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Abstract  
Clothing affects people’s perception of the thermal environment. In this research two 
predictive models of clothing insulation have been developed based on 6,333 selected 
observations taken from ASHRAE RP-884 and RP-921 databases. The database has been 
used to statistically analyze the influence of 20 variables on clothing insulation.  
 
The results show that the median clothing insulation is 0.59 clo (0.50 clo (n=2,760) in 
summer and 0.66 clo (n=3,580) in winter). Clothing insulation is correlated with outdoor 
air temperature (r=0.45), operative temperature (r=0.3), relative humidity (r=0.26), air 
velocity (r=0.14) and metabolic activity (r=0.12).  
 
Two mixed regression models were developed. In the first one clothing insulation is a 
function of outdoor air temperature measured at 6 o’clock in the morning and in the 
second one the influence of indoor operative temperature is also taken into account. The 
models were able to predict only 19 and 22% of the total variance, respectively. These 
low predicting powers are better than the assumption of constant clothing insulation for 
the heating (1 clo) and cooling (0.5 clo) seasons. 
 
Key words  
Clothing, behavior modeling, thermal comfort, occupant behavior, weather 
 
Introduction 
The amount of thermal insulation worn by a person has a substantial impact on thermal 
comfort (ANSI/ASHRAE, 2010). Clothing adjustment is a behaviour that directly affects 
the heat-balance (De Dear & Brager, 1997). The thermal insulation provided by garments 
and clothing ensembles is expressed in a unit named clo, where 1 clo is equal to 0.155 
m2°C/W. For near-sedentary activities where the metabolic rate is approximately 1.2 met, 
the effect of changing clothing insulation on the optimum operative temperature is 
approximately 6°C per clo. For example, adding a thin, long-sleeve sweater to a clothing 
ensemble increases clothing insulation by approximately 0.25 clo. Adding this insulation 
would lower the optimum operative temperature by approximately 6°C/clo × 0.25 clo = 
1.5°C (ANSI/ASHRAE, 2010). The effect is greater with higher metabolic rates 

http://nceub.org.uk/
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(ANSI/ASHRAE, 2010). Clothing adjustment is perhaps the most important of all the 
thermal comfort adjustments available to occupants in office buildings (Newsham, 1997). 
 
Clothing is one of the six variables that affect the calculation of the predicted mean vote 
(PMV) and predicted percentage of dissatisfied (PPD) (Fanger, 1970) and therefore is an 
input for thermal comfort calculation according to American (ANSI/ASHRAE, 2010), 
European (CEN, 2007) and International (ISO, 2005) thermal comfort standards. In the 
standards thermal comfort ranges are usually calculated for clothing insulation equal to 
0.5 clo and 1 clo. If other information is not available, thermal comfort evaluations for 
the cooling season are performed with a clothing insulation equal to 0.5 clo, and for 
heating season with a clothing insulation equal to 1 clo. The selection of the clothing 
insulation for thermal comfort calculations affects the design (sizing and analysis) of 
HVAC systems, the energy evaluation and the operation of buildings. In a yearly energy 
and thermal simulations there are no standardized guidelines on how to set clothing 
insulation schedules. Often, just two values are used (0.5 and 1 clo) and the change from 
0.5 to 1 or vice-versa is done suddenly (from one day to another) and arbitrarily (Hensen 
& Lamberts, 2011). These simplifications may lead to systems that are incorrectly sized 
and/or operated. A model that is able to predict how building occupants change their 
clothing would greatly improve HVAC system operation. Previous attempts to develop a 
dynamic clothing model demonstrated that the ability to more accurately predict 
variations in clothing leads to improved thermal comfort (Newsham, 1997), smaller 
HVAC size and lower energy consumption (De Carli et al., 2007).  

de Dear and Brager (De Dear & Brager, 2001) and de Dear  (De Dear & Brager, 1997) 
analysed the relationship between clothing insulation and mean indoor operative 
temperature and mean outdoor effective temperature in the publicly available database 
developed within ASHRAE Research Projecet-884. To study the relationships between 
clothing level and indoor and outdoor temperatures they used the average building value 
(160 buildings) and not the value for each occupant (22,346 occupants), i.e. the 
regression analysis was done with 160 statistical units (one value for each building) and 
not with 22,346 statistical units. They used the building and not the occupant as unit of 
the statistical analysis to ensure some homogeneity of conditions affecting each subset of 
data, but there was not an explicit verification of linear regression assumptions. In figure 
5b a risk of leverage effect due to four data points (probably outliers) is visible.  (De Dear 
& Brager, 2001). Using the building as the statistical unit artificially reduces variance and 
increases the coefficient of determination (R2). This implies a loss of information. As 
explained later in the paper, it is possible to take into account the variance caused by the 
building and use each occupant as the statistical unit by applying regression analysis 
based on mixed models (fixed plus random effects) instead of linear model (only a fixed 
effect) (Faraway, 2006b). De Carli et al. (De Carli et al., 2007) developed single variable 
linear regression models to predict the clothing insulation as a function of the outdoor air 
temperature measured at 6 o’clock in the morning. Independent models were developed 
for naturally and mechanically air conditioned buildings and for three latitudes ranges. 
The models have been based on a publicly available database developed within ASHRAE 
Research Proget-884 (De Dear & Brager, 1997) and on field measurements performed by 
Feriadi et al. (Feriadi et al., 2002). Based on energy simulation, De Carli et al. (De Carli 
et al., 2007) concluded that in mechanically conditioned building a variation of 0.1 clo is 
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sufficient to significantly change the comfort evaluation. The developed models have the 
following limitations: a) the homoscedasticity hypothesis of the developed linear models 
has not been reported, therefore it is possible that the regression coefficients are not 
correct (Faraway, 2006a); b) the variance introduced by the building has not been 
included in the models; c) all the data from ASHRAE RP-884 has been used regardless of 
the quality of the measurements of the single projects included in the final project and 
different standards has been used to assess the clothing insulation (De Dear & Brager, 
1997); d) single variable regression models has been used, losing the opportunity to 
check for interaction effect and the combination of several variables at the same time; and 
e) probably other relevant variables, such as air velocity and relative humidity, have not 
been considered. Morgan and de Dear (Morgan & De Dear, 2003) examined clothing 
behaviour and its relationship with thermal environments in two indoor settings 
(shopping mall and call centre) located in Sydney, Australia. They found that day-to-day 
variation in clothing levels changed significantly in the shopping mall where a dressing 
code was not in place. Clothing varied less in the call centre where a dressing code was 
forced. For the shopping mall they develop a linear regression equation to relate the daily 
average clothing value with daily mean outdoor dry bulb temperature.  

The aim of this research is to develop a dynamic predictive model of clothing insulation 
typically used by office occupants to be applied in thermal comfort calculation, HVAC 
sizing, building energy analysis and building operation.  
 
Method 
Database 
The data to develop the model has been taken from the ASHRAE RP-884 (De Dear & 
Brager, 1997) and from ASHRAE RP-921 (Cena & de Dear, 1999) databases. All the 
data from the ASHRAE RP-921 have been used. Data in ASHRAE RP-884 were 
classified by the authors of the report into three levels of quality (from Class I, the best, 
to Class III, the lowest data quality). In this research only data of Class I have been used 
because they were collected with 100% compliance with the specification set out in 
ASHRAE Standard 55-1992 and ISO 7730-1984 (see Paragraph 2.2.2 of (De Dear & 
Brager, 1997)). ASHRAE RP-921 complies with the same standards, and therefore it fits 
with Class I.   

Thermal comfort standards (e.g. ISO 7730 and ASHRAE 55) provide techniques to 
evaluate the clothing insulation. A problem faced in ASHRAE RP-884 (De Dear & 
Brager, 1997) was related to the fact that standards, in their various revisions, have used 
different techniques. This led to the situation where quite different clo estimates would be 
calculated for a given set of clothing, depending on which standard and which edition 
was used. To solve this problem, the researchers converted the different clo estimation 
technique into equivalent ASHRAE Standard 55-92 (ANSI/ASHRAE, 1992) clo 
estimates. For the data used in this research ASHRAE Standard 55-81 (ASHRAE, 1981) 
and ASHRAE Standard 55-92 (ANSI/ASHRAE, 1992) have been used (see Table 1). The 
conversion from ASHRAE Standard 55-81 to 92 caused an error,  and thus de Dear et al. 
(De Dear & Brager, 1997) estimated that for male and female the regression equation was 
able to explain 81% and 61% of the variance (R2=0.81), respectively. In this current 
research it has been decided to keep data collected with the two methods in order to have 
a bigger sample (6333 observations instead of 3298). The clo values used here are 
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calculated according to ASHRAE Standard 55-92 (ANSI/ASHRAE, 1992) and do not 
include the insulation caused by the chair. For all the used data, outdoor climatic 
information was gathered from meteorological stations located close to the building. 

Variables 
The ASHRAE RP-884 and 921 reported a large number of variables. In this research, 
only a subset of variables has been used. From a review of the possible independent 
variables that may affect the clothing insulation, 20 variables were identified. The 
variables included in the analysis are summarized in Table 1. Where not otherwise noted, 
the abbreviation follows the same of (De Dear & Brager, 1997). 
 
Table 1 Variables included in the analysis 
Variable Abbreviation 
Ensemble clothing insulation [clo] clo 
subject's gender [M=male, F=female] sex 
Metabolic activity [met] met 
Indoor operative temperature [°C] top 
Relative humidity [%] rh 
Air velocity high height (1.1 m) [m/s] vel_h 
Air velocity medium height (0.6 m) [m/s] vel_m 
Air velocity low height (0.1 m) [m/s] vel_l 
Outdoor 3pm (max) air temp on day of survey [°C] day15_ta 
Outdoor 6am (min) air temp on day of survey [°C] day06_ta  
Outdoor average of min/max air temp on day of survey [°C] dayav_ta 
Conditioning system (Mechanical = 1) (Natural=2)* bldgtype 
Year year 
Month of the  (Jan=1, Feb=2, etc.) month 
Day of the month day 
Nation location 
File identification number referred to RP-884 file 
Building identification number referred to RP-884 and RP-921 blcode 
Season (dry season, summer, etc)* season 
Building identification number in this research* blcodeNew 
Season aggregate (summer, winter)* Season1 
*Abbreviation and variable name different from (De Dear & Brager, 1997) 
 
Statistical analysis 
The data distributions are reported as frequency histograms and as box-plots when more 
than one variable is plotted. A box-plot is a way of graphically summarizing a data 
distribution. In a box-plot the thick horizontal line in the box shows the median. The 
bottom and top of the box show the 25th and 75th percentiles, respectively. The horizontal 
line joined to the box by the dashed line shows either the maximum or 1.5 times the 
interquartile range of the data, whichever is smaller. Points beyond those lines may be 
considered as outliers and they are plotted as circles in the boxplot graphs. The 
interquartile range is the difference between the 25th and 75th percentiles (Crawley, 2005). 
The normal distribution of the data was tested with the Shapiro-Wilk normality test 
(Shapiro & Wilk, 1965). Correlation between variables is reported with Spearman’s rank 
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coefficient if the variable does not have a normal distribution, and with the Pearson 
correlation if it has a normal distribution. The description of the methods and tools used 
for the development of multivariable linear and mixed models is reported in the section 
"Development of the regression model". To compare means and to test statistical 
difference, t-test and ANOVA were used when appropriate. For all tests the results were 
considered statistically significant when p<0.05. The statistical analysis was performed 
with R version 2.10.1 (R Development Core Team, 2010). 
 
Results 
The database includes 6,333 observations. Statistical summaries are reported for 
categorical variables in Table 3 and for numerical variables in Table 4. 
 
Table 2 Statistical summary of categorical variables 
Name Level Observation Percentage [%] 

Conditioning system Mechanical 5584 88.2 
Natural 749 11.8 

sex Female 3547 56 
Male 2786 44 

location 

Australia 2429 38.3 
California 2950 46.6 
Canada 869 13.7 
Michigan 85 1.3 

season 

Dry season 627 9.9 
Summer 2153 34 
Wet season 604 9.5 
winter 2949 46.6 

season1 Summer 2757 43.5 
Winter 3576 56.5 

 
Table 3 Statistical summary of numerical variables 

Name Factor Measuring 
unit Max Min Mean Stand. 

Dev. Median 

clo No [clo] 1.94 0.13 0.6239 0.22 0.59 
met No [met] 2.58 0.990 1.21 0.20 1.2 
top No [°C] 31.67 16.64 23.11 1.24 23.10 
rh No [%] 77.95 10.00 45.22 13 45.30 
vel_h No [m/s] 1.71 0 0.1161 0.088 0.1 
vel_m No [m/s] 1.97 0 0.1063 0.085 0.09 
vel_l No [m/s] 1.55 0 0.0968 0.084 0.08 
day15_ta No [°C] 41.2 -22.6 20.5 9.7 20.9 
day06_ta No [°C] 26.2 -27.2 10.8 8.7 11.7 
dayav_ta No [°C] 31.7 -24.9 15.6 8.9 15.9 
year No  From 1986 to 1997 
month No 1…12 From January to December 
day No 1..31 From 1 to 31 
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Figure 1 Frequency distribution of the clothing insulation and box-plots for the clothing 
insulation versus the air-conditioning systems (mechanical or natural), the sex of the 
occupant, the location of the building, the season divided into summer and winter or in 
four categories (wet season, summer, dry season and winter). 
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Analysis of the categorical variables 
Figure 1 shows the frequency distribution of the clothing insulation and box-plots for the 
clothing insulation (without chair) versus the air-conditioning system (mechanical or 
natural), the sex of the occupant, the location of the building, and the season divided into 
summer and winter or in four categories (wet season, summer, dry season and winter). A 
detailed description and further analysis of each plot reported in Figure 1 is described in 
(Schiavon & Lee, 2012). 
 
Analysis of the numerical variables 
The outdoor air temperature is described by three variables: the minimum outdoor air 
temperature measured at 6:00, the maximum outdoor air temperature measured at 15:00 
and the average daily temperature. The three variable are highly correlated (Spearman’s 
rank -r 0.88-0.97, p<0.001). The correlation values are extremely high and therefore there 
is a high risk of collinearity. Variance Inflation Factor (VIF) is equal to 100 (much higher 
than the maximum acceptable value of 10 (Diamantopoulos & Winklhofer, 2001)) and 
therefore collinearity is present. To eliminate the collinearity, two of these variables can 
be taken out from the model. It is not necessary to keep all three variables in the model 
because one variable is sufficient to describe the other two. It is not important which one 
is kept. We arbitrarily preserved the minimum air temperature (6:00 am). A similar 
situation is true for the three air velocities. Air velocity at medium height, vel_m, was 
selected as representative of other velocities. 
 
Figure 2 shows the correlation matrix of the following variables: metabolic activity, 
relative humidity, indoor operative temperature, air velocity at medium height, minimum 
outdoor air temperature (outdoor air temperature measured at 6am), and clothing. 
Bivariate scatter plots and the fitted lines are shown in the lower-left part of the figure; 
Spearman’s rank correlation values and their significance level (p<0.001 for three stars 
and p<0.01 for two stars) are shown in the upper-right part. Clothing insulation is 
correlated with outdoor air temperature measured at 6am (r=0.45), operative temperature 
(r=0.3), relative humidity (r=0.26) and is slightly correlated with air velocity (r=0.14) and 
metabolic activity (r=0.12). In this graph it is possible to study the correlation between 
the dependent variables. This will be helpful to avoid the problem of multicollinearity. 
Outdoor air temperature is strongly correlated with relative humidity (r=0.64) and 
operative temperature (r=0.3). 
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Figure 2 Correlation matrix of the following variables: metabolic activity, relative 
humidity, indoor operative temperature, air velocity at medium height (0.6 m), minimum 
outdoor air temperature (measured at 6am) and clothing insulation. Bivariate scatter plots 
and the fitted lines are shown in the lower-left part of the figure; Spearman’s rank 
correlation values and their significance level (p<0.001 for three stars and p<0.01 for two 
stars) are shown in the upper-right part. An analysis of the influence of dress code on 
clothing insulation is reported in (Schiavon & Lee, 2012).  
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Development of the regression models 
Multi-variable linear models have been developed. The best models were selected based 
on the R-squared adjusted method (R2

adj), and the minimum number of explanatory 
variables has been used. If all the available variables are used, the obtained model has an 
R-squared adjusted value equal to 0.28. That is the maximum value achievable with a 
linear multivariable model. The regression linear hypotheses have been tested for all the 
studied models. The plot of residuals vs. fitted values was used to check the validity of 
the hypothesis of constant variance required for linear models.  This showed that this 
hypothesis (aka heteroscedastic) was violated if a transformation of the dependent 
variable was not applied. The same problem was revealed in the plot of the square root of 
the standardized residuals versus the fitted values. Ignoring non-constant variance when it 
exists invalidates all inferential tools like p-value, confidence intervals and prediction 
intervals (Faraway, 2002). Therefore the models with this problem were transformed. To 
overcome non-constant variance a power transformation of the response variable was 
applied for each model. The Box-Cox method (Box & Cox, 1964) was used to find the 
exponent of the transformation. The results showed that applying a logarithm 
transformation of the dependent variable would remove the problem. All the tested 
models have been reported in (Schiavon & Lee, 2012).   
 
In general, data may include both fixed effects and random effects. Fixed effects have 
informative variables whereas random effects are generally uninformative or not useful 
for predicting the dependent variable. In this case the building itself may have an 
influence on the clothing insulation but in the regression model it would be useless to 
have the specific building as an independent variable. For this reason a multivariable 
mixed model was used in order to take this effect into account. The R package "lme4" has 
been used (Bates et al., 2007)(Faraway, 2006a). It is not possible to use R-squared 
adjusted to compare mixed models. Here the Akaike Information Criterion (AIC) has 
been used (Akaike, 1974). The AIC is not a test of the model in the sense of hypothesis 
testing; rather, it provides a means for comparison among models. Given a data set, 
several candidate models may be ranked according to their AIC, with the model having 
the minimum AIC being the best. From the AIC values one may also infer that the top 
two models are roughly in a tie and the rest are far worse (Wikipedia contributors, 2011). 
Two valid mixed models are reported in equations (1) and (2). The relevance of the 
random effect is measured in term of interclass correlation coefficient. For the developed 
models the interclass correlation coefficient was equal to 0.17 and 0.13 respectively, 
meaning that the random effect explain 17% and 13% of the total variance. Therefore the 
mixed models have to be used instead of the linear models.  
 

(SI) 𝑙𝑜𝑔10 𝑐𝑙𝑜 = −0.1635 − 0.0066 ∗ day06_ta (1) 

(SI) 𝑙𝑜𝑔10 𝑐𝑙𝑜 = 0.2134 − 0.0165 ∗ 𝑡𝑜𝑝 − 0.0063 ∗ day06_ta (2) 

(IP) 𝑙𝑜𝑔10 𝑐𝑙𝑜 = −0.0460 − 0.00367 ∗ day06_ta (3) 

(IP) 𝑙𝑜𝑔10 𝑐𝑙𝑜 = 0.6189 − 0.00916 ∗ 𝑡𝑜𝑝 − 0.0035
∗ day06_ta 

(4) 
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In these equations, day06_ta is the outdoor air temperature measured at 6:00 and top is 
the operative temperature. These models are valid within the following boundary: 
day06_ta should be between -27.2°C and 26°C [-17 and 78.8°F] and top should be 
between 16.6°C and 31.7°C [61.9 and -89°F]. These models have been developed with a 
mixed model approach that does not allow to calculate R2

adj. In order to assess the ability 
of the models they have been tested in the database. The results of this process are plotted 
in Figure 3. For equation (1) R2

adj is equal to 0.19 and for equation (2)  it is 0.22.  
 

 
Figure 3 Measured versus fitted clothing insulation values calculated with the two models.  

To assess the predictive ability of the two models, the entire dataset has been randomly 
divided into two parts: a training dataset and a test dataset. Two multivariable mixed 
models with the same structure of equations (1) and (2) have been fitted for the training 
dataset. The models were tested in the test dataset. The model with only day06_ta had a 
R-squared adjusted (R2

adj) of 0.18 and the model with day06_ta and top had a R2
adjof 

0.21.  The developed models have regression coefficients very similar to the model 
developed in the whole database and the calculated clo values have a difference that is 
negligible (less than 0.025 clo between the models (1) and (3) and less than 0.02 clo 
between the models (2) and (4)) and therefore it is acceptable to use models obtained in 
the whole database. The predicting power of these two models is small, only 19 and 22% 
of the total variance is described in the model. This is due to the fact that people do not 
dress only based on climate but mainly on other social and cultural parameters. These 
parameters are have not been measured in the thermal comfort database and thus they 
cannot be included in the analysis. These low predicting powers are better than the 
assumption of constant clothing insulation for the heating (1 clo) and cooling (0.5 clo) 
seasons. 
Figure 10 reports the graphical representation of the regression model developed to 
predict the clothing insulation when only the outside dry bulb air temperature is known 
(equation (4)). In all the models reported here, the chair is not present and should be 
added to the calculated value if present.  Figure 11 reports an example of the application 
of equation (4). The outside dry bulb air temperatures measured at 6 o’clock have been 
extrapolated by the EnergyPlus EPW weather file of Chicago O’hare International 
Airport. 
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Figure 4 Graphical representation of the regression model developed to predict the clothing 
insulation when only the outside dry bulb air temperature measured at 6 o’clock is known. 

 

 
Figure 5 Clothing insulation schedule for a fixed model (blue) typically used in energy simulation 
software and for the clothing model based on outdoor air temperature measured at 6am. Climate 

data for Chicago O’hare International Airport has been used. 



 12 

 
Discussion of the influence of indoor and outdoor temperatures on clothing 
insulation 
Morgan and de Dear found that indoor operative temperatures are not statistically 
associated with clothing insulation levels, but they affirmed that the extremely limited 
variance in both the predictor (indoor temperatures) and the dependent (indoor clo) 
variables precluded any other finding being made with their data. Moreover, a significant 
part of the data comes from a cross-sectional study in a shopping mall where visitors 
stayed indoors for only a short time. It is possible that most of time the visitors had been 
exposed to outdoor conditions. In the study reported here, it was found that indoor 
operative temperature is the second most important variable affecting clothing insulation 
among the 20 observed variables. This result is based on a higher number of observations 
and it is supported by a larger variation of indoor temperatures and clothing insulations. 
This study support the idea that people, if allowed, change their clothing as a function of 
the indoor conditions that they are exposed to.    
 
Morgan and de Dear (Morgan & De Dear, 2003) showed why outdoor temperature 
affects clothing insulation. They stated that “it is not difficult to understand how the 
temperature of the indoor microclimate surrounding the human body exerts an influence 
on clothing levels. Indoor temperature directly impacts the body's heat balance, skin 
temperatures and skin wettedness, which are, in turn, the main thermophysiological 
drivers for thermal discomfort. In conventional thermal comfort theory we regard the 
motivation for clothing selection and indeed, any other thermoregulatory behavior, as 
being proportional to the intensity of conscious sensations of thermal discomfort. 
Therefore if this is the casual chain linking indoor temperature to indoor clothing 
insulation levels, how can outdoor temperature exert an effect as well…?”.  Morgan and 
de Dear suggested that the timing (usually in the morning) of exactly when clothing 
decision are made is relevant for explaining the relationship between clothing and 
outdoor air temperature. They found that both previous day thermal experience and 
forecast of thermal experience are relevant factors (Morgan & De Dear, 2003). From the 
results and models reported in this study and from previous studies (De Carli et al., 2007; 
De Dear & Brager, 1997; Newsham, 1997) it can be concluded that there is common 
agreement about the relevant role of outdoor air temperature as climatic parameter that 
affect indoor clothing insulation. 
 
Conclusion 
The main conclusions of the analysis of the clothing insulation behavior are summarized 
below. 

1. The median clothing insulation value is 0.59 clo (0.50 clo (n=2,760) in summer 
and 0.66 clo (n=3,580) in winter). The median winter clothing insulation value is 
significantly lower than the value suggested in international standard (1 clo). 

2. Male and female have similar clothing insulation values. 
3. Clothing insulation is correlated with outdoor air temperature measured at 6 

o’clock in the morning (Spearman’s rank correlation coefficient r = 0.45), indoor 
operative temperature (r=0.3), relative humidity (r=0.26) and only slightly 
correlated with air velocity (r=0.14) and metabolic activity (r=0.12).  



 13 

4. Two mixed regression models were developed. In the first one, clothing insulation 
is a function of outdoor air temperature measured at 6 o’clock; in the second one, 
the influence of indoor operative temperature is also taken into account. The 
models were able to predict only 19 and 22% of the total variance, respectively. 

 
The models will be implemented in energy simulation software (e.g. Energy Plus). The 
developed models are able to predict how office building occupants dress and how they 
will change their clothing as a function of the climate. The models will allow more 
accurate HVAC sizing, thermal comfort calculation energy analysis and building 
operation.   
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