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Introduction: Medical device recalls are important to the practice of emergency medicine, as unsafe
devices include many ubiquitous items in emergency care, such as vascular access devices, ventilators,
infusion pumps, video laryngoscopes, pulse oximetry sensors, and implantable cardioverter
defibrillators. Identification of dangerous medical devices as early as possible is necessary to minimize
patient harms while avoiding false positives to prevent removal of safe devices from use. While the
United States Food and Drug Administration (FDA) employs an adverse event reporting program
(MedWatch) and database (MAUDE), other data sources and methods might have utility to identify
potentially dangerous medical devices. Our objective was to evaluate the sensitivity, specificity, and
accuracy of a machine learning (ML) algorithm using publicly available data to predict medical device
recalls by the FDA.

Methods: We identified recalled medical devices (RMD) and non-recalled medical devices (NRMD)
using the FDA’s website and online database. We constructed an ML algorithm (random forest
regressor) that automatically searched Google Trends and PubMed for the RMDs and NRMDs. The
algorithm was trained using 400 randomly selected devices and then tested using 100 unique random
devices. The algorithm output a continuous value (0—1) for recall probability for each device, which were
rounded for dichotomous analysis. We determined sensitivity, specificity, and accuracy for each of three
time periods prior to recall (T-3, 6, or 12 months), using FDA recall status as the reference standard.
The study adhered to relevant items of the Standards for Reporting Diagnostic accuracy studies
(STARD) guidelines.

Results: Using a rounding threshold of 0.5, sensitivities for T-3, T-6, and T-12 were 89% (95%
confidence interval [CI] 69-97), 90% (95% CI 70-97), and 75% (95% CI 53—89). Specificity was 100%
(95% CI 95—100) for all three time periods. Accuracy was 98% (95% CI 93—99) for T-3 and T-6, and 95%
(95% CI 89-99) for T-12. Using tailored thresholds yielded similar results.

Conclusion: An ML algorithm accurately predicted medical device recall status by the FDA with lead
times as great as 12 months. Future research could incorporate longer lead times and data

sources including FDA reports and prospectively test the ability of ML algorithms to predict FDA recall.
[West J Emerg Med. 2025;26(1)161-170.]
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INTRODUCTION

In our institution we have encountered multiple safety
events associated with medical devices including chest tubes
and vascular catheters, which we reported to the
manufacturers and the US Food and Drug Administration
(FDA)." Our experience inspired an interest in
understanding the FDA recall process and developing
methods to improve the efficiency of post-market, device
safety evaluation. Medical device recalls are important to the
practice of emergency medicine, as they affect patients,
emergency physicians and other practitioners, health
systems, and manufacturers. Unsafe devices and recalls
include many ubiquitous items in emergency care, such as
vascular access devices, ventilators, infusion pumps, video
laryngoscopes, pulse oximetry sensors, and implantable
cardioverter defibrillators.”

Appropriate recall of dangerous devices at the earliest
possible time limits further patient harm, while failing to
recall an unsafe device exposes patients to potential injury or
death. Inappropriate or excessively conservative device
recalls harm patients by depriving them of device benefits;
even appropriate recalls may leave no clinical alternative,
creating potential harm. Product recalls impose a
considerable burden on health systems and manufacturers by
incurring costs of investigations for potential recalls,
recalling those devices, and developing and buying substitute
devices to fill a post-recall vacuum. Regulatory agencies face
the challenges of investigative costs with finite resources,
ongoing harms prior to recall (or even post-recall, as some
products such as implanted devices may still be in use), and
costs related to removing those devices and evaluating and
approving alternatives. Therefore, developing and
investigating automated methods to predict such recalls are a
crucial area of study.

An optimal monitoring and recall system would identify
all dangerous devices without errors (ie, no false positives or
negatives) as early as possible, with human intervention
required only to validate the findings. In the United States,
the FDA approves medical devices and conducts recalls of
unsafe devices.* Currently, the FDA has a passive, post-
market approval system (MedWatch) where patients,
clinicians (including emergency physicians), and healthcare
systems can submit reports of medical device-associated
adverse events, and a publicly available, searchable
monitoring database MAUDE (Manufacturer and User
Facility Device Experience), where reports are logged.”® The
FDA acknowledges that the accuracy of submitted data and
causal relationships are unknown.’” Most device recalls occur
voluntarily by manufacturers and are governed by Title 21 of
the Code of Federal Regulations (CFR) 7.

The FDA also evaluates medical device recalls through 21
CFR 810 and 21 CFR 806.” Part 810 outlines the recall
process, including evaluating health risks and defining the
recall’s extent. This section designates devices into three

Population Health Research Capsule

What do we already know about this issue?
Identification of dangerous medical devices by
the US Food and Drug Administration is
essential to minimize patient harms while
avoiding unnecessary recalls.

What was the research question?

We evaluated the performance of a machine
learning algorithm to predict recalls using
publicly available data.

What was the major finding of the study?
Sensitivity for recall was 75% (95% CI
53-89) with specificity 100% (95% CI
95-100) with a 12-month lead time.

How does this improve population health?
Machine learning algorithms might risk-
stratify devices for further FD A investigation,
improving resource allocation while allowing
safe devices to remain in use.

classes based on potential risk severity. Class I includes
devices that have the potential to cause serious risks of harm
or death; II designates those that may cause temporary or
reversible risks and pose a slight chance of more serious harm
or death; and III includes devices not likely to cause health
problems or injury. Part 806 focuses on reporting
requirements for manufacturers initiating a recall or
correction. Manufacturers must report any device correction
or removal to reduce health risks, including the reason for the
recall and the total quantity produced. Together, 21 CFR 7,
810, and 806 provide a framework for identifying and
rectifying issues, with the goal of ensuring medical devices’
ongoing safety and effectiveness in the marketplace. The
FDA considerations include the nature and potential health
risk of the device, the extent and cause of the defect, the
likelihood of occurrence, the manufacturer’s recall strategy,
the number of affected products, the distribution pattern,
and the level of hazard presented to patients.

From 2018-2023, the FDA approved or cleared more
than 250 medical devices.'” The FDA receives
approximately one million reports annually through the
MedWatch and MAUDE systems.” From September
2018-September 2023, 234 serious device recalls were issued
by the FDA, with thousands of additional recalls during that
period.*!" Among devices reaching the market between
2008-2017, 10.7% of devices with 510(k) clearance
(FDA pre-market review process) and 27.1% of those with
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pre-market approval were recalled.'” To address recalls and
its other missions, the FDA has approximately 18,000
employees, including 1,887 employed by the Center for
Devices and Radiological Health in 2020.'*'* Safety
monitoring is thus a logistical challenge because of the
disparity between resources and devices to be monitored, as
well as the labor-intensive job of evaluating each device’s
merit for recall.

An automated tool to assist in device risk stratification
would be invaluable, and machine learning (ML) could be
employed for this purpose. Machine learning is a field of
artificial intelligence in which large datasets are used to train
an algorithm to categorize or analyze new data. ML follows
two sequential phases. In the initial training phase, labeled
data is supplied to enable the algorithm to learn to
differentiate between relevant classes (eg, “this is a dog, thisis
a cat,” or “this is a dangerous medical device, this is not”). In
a subsequent testing phase, the algorithm is presented with
new, unlabeled data and asked to differentiate between
classes (eg, “is this a cat or is it a dog?”; “will this medical
device be recalled or not?”).

Large data sources external to the FDA system might
provide useful signals of device dangers for use in ML
algorithms. PubMed is a free database with more than
37 million citations of biomedical and life science literature,
developed and maintained by the National Center for
Biotechnology Information; reports of adverse events
involving medical devices might be reported here.'> Google
Trends is a free tool that quantifies the frequency of search
terms on Google Search, YouTube, Google News, Google
Shopping, and Google Images over time.'® The FDA itself
provides a list of approved and recalled medical devices.*

We developed and evaluated an ML algorithm to predict
medical device recalls by the FDA using publicly available
data. We discuss its potential value for patient safety as well
as challenges and limitations of using ML for risk
stratification of medical devices.

METHODS

We conducted a retrospective, diagnostic case-control
study. Actual FDA-recall status of devices was determined
from FDA sources as described below. An ML algorithm
was then trained to predict the probability of FDA recall
using data from PubMed and Google Trends. In the testing
phase, the algorithm was blinded to the FDA recall status of
devices and produced a prediction of probability of recall,
which was then compared to actual recall status. We tested
the ability of the algorithm to predict recall with lead times of
three, six, and 12 months before an actual recall by limiting
the algorithm’s access to search data for the corresponding
time period. Our methods were consistent with relevant
elements of the Standards for Reporting Diagnostic
Accuracy Studies (STARD) guidelines, such as definitions
of the index test and reference standard, estimates of

diagnostic accuracy and precision, analyses of variability in
diagnostic accuracy, blinding, and potential sources of
bias (Appendix 1)."”

Device Definitions and Identification

Two categories were defined: recalled medical devices
(RMD) (“cases”) and non-recalled medical devices (NRMD)
(“controls”). We identified RMD through the FDA’s
webpage listing serious recalls.* The NRMD were identified
by being in the medical market without being recalled by
checking against the FDA list for RMD. Devices were
selected from January 1, 2019-September 17, 2023,
excluding repeated devices or severe acute respiratory
syndrome-related coronavirus-2 (SARS-CoV-2) tests. We
excluded SARS-CoV-2 tests as they were in the market for
very few years and could produce anomalous Google Trends
and PubMed data due to their association with COVID-19.
All devices included in the study were randomly selected
from the pools of identified RMD and NRMD.

Time Frame/Lead Time for Prediction

Recognizing that the FDA investigations and other
processes culminating in a device recall may require a period
of months or years to complete following the first reports of
potential harm, we sought to develop a forecasting tool that
could predict recalls up to 12 months before their occurrence.
We explored data in three different sets, each lasting five
years and ending months prior to the actual FDA recall:
three months before recall (T-3); six months before recall
(T-6); and 12 months before recall (T-12). Each of the three
sets thus included five years of data.

Device Data

For each RMD and NRMD identified in the FDA
webpage, PubMed and Google Trends were automatically
searched by the ML algorithm using the device names
(Appendix 2) and the three date ranges described above (T-3,
T-6, T-12) relative to the date of recall. We included queries
without Google Trends or PubMed data in the training and
testing dataset to avoid selection bias.

Machine Learning Algorithm

We built an ML algorithm on Python 3.8.5 (Python
Software Foundation, Wilmington, DE) using random forest
regressor, an open-source algorithm.'® 2" This type of
algorithm is used for large-volume, multivariable data and is
suitable for sets with missing values, noisy data, and outliers.
Random forest regressor typically uses 80% of data for
training and 20% for testing.?' A regressor algorithm outputs
a continuous decimal value between 0 and 1; in our
application, 0 represents 0% likelihood of recall, and 1
represents 100% likelihood of recall. We chose a regressor
over an alternative algorithm type, a classifier. A classifier
sorts the output of an algorithm into categories such as
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“recalled” and “not recalled.” The continuous value outputs
of a regressor can be converted into discrete classifications by
application of threshold values, allowing additional analysis.
In contrast, if a classifier had been applied, discrete data
could not be converted into continuous values.

Training and Testing Phases

For this study, we performed a training phase, where the
algorithm learned to differentiate between RMD and
NRMD with 400 randomly selected training data (T-3: 81
RMD, 319 NRMD; T-6 and T-12: 80 RMD, 320 NRMD),
with devices labeled for the algorithm as RMD or NRMD.
In the testing phase, 100 randomly selected testing data (T-3:
19 RMD, 81 NRMD; T-6 and T-12: 20 RMD, 80 NRMD)
were provided to the trained ML algorithm to assess its
performance in differentiating the unlabeled devices.
Training and testing data were two unique sets with no
overlap. Figure 1 outlines the training and testing phases.

We converted continuous decimal prediction outputs of the
ML algorithm from the testing phase to dichotomous values
of zero or one using two previously published strategies®*:

1. Pre-specified: Rounding using a threshold of 0.5, where
all values < 0.5 were rounded to zero and all values
>0.5 were rounded to one. This approach groups
valid but potentially indeterminate values (close to
0.5) with positive (1) and negative (0) results.>

2. Exploratory: Rounding using thresholds determined
from the ML algorithm output of the training data,
described below. This approach addresses values
very close to 0.5 that might have little predictive

FDA
database

Screened to identify

NRMDs and RMDs
Y Y

NRMD:s (X) RMDs (Y)

Random subset (20%) selected 4
for testing phase 1

Random subset (80%) selected
for tra[njng phase

(0.8X) (0.8Y)

Traiﬁing bhase

Algorithm is told which devices
are RMD and which are NRMD

! Algorithm developed in training |

| phase is applied to new mlx\urei
of RMDs/NRMDs and its
performance is analyzed

been trained to distinguish
RMD/NRMD

’ ML algorithm which has

: » RMDs
ot i xooooo- ey iy 0.2Y
NRMDs RMDs \ :| NRMDs L

1 (0.2X)

value and might be better treated as uninterpretable
or inconclusive. To calculate these thresholds,
training data was processed by the trained ML
algorithm to yield continuous decimal predictions,
which were then analyzed by their actual FDA recall
status (RMD or NRMD). Using the means and one
standard deviation in this fashion would be
anticipated to encompass 84% of the data of a
normally distributed dataset, excluding values close
to 0.5 (for NRMD, 50% from data below the mean
and 34% from data one SD above the mean; for
RMD, 50% from data above the mean and 34%
from one SD below the mean).
a. Therange of NRMDine Was defined as zero to one
SD above the mean output values of NRMD4ining

(0 to [meanNrRMmDiraining + SDNRMDtraining])- Thus,

in the testing phase, output values<
(meanNRMDtraining + SDNRMDtraining) were rounded
to zero.

b. The range of RMDcing Was defined as one SD
below the mean of the predictions for RMD ;aining
to one ([meanRMDtraining - SDRMDtraining] to 1)
Thus, in the testing phase, output values>
(meanRMDtraining_ SDRMDtraining) were rounded
to one.

c. Intermediate values between (meanNgrMDtraining +
SDNRMDtraining) and (meanRMDtraining -
SDRrMDtraining) Were assigned to a third category,
“indeterminate.” These were not rounded and
were not included in calculations requiring
dichotomous outcomes.””

Testing phase

v
Bllnded Prediction
mixture of compared
RMDs and to known
ili FDA

NRMDs Brobstilny . decision

roundedto | Predicted

> Oorl v
ML algorithm o NRMDs
gives recall
probability score . Predicted
RMDs

Figure 1. Flowchart for training and testing phases of the machine learning algorithm. Training and testing data were two unique sets with

no overlap.

FDA, US Food and Drug Administration; FN, false negative; FP, false positive; ML, machine learning; NRMD, non-recalled medical devices;

RMD, recalled medical devices; TN, true negative; TP, true positive.
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Outcomes and Statistical Analysis

We recorded ML-algorithm-generated probability of
recall and actual recall status as pre-specified outcomes. We
calculated sensitivity, specificity, and accuracy as pre-
specified outcomes, using pre-specified and exploratory
threshold values as described above. A true positive was
considered a device predicted by the ML algorithm to be
recalled, which was actually recalled by the FDA. A true
negative was considered a device predicted by the ML
algorithm not to be recalled, which the FDA did not actually
recall. A false positive was considered a device predicted by
the ML algorithm to be recalled, which the FDA did not
actually recall. A false negative was considered a device
predicted by the ML algorithm not to be recalled, which the
FDA actually recalled. We defined accuracy as (true
positives + true negatives) divided by total devices. Test yield
was defined as the fraction of test results included in
calculation of binary outcomes (sensitivity, specificity,
accuracy) after exclusion of indeterminate results.”>

Sample Size

Because we were investigating a novel application and
data sources for an ML algorithm, we had no prior data for
power or sample-size calculations. Given limited FDA

Distribution of data for T-3

resources, high specificity was prioritized to avoid wasteful
investigation of devices that are, in fact, safe. For a target
specificity point estimate of 100%, 80 NRMD in the testing
phase would yield a 95% confidence interval (CI)
0.95-1.0.>** The algorithm’s focus was to flag potential
devices that should be recalled in a sea of medical devices,
most of which do not need to be recalled. Therefore, more
NRMD than RMD were required, and we selected a 4:1
ratio. As described above, the ML algorithm partitioned 20%
of the sample to the testing phase and 80% to the training
phase. This yielded a total sample size of 400 NRMD and
100 RMD.

RESULTS

The ML algorithm continuous prediction values for each
device from testing data are plotted in Figure 2,
superimposed on threshold ranges determined from training
data. The performance of the algorithm using a rounding
threshold for recall probability of 0.5 is shown in Figure 3
and Table 1. The performance of the algorithm using
rounding thresholds for recall probability determined from
training data is shown in Figure 4 and Table 2. We excluded
devices in the indeterminate (yellow) zone (Figure 2) from
this analysis, with test yield reported.*

Distribution of data for T-6
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Figure 2. The distribution of devices in the testing dataset that were either recalled or not recalled by the US Food and Drug Administration
with lead times of 3, 6, and 12 months. Red x’s represent recalled medical devices (RMD) and green x’s represent non-recalled medical
devices (NRMD). The colored regions represent ranges determined from training data predictions. Thus, green x’s in the green zone are true
negatives; red x’s in the red zone are true positives; green x’s in the red zone are false positives; and red x’s in the green zone are false
negatives. The square represents the mean of each category; the error bars span +/— one standard deviation for the testing results.
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Results for three month prior to recall Results for six month prior to recall

FDA Status FDA Status
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Figure 3. Results of the testing phase when rounding using 0.5, where green indicates true positive and true negative, red indicates false
positives and false negatives. Zero false-positive results were encountered during the tested time periods ending 3, 6, or 12 months before
US Food and Drug Administration (FDA) recall. False negative results were uncommon in all three time periods. All devices and recall
predictions are included in the analysis.

Table 1. Performance of the machine learning algorithm with lead times of 3, 6, and 12 months prior to actual recall when rounding recall

probability of 0.5 and above to 1, otherwise to 0.

Lead time Sensitivity Specificity Accuracy

T-3 89 (95% CI 69-97) 100 (95% CI 95-100) 98 (95% CI 93-99)
T-6 90 (95% CI 70-97) 100 (95% CI 95-100) 98 (95% Cl 93-99)
T-12 75 (95% CI 53-89) 100 (95% CI 95-100) 95 (95% CI 89-98)

T-3, 3 months before recall; T-6, 6 months before recall; T-12, 12 months before recall; C/, confidence interval.

DISCUSSION

Our development of an ML risk-stratification tool was
motivated by our experience with repeated safety events with
pigtail catheters and large, vascular access devices.' > We
reported these to manufacturers and the FDA. To our
knowledge, the FDA responses were limited to written
acknowledgments of our reports, with some of our suggested
modifications incorporated by manufacturers as described
below. Given the volume of reports annually to FDA, we
conceived that better, automated methods for risk
stratification might be needed.

Our study demonstrates the potential of an ML algorithm
using publicly available, large datasets to predict medical
device recalls with high sensitivity, specificity, and accuracy
with lead times of three, six, and 12 months (Tables 1 and 2).
The high specificity (ie, lack of false positives) with narrow

confidence intervals as early as 12 months before recall
indicates that devices flagged for recall are likely to be true-
positive unsafe devices, worthy of further FDA investigation.
The algorithm is unlikely to flag non-recalled devices for
recall (false positive), an important feature when screening a
large device pool consisting primarily of safe devices.

A low false-positive rate may avoid unnecessary costs and
resource utilization.

The high sensitivity with lead times of three and six
months suggests that dangerous devices are likely to be
identified by the algorithm; so devices that are rated as “not
recalled” are likely safe and may not generally deserve
additional FDA scrutiny without specific suspicion or
concern (eg, reports of severe adverse events in MAUDE).
The sensitivity of 75% with a 12-month lead time is less than
we had hoped for but may be acceptable because of the high
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Results for three month prior to recall Results for six month prior to recall

FDA Status
Not Recalled

FDA Status
Not Recalled

Recalled Total Recalled Total

17 0 17 18 0 18

Algorithm result
Algorithm result

77 78 71 73

Not Recalled | Recalled
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Results for 12 month prior to recall
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[total [ 20 [ 73 ] [ o3 ]

Figure 4. Results of the testing phase when removing the data in the indeterminate zone and then rounding all data in the green zone to 0 and
all data in the red zone to 1. Green indicates true positive and true negative; red indicates false positives and false negatives. Zero false-
positive results were encountered during the tested time periods (T) ending 3, 6, or 12 months before FDA recall. False negative results were

uncommon in all three time periods. Test yield (the fraction of all test results used in calculating binary outcomes after removal of
indeterminate values)® was 95% at T-3, 91% at T-6, and 93% at T-12 months.

Table 2. Performance of the machine learning algorithm with lead times of 3, 6, and 12 months prior to actual recall when removing
indeterminate devices and rounding all values that were in green to 0 and all values that were in red to 1.

Lead time Sensitivity Specificity Accuracy

T-3 94 (95% CI 74-99) 100 (95% CI 95-100) 99 (95% CI 92-100)
T-6 90 (95% CI 70-97) 100 (95% CI 95-100) 97 (95% CI 91-99)
T-12 75 (95% Cl 53-89) 100 (95% Cl 95—-100) 94 (95% Cl 86—98)

T-3, 3 months before recall; T-6, 6 months before recall; T-72, 12 months before recall; C/, confidence interval.

specificity (100%). Even though only three-quarters of
eventually-recalled devices were flagged by the algorithm at
this early time-point, all flagged devices were true positives
and therefore we believe would be appropriate for further
FDA investigation.

The probability of recall outputs of our ML algorithm
were continuous values (Figure 2). We collapsed these into
binary categories for calculation of sensitivity and specificity,
a common practice for diagnostic tests. Continuous variables
often result in valid but indeterminate results, which can be
addressed by various strategies, each with benefits and
costs—and with no single agreed-upon solution.”** For
clinical diagnostic tests, different “rule in” and “rule out”
thresholds are often used, with an indeterminate zone of test
results recognized. Examples include brain-type natriuretic
peptide, procalcitonin, and estimated glomerular filtration rate.

We applied two commonly used approaches as a means of
sensitivity analysis: combining indeterminate results into
positive and negative categories (Figure 3, Table 1), and
removing indeterminate results (Figure 4, Table 2).

Exclusion of indeterminate results can overestimate test
performance, while combining inconclusive results can
underestimate accuracy and may not be sensible in the
intended application.?” For example, characterizing a device
with a 51% predicted probability of recall as an RMD would
potentially result in wasteful expenditure of FDA resources
for investigation. Representing a device with a 49% recall
probability as an NRMD might imply greater safety than
warranted. In our present study, we found no statistically
significant difference in test performance by excluding
indeterminate results (95% CI for all measures overlap for the
two analyses), and we present both analyses for
transparency. The test yield>> was greater than 90% for all
time periods, indicating that a minority of results were
excluded as indeterminate values.

Device recalls can have substantial impacts in the practice
of emergency medicine (and other specialties), even when
appropriate. Further illustrating these diverse impacts and
validating the need for enhanced tools for risk stratification is
that after the initiation of our work on ML algorithms we
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encountered another hazardous device in our institution. An
arterial catheter used routinely in our emergency
departments, operating rooms, and intensive care units was
noted to create a risk of arterial embolization of catheter
fragments. Removing the device from circulation, replacing
it with a viable alternative, and retraining hundreds of
healthcare workers occurred over a period of approximately
six months—before a manufacturer urgent recall was issued
on May 19, 2023, and an FDA Class I recall (the most serious
type) followed.?®*” By the date of the recall, the device had
been in distribution for 4.5 years (October 26, 2018-May 10,
2023) during which time the manufacturer had received 83
complaints of related device malfunctions and 18 injuries. A
total of 262,016 devices were recalled in the US. Other FDA
medical device recalls relevant to emergency medicine
practice in 2023 included angiography catheters (for failure
to undergo sterilization), infusion pumps (for failure to detect
air in line), video laryngoscopes (for stolen defective
products), pulse oximetry sensors (for inaccurate readings
and interference with defibrillators), implantable
cardioverter defibrillators (for low or no energy output), and
ventilators (for short circuits and stopping without notice).*

Additional literature has recently explored the impact of
medical device recalls on patients and healthcare systems. In
2021, Philips Respironics recalled airway pressure devices for
carcinogenic chemical emissions and significant adverse
effects including respiratory distress, inflammation, hypoxia,
and hypercarbia.”® Approximately 16 million domestic and
international patients were affected by the recall, resulting in
organizations, including the Mayo Clinic, developing novel
protocols to ensure centralized awareness of device recalls,
aid staff in visualizing their proactive approaches to the
situation, and efficiently communicate when informing
patients about the recall.

Medical device recalls involve costs and efforts for
multiple stakeholders (including patients, physicians, health
systems, manufacturers, insurers, and regulators), from
removing recalled devices to developing alternatives to
integrate them into the market effectively. The estimated
mean development cost for a novel complex medical device is
$60 million (95% CI, $27 million—-$209 million) after
accounting for post-approval studies. Accounting for cost of
capital and failed devices, the estimated mean cost per
approved device is nearly 10-fold higher: $526 million (95%
CI, $207 million-$3396 million). From nonclinical trials to
FDA approval, the estimated development time of novel
devices is 157 months (13 years).”” Assessing the economic
impact of medical device recalls in the broader healthcare
ecosystem poses many challenges due to factors including
regulatory conditions, the role of device integration into
medical procedures, and the temporal variations in factors
influencing device performance.’” Although individual
devices are most often proprietary intellectual property,
because of the time and expenses borne by diverse

stakeholders, complex medical devices can be considered a
shared commons, and achieving appropriate medical recalls
is a key shared goal.

Solutions to mitigate device risks are not limited to
removal from the market, with all the potential detriments of
such action. Some devices can be rendered safe (or safer) by
more nuanced changes such as improved labeling, warnings,
instructions for use, software updates, component redesign,
or alterations in power source. For example, after we
reported a device risk associated with a Heimlich valve
component of a chest tube kit, the manufacturer adopted
verbatim our suggestion for a safety label." After we reported
risk of a retained obturator component, the manufacturer
also incorporated revised instructions (a banner emphasizing
removal of the obturator) in an English-language training
video (2 minute 33 second mark), although not in the
Spanish, Italian, or German-language videos.”' Such
interventions may be reasonable compromises given the costs
(economic and other) to various stakeholders of outright
removal of a device from the market.

A risk stratification ML algorithm could assist in
identifying devices for such modifications, rather than
complete product recall. The implementation of an ML
approach and new data sources, concurrently with the
techniques already employed by the FDA, might be a crucial
aid in decreasing the intensive resources required for recall
investigations, allowing the FDA to either investigate a wider
breadth of devices or to focus more resources on devices that
have a higher risk, thus potentially increasing the overall
safety of the health field. Given the complexity of the medical
device ecosystem and the early stage of our ML algorithm,
we are not recommending that FDA recall devices be
identified by an algorithm; rather, an ML algorithm could be
used as part of a larger armamentarium to address risk.

Future work could characterize the predictive
performance of an ML algorithm with even greater lead
times, using additional data sources such as the FDA
MAUDE database, and with prospective predictions for (as-
yet) unrecalled devices. Even an algorithm that does not
provide greater lead time than current FDA processes might
increase efficiency and resource utilization of recall
processes. Comparison of an ML algorithm’s warning
performance with existing FDA processes, accuracy, and
resource utilization would be meaningful next steps. The
addition of an ML algorithm to existing FDA processes
(rather than replacement of extant processes) is another
potentially useful application.

LIMITATIONS

Despite promising results, our study revealed several
limitations and challenges of using ML in healthcare. The
algorithm relies on Google Trends and PubMed footprints to
increase its accuracy, meaning it is severely limited to devices
with a significant online presence. Future iterations of the
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algorithm might include other free online information, such
as the information in the MAUDE database, which was not
incorporated into the current ML system. The lack of
interpretability of ML algorithms makes it difficult to
understand the underlying mechanisms behind their
predictions, posing challenges in assessing their reliability
and validity. An example is that while the algorithm can
predict the FDA recalls, it is unclear whether it can determine
if the device is dangerous for patients or will be recalled for
other reasons. Another area that further challenges the
reliability and validity is the content of PubMed or Google
Trends searches. Authors could have only briefly mentioned
a device; however, a search still yields it. Additionally,
currently there is not a way to distinguish whether the
mentions regarding a device are positive or negative, an area
for future ML development.

The relatively small dataset of 500 devices may limit the
generalizability of the algorithm and lead to a wide CI
regarding both sensitivity and specificity. Future studies
should consider using larger and more diverse datasets to
train and evaluate the ML algorithm. Additionally, the
algorithm applies FDA determinations as the reference
standard. It remains to be proven that this source is the best
comparator for the output provided by the algorithm since
the FDA might be recalling devices unnecessarily or failing
to recall dangerous devices. Although it did not occur
commonly in our sample, an algorithm would be judged as
failing if it did not match the FDA, even if in truth it were
superior to the FDA process in recognizing dangerous
devices. Our study only focused on predicting medical device
recalls and did not evaluate the clinical effectiveness or safety
of the devices themselves. We did not compare our algorithm
performance to current FDA processes. Additionally, given
how closely the ML algorithm performance matches that of
the FDA, the FDA may already be using ML algorithms or
similar processes.

CONCLUSION

A machine learning algorithm using PubMed and Google
Trends data predicted medical device recalls by the FDA
with high sensitivity, specificity, and accuracy with lead times
as great as 12 months. An ML algorithm might improve
patient safety by enhancing the early detection and
prevention of medical device recalls. Further research is
needed to improve sensitivity, extend the forecasting
window, and promote the development of ML algorithms in
other healthcare segments, such as food and drug safety.
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