.00/2.94 13.85/26.85 15.00/21.69 15.91/20.66 7.36/2.54
SHRINKAGE LOSS 0.00/5.88 4.62/11.41 4.00/7.23 5.30/5.09 9.62/10.16
LDS 0.00/5.88 4.62/15.44 6.00/10.44 9.09/10.48 26.45/7.79
KURTOSIS LOSS (OURS) 5.26/11.76 0.00/9.40 15.00/26.91 21.97/32.04 23.76/34.15
PLM (OURS) 0.00/2.94 4.62/11.41 5.00/7.23 5.30/4.79 13.72/4.03
PLW (OURS) 26.32/8.82 7.69/32.89 18.00/40.16 23.48/39.82 6.22/13.22
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Appendix I

Electricity Dataset Standard Deviation

Due to space limitations we were not able to report std dev across the 3 runs for the

electricity dataset. We present the same in Table I.1.
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Table I.1. Std deviation of results for Electricity Dataset (ND/NRMSE/CRPS). All results have
been computed across 3 runs with different seeds. Results corresponding to Table 5.2.

METHOD METRIC MEAN↓ VaR95 ↓ VaR98 ↓ VaR99 ↓ MAX↓

BASE MODEL ND 0.0023 0.0024 0.0060 0.0258 0.1092
NRMSE 0.0102 0.0033 0.0057 0.0407 0.0919

CRPS 2 13 27 69 178

CONTRASTIVE LOSS ND 0.0075 0.0110 0.0276 0.0425 0.5142
NRMSE 0.0296 0.0108 0.0294 0.0195 0.5382

CRPS 17 41 120 184 1033

FOCAL LOSS ND 0.0018 0.0010 0.0164 0.0203 0.1247
NRMSE 0.0067 0.0009 0.0189 0.0221 0.3053

CRPS 4 27 50 68 1990

SHRINKAGE LOSS ND 0.0021 0.0059 0.0134 0.0248 0.3039
NRMSE 0.0124 0.0048 0.0048 0.0038 0.4650

CRPS 5 12 15 170 2826

LDS ND 0.0014 0.0048 0.0054 0.0401 0.7368
NRMSE 0.0249 0.0074 0.0068 0.0350 0.8518

CRPS 5 26 29 81 4051

KURTOSIS LOSS (OURS) ND 0.0010 0.0034 0.0084 0.0145 0.3646
NRMSE 0.0153 0.0039 0.0179 0.0170 0.4872

CRPS 3 15 44 54 2845

PLM (OURS) ND 0.0021 0.0009 0.0119 0.0308 0.3861
NRMSE 0.0129 0.0010 0.0047 0.0225 0.5220

CRPS 3 10 48 83 2205

PLW (OURS) ND 0.0013 0.0026 0.0183 0.0311 0.1256
NRMSE 0.0047 0.0026 0.0164 0.0154 0.1142

CRPS 3 8 10 57 1215
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Appendix J

Training details

The training procedure employed for the Pareto Losses is as follows:

• Train the base model until convergence

• Fit the Pareto distribution on the loss distribution from the trained model. This is done on

the auxiliary loss if one is being used.

• Use the fitted Pareto distribution to implement PLM or PLW and retrain the model.

• The retrained model is the one employing PLM or PLW as per choice.

The training process for Kurtosis loss is straightforward. We use the loss function in

Equation (5) directly with one round of training.
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Appendix K

Robust Statistics Methods

We ran robust regression methods on the task and found that the results do not show

improvements on the long tail of error. The methods examined here are Huber Loss and MSLE.

Table K.1. Results for robust statistics losses on the Electricity dataset. Results indicated as
Best. Huber Loss and MSLE both fail to provide any meaningful improvements on the base
model. Moreover, the performance on CRPS is significantly worse illustrating their poor fit for
the task.

METHOD METRIC MEAN↓ VaR95 ↓ VaR98 ↓ VaR99 ↓ MAX↓

BASE MODEL ND 0.0600 0.0793 0.2251 0.4356 4.2777
NRMSE 0.3069 0.0991 0.2533 0.5430 5.5994

CRPS 142 463 1138 1996 30705

HUBER LOSS ND 0.0594 0.0822 0.2378 0.4296 3.7959
NRMSE 0.2981 0.1041 0.2492 0.5393 5.3614

CRPS 544 1792 4892 8898 31001

MSLE ND 0.0608 0.0826 0.2434 0.4336 3.9035
NRMSE 0.3092 0.1162 0.2993 0.5753 5.2328

CRPS 601 1998 5683 9935 29485

PLM (OURS) ND 0.0580 0.0791 0.2018 0.3990 3.7827
NRMSE 0.2897 0.1011 0.2396 0.4844 5.0230

CRPS 141 449 1111 2044 28992
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Appendix L

Synthetic datasets

We present complete results of our experiments on the synthetic datasets in Table L.1.

We ran our methods, Kurtosis Loss, and PLM on these datasets as well. Both our methods show

significant tail improvements over the base model across all datasets.
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Table L.1. Performance on the Synthetic Datasets (ND/NRMSE). Results indicated as
Better than DeepAR and Best for each dataset.

METHOD METRIC MEAN↓ VAR95 ↓ VAR98 ↓ VAR99 ↓ MAX↓

SINE DATASET

AUTOREG ND 1.2255 2.162 2.7088 2.9306 3.1271
NRMSE 1.5078 2.3134 2.7204 2.9379 3.1271

DEEPAR ND 0.0513 0.1721 0.316 0.5913 1.5744
NRMSE 0.1534 0.2009 0.3507 0.6199 1.654

KURTOSIS LOSS ND 0.0455 0.1412 0.2914 0.4470 1.5571
NRMSE 0.1330 0.1624 0.3455 0.5387 1.5571

PARETO LOSS ND 0.0462 0.1326 0.3014 0.7151 1.582
MARGIN NRMSE 0.1517 0.1563 0.3551 0.737 1.7522

GAUSSIAN DATASET

AUTOREG ND 0.5730 1.0225 1.3334 1.6226 27.6956
NRMSE 1.2705 1.1212 1.4045 1.6815 39.7474

DEEPAR ND 0.4379 0.7050 0.7908 0.8651 1.1362
NRMSE 0.5518 0.8172 0.9246 0.9908 1.3009

KURTOSIS LOSS ND 0.4378 0.7040 0.7973 0.8597 1.1294
NRMSE 0.5518 0.8191 0.9255 0.9865 1.2951

PARETO LOSS ND 0.4391 0.7023 0.7946 0.8674 1.1069
MARGIN NRMSE 0.5534 0.8194 0.9232 0.9889 1.2786

PARETO DATASET

AUTOREG ND 1.9377 1.1748 1.7039 2.4782 2113.7503
NRMSE 81.1652 1.4027 1.9856 2.7312 4069.3972

DEEPAR ND 0.4416 0.8336 1.0317 1.1763 2.015
NRMSE 0.6349 1.1511 1.4295 1.6688 2.8327

KURTOSIS LOSS ND 0.4413 0.8345 1.0295 1.1738 2.0326
NRMSE 0.6352 1.1541 1.4305 1.6653 2.8335

PARETO LOSS ND 0.4394 0.8497 1.0473 1.1955 2.086
MARGIN NRMSE 0.6397 1.1694 1.4470 1.6735 2.845
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