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Black Hole and de Sitter Microstructures
from a Semiclassical Perspective
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a Berkeley Center for Theoretical Physics, Department of Physics,
University of California, Berkeley, CA 94720, USA

b Theoretical Physics Group, Lawrence Berkeley National Laboratory,
Berkeley, CA 94720, USA

c Kavli Institute for the Physics and Mathematics of the Universe (WPI),
UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan

Abstract

We describe two different, but equivalent semiclassical views of black hole physics in which the
equivalence principle and unitarity are both accommodated. In one, unitarity is built-in, while
the black hole interior emerges only effectively as a collective phenomenon involving horizon (and
possibly other) degrees of freedom. In the other, more widely studied approach, the existence of the
interior is manifest, while the unitarity of the underlying dynamics can be captured only indirectly by
incorporating certain nonperturbative effects of gravity. These two pictures correspond to a distant
description and the description based on entanglement islands/replica wormholes, respectively. We
also present a holographic description of de Sitter spacetime based on the former approach, in which
the holographic theory is located on the stretched horizon of a static patch. We argue that the
existence of these two approaches is rooted in the two formulations of quantum mechanics: the
canonical and path integral formalisms.
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1 Introduction and Summary

For a long time, the puzzle of black hole information loss has caused confusion about how gravity works
at the quantum level [1–3]. This confusion arises mostly due to the following features of the semiclassical
description of black holes:

(i) Despite the fact that spacetime is fundamentally quantum mechanical, it is described as a classical
object.

(ii) While the fundamental theory has a preferred class of time foliations for spacetimes with a horizon,
general relativity seems to treat all the coordinates equally.

The purpose of this paper is to elucidate these points and present a coherent picture in which the results
of semiclassical theory are consistently interpreted to address issues related to the information puzzle.
This picture builds on recent developments of our understanding of quantum gravity.

The first hint that spacetime consists of quantum degrees of freedom came from the discovery that
black holes have entropy [4, 5]. In the standard statistical mechanical interpretation, this implies that
the horizon, a region which general relativity describes as empty space, contains a quantum mechanical
substance. This interpretation is indeed supported by the anti-de Sitter (AdS)/conformal field theory
(CFT) correspondence [6]—a concrete realization of holography [6–10].

Recent progress in understanding the AdS/CFT correspondence, and holography more generally,
has shown that while general relativity is diffeomorphism invariant, there appear to be a preferred class
of coordinates at the quantum level. From the viewpoint of the boundary theory, these coordinates
correspond to descriptions based on quantum operators constructed by a simple procedure or operators
which are not exponentially complex in fundamental degrees of freedom [11–16], and they cover only
a portion of spacetime when there is a horizon. In a system with a black hole, these coordinates are
associated with Schwarzschild time slicing, or any other time foliation associated with an observer located
outside the horizon. This conforms to the earlier idea that black hole evolution obeys the standard rules
of quantum mechanics—and hence is unitary—when viewed by an external observer [17–20]. Indeed,
we see that there is nothing unusual with the results of semiclassical theory if a black hole is described
using only external frames.

The issue, then, is how to interpret the existence of the black hole interior which arises when the
external coordinates are analytically extended in general relativity. We take the view that the picture
of the black hole interior arises only effectively at the semiclassical level. In particular, we adopt the
construction in Refs. [21–25] in which the interior emerges because of the special, chaotic nature of
the horizon dynamics.1 A key idea is that when the black hole is described in an external quasi-static
reference frame, its large acceleration with respect to the free falling frame makes the dynamics at the

1 A detailed description of relations of this construction to earlier work [26–30] is given in Ref. [25] and throughout this
paper.

2



horizon—more precisely the stretched horizon [19]—appear string theoretic, which is chaotic across all
low energy species. This makes the black hole vacuum microstate generic in the relevant microcanonical
ensemble, allowing us to erect the effective theory of the interior.

The erected effective theory is defined only up to errors of order e−(SBH+Srad)/2, where SBH and Srad

are the Bekenstein-Hawking entropy and the coarse-grained entropy of the degrees of freedom entangled
with the black hole, respectively. Operators describing the interior are state dependent [26, 31, 32],
though only weakly in the sense of Refs. [25, 30]. Reflecting the fact that the Hilbert space associated
with the black hole system is finite dimensional, the effective theory can be used only for a finite time
interval; the existence of the black hole singularity is consistent with this [21]. Similarly, weak cosmic
censorship can be viewed as a statement that a distant description, which corresponds to a simple
boundary description in holography, can be used for an arbitrarily long time, to the extent that the
theory is well defined in the infrared.

In this paper, we review the construction described above and refine it, including subtle evolutionary
effects for a dynamically formed black hole. We present the whole framework in a coherent manner
and address various issues associated with it, including its realization in the boundary description of
holography. In doing so, we also discuss the relation of the present construction to other recent related
works. In particular, we discuss the relation between the picture described here and that based on
quantum extremal surfaces and entanglement wedge reconstruction [33–37]. We argue that the latter
emerges through coarse graining necessary to describe a semiclassical black hole without specifying its
microscopic structure [24]. We also see that the two are closely tied, respectively, to the canonical and
path integral formulations of quantum mechanics [38].

We expect that at the macroscopic level, generic (quasi-)static horizons, including cosmic horizons,
have locally the same statistical features.s Indeed, the horizon of de Sitter spacetime has the same en-
tropy per area as that of a black hole [39], and so is the temperature of the Hawking cloud at the stretched
horizon. In fact, building on the analyses in Refs. [22, 40], we see that the holographic description of
a static patch of de Sitter spacetime is very much an “inside-out” version of that of a black hole. We
present this description in the context of more general holography for cosmological spacetimes [41, 42].
We also discuss the relationship of the present description with other recent proposals [43–48].

1.1 Overall picture and outline of the paper

In the rest of this section, we present an overview of the picture presented in this paper, pointing
to where the details of each subject are covered. The assumptions about the setup which we adopt
throughout the paper will be summarized at the end of this section.

No puzzle for a black hole when viewed from the exterior

Consider a non-rotating, non-charged black hole in a 4-dimensional asymptotically flat spacetime. At
the classical level, the black hole is uniquely specified by one continuous parameter: its mass M . We
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view this system from a distance, i.e., we describe it using Schwarzschild time slicing or something
related to it in a simple manner.

When quantum effects are included, the black hole has a finite entropy

SBH(M) = 4π
GNM

2

h̵c
, (1.1)

where GN is Newton’s constant. This means that at the quantum level the black hole is characterized by
discrete—albeit exponentially dense—states, rather than a continuous, classical number.2 Specifically,
the number of independent states in the energy interval between M − δM/2 and M + δM/2 is given by

N (M) ∼ eSBH(M) δM

M
. (1.2)

Note that this is a general phenomenon in quantum mechanics. Like other physical systems, the entropy
in Eq. (1.1) diverges in the limit h̵→ 0.

The semiclassical theory treats the black hole as a classical object while retaining the finite nature
of the entropy. This is not inconsistent: the concept of entropy can be defined at the level of thermody-
namics without explicitly taking into account the fundamental discreteness. The disadvantage of this
treatment, however, is that one can no longer resolve each microstate, hence requiring a statistical, or
thermodynamic, treatment of the system [4,5, 49,50].

At the semiclassical level, a black hole is described as having a definite massM but with the Hawking
cloud around it, which is in a thermal mixed state of temperature

TH = h̵c3

8πkGNM
, (1.3)

where k is the Boltzmann constant. This is a proxy for an ensemble of black hole microstates with
energies betweenM−δM/2 andM+δM/2, which dominates the corresponding microcanonical ensemble
of states associated with the spacetime region near the black hole. Below, we adopt natural units
h̵ = c = k = 1.

The formation and evaporation of a black hole described in an external frame is a process in which
quantum information in the initial collapsing matter is dispersed among spacetime degrees of freedom,
represented by the Bekenstein-Hawking entropy; Hawking emission then transfers it back to matter
degrees of freedom in the semiclassical description. For an external observer, this entire process is
unitary if all the microscopic degrees of freedom are accounted for. An important point is that with
quantum effects, the instantaneously-defined apparent horizon is stretched, at which the local (Tolman)
Hawking temperature is the string scale [19].3 The trajectory of this stretched horizon is timelike, so

2 Of course, quantum mechanics allows for a superposition of these independent states, so that the expectation value of
the energy, or M , can take continuous values.
3 By the string scale, we mean the scale at which the low energy effective field theory description breaks down. The
appearance of this scale is associated with the nonzero Newton’s constant, which controls quantum corrections to the
system since it always appears with h̵.
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an object falling into a black hole reaches there within finite time. This object is then absorbed by the
black hole, whose information will eventually be sent back to ambient space as Hawking radiation.

This implies that in the external frame description, the stretched horizon behaves as a regular
material surface as far as the flow of quantum information is concerned. The semiclassical theory,
however, treats the horizon degrees of freedom appearing in the middle of the process to be classical, or
at best an ensemble of quantum states represented by the Hawking cloud. Therefore, in any semiclassical
calculation, the quantum information in the initial matter must appear to be lost in the final state;
there is no way to completely describe the microscopic information on the horizon while staying in the
semiclassical regime. In other words, Hawking’s calculation [5] must have led to information loss, and
indeed it did [1].

Emergence of the interior

A puzzling feature of the picture described above is that general relativity seems to imply that the black
hole horizon is smooth. Namely, when an object freely falls into the horizon, it does not experience
anything special there. This is obviously not the case when an object falls into a regular material
surface.

As discussed in Refs. [21–25], the stretched horizon is distinguished from other, regular material
surfaces by its chaotic [51], fast-scrambling [52,53] dynamics across all low energy species. Here, by all
low energy species, we mean all quantum fields appearing in the low energy effective theory below the
string scale. These features arise because of the large relative acceleration, of order the string scale,
between the quasi-static frame (a natural frame in holography) and the free falling frame at the stretched
horizon. It is this aspect of the horizon dynamics that allows us to erect a description in which an object
falls freely through the stretched horizon. This is done by making the state take a fully generic form in
the relevant microcanonical ensemble.4

Specifically, when described in a quasi-static reference frame, quantum degrees of freedom of a black
hole consist of modes in a spatial region near the stretched horizon (called the zone) as well as those at
the stretched horizon. We call them zone and horizon modes, respectively. While the dynamics of the
former is described by the low energy effective field theory, that of the latter is not. Note that these
modes are defined for each time interval in which the black hole can be viewed as quasi-static.

Let us now focus on a (small) subset of the zone modes which is relevant for describing an infalling
physical object. In particular, the object will be described by excitations of these modes over the black
hole vacuum. Let us call these modes hard modes and all other black hole (zone and horizon) modes
soft modes. From the assumption that the horizon degrees of freedom obey chaotic dynamics, we can

4 For a charged or rotating black hole, the relevant ensemble consists of microstates with charge or angular momentum
constrained to lie within a small window dictated by quantum uncertainties.
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then conclude that a black hole vacuum microstate takes the form

∣Ψ(M)⟩ =∑
n

eSbh(M−En)

∑
in=1

cnin ∣{nα}⟩∣ψ
(n)
in

⟩, (1.4)

where ∣{nα}⟩ represent states of the hard modes, specified by the occupation numbers nα for each mode
α, and ∣ψ(n)in

⟩ are the states of the soft modes that have energy M −En, where En is the energy carried
by ∣{nα}⟩. Note that since the total energy of the black hole system is constrained to beM , the number
of independent horizon-mode states ∣ψ(n)in

⟩ coupling to ∣{nα}⟩ in Eq. (1.4) is given by Sbh(M −En), the
density of states at energy M −En. Here,

Sbh(E) = 4πE2l2P (1.5)

is the Bekenstein-Hawking entropy density at energy E with lP being the Planck length. (The con-
tribution from the hard modes to the black hole entropy is negligible.) Also note that because of the
chaotic nature of the horizon dynamics, the coefficients cnin take random values across all low energy
species. In fact, the quasi-static form of Eq. (1.4) is achieved quickly after any disturbance, i.e. within
the scrambling timescale of order Ml2P ln(MlP) [52, 53].

The universality of the form of the state in Eq. (1.4) allows us to erect the effective theory of the
interior. Specifically, we can define the normalized state coupling to ∣{nα}⟩ in Eq. (1.4)

∥{nα}⟫ = ςn
eSbh(M−En)

∑
in=1

cnin ∣ψ
(n)
in

⟩, (1.6)

where

ςn =
1√

∑e
Sbh(M−En)

in=1 ∣cnin ∣2
= e

En
2TH

√
∑
m

e
−Em
TH [1 +O(e−

1
2
Sbh(M))] . (1.7)

Plugging this into Eq. (1.4), we obtain the standard thermofield double form [54,55]

∣Ψ(M)⟩ = 1√
∑m e

−Em
TH

∑
n

e
− En

2TH ∣{nα}⟩∥{nα}⟫, (1.8)

up to exponentially small corrections of order e−Sbh/2. We can thus evolve an object in the zone
(generated by acting creation/annihilation operators on ∣{nα}⟩’s) using the time evolution operator
associated with the proper time of the falling object, which is different from the original time evolution
operator in the boundary theory but still local in bulk spacetime [21–25]. This implies the existence of
a description in which the falling object passes the horizon and enters the black hole interior smoothly.

We emphasize that the criterion for a state to take the universal form in Eq. (1.4) is much stronger
than that for regular thermalization; in particular, it must exhibit universal thermalization across all
low energy species. It is reasonable to expect that such strong thermalization is achieved within a
reasonable timescale only by the string scale dynamics, which singles out the stretched horizon. We also
stress that the prescription of obtaining interior spacetime described here does not require a detailed
knowledge about microscopic dynamics of quantum gravity; only some basic assumptions are sufficient.
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As the evaporation of a black hole progresses, information stored in the horizon degrees of freedom
is gradually transferred to Hawking radiation. After the Page time [20], entanglement between hard
modes and early Hawking radiation becomes nonnegligible, so that the interior description must involve
this Hawking radiation [29]. The way this occurs is that the black hole interior, more precisely ∥{nα}⟫’s
in Eq. (1.8), must involve early Hawking radiation in addition to the black hole degrees of freedom.

This last statement may seem to contradict the recent claim about entanglement wedge recon-
struction that the interior of an old black hole can be reconstructed using only early Hawking ra-
diation [33–35]. This is, however, not the case [24]. A key point is that such entanglement wedge
reconstruction makes crucial use of boundary time evolution, which allows for reconstructing states of
the black hole and radiation modes at an earlier time. On the other hand, the effective theory of the inte-
rior uses these modes directly at the time relevant for describing an infalling object. This understanding
resolves an apparent puzzle associated with causality in entanglement wedge reconstruction.

In this paper, we first perform a detailed analysis of the near horizon mode structure in Sec-
tions 2 and 3, and study its relation to the holographic boundary picture in Section 4. The construction
of the effective theory of the interior is presented in Sections 3 and 5, where we also discuss the refine-
ment of the construction needed to accommodate the effects of evaporation on the instantaneous state
of the zone modes. The relationship of this picture to entanglement wedge reconstruction is discussed
in Section 5.

de Sitter holography

The similarity between the static patch description of de Sitter spacetime and the external description of
black hole spacetime has been studied for a long time [39]. Based on this similarity, it was suggested that
de Sitter spacetime may admit a holographic description with finite-dimensional Hilbert space [56, 57].
In this paper, building on the earlier analysis in Refs. [22, 40], we develop a holographic description of
de Sitter spacetime based on the (quasi-)static picture.

First, we note that the analogue of a collapse formed, single-sided black hole is cosmological de Sitter
spacetime, which arises approximately in the middle of a cosmological history, e.g. at late times in a
bubble universe with positive cosmological constant. In this case, there is a single static patch as viewed
by an observer (timelike geodesic), which is the inside-out analogue of the exterior of the black hole.
We define the zone and horizon modes as those inside (on the observer side of) the stretched horizon
and those on the stretched horizon, respectively. As in the case of a black hole, a microstate for the
de Sitter vacuum then takes the form

∣Ψ(E)⟩ =∑
n

eSdS(E−En)

∑
in=1

cnin ∣{nα}⟩∣ψ
(n)
in

⟩, (1.9)

where ∣{nα}⟩ represent states of the hard modes and ∣ψ(n)in
⟩ are the states of the soft modes that have

energy E −En, where En is the energy of ∣{nα}⟩ measured at the location of the observer. Here,

SdS(E) = πE2l2P (1.10)
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represents the de Sitter entropy, with E being the “energy” of the de Sitter vacuum related to the Hubble
radius α by

E = α

l2P
. (1.11)

Again, the coefficients cnin take random values across all low energy species because of universally
chaotic dynamics at the horizon. This randomization is achieved rather quickly, within the scrambling
timescale of order α ln(α/lP) [58].

Using a microstate in Eq. (1.9), the effective theory describing a region outside the horizon (as
viewed from the observer) can be constructed analogously to the black hole case. By identifying the
normalized state ∥{nα}⟫ using Eq. (1.9), we can rewrite the full state as

∣Ψ(E)⟩ = 1√
∑m e

−Em
TH

∑
n

e
− En

2TH ∣{nα}⟩∥{nα}⟫, (1.12)

where TH is the de Sitter temperature. This state represents the semiclassical vacuum state of global
de Sitter spacetime at time when the effective theory is erected.

We thus find that the effective global de Sitter picture emerges from a cosmological de Sitter space-
time as a collective phenomenon involving horizon modes. Like the black hole case, the effective theory
of global de Sitter spacetime is intrinsically semiclassical in that there is an intrinsic ambiguity of order
e−SGH/2 in the definition of the theory, where SGH is the Gibbons-Hawking entropy. This, therefore,
addresses the issue identified as a puzzling feature in Ref. [59] that symmetries of classical (global)
de Sitter spacetime cannot be implemented exactly in a finite-dimensional Hilbert space.

The holographic theory of de Sitter spacetime described here is presented in Sections 3 and 5. Its
relation to holography in more general spacetimes is discussed in Section 4, where we will see how static
patch de Sitter holography arises naturally from holography in more general cosmological spacetimes.
In Section 5, we will describe the construction of the effective theory and see that this theory is sufficient
to provide a semiclassical description of future measurements of the observer.

Intrinsically two-sided systems

While we find that the analytically extended Schwarzschild and global de Sitter spacetimes emerge from
the more physical, single-sided spacetimes via collective dynamics involving horizon modes, there is
nothing theoretically wrong with considering an “intrinsically two-sided” system, which comprises two
copies of the holographic theory for the single-sided system.

In Section 6, we analyze such two-sided systems using our framework. We will see that these two-
sided systems lead to physics similar to the corresponding single-sided systems at the semiclassical level,
despite the fact that the microscopic structures of relevant states are significantly different. We also
comment on possible relations of our framework to other proposals for holographic theories developed
in the context of intrinsically two-sided systems. In particular, we discuss the relationship of our
description of de Sitter spacetime with the DS/dS correspondence [43,44] and the Shaghoulian-Susskind
proposal [45–48].
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Gravitational path integral: ensemble from coarse graining

The approach described so far is formulated most naturally in the canonical formalism of quantum
mechanics. For example, we have introduced the concept of horizon modes and their associated states.
However, quantum mechanics must also be formulable using path integral. What does the picture look
like in this case?

The path integral formalism has a very different starting point. In the context of quantum gravity,
it is the collection of classical field configurations on classical geometries, which are then integrated over
to obtain physical results. This implies, however, that a black hole (or de Sitter) spacetime appearing
in the path integral must be treated as a (semi)classical object, so its detailed microscopic structure
cannot be discriminated. In fact, since the energy differences between different black hole microstates
are suppressed by e−SBH(M), these states cannot be discriminated by direct measurement.

From the microscopic point of view, this means that a black hole appearing in gravitational path
integral is a coarse-grained object. This mandatory coarse graining introduces the concept of ensemble
averaging in interpreting the result of gravitational path integral. This interpretation, in fact, reproduces
many features which are attributed to the ensemble nature of holographic theories in lower dimensional
quantum gravity [36] using an ensemble of microscopic states in a single theory [24]. However, if the
classical black hole spacetime necessarily represents an ensemble of microstates, how can the underlying
unitarity of a black hole evolution be captured by the quantum extremal surface method [33–35] which
uses such classical spacetime?

A key observation is that while gravitational path integral can only calculate ensemble averages, it
can still do so for many different quantities. In particular, adopting the replica method, the gravitational
path integral can calculate the traces of powers of the density matrix of Hawking radiation TrρnR. This is
the replica wormhole calculation of Refs. [36,37]. From this, the ensemble average of the von Neumann
entropy of the radiation can be obtained

SR = − lim
n→1

∂

∂n
TrρnR ∼ min{Srad, Sbh}, (1.13)

which follows the Page curve. The reason why we could obtain the Page curve here is because we have
calculated the ensemble average of the microscopic von Neumann entropy, which obeys the Page curve
for all members of the ensemble. This is unlike Hawking’s calculation which gives the von Neumann
entropy of the averaged state.

This replica method prescription involving gravitational path integrals is virtually equivalent to the
entanglement island prescription for calculating entropies, adopted in Refs. [33–35]. This, therefore,
provides the following interpretation of the results in Refs. [33–35]: while any formalism treating a black
hole as a classical object, including the gravitational path integral, must involve an ensemble average
over microstates, microscopic information about some quantities can still be deduced by computing
such ensemble averages. The entanglement island prescription (implicitly) adopts this for von Neumann
entropies.

The issue described here is discussed in Section 7. It is based on the picture outlined in Refs. [24,38].
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The idea that the semiclassical description involves an ensemble of microstates was also discussed in
Refs. [60–64], and the understanding of the Page curve presented there is based on the developments in
Refs. [65–71].

Quantum mechanics vs general relativity in quantum gravity

It is important that the extremization procedure involved in the calculation of an entanglement island
is performed on global spacetime of general relativity. In particular, for a black hole spacetime, it must
be performed on the whole spacetime including the interior of the black hole.

This picture, therefore, is complementary to that based on the external view of the black hole.
Here the existence of the black hole interior is manifest, while understanding the unitarity of black
hole evolution requires a method incorporating nonperturbative effects of quantum gravity, such as
replica wormholes. On the other hand, in the framework based on the external view, the unitarity of
the evolution is built-in, and the interior emerges only effectively as a collective phenomenon involving
horizon (and possibly other, entangled) degrees of freedom.

Despite the fact that the two pictures appear very different, they give the same physical conclusions.
In particular, a black hole evolves unitarily and has a smooth horizon. The origin of historical confusions
about black hole physics come from the fact that only one of these features is manifest in a given low
energy description; the other appears in a highly nontrivial manner. It is interesting that the description
in which unitarity of quantum mechanics is manifest naturally comes with the canonical/Hamiltonian
formulation of quantum mechanics, while the one in which the interior predicted by general relativity
is manifest is naturally associated with the path integral/Lagrangian formulation. It is an interesting
question if a microscopic formulation of quantum gravity can make both these features manifest.

1.2 List of assumptions

Here we list out the assumptions that we use throughout the paper. We focus on spacetimes which are
spherically symmetric at the semiclassical level, although excitations on them are not restricted to be
spherically symmetric. We take the number of spacetime dimensions to be 3+1, although our arguments
can be generalized straightforwardly to d + 1 dimensions with d ≥ 3.

When discussing black holes, we mostly consider a spherically symmetric, non-charged black hole in
an asymptotically flat spacetime (or an analogous object such as a spherically symmetric, non-charged
small black hole in an asymptotically AdS spacetime). It is straightforward to include the effect of a
charge or rotation unless the black hole is extremal or near extremal. An extension to (near) extremal
and lower dimensional black holes is expected to be nontrivial, since these black holes have different
structures for the densities of states than “generic” black holes considered in this paper; see, e.g.,
Refs. [72, 73].

10



2 Quantum Field on Background Spacetime

In this section, we discuss the behavior of quantum fields in spherically symmetric background space-
times. The calculation presented here is elementary. The results, however, are used in later sections, so
we include them for completeness.

We consider a 4-dimensional spacetime with the metric

ds2 = −f(r)dt2 + 1

f(r)dr2 + r2dΩ2, (2.1)

where dΩ2 = dθ2 + sin2θdφ2. For simplicity, we consider a minimally-coupled real scalar field Φ in this
spacetime, whose action is given by

I = 1

2
∫ d4x

√−g (−gµν∂µΦ∂νΦ −m2
ΦΦ2) . (2.2)

After changing the radial coordinate to the tortoise coordinate r∗ defined by

dr∗ =
dr

f(r) , (2.3)

the metric becomes
ds2 = f(r) (−dt2 + dr2

∗) + r2dΩ2. (2.4)

Here, r should be regarded as a function of r∗. The equation of motion derived from Eq. (2.2) is then
given by

(−∂2
t + ∂2

r∗ −
f(r)f ′(r)

r
+ f(r)

r2
∂2

Ω −m2
Φf(r)) (rΦ) = 0, (2.5)

where ∂2
Ω is defined by ∂2

Ωχ = (1/ sin θ)∂θ(sin θ∂θχ) + (1/ sin2θ)∂2
φχ.

We look for positive frequency solutions of the form

Φ(t, r∗, θ, φ) = e−iωt
ϕ`m(r∗)

r
Y`m(θ, φ) (2.6)

with ω ≥ 0, where Y`m(θ, φ) represent real spherical harmonics, satisfying ∂2
ΩY`m = −`(` + 1)Y`m. This

results in a linear, second-order differential equation for ϕ`m(r)

− d2

(dr∗)2
ϕ`m(r∗) + {V`(r∗) − ω2}ϕ`m(r∗) = 0, (2.7)

where the effective potential V`(r∗) is given by

V`(r) = f(r)(
f ′(r)
r

+ `(` + 1)
r2

+m2
Φ) . (2.8)

The corresponding equations for higher spin fields are generally more complicated, but they can also be
derived using a semiclassical method [74–77].

We are interested in spacetime that has a horizon at radius r+ determined by

f(r+) = 0. (2.9)

11



The location, rs, of the stretched horizon [19] is determined by the condition that the proper distance
between r = r+ and rs is the string length ls:

RRRRRRRRRRR
∫

rs

r+

dr√
f(r)

RRRRRRRRRRR
≈ ls, (2.10)

giving

∣rs − r+∣ ≈
∣f ′(r+)∣ l2s

4
. (2.11)

Here, we have assumed that ∣f ′(r+)∣ is not much suppressed compared with the natural size determined
by dimensional analysis, ∣f ′(r+)∣ ∼ 1/r+, which is indeed the case for the spacetimes that we consider in
this paper. The Hawking temperature, as measured at r satisfying f(r) = 1, is given by

TH = ∣f ′(r+)∣
4π

, (2.12)

so that the location of the stretched horizon also coincides with the place where the local (Tolman)
Hawking temperature Tloc(r) = TH/

√
f(r) becomes the string scale, ≈ 1/2πls [24].

2.1 Schwarzschild black hole

Let us consider a Schwarzschild black hole of mass M . The metric is given by

f(r) = 1 − r+
r
, (2.13)

where r+ = 2Ml2P. The tortoise coordinate is given by

r∗ = r + r+ ln
r − r+
r+

, (2.14)

which maps r ∶ (r+,∞) to r∗ ∶ (−∞,∞), and the effective potential is

V`(r∗) = (1 − r+
r
)(r+

r3
+ `(` + 1)

r2
+m2

Φ) , (2.15)

which is plotted in Fig. 1 for mΦ = 0.5 The stretched horizon is located at

rs − r+ ≈
l2s

4r+
⇐⇒ r∗s − r+ ≈ −2r+ ln

2r+
ls
, (2.17)

and the Hawking temperature is given by

TH = 1

4πr+
. (2.18)

5 For a general, not necessarily a scalar, field of mΦ = 0, we have

V`(r∗) = (1 − r+
r
)((1 − s2)r+

r3
+ `(` + 1)

r2
) , (2.16)

where s is the spin-weight parameter and ` ≥ ∣s∣. In the near horizon limit, this leads to the approximate potential of
Eq. (2.20) but with λ` = (`2 + ` + 1 − s2)/r2

+, giving a higher potential barrier for larger ∣s∣ for a fixed value of ` − ∣s∣.
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Figure 1: The effective potential V` of a Schwarzschild black hole (solid lines) for a minimally-coupled
massless scalar field with ` = 0,1,2 as a function of the tortoise coordinate r∗. The Hawking temperature
TH = 1/4πr+ is indicated by the horizontal dashed line. The approximated curves in Eq. (2.20) are also
plotted (dotted lines) in the region where they are relevant.

While we cannot solve Eq. (2.7) analytically, we can study the behavior of the field in the near
horizon and far regions by making appropriate approximations. We are mostly interested in the near
horizon “zone” region

rs < r < rz, rz ≈
3

2
r+, (2.19)

where rz indicates the location of the potential barrier. The near horizon limit corresponds to r − r+ ≪
O(r+), where r∗ ≈ r++r+ ln[(r−r+)/r+] ⇐⇒ r ≈ r++r+e(r∗−r+)/r+ . The effective potential in this region
is given by

V`(r∗) ≈ λ` e
r∗−r+
r+ , λ` =

`2 + ` + 1

r2
+

+m2
Φ. (2.20)

This approximation is valid if r∗ is negative with ∣r∗∣ sufficiently larger than r+; see Fig. 1. This implies
that we can trust solutions obtained using Eq. (2.20) if ω2 ≪ V`(r∗ = −r+) ∼ λ`.

Two independent real solutions of Eq. (2.7) with Eq. (2.20) can be taken as

Re [I2ir+ω(2
√
λ` r+e

r∗−r+
2r+ )] , Im [I2ir+ω(2

√
λ` r+e

r∗−r+
2r+ )] , (2.21)

where Iν(x) is the modified Bessel function of the first kind. The first solution is exponentially increasing
in r∗ at large r∗, so it does not correspond to modes that are localized in the zone region; it corresponds
to decaying modes for signals sent from the far region. We thus focus on the second solution, which
is exponentially damped at large r∗. This solution is approximated by a trigonometric function in the
near horizon region

ϕ`m(r∗) ∝ Im [I2ir+ω(2
√
λ` r+e

r∗−r+
2r+ )] ∣r∗∣≫r+ÐÐÐÐ→

r∗<0
sin [ωr∗ + ωr+(ln(λ`r2

+) − 1)] . (2.22)
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Given that the effective potential at the stretched horizon has the value V`(r∗s) = λ`l2s /4r2
+, we find

ω ≳
√
λ` ls

2r+
. (2.23)

We also find that imposing a boundary condition at the stretched horizon makes the spectrum discrete,
with the gap between adjacent levels given by

∆ω ≡ ωn − ωn−1 ≈
π

2r+ ∣ln 2√
λ` ls

∣
, (2.24)

where we have imposed a simple Dirichlet boundary condition ϕ`m(r∗s) = 0 for illustrative purposes.
Note that for a given `, each level has (2`+1)-fold degeneracy corresponding tom = −`,−`+1,⋯, `. While
the details of the spectrum do depend on the boundary condition, its basic structure—the discreteness
and the scale characterizing the gaps—does not.

2.2 de Sitter spacetime

A similar analysis can be performed for de Sitter spacetime in static coordinates

f(r) = 1 − r
2

r2
+
, (2.25)

leading to the same basic conclusion. Here, r+ = α with α being the Hubble radius. The tortoise
coordinate is given by

r∗ =
r+
2

ln
1 + r

r+

1 − r
r+

, (2.26)

which maps r ∶ (0, r+) to r∗ ∶ (0,∞), and the effective potential is

V`(r∗) = (1 − r
2

r2
+
)(− 2

r2
+
+ `(` + 1)

r2
+m2

Φ) , (2.27)

which is plotted in Fig. 2 for mΦ = 0. The stretched horizon is located at

r+ − rs ≈
l2s

2r+
⇐⇒ r∗s ≈ r+ ln

2r+
ls
, (2.28)

and the Hawking temperature is given by

TH = 1

2πr+
. (2.29)

For ` ≠ 0, the effective potential blows up at small values of r∗. Therefore, if ω is small, we can
restrict to r∗ > r+ which corresponds to the region near the cosmological horizon. For ` = 0, the effective
potential blows up at small r∗ only when mΦ >

√
2/r+; otherwise, the potential is confining, leading to

a small number of bound states. Below, we focus on the case mΦ >
√

2/r+ for ` = 0.

With this restriction, the effective potential in the near horizon region is given by

V`(r∗) ≈ 4λ` e
−2 r∗

r+ , λ` =
`2 + ` − 2

r2
+

+m2
Φ, (2.30)
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Figure 2: The effective potential V` of de Sitter spacetime for a minimally-coupled massless scalar field
with ` = 0,1,2 as a function of the tortoise coordinate r∗. The Hawking temperature TH = 1/2πr+ is
indicated by the horizontal dashed line.

except for ` = 1 with mΦ = 0, in which case

V`=1(r∗) ≈
32

r2
+
e
−4 r∗

r+ for mΦ = 0. (2.31)

This approximation is valid only for r∗ ≳ r+. We can thus trust the solutions of Eq. (2.7) obtained using
these V`(r∗)’s only if ω2 ≪ V (r∗ = r+) ∼ λ` (or ≪ 1/r2

+ for ` = 1, mΦ = 0).

The most general solution corresponding to the approximate potential in Eq. (2.30) is given by

ϕ`m(r∗) = Re [AIir+ω(2
√
λ` r+e

− r∗
r+ )] , (2.32)

where A ∈ C is an arbitrary constant. In order for the original field Φ(t, r∗, θ, φ) in Eq. (2.6) to be
well-defined, the exact solution of ϕ`m(r∗) must vanish at least as fast as r∗ when r∗ ≈ r → 0. This
condition fixes the phase of A in the approximate solution, leading to a single solution for ϕ`m(r∗) in
the near horizon region:

ϕ`m(r∗)
r∗≫r+ÐÐÐ→ sin [ωr∗ −

1

2
ωr+ ln(λ`r2

+) + δ] , (2.33)

where δ is determined by the phase of A. For ` = 1 and mΦ = 0, a similar analysis gives

ϕ`m(r∗) ∝ Re [AI i
2
r+ω

(2
√

2 e
− 2r∗
r+ )] r∗≫r+ÐÐÐ→ sin [ωr∗ −

ln 2

4
ωr+ + δ] . (2.34)

Given that the effective potential in Eq. (2.30) has the value V`(r∗s) = λ`l2s /r2
+, we find

ω ≳
√
λ` ls
r+

for (`,mΦ) ≠ (1,0), (2.35)
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and by imposing the boundary condition ϕ`m(r∗s) = 0, we obtain a discrete spectrum with

∆ω ≈ π

r+ ∣ln 2√
λ` ls

∣
for (`,mΦ) ≠ (1,0). (2.36)

For (`,mΦ) = (1,0), the corresponding quantities are given instead by V`(r∗s) = 2l4s /r6
+ and

ω ≳
√

2l2s
r3
+
, ∆ω ≈ π

r+ ln 23/4r+
ls

for (`,mΦ) = (1,0). (2.37)

Once again, the basic structure of the spectrum found here does not depend on the boundary condition
at the stretched horizon.

2.3 General near horizon limit

We now see that the structure of the spectrum for

ω ≪
√

`2

r2
+
+m2

Φ, `≫ 1 (2.38)

in the near horizon region is universal for generic horizons, beyond the black hole and de Sitter spacetimes
discussed so far. This reflects the universality of the near horizon limit, giving Rindler spacetime.

To see this, let us consider a spacetime with the metric in Eq. (2.1) which has a horizon at r = r+.
We assume that f(r) > 1 in the region r > r+, which we call the allowed region. For a given horizon,
this can always be arranged. Specifically, if f(r) > 1 in r < r+, as in de Sitter spacetime, we redefine
r → −r (and r+ → −r+) to make the allowed region r > r+. Note that this makes r and r+ negative.

In the near horizon region, we then have f(r) ≈ f ′(r+)(r − r+) with f ′(r+) > 0. Here, we have
assumed that f ′(r+) is not too suppressed compared with its natural size f ′(r+) ∼ 1/∣r+∣. (This excludes
the horizon of a near extremal black hole from our consideration.) The tortoise coordinate in the near
horizon region is then

r∗ ≈
1

f ′(r+)
ln
r − r+
c∣r+∣

, (2.39)

where c > 0 is an unimportant O(1) number defining the origin of r∗,6 and the effective potential in this
region is given by

V`(r∗) ≈ c∣r+∣f ′(r+)λ` ef
′(r+)r∗ ≈ λ` ef

′(r+)r∗ , λ` =
f ′(r+)
r+

+ `(` + 1)
r2
+

+m2
Φ. (2.40)

We want λ` > 0 for this potential to trap modes in the near horizon region. (Here we exclude the
nongeneric case of λ` = 0 from consideration.) If r+ > 0, this condition is satisfied for any values of `
and mΦ. If r+ < 0, we restrict our treatment to modes with large enough ` or mΦ such that λ` > 0.

For the above approximation to hold, we need ω2 ≪ V (r∗ ∼ −1/f ′(r+)) ∼ λ`, which for ` ≫ 1 gives
the condition in Eq. (2.38). Assuming that ω is in this range, we can obtain the general solution to

6 In sections 2.1 and 2.2, c was taken to be 1/e and 2, respectively.
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Eq. (2.7) as

ϕ`m(r∗) = Re

⎡⎢⎢⎢⎢⎣
AI 2iω

f ′(r+)
(2

¿
ÁÁÀc∣r+∣λ`

f ′(r+)
e
f ′(r+)r∗

2 )
⎤⎥⎥⎥⎥⎦
, (2.41)

where A ∈ C is an arbitrary constant. The relevant solution is selected by a boundary condition at
r∗ ≈ O(r+), which depends on spacetime under consideration. For Schwarzschild black hole and de Sitter
spacetimes, these were given at r ≈ rz, and r = 0, respectively. This fixes the phase of A and gives us a
single solution for each ω. In the near horizon limit, it takes the form

ϕ`m(r∗) ≈ sin(ωr∗ +
ω

f ′(r+)
ln
c∣r+∣λ`
f ′(r+)

+ δ) for r∗ < 0, ∣r∗∣ ≫ ∣r+∣, (2.42)

where δ is an O(1) phase determined by the phase of A.

The existence of the stretched horizon, at r∗s ≈ −(1/f ′(r+)) ln(4c∣r+∣/l2s f ′(r+)), has two effects. First,
since V`(r∗s) ≈ λ`l2s /∣r+∣2, frequency ω for given λ` is bounded from below:

ω ≳
√
λ` ls
∣r+∣

. (2.43)

Second, imposing a boundary condition at r∗ = r∗s quantizes the spectrum:

∆ω ∼ πf ′(r+)
2 ∣ln 2√

λ` ls
∣
. (2.44)

We find that these are universal features of the spectrum in the regime of Eq. (2.38).

3 The Absence of Spacetime below the String Length

A key element of the analysis in the previous section is the hypothesis that spacetime, as we usually
perceive, does not exist below the string length. In normal circumstances, this hardly affects low energy
physics because of Wilsonian decoupling. In the presence of a horizon, however, large gravitational
red/blue shift makes this fact relevant for low energy physics. Its significance can be best seen in the
tortoise coordinate, in which the wavelength of a massless mode is preserved while propagating; in terms
of this coordinate, the removal of the spacetime region within the string length from the horizon leads
to excising a half line.

The proper distance, used in defining the stretched horizon in Eq. (2.10), is associated with the
particular time foliation that leads to the static form of the metric, Eq. (2.1). In the case of an
evaporating black hole, we apply our treatment to a sufficiently small time window, e.g. ∆t ≲ r+, in
which the system can be viewed as approximately static. The issue of time slicing will be discussed
further in Section 4.

In this section, we demonstrate that the Bekenstein-Hawking entropy, SBH, as well as Hawking
temperature, TH, follow only from two inputs from the ultraviolet (UV) physics (or two assumptions
from the point of view of low energy theory):
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• Spacetime does not exist below the string length, which introduces the “boundary” of space—the
stretched horizon—at a proper distance ls away from the horizon.

• Physics associated with the boundary is (maximally) quantum chaotic [51] across all low energy
species [22], so the black hole and de Sitter vacuum microstates (or the microstates associated
with any horizon) are typical in a suitable microcanonical ensemble.

In particular, these reproduce SBH and TH up to incalculable O(1) coefficients. In the situation where
the state evolves in time at the semiclassical level, for example when the black hole is evaporating or the
system is perturbed by excitations, we assume that the typicality described above is reached quickly.
In fact, it is believed that the dynamics associated with horizons is fast scrambling [52,53].7

Next we discuss the UV sensitivities of the various modes, classifying them into modes that can
be reliably described in the semiclassical theory and those that are intrinsically quantum gravitational.
This provides a refinement of the concept of hard and soft modes introduced in Refs. [21,22] to describe
an analytic extension of spacetime at the microscopic level; the meaning of this analytic extension in
quantum gravity will be discussed in more detail in Section 5. Finally, we will discuss how the vacuum
and excited states of semiclassical theory are related to the microscopic description given here.

3.1 Entropy, temperature, and microstates for a semiclassical vacuum

As stated above, we assume that the unknown UV physics of quantum gravity appears in low energy
physics as a lack of space below the proper length of order ls. As we have seen in Section 2, this makes
the spectrum discrete:

ω(`)n = ω(`)0 + n∆ω(`) n = 0,1,2,⋯, (3.1)

where

ω
(`)
0 ≈

√
λ`ls
∣r+∣

, ∆ω(`) ∼
RRRRRRRRRRRR

πf ′(r+)
2 ln 2√

λ`ls

RRRRRRRRRRRR
. (3.2)

Following Refs. [21, 22], we take the view that the energy of the system, which is usually attributed to
the background, is carried by the quanta that fill these energy levels.

For concreteness, let us consider a Schwarzschild black hole. The case of de Sitter spacetime can
be analyzed similarly, which we will discuss at the end of this subsection. Suppose that there are N (`)n
quanta of field Φ at the n-th level of angular momentum `, which has (2`+1)-fold degeneracy. The total
energy carried by Φ is then

EΦ = gΦ

∞
∑
`=0

∞
∑
n=0

ω(`)n N (`)n , (3.3)

where gΦ is the number of degrees of freedom for field Φ. (gΦ = 1 for a real scalar field.) The picture
of Refs. [21,22] is that the sum of this energy for all low energy fields represents the total energy of the

7 As discussed in Ref. [22], this assumption implies the absence of fundamental global symmetries (see, e.g., Refs. [78–81]);
specifically, any linearly-realized global symmetry is explicitly broken by an O(1)—or not exponentially suppressed—
amount at the string scale.
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system (as measured at r satisfying f(r) = 1), which is determined self-consistently by the spacetime
background used in calculating ω(`)n . In the present case

Ebh =∑
Φ

EΦ =M, (3.4)

where the sum runs over all low energy fields that can be viewed as elementary in the effective field
theory at a scale slightly below 1/ls.8

While the expressions for ω(`)0 and ∆ω(`) are different for a field with spin, their values are of the
same order as those of a scalar field. In particular, using Eq. (2.16) in footnote 5, one finds that λ` in
Eq. (3.2) is simply replaced as

λ` → λ`,s =
`2 + ` + 1 − s2

r2
+

(` ≥ ∣s∣) (3.5)

for mΦ = 0. This does not change the values of ω(`)0 and ∆ω(`) much, as long as ∣s∣ ≈ O(1) which we
assume here. In any case, the precise numbers for these quantities are not important, or trustable, as
we will discuss in Section 3.2.

Because of the assumption of chaotic and fast scrambling dynamics at the stretched horizon, espe-
cially those across all low energy species, the distribution of energy among various species and levels is
determined purely by the content of low energy fields. In particular, the distribution of quanta in each
degree of freedom is given by maximizing the combinatorial numbers

CΦ({N (`)n }) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∏∞
`=0∏∞

n=0
(N(`)n +2`)!
N
(`)
n !(2`)!

(N (`)n ≥ 0) for Φ: boson

∏∞
`=0∏∞

n=0
(2`+1)!

N
(`)
n !(2`+1−N(`)n )!

(0 ≤ N (`)n ≤ 2` + 1) for Φ: fermion
(3.6)

under the constraint of Eq. (3.4).9 Following the standard analysis in statistical mechanics, we find

N (`)n = 2` + 1

eβω
(`)
n ∓ 1

, (3.7)

where ∓ takes the minus and plus signs for bosonic and fermionic degrees of freedom, respectively, and
β is determined by the condition

Ebh =∑
Φ

gΦ

∞
∑
`=0

∞
∑
n=0

(2` + 1)ω(`)n
eβω

(`)
n ∓ 1

. (3.8)

Note that β in Eq. (3.8) does not depend on Φ, and there is no “chemical potential” for any Φ, since
the dynamics at the stretched horizon is chaotic across all low energy species.

We can calculate the right-hand side of Eq. (3.8) by using Eq. (3.1) and replacing the sum over `
and n with the corresponding integrals. Assuming that

`≫ 1,
`2

r2
+
≫m2

Φ, (3.9)

8 We ignore the kinetic energy, which is not important for a black hole that is spherically symmetric at the classical level.
9 As in the standard statistical mechanics, this gives the most probable configuration of quanta. The probability of
finding other configurations satisfying the constraint is not zero but exponentially suppressed.
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which is justified a posteriori as the integral is dominated by ` ∼ r+/ls, we may use

ω
(`)
0 ≈ ` ls

r2
+
, ∆ω(`) ∼ 1

∣r+ ln r+
` ls

∣
. (3.10)

This gives

Ebh ≈ Ndof
r5
+

β4l2s
(∣ln β

r+
∣ +O(1)) , (3.11)

where Ndof = ∑Φ gΦ is the total number of degrees of freedom of low energy fields. Using

1

l2P
≈ Ndof

l2s
(3.12)

(see, e.g., Ref. [82]) as well as Ebh =M and r+ = 2Ml2P, we find

β ≈Ml2P, (3.13)

which is the inverse Hawking temperature. We also find that

S =∑
Φ

gΦ lnCΦ ≈M2l2P, (3.14)

as indicated by the Bekenstein-Hawking entropy. Note that since the contribution to

lnCΦ ≈
∞
∑
`=0

2`
∞
∑
n=0

βω(`)n e−βω
(`)
n (3.15)

comes predominantly from the ` ≈ O(r+/ls) modes, the entropy is given primarily by the number of
different independent states that these large ` modes can take.

In the present method based on a low energy description of the system, the coefficients in Eqs. (3.13)
and (3.14) cannot be obtained. This is because the quantities are dominated by the contributions from
the ` ∼ r+/ls modes that are localized near the stretched horizon, where the effect of unknown UV physics
dominates. While this implies that the calculation is UV sensitive, its agreement with the results of
Bekenstein and Hawking still gives us information about the UV physics; in particular, this unknown
physics does not drastically increase the degrees of freedom compared to what is suggested by naively
cutting off the spacetime at r∗ ≈ r∗s. Note that this calculation is equivalent to that in Refs. [21, 22],
in which the mass and entropy of a black hole are obtained by integrating appropriate powers of the
local Hawking temperature. The logic, however, is reversed here; once the geometry is given (within
a time window of order r+) by Eqs. (2.1) and (2.13), and correspondingly the energy of the system by
M , then a typical state represents a black hole vacuum microstate with the temperature and entropy
of the black hole given by Eqs. (3.13) and (3.14). Microstates of the black hole vacuum correspond to
different ways in which the energy levels in Eq. (3.1) are occupied under the energy constraint.

As in the standard thermal system, the microscopic state of a black hole changes generically in a
timescale of order the inverse temperature β ≈Ml2P. This implies that the energy of the system, i.e. the
mass of the black hole, can be specified only up to the precision of ∆E ∼ 1/β; the state of a black hole
comprises a superposition of energy eigenstates with the spread of eigenvalues of order 1/β or larger. In
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the following, we always assume that the state of the system of interest, e.g. a black hole or de Sitter
spacetime, is specified with this maximal precision. A similar comment also apples to other quantities,
such as the momentum of a black hole, whose minimal uncertainty is of order ∆p ∼∆(

√
2ME) ∼ 1/Ml2P.

The number of independent states consistent with this specification is given by the Bekenstein-Hawking
entropy of Eq. (3.14). If the state involves superpositions of wider ranges of energy, momentum, and
so on, e.g. as a result of backreaction of Hawking emission [83,84], then our discussion below applies to
each branch specified with the maximal precision for these quantities.

Note that a typical state in the space spanned by the independent microstates specified by E =
M and p = 0 within the minimal uncertainties of ∆E and ∆p has angular momentum of order the
uncertainty ∆J ∼

√
Ndof r+/ls ∼ r+/lP. This is consistent with the maximal precision with which angles

can be specified consistently with the UV cutoff: ∆θ ∼ ls/r+ for each species. We can thus regard these
microstates as those of a non-rotating black hole in semiclassical theory.

We finally mention that we can discuss de Sitter spacetime in a similar manner. One difference
is that we do not have a well-established notion of energy attributed to the spacetime in this case.
However, by taking

EdS =
α

l2P
, (3.16)

as implied by the Bekenstein-Hawking (or Gibbons-Hawking [39]) entropy SGH = πα2/l2P and Hawking
temperature TH = 1/2πα, we reproduce all the properties associated with a static patch of the de Sitter
spacetime [22]. (Physically, this energy can be specified only up to the precision of order TH.) While
the relationship of this energy to more conventionally defined energies is not clear, it represents some
“energy” defined at r = 0, at which f(r) = 1, rather than at asymptotic infinity.10

3.2 UV (in)sensitivity: zone and horizon modes

Even though the density of states given by Eqs. (3.1) and (3.2) reproduces the entropy and temperature
associated with the horizon, we do not expect that the precise spectrum is given by these expressions.
This is because interactions near the stretched horizon, with the effective coupling given by Tloc(rs)2l2s ∼
O(1), deform the spectrum significantly from that of free theories (though the density of states will not
change when coarse grained at a scale of order r+ in the r∗ coordinate).

To analyze this issue in more detail, let us consider the effective potential V`(r∗) for a fixed ` and
negligible mΦ. From Eq. (3.2), the average gap between adjacent energy levels is given by

∆ω(`) ∼ 1

r+ ln r+
` ls

. (3.17)

For a black hole, the height of the barrier is given by

ω
(`)
barrier ∼

`

r+
. (3.18)

10 It is interesting to note that if one considers the quantity E = ∫Σ
√−g ρd3x, along the lines of Ref. [85], then one would

get E = α/l2P. Here, Σ is the t = 0 surface of global de Sitter spacetime comprising two static patches, g = −r4 sin2θ is the
determinant of the spacetime metric (in the static coordinates), ρ = 3/8πl2Pα2 is the energy density, and d3x = drdθdφ.
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(a) ` ≈ O(1) (b) ` ≈ O(r+/ls)

Figure 3: A schematic depiction of approximately orthogonal, independent modes having ω ≈ O(TH)
and localized in the zone for a field of negligible mass. (a) For ` ≈ O(1), there are ∼ ln(r+/ls) independent
ingoing and outgoing modes. Their approximate basis can be taken to be wavepackets of width ∼ r+
in r∗, distributed uniformly over the classically allowed region between r∗s and r(`)∗b , where r

(`)
∗b − r∗s ∼

r+ ln(r+/ls). (b) For modes with ` ≈ O(r+/ls), the classically allowed region is near the stretched horizon
with r(`)∗b − r∗s ∼ r+, so all these modes must be regarded as horizon modes.

As we have seen, the temperature of the system is ∼ 1/r+, and the modes with

ω ≲ 1

r+
and ` ≲ r+

ls
(3.19)

are significantly occupied. For each of these modes, the wavefunction is oscillatory between r∗ = r∗s and

r∗ ≈ −
2

f ′(r+)
ln ` ≡ r(`)∗b , (3.20)

outside of which it is exponentially damped. Thus the size of the region supporting these modes is
given, in units of the wavelength of Hawking radiation, as

∣r(`)∗b − r∗s∣
r+

≈ ∣ 1

r+f ′(r+)
ln

r+
`2l2s ∣f ′(r+)∣

∣ ∼ ∣ln r+
` ls

∣ , (3.21)

where we have used ∣f ′(r+)∣ ∼ 1/r+ in the last expression.

For illustration, let us fist consider the two extreme cases of ` ≈ O(1) and O(r+/ls). For ` ≈ O(1),
there are 1/∆ω(`)r+ ∼ ln(r+/ls) independent modes that have ω ≈ O(1/r+) for each orbital and magnetic
quantum numbers ` and m. We may take them to be wavepackets of width ≈ r+ in r∗ distributed
uniformly between r∗s and r

(`)
∗b without having a significant overlap with each other; see Fig. 3. In order

for these to form a basis, we need to prepare two sets of wavepackets, moving toward larger and smaller
values of r∗. Among these (approximately orthogonal) wavepackets, the ones closest to the stretched
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horizon, i.e. those located within ∼ r+ in r∗ from the stretched horizon, are special in that their dynamics
cannot be described by a semiclassical theory. This is because the interaction strength of the unknown
UV dynamics is strong there, which can also be seen from the fact that the unknown O(1) coefficient
in the definition of the stretched horizon in Eq. (2.10) translates into the ambiguity of the location of
the stretched horizon of order r+ in r∗. We call modes corresponding to these wavepackets, i.e. the
wavepackets “next to” the stretched horizon, horizon modes. On the other hand, the dynamics of other
∼ ln(r+/ls) wavepackets can be described by a semiclassical theory (at least) in the relevant timescale
of order 1/TH ∼ r+. Modes associated with these semiclassically describable wavepackets are called zone
modes.

For ` ≈ O(r+/ls), the situation is different. In this case, there are only 1/∆ω(`)r+ ≈ O(1) independent
modes having ω ≈ O(1/r+) for each ` and m, which, given Eq. (3.21), are all supported within ∼ r+ from
the stretched horizon. Therefore, they are all horizon modes. As stated earlier, the entropy of a black
hole (or de Sitter spacetime) is dominated by the number of independent states of these high ` modes

S ∼ Ndof

O(r+/ls)
∑
`=0

`

∑
m=−`

O(1) ∼ r2
+
l2P
, (3.22)

so the dynamics of the black hole (de Sitter) microstates cannot be described by a semiclassical theory.
Indeed, the dynamics of these modes is expected to be nonlocal in the spatial directions along the
horizon [52,53].

In general, we call modes localized near the stretched horizon, i.e. within ∼ r+ in r∗, horizon modes
while those away from it we call zone modes. We use the term “zone modes” also in spacetimes other
than the black hole spacetime, including de Sitter spacetime, even though there may not be real zones in
these spacetimes. In the case where the region near the horizon is connected to another (ambient/bath)
region across a barrier of the effective potential, we restrict the use of the term zone modes to those
modes that are contained in the region near the horizon. For example, for a Schwarzschild black hole in
asymptotically flat spacetime, zone modes only refer to modes within the zone r ≲ rz of the black hole.
Modes located outside the barrier, r ≳ rz, are not directly involved in the near horizon dynamics, and
we call them far modes.

It is important to realize that the terminologies introduced above are associated with the spatial
position of modes at a given time, or more precisely a time interval of width ∆t ≲ O(r+) within which the
system can be regarded as approximately static. This implies, for example, that a zone mode according
to the classification at time t1 can be a horizon, zone, or far mode (or a superposition of them) according
to the classification at another time t2. In particular, if the mode is well localized in the zone at time
t1 and is propagating toward the stretched horizon, then it will be a horizon mode according to the
classification at t2, a time after this mode has reached the stretched horizon. Generally, a horizon mode
remains as a horizon mode for a long time, although it occasionally becomes an outgoing zone mode
through interactions at the stretched horizon.
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3.3 Vacuum microstates of semiclassical theories

Consider a state specified by the occupation numbers of all the levels in Eq. (3.1) (with the precise
values of ω(`)n modified by interactions). This should be understood as a state of full quantum gravity.
In particular, a typical pure state given in this way represents a microstate of a black hole or de Sitter
vacuum. We now connect this description to the picture in semiclassical theory, wherein a vacuum state
takes the form of a mixed, (approximately) thermal state.

For this purpose, we first consider a subset of zone modes which is relevant for describing a physical
object (or objects) falling into the horizon. In the context of de Sitter spacetime, this means an object
accelerating away from the observer toward the cosmological horizon. We can choose a subset of modes
to accommodate any semiclassical object; the object is then described as an excitation of this set of
modes over the semiclassical vacuum state.11 We call these modes hard modes. They comprise only a
tiny subset of the zone modes, since even the most entropic configuration of semiclassical matter has
the entropy suppressed by powers of lP/r+ compared with the entropy of the Hawking cloud [7, 86], of
which the entropy of the zone modes comprises an O(1) fraction. The rest of the zone modes and the
horizon modes are together called soft modes.

Similar to the zone and horizon modes, the hard and soft modes are defined at a specific time t. In
particular, a mode defined as a hard (or soft) mode at time t may not be a hard (soft) mode at another
time. This issue, however, is less relevant for these modes than for the zone and horizon modes, since
the concept is used almost exclusively to construct an effective theory describing the region behind the
horizon, which is erected at a given instantaneous time t as we will see below.

We label hard modes collectively by α, which includes all possible quantum numbers like species,
level, and orbital and spin angular momenta. The state of these modes is specified by giving the
occupation number nα (≥ 0) for each α, which we denote by ∣{nα}⟩ and normalize such that

⟨{mα}∣{nα}⟩ = δ{mα},{nα} = δmn, (3.23)

where m and n are shorthand notations of {mα} and {nα}. We assume that different hard-mode states
are observationally distinguishable in that two different states do not have identical quantum numbers
within the uncertainties ∆E, ∆p, and so on.

Suppose that the system consists only of zone and horizon modes; examples include de Sitter space-
time. 12 In this class of systems, the state of the entire system is generally given as an entangled state
of hard and soft modes. Because of the energy constraint, the state of soft modes that comes with
the hard-mode state ∣{nα}⟩ must have energy E −En, up to the uncertainty ∆E required by quantum
mechanics, which is typically of the order of the Hawking temperature TH. Here, E is the total energy

11 This subset can be chosen to represent bound or meta-stable states (or an object made out of them). We may even
choose it to represent a microscopic black hole, although such a construction would have to be made more precise.
12 This is always the case if the effective potential increases monotonically as r∗ moves away from the stretched horizon.
Another system exhibiting a similar behavior is Rindler spacetime, although in this case the system has a planar rather
than spherical symmetry.
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of the system, e.g. EdS in Eq. (3.16) for de Sitter spacetime, and

En = E{nα} =∑
α

nαωα (3.24)

is the energy of the hard-mode state ∣{nα}⟩.

The relevant Hilbert space of the system is then given by

H(E) =⊕
n

(∣{nα}⟩⊗H(n)soft) , (3.25)

where H(n)soft is the Hilbert space spanned by the soft-mode states that carry energy E −En within the
uncertainty ∆E. Given that the number of hard modes is much smaller than the number of relevant
soft modes, the effective dimension of the Hilbert space H(n)soft is given by

ln dimH(n)soft = S(E −En), (3.26)

where S(E) is the entropy density of the system at energy E. For de Sitter spacetime, it is given by
the Gibbons-Hawking entropy

S(E) = SdS(E) = πE2l2P, (3.27)

which gives the standard expression of SGH = πα2/l2P for E = EdS = α/l2P.

A typical state described in Section 3.1 corresponds to a typical state in the Hilbert space H(E)
of Eq. (3.25). For our purposes, we need not be very precise about what we mean by typical, but for
concreteness one might imagine a state that is typical in H(E) under the Haar measure. Denoting a set
of generic orthonormal basis states of H(n)soft by ∣ψ(n)in

⟩ (in = 1,⋯, eS(E−En)), the state we are interested
in can be written as

∣Ψ(E)⟩ =∑
n

eS(E−En)

∑
in=1

cnin ∣{nα}⟩∣ψ
(n)
in

⟩, (3.28)

where the real and imaginary parts of complex coefficients cnin ’s can be viewed as taking random values
following independently the Gaussian distributions with

⟨Re cnin⟩ = ⟨Im cnin⟩ = 0,
√

⟨(Re cnin)2⟩ =
√

⟨(Im cnin)2⟩ = 1√
2eSsys

. (3.29)

Here, the brackets represent the ensemble average over (a sufficiently large portion of) the (n, in) space,
and

eSsys =∑
n

eS(E−En) ≡ z eS(E) (3.30)

is the number of independent states of the form of Eq. (3.28) with

z =∑
n

e
−En
TH , (3.31)

where we have used ∂S(E)/∂E = 1/TH and En ≪ E.13 In other words, we can say that cnin is a complex
Gaussian random variable, which implies that the phases of cnin ’s are distributed uniformly.

13 We have used the equal sign for a relation that becomes exact in the thermodynamic limit.
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Note that by taking the basis of H(n)soft for each n, we find that soft-mode states are orthogonal

⟨ψ(m)im
∣ψ(n)jn

⟩ = δmnδimjn . (3.32)

This is because states ∣ψ(n)in
⟩ with different n can be observationally discriminated, which follows from the

distinguishability of different hard-mode states ∣{nα}⟩ as well as the fact that the state of combined hard
and soft mode system is specified with the minimal uncertainty. In particular, even if some observables
(e.g. E and p) may have to be intrinsically coarse grained (by ∆E and ∆p), ∣ψ(n)in

⟩’s with different n
can still be discriminated at the semiclassical level, and hence are orthogonal.14

We also note that Ssys = S(E)+ ln z is equal to S(E) at the leading order in lP/r+ and 1/Enr+. This
implies that the standard interpretation of the Gibbons-Hawking entropy as the entropy of de Sitter
spacetime persists. A similar comment applies to a black hole, for which the density of soft-mode states
is given by the Bekenstein-Hawking entropy

S(E) = Sbh(E) = 4πE2l2P, (3.33)

although in this case the entire system also has degrees of freedom outside the zone, and Ssys = S(E)+ln z

represents only the entropy of the black hole system (i.e. the zone and horizon modes) without including
the contribution from the far modes.

We now take a complete set of orthonormal states of the form of Eq. (3.28), i.e. states having the
energy E within ∆E, in a generic basis:

∣ΨA(E)⟩ =∑
n

eS(E−En)

∑
in=1

cAnin ∣{nα}⟩∣ψ
(n)
in

⟩ (A = 1,⋯, eSsys), (3.34)

where

⟨ΨA(E)∣ΨB(E)⟩ = δAB ⇐⇒ ∑
n

eS(E−En)

∑
in=1

cA∗ninc
B
nin = δAB. (3.35)

In general, these states provide a basis for microstates of a semiclassical vacuum. For example, if the
spectrum ωα is given such that it represents hard modes inside the stretched de Sitter horizon, then the
set { ∣ΨA(E)⟩ } forms a basis for the microstates of the de Sitter vacuum.

We stress that in order for the states of Eq. (3.34) to be microstates of the spacetime, they need to
be taken generically in the space of H(E). For example, if we took eSsys orthonormal states that are,
or approximately are, product states

∣Ψ(E)⟩ ≈ ∣{nα}⟩∣ψ(n)in
⟩, (3.36)

then these states would still form a “basis” of the microstates in Eq. (3.34) in the sense that all the states
of the form in Eq. (3.34) can be obtained by superposing them, although none of them is by itself a

14 We assume that such coarse grainings would be performed using smoothing functions which damp very rapidly outside
the windows of order ∆E and ∆p so that Eq. (3.23) is valid with sufficient accuracy. With this assumption, Eq. (3.32) is
also valid at the same level of accuracy.
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microstates of the spacetime under consideration—these special, exponentially rare, states (states whose
entanglement structure is significantly different from generic states) are “firewall” [3] states which do
not represent the spacetime under consideration. This is because spacetime is a manifestation of the
entanglement structure of a holographic boundary state [87–92], and entanglement cannot be represented
as a linear operator—the concept of a linear vector space comprising the microstates of a spacetime is
only an approximate one [40,93]. This issue will be discussed further in the next section.

Since a semiclassical theory can describe only the dynamics of hard modes, it concerns only about
the state of these modes. Thus, the vacuum state ρvac(E) in a semiclassical theory is obtained by taking
a typical vacuum microstate and then tracing out the soft modes. Specifically, it is given by

ρvac(E) = Trsoft ∣ΨA(E)⟩⟨ΨA(E)∣

=∑
n

⎛
⎝
eS(E−En)

∑
in=1

∣cAnin ∣
2⎞
⎠
∣{nα}⟩⟨{nα}∣

=∑
n

e
−En
TH

z
∣{nα}⟩⟨{nα}∣ +O(e−

1
2
S(E)). (3.37)

Here, in the last equation we have used

εABn ≡ z e
En
TH

eS(E−En)

∑
in=1

cA∗ninc
B
nin − δAB ≈ O(e−

1
2
S(E−En)), (3.38)

which can be derived from Eq. (3.29). More precisely, when we vary A and B, εABn behave as complex
Gaussian random variables with mean 0 and variance e−S(E−En), but obeying

(εABn )∗ = εBAn , ∑
n

e
−En
TH

z
εABn = 0, (3.39)

where the second relation follows from Eq. (3.35). In the case of de Sitter spacetime, the thermal state
in Eq. (3.37) gives the vacuum state describing a static patch of the de Sitter spacetime with Hubble
radius α = E l2P.

The hard and soft modes described here provide a refinement of the hard and soft modes defined in
Refs. [21–25]. In Refs. [21–25] a simple frequency space criterion was used to define the hard and soft
modes, while in our new definition here, the hard modes are chosen to be a subset of the zone modes
whose dynamics we intend to describe at the semiclassical level. This makes it possible, for example,
to describe the dynamics of zone modes with ω ∼ O(TH) using a semiclassical theory, which was not
possible with the previous definition. For many practical purposes, however, the two definitions are
interchangeable. For a small object falling into the horizon, for example, the difference between the two
definitions is not significant if we choose the frequency cutoff to be sufficiently larger than TH. We can
then employ the same construction for spacetime beyond the horizon, which we will discuss in Section 5.

Evaporating black hole

The situation is more complicated if the region near the horizon is coupled to an ambient/bath system.
An important example of this is a black hole in asymptotically flat spacetime; other examples include
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a small black hole in asymptotically AdS spacetime and a large AdS black hole coupled to a separate
bath system. In this case, the near horizon system, consisting of the zone and horizon, evolves in time,
and this evolution modifies the vacuum states.

For concreteness, let us focus on a black hole in asymptotically flat spacetime. The state of the
entire system then involves the hard, soft, and far (located outside the zone, r > rz) modes. Thus,
denoting orthonormal basis states of the far modes by ∣φa⟩, one would consider the state of the system
to be given by15

∣ΨA(M)⟩ ?= ∑
n

eSbh(M−En)

∑
in=1

Srad

∑
a=1

cAnina∣{nα}⟩∣ψ
(n)
in

⟩∣φa⟩, (3.40)

where we have assumed that the black hole system, comprising the hard and soft modes, is at rest and
has energy M (up to the uncertainty of order TH). Here, eSrad is the number of independent far-mode
states relevant here, i.e. those significantly entangled with the black hole system (typically Hawking
radiation emitted earlier from the black hole), and A is the index for microstates running over

A = 1,⋯, eSs+r , Ss+r = Ssys + Srad, (3.41)

with Ssys given by Eq. (3.30) with S(E) = Sbh(E). The coefficients cAnina satisfy the properties analogous
to those in Eq. (3.29)

⟨Re cAnina⟩ = ⟨Im cAnina⟩ = 0,
√

⟨(Re cAnina)2⟩ =
√

⟨(Im cAnina)2⟩ = 1√
2eSs+r

, (3.42)

with brackets representing the ensemble average over (a sufficiently large portion of) the (n, in, a) space.
Note that ∣ΨA(M)⟩ represent microstates of the system with the black hole put in the semiclassical
vacuum, and a generic state in the Hilbert space of dimension eSs+r has the black hole of mass M . Since
black hole evaporation is a thermodynamically irreversible process [94,95], most of these microstates do
not become a state with a larger black hole in empty space when evolved backward in time—there is
some junk radiation around it. This, however, does not change the fact that there are eSs+r independent
microstates relevant for the discussion here.

The fact that the height of the potential barrier is finite, however, implies that only modes with
ω < ω(`)barrier are thermalized in the zone. Given that the dynamics at the stretched horizon is strongly
coupled, outgoing modes (i.e. modes moving toward larger r) with ω > ω(`)barrier can still be viewed as
obeying the thermal distribution, but this is not the case for ingoing modes with ω > ω(`)barrier. At the
microscopic level, this implies that the microcanonical ensemble in Section 3.1 is taken with the extra

15 We assume that the standard issues for a factorization of Hilbert space in quantum field theory, such as those associated
with short distance divergences and constraints from gauge invariance, are dealt with appropriately.
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constraint that the occupation numbers of ingoing modes with ω > ω(`)barrier are zero, leading to16

∣ΨA(M)⟩ ?∝ ∑
n

∏
α′∈ ingoing

ω>ω(`)
barrier

δnα′ ,0
eSbh(M−En)

∑
in=1

Srad

∑
a=1

cAnina∣{nα}⟩∣ψ
(n)
in

⟩∣φa⟩, (3.43)

where the ∝ symbol represents “up to a normalization constant,” and the question mark above it
indicates that this relation is tentative and will be updated momentarily. (The effect of the lack of
ingoing soft modes with ω > ω

(`)
barrier is negligible for our purpose.) This corresponds to taking the

Hartle-Hawking [96] and Unruh [54] vacua for hard modes with ω < ω(`)barrier and > ω(`)barrier, respectively.
The effect of the constraint on soft modes is negligible, since the vast majority of the relevant modes
have ω ∼ TH and `≫ 1, and hence ω ≪ ω

(`)
barrier.

The story, however, does not end here. Because of the coupling between the black hole system (zone
+ horizon) and the asymptotically flat spacetime around the region r ∼ rz, thermal quanta in the zone
“leak” into the latter. This occurs mostly via s-wave modes that tunnel through the potential barrier.
We emphasize that this process, occurring near the edge of the zone [97,98] (for related discussions, see
Refs. [99–101]), is governed by semiclassical physics—it does not involve strongly coupled, intrinsically
quantum gravitational physics in any significant way. Given a black hole microstate in Eq. (3.43)
(slightly modified due to backreaction; see below), the emission of quanta into the asymptotic region
occurs unitarily following the dynamics of standard quantum field theory. The apparent violation of
unitarity in Hawking’s analysis [1] occurs because we cannot calculate the configuration of zone mode
quanta using semiclassical theory due to the strong dynamics near the stretched horizon. It is this
incalculability that makes the semiclassical description of Hawking radiation, obtained after tracing out
the soft modes, intrinsically thermal and hence leading to a mixed final state. Physics away from the
stretched horizon can indeed be fully semiclassical, even within and at the edge of the zone.17

The emission of Hawking particles to the ambient space at r ∼ rz gives a backreaction to the state
of the black hole. In this region, quanta of the zone region is leaked into the ambient space through
tunneling the potential barrier (and also via thermal hopping to some extent). This removes some of
the quanta that would be reflected back to the zone by the potential, producing a deficit in ingoing
zone mode quanta relative to those in the states of Eq. (3.43), i.e. with the Hartle-Hawking vacuum.
Note that the process occurs only for low energy fields of mass mΦ ≲ TH. Given that an O(1) number
of quanta are emitted within each time interval of order 1/TH ∼ r+, there are ∼ ln(r+/ls) quanta missing
throughout the zone for each low energy field Φ of mΦ ≲ TH. Denoting the annihilation operators

16 Strictly speaking, there are small but nonzero amplitudes for outgoing hard modes with ω > ω(`)barrier to be reflected
back from the potential barrier. We mostly ignore this effect because it is not essential for our discussion. Including it,
however, is straightforward; instead of taking the terms with ∃α′, nα′ ≠ 0 to be exactly absent, we keep these terms with
small coefficients (compared to those of the terms with ∀α′, nα′ = 0). Note that the size of these coefficients in general
depends strongly on {nα′}, reflecting the ωα′ dependence of the reflection amplitudes.
17 This implies that the process of black hole mining [102, 103] also occurs unitarily, which is governed by semiclassical
physics if it is performed away from the stretched horizon. It also implies that the semiclassical calculation of the gray
body factor, such as that in Ref. [104], is valid as long as r+/ls is sufficiently large; see below.
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Figure 4: A schematic depiction of quanta occupying various modes. Solid arrows indicate that the
occupation numbers of the modes are determined by the thermodynamic consideration as described
in Section 3.1. For zone modes, this applies to the outgoing mode as well as the ingoing modes with
ω ≲ ω(`)barrier, except that backreaction of Hawking emission at r ∼ rz leads to a deficit for some of these
ingoing modes as indicated by the dashed arrow.

for hard mode quanta by bᾱ (see below for more detail), we finally find that the microstates of an
evaporating black hole are given by

∣ΨA(M)⟩ ∝ ∏
ᾱ∈ ingoing

mΦ≲TH, ω∼TH

bᾱ ∑
n

∏
α′∈ ingoing

ω>ω(`)
barrier

δnα′ ,0
eSbh(M−En)

∑
in=1

Srad

∑
a=1

cAnina∣{nα}⟩∣ψ
(n)
in

⟩∣φa⟩, (3.44)

where the number of annihilation operators bᾱ in the product is at most of order ln(r+/ls) for each field;
the precise number depends on the choice of the hard modes. A schematic depiction of the occupation
of various modes is given in Fig. 4.

The deficit of ingoing modes described above implies that there is a negative energy flux carrying
negative entropy for each field of mΦ ≲ TH. Note that these energy and entropy are measured with
respect to the thermal, Hartle-Hawking vacuum state in Eq. (3.43) for modes with ω ∼ TH. The flux has
negative entropy because with the lack of some of the zone mode quanta, the number of independent
states realizing the most probable configuration is smaller by eO(1) ln(r+/ls) for each field. Thus, the
microstate index A in Eq. (3.44) runs effectively only for

A = 1,⋯,Amax, lnAmax − Stot ∼ − ln
r+
ls
, (3.45)
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where Stot is the coarse-grained entropy of the total system ignoring the backreaction

eStot =∑
n

∏
α′∈ ingoing

ω>ω(`)
barrier

δnα′ ,0 e
Sbh(M−En)eSrad ≡ z′eSbh(M)+Srad , (3.46)

and we have taken the number of low energy degrees of freedom relevant for the emission process to be of
O(1).18 As discussed in Refs. [97,98], this negative entropy is essential for the unitarity of the black hole
evolution, in particular for the black hole to keep relaxing into a lower mass black hole while absorbing
the negative energy flux. Again, we emphasize that semiclassical physics is sufficient to understand the
unitary emission process at r ∼ rz and the resulting emergence of a negative energy and entropy flux.
The unknown UV physics enters only in the process occurring at the stretched horizon, in which the
ingoing negative energy-entropy flux is absorbed into horizon modes and the black hole relaxes into its
semiclassical vacuum state.

So far, we have assumed that our black hole is large, in particular ln(r+/ls) ≫ 1. In this limit,
the difference of energies between adjacent discrete levels for modes relevant for Hawking emission,
∼ r+/ ln(r+/ls), is much smaller than the uncertainty of energy of Hawking quanta, ∼ r+, so that the
effect of the discreteness of energy levels is negligible in calculating the spectrum of Hawking radiation.
In particular, the semiclassical calculation of the spectrum, including the gray body factor, persists with
high precision. If the value of ln(r+/ls) is reduced, however, the effect of the discreteness of levels may
become important. In particular, if the size of the classically allowed region r(`)∗b − r∗s ≈ 2r+ ln(r+/ls),
becomes smaller than a half wavelength of a Hawking quantum λH/2 ≈ π/TH ≈ 4π2r+, i.e.

r+ ≲ e2π2

ls, (3.47)

then the effect may become non-negligible. (This condition can also be obtained by requiring ∆ω in
Eq. (2.24) to be larger than TH.) A naive guess is that in this regime, the energy of each Hawking
quantum is larger than that obtained by the semiclassical calculation, since the frequency of the lowest
energy level is expected to become larger than TH. An interesting point is that the black hole enters the
regime of Eq. (3.47) before its mass is reduced to the Planck mass, since this condition can be written
as

M ≲ e
2π2
ls

2l2P
. (3.48)

For ls/lP ≈ 20, as we might expect in our universe, the right-hand side is 4 × 109 times larger than the
Planck mass (corresponding to the black hole of TH ≈ 1 × 108 GeV). We leave further discussion of this
issue, including its possible phenomenological implications, for the future.

3.4 Excited states

Before concluding this section, let us discuss semiclassical excitations in the zone. The states we have
considered so far are typical states in a suitably defined microcanonical ensemble. For a black hole,

18 This implies that the range of in in Eq. (3.44) is, strictly speaking, smaller than that in Eqs. (3.40) or (3.43). For the
lack of a better notation, we interpret the sum in Eq. (3.44), and analogous expressions later, to include this minor effect.
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for example, the relevant ensemble consists of the states that contain a fixed energy E in a spatial
region r ≲ rz within an uncertainty ∆E. These states are all vacuum states from the point of view of
semiclassical theory as indicated by the fact that the Bekenstein-Hawking entropy is associated with
the background (vacuum) spacetime in semiclassical theory.

We can, however, consider atypical states obtained by acting annihilation and/or creation operators
of hard modes

bγ =∑
n

√
nγ ∣{nα − δαγ}⟩⟨{nα}∣, (3.49)

b†γ =∑
n

√
nγ + 1 ∣{nα + δαγ}⟩⟨{nα}∣ (3.50)

A state obtained in this way is not typical as it does not have the most probable configuration among the
states in the ensemble. on these vacuum states, where γ specifies the mode which is annihilated/created
by the operator. (States obtained by acting annihilation operators can become relevant when one
considers backreaction of the Hawking emission or black hole mining process. In particular, some of the
operators b(z)ᾱ in Eq. (3.44) can be superpositions of the bγ operators, if we choose the hard modes to
include the relevant zone modes.)

We are interested in semiclassical excitations whose backreaction to the geometry is negligible, or
regarded as being small, for example a baseball falling into an astronomical black hole. This implies
that the number of creation/annihilation operators that can be acted on a vacuum state is limited, so
that their algebra defined on a vacuum state does not close in a strict mathematical sense. This type of
structure is in fact common in erecting a semiclassical theory in quantum gravity, and here we simply
treat the space of states obtained in this way as a Hilbert space; for a mathematically more rigorous
treatment, see, e.g., Ref. [105]. In holography, one can think of this space as a code subspace embedded
in a physical Hilbert space [106–108], although we do not discuss the error correcting nature of operators
in this paper.

Strictly speaking, the space of semiclassical excitations generated by bγ and b†γ acted on each vacuum
state is not orthogonal to the space of vacuum microstates; namely, the Hilbert space cannot be strictly
written as Hexc ⊗Hvac [25]. One can see this by calculating inner products between states obtained by
exciting black hole microstates in Eq. (3.43):

⟨ΨA(M)∣b†βbγ ∣ΨB(M)⟩ = δβγ∑
n

∏
α′∈ ingoing

ω>ω(`)
barrier

δnα′ ,0
eSbh(M−En)

∑
in=1

eSrad

∑
a=1

nγ c
A∗
ninac

B
nina, (3.51)

⟨ΨA(M)∣bβb†γ ∣ΨB(M)⟩ = δβγ∑
n

∏
α′∈ ingoing

ω>ω(`)
barrier

δnα′ ,0
eSbh(M−En)

∑
in=1

eSrad

∑
a=1

(nγ + 1) cA∗ninac
B
nina. (3.52)

These are not proportional to δAB in general, so that excited states built on different vacuum microstates
are not necessarily orthogonal. However, for A ≠ B, the right-hand sides of the above equations are
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exponentially suppressed by a factor of e−Stot/2, where we have taken

⟨ΨA(M)∣ΨB(M)⟩ = δAB ⇐⇒ ∑
n

∏
α′∈ ingoing

ω>ω(`)
barrier

δnα′ ,0
eSbh(M−En)

∑
in=1

eSrad

∑
a=1

cA∗ninac
B
nina = δAB. (3.53)

Therefore, the deviation from the product space structure is exponentially small.

Incidentally, the annihilation and creation operators in Eqs. (3.49) and (3.50) satisfy the standard
commutation relations

[bβ, b†γ] = δβγ∑
n

∣{nα}⟩⟨{nα}∣, [bβ, bγ] = [b†β, b
†
γ] = 0 (3.54)

as operators, without having an exponentially small correction. In erecting a semiclassical theory, one
regards all the microstates ∣ΨA(M)⟩ as representing the same geometry M. This allows us to define
field operators

ΦΓ(x) =∑
γ′

(bγuγ′(x) + b†γvγ′(x)) , (3.55)

where we have split the index γ into the index for species Γ and that for other quantum numbers γ′,
e.g. a component of spin, whose structure may depend on Γ: γ = (Γ, γ′). Here, uγ′(x) and vγ′(x) are
mode functions defined in the allowed region of M. Because of Eq. (3.54), these field operators and
their conjugate momenta obey the standard equal-time commutation relations, so that the resulting
semiclassical theory respects causality exactly. For black hole and de Sitter spacetimes, this theory can
be used to describe physics in the regions r > rs and < rs, respectively.

4 Holographic Description

So far, we have assumed that the fundamental description of a system represents spacetime in the
allowed region (with the horizon degrees of freedom included). For example, this corresponds to taking
a distant view for a black hole and a static patch view for de Sitter spacetime. Why is this the case?

In this section, we discuss this issue from the perspective of holography. We assume that these
spacetimes arise in setups in which the holographic description has only a single boundary; in particular,
the black hole is formed by a gravitational collapse, and de Sitter spacetime arises in a cosmological
context, for example as a universe created by bubble nucleation [109] which is filled with a positive
cosmological constant. These setups are, arguably, more “realistic” than those with multiple boundaries,
which will be discussed in Section 6. We conclude the section with a discussion on how the (effective)
boundary Hilbert spaces describing the spacetimes considered here are related to the infinite-dimensional
“fundamental” Hilbert space.

4.1 Black hole spacetime

We begin by considering a collapse formed black hole in an asymptotically AdS spacetime. We would
like to know what spacetime picture can be obtained from the boundary CFT by reconstructing the
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(a) classical (b) quantum

Figure 5: Holographic slices in a black hole spacetime in ingoing Eddington-Finkelstein coordinates
(v, r) obtained (a) without and (b) with quantum effects in the bulk. These slices correspond to equal-
time hypersurfaces in the bulk, which approach Schwarzschild time slices near the black hole. The
figures are taken from Refs. [13] and [14].

bulk in a simple manner. By simple reconstruction, we mean reconstruction of the bulk using only
low-complexity, causally-propagating operators and sources in the CFT [16]. In particular, we are
interested in obtaining a “gauge-fixed” bulk description where the spacetime is foliated by equal-time
hypersurfaces, using which the canonical formulation of quantum mechanics can be employed.

One way to obtain such a description is to “pull” the boundary into the bulk by coarse graining
boundary degrees of freedom [13, 14, 110]. Based on intuition from tensor networks [107, 108, 111], one
can consider a series of states [112] defined on successfully “renormalized” boundaries obtained by moving
the original boundary inward to the bulk. The coarse-grained degrees of freedom are distributed locally
on a renormalized boundary, although the dynamics they obey are not necessarily local.

This procedure is expected to work beyond the AdS/CFT context, which we assume to be the case,
and henceforth we will not necessarily assume that the spacetime is asymptotically AdS. A particular
way of performing this renormalization is to “continuously” coarse grain boundary degrees of freedom
uniformly throughout the renormalized boundary space. This leads to a specific spacelike or null hyper-
surface swept by a series of renormalized boundaries called a holographic slice [13], which we will discuss
in more detail below. This surface plays the role of an equal-time hypersurface in the bulk, providing a
gauge fixing necessary for the canonical formulation.

In Fig. 5(a), we depict holographic slices in a black hole spacetime obtained without including
quantum effects in the bulk. We find that the slices do not enter the black hole interior, hence providing
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a distant view of the black hole. This is because the black hole horizon, sufficiently after the black hole
has stabilized, plays a role of a barrier [113] for extremal surfaces, which are used to move renormalized
boundaries. In fact, the slices approach Schwarzschild time slices near the black hole; they then stay
near the horizon for long time and are eventually capped off at r = 0.

In order to describe an evaporating black hole, quantum effects in the bulk must be included. The
procedure of forming a holographic slice can be extended to incorporate these effects [14]. In this
case, the holographic slice is smoothly capped off at r = 0 initially, but at some (boundary) time it
becomes asymptoting to a quantum extremal surface located (approximately) at the horizon; and as
time progresses further, it again becomes a surface without a hole. This is depicted in Fig. 5(b). This
behavior of holographic slices, in fact, can be used to define what we mean by the “formation” and
“evaporation” of a black hole. The holographic slices approximate Schwarzschild time slices in this case
as well, giving a distant description of the black hole. Note that the region swept by the holographic
slices is essentially the simple wedge [16], which can be reconstructed in a simple manner using the
Hamilton-Kabat-Lifschytz-Lowe (HKLL) procedure [11,12,114] together with boundary time evolutions
with sources.

In any event, the description of a black hole that naturally results from a holographic theory with a
single boundary is an exterior/distant one. In this description, the unitarity of black hole evolution is
not an issue, since the stretched horizon behaves as a regular material surface from the point of view of
quantum information flow. The question, rather, is in what sense the near empty interior region exists
for an infalling observer as predicted by general relativity. We will come back to this issue in Section 5.

4.2 de Sitter (or cosmological) spacetime

To discuss holographic descriptions beyond AdS/CFT, we need to introduce a “boundary” in space-
time on which a holographic state can be defined. One way to do this is to consider a renormalized
boundary deep in the bulk—called a renormalized leaf [13, 14] in this context—and “unrenormalize” it
by successively integrating in relevant degrees of freedom, making the holographic slice grow toward
the “non-renormalized” boundary. This procedure depends on the background spacetime, but we can
perform it in each branch of a state representing a well-defined spacetime in the semiclassical limit.

General picture

To be specific, let us adopt the scheme in Refs. [13, 14], in which successively renormalized boundaries
σ(λ), parameterized by “renormalization scale” λ, are obtained by the flow equation

dxµ

dλ
= sµ, (4.1)

where xµ are the embedding coordinates of the codimension-2 surface σ(λ), on which the holographic
states are defined, and sµ is the evolution vector given by

sµ = 1

2
(Θkl

µ +Θlk
µ). (4.2)
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Here, {kµ, lµ} are the future-directed null vectors orthogonal to σ(λ), normalized such that kµlµ = −2,19

and Θk,l represent quantum expansions in the corresponding directions [115], which reduce to the
classical expansions θk,l in the limit that bulk quantum effects are ignored.20 We assume that σ(λ)
is neither quantum trapped nor antitrapped, so that the quantum expansion Θs associated with the
evolution vector sµ satisfies

Θs = ΘkΘl ≤ 0. (4.3)

This condition is needed for the consistency of the interpretation that the flow (toward larger λ) corre-
sponds to coarse graining of the boundary degrees of freedom.

Since a holographic slice is nothing but a codimension-1 surface swept by σ(λ), we can extend it
“outward” using the flow equation. For a generic spacetime, we can perform this extension up to the point
where one of the Θk,l becomes zero, i.e. until σ(λ) becomes a quantum marginally trapped or antitrapped
surface. Suppose that Θk = 0 throughout this surface, which we call σ(0). Then, the dimension of the
Hilbert space associated with states on the holographic slice is bounded [115, 116] by the generalized
entropy of σ(0), so that the σ(0) can be identified as an equal-time surface of a non-renormalized
boundary—or a leaf—on which a non-renormalized boundary state is given.21 A codimension-1 surface
foliated by such leaves is called a holographic screen [117], or Q-screen in the quantum context [118],
on which a holographic theory for general spacetimes is supposed to live [40–42]. This framework is
indeed consistent with the hypothetical relationship [112] between bulk spacetime and the entanglement
structure of a boundary state. A sketch of a holographic screen, leaves, and a holographic slice is given
in Fig. 6.

In some cases, non-renormalized leaves cannot be reached with a finite evolution in λ. In particular,
this occurs in asymptotically AdS and flat spacetimes. In an asymptotically AdS spacetime, the metric
in the asymptotic region can be expanded in a Fefferman-Graham series [119]

ds2 = L
2

z2
{gab(xa, z)dxadxb + dz2}, (4.4)

where L is the AdS length scale, a, b = 0,⋯, d − 1, and gab(xa, z) = g(0)ab (xa) + z2g
(2)
ab (xa) + ⋯ with g(0)ab

being the conformal boundary metric. Suppose that σ(λ) is taken to be a constant t = x0 surface at
a constant z = ε. The null normals are then given by kµ = (L/ε)(−dt + dz) and lµ = (L/ε)(−dt − dz),
yielding Θk = −(d − 1)/L and Θl = (d − 1)/L up to higher order corrections in ε. Here, we have used
the fact that the quantum expansions Θk,l approach classical expansions θk,l in the asymptotic region
because of the lack of matter there. This implies that a leaf of any regularized boundary located at

19 This condition does not fix the normalizations of kµ and lµ separately, but it is sufficient to ensure the validity of the
following treatment. In particular, sµ is invariant under rescalings of kµ and lµ satisfying kµlµ = −2. Below, we fix this
freedom conveniently in each setup when we give explicit expressions for kµ, lµ, θk,l, and Θk,l.
20 More precisely, we must use a modified version of the quantum expansion which includes a bulk entropy contribution
from an “exterior” region, as described in Ref. [14].
21 If we follow the flow further beyond λ = 0, then we lose this property; in this sense, σ(0) is the “maximally unrenormal-
ized” leaf.
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Figure 6: A holographic theory resides on a holographic screen, which is a hypersurface foliated by
quantum marginally antitrapped (or trapped) surfaces called leaves. At a given boundary time, a
boundary state lives on a leaf, from which one can reconstruct a bulk equal-time hypersurface using the
flow equation in Eq. (4.1).

z > 0 is, in fact, a renormalized one, and that the non-renormalized holographic screen can lie formally
only at spacelike infinity,22 where a nonregularized holographic CFT lives in AdS/CFT. It also gives
the evolution vector

sµ = (d − 1)ε
L2

∂

∂z
+O(ε2), (4.5)

showing that the holographic slice extending inward from a regularized boundary evolves initially in the
z direction, up to corrections suppressed by ε; see Fig. 7(a). This behavior is the same as that of the
conventional holographic renormalization group flow [120–124] in the AdS/CFT correspondence. We
also find that the flow freezes, ∣dz/dλ∣→ 0, as z → 0.

For an asymptotically flat spacetime, the metric in the asymptotic region can be expanded in the
Bondi-Sachs form [125,126] as

ds2 = −V
r
e2βdu2 − 2e2βdudr + r2hAB(dxA −UAdu)(dxB −UBdu), (4.6)

where A,B = 1,⋯, d − 1, and each function admits a large r expansion of the form V = r + O(1),
β = O(r−2), UA = O(r−2), and hAB = O(1). As in the case of an asymptotically AdS spacetime, let us
consider σ(λ) which is a constant time slice of the surface r = R. The null normals are then given by
kµ = du and lµ = (V /r)du + 2dr, leading to Θk = −2/R and Θl = 2/R at the leading order in 1/R. We
thus find that a leaf of a regularized holographic screen is a renormalized one, and the flow vector is

sµ = 2

R
(− ∂

∂u
+ ∂

∂r
) +O ( 1

R2
) , (4.7)

22 We adopt a definition of the non-renormalized holographic screen such that it is a hypersurface foliated by leaves, on
which at least one of the Θk,l vanishes.
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(a) asymptotically AdS
spacetime

(b) asymptotically flat
spacetime

Figure 7: Renormalized holographic screens, on which regularized holographic theories reside, are time-
like hypersurfaces in an asymptotically AdS and flat spacetimes, which are depicted by the dotted blue
lines in the Penrose diagrams in (a) and (b), respectively. In both cases, holographic slices agree with
the time slices given by timelike Killing vectors in the asymptotic regions. In the non-renormalized limit,
physics occurring in a finite time is described by holographic theories located at the conformal boundary
(r =∞) and spatial infinity (i0) in the cases of asymptotically AdS and flat spacetimes, respectively.

showing that the generated flow follows a hypersurface of equal Minkowski time in the inward radial
direction, up to corrections suppressed by 1/R, and that it freezes as R → ∞. This is illustrated in
Fig. 7(b), from which we see that any process occurring in the bulk within a finite time interval can be
described by a boundary theory located at spatial infinity i0. By taking the time interval to infinity,
one recovers an S-matrix description in the bulk. This view is consistent with discussions of flat space
holography advanced, e.g., in Refs. [127–131].

de Sitter spacetime

Let us now discuss de Sitter spacetime. As we will see below, care is needed to consider holography of
de Sitter spacetime in a static patch. Our view is that in this context, the concept of exact de Sitter
spacetime arises only as a result of idealization, very much analogous to an eternal single-sided black
hole in an asymptotically flat spacetime (which does not exist because of Hawking radiation).23

For now, we bypass this issue by considering de Sitter spacetime in a cosmological setup. In partic-
ular, we consider an empty bubble universe in which there is a positive vacuum energy density ρΛ. The

23 This is consistent with the expectation from string theory that there is no absolutely stable de Sitter vacuum [132,133].
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interior of the bubble is an open Friedmann-Lemaître-Robertson-Walker (FLRW) universe described by
the metric

ds2 = −dτ2 + a(τ)2
⎡⎢⎢⎢⎢⎣
dχ2 + { 1√

−κ
sinh(

√
−κχ)}

2

dΩ2
⎤⎥⎥⎥⎥⎦
. (4.8)

Here,

a(τ) =
√

−κ
Λ̃

sinh(
√

Λ̃ τ) (4.9)

is the scale factor, where Λ̃ is related to the vacuum energy density by Λ̃ = 8πρΛl
2
P/3, and κ < 0 is a

curvature parameter related to the physical curvature radius by rcurv(τ) = a(τ)/
√
−κ. The holographic

screen is located at the apparent horizon, where θk = 0 and θl > 0:

χ = χsc(τ) =
1√
−κ

ln

⎡⎢⎢⎢⎢⎣
coth

√
Λ̃ τ

2

⎤⎥⎥⎥⎥⎦
, (4.10)

where we have taken kµ and lµ to be the future-directed ingoing and outgoing null vector orthogonal
to a leaf, respectively, and we have indexed leaves by FLRW times at their locations. Here, we have
ignored the difference between classical and quantum expansions, which is valid because we consider the
semiclassical vacuum state, implying that Gibbons-Hawking radiation is not extracted as semiclassical
radiation.

At late times, the universe behaves like a de Sitter spacetime:

a(τ) ≈
√
−κ

2
√

Λ̃
e
√

Λ̃ τ for τ ≫ 1√
Λ̃
. (4.11)

The metric in Eq. (4.8) then becomes flat slicing of the de Sitter spacetime; see Fig. 8. On the other
hand, the physical distance to the holographic screen approaches the Hubble radius 1/

√
Λ̃:

a(τ)χsc(τ) = 1√
Λ̃

sinh(
√

Λ̃ τ) ln

⎡⎢⎢⎢⎢⎣
coth

√
Λ̃ τ

2

⎤⎥⎥⎥⎥⎦
ÐÐÐÐ→
τ≫ 1

√

Λ̃

1√
Λ̃

(1 − 2

3
e−2
√

Λ̃ τ) . (4.12)

The holographic theory thus describes a static patch of the late-time de Sitter spacetime, i.e. the patch
inside the holographic screen.

The holographic slices approach static de Sitter time slices at late times. To see this, we can calculate
kµ and lµ for arbitrary (τ, χ)

kµ =
⎛
⎜⎜
⎝

1

−
√

Λ̃
−κ

1

sinh(
√

Λ̃ τ)

⎞
⎟⎟
⎠
, lµ =

⎛
⎜⎜
⎝

1√
Λ̃
−κ

1

sinh(
√

Λ̃ τ)

⎞
⎟⎟
⎠

(4.13)

and their associated quantum expansions

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Θk ≈ θk = 2
√

Λ̃ [coth(
√

Λ̃ τ) − coth(
√
−κχ)

sinh(
√

Λ̃ τ) ] ,

Θl ≈ θl = 2
√

Λ̃ [coth(
√

Λ̃ τ) + coth(
√
−κχ)

sinh(
√

Λ̃ τ) ] .
(4.14)
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Figure 8: Penrose diagram of de Sitter spacetime. A de Sitter bubble corresponds to the upper-left
half of this diagram, where FLRW equal-time hypersurfaces are drawn by green lines. The holographic
screen is located along the trajectory of the apparent horizon, which is depicted by the solid blue curve.

The evolution vector is then

⎛
⎝
sτ

sχ
⎞
⎠
= 2

√
Λ̃

⎛
⎜⎜
⎝

coth(
√

Λ̃ τ)

−
√

Λ̃
−κ

coth(
√
−κχ)

sinh2(
√

Λ̃ τ)

⎞
⎟⎟
⎠
. (4.15)

We are interested in the spacetime region well inside the holographic screen

χ≪ χsc(τ) ÐÐÐÐÐ→
e
√

Λ̃τ≫1

√
−κχ≪ 2e−

√
Λ̃ τ (4.16)

at late times
α = 1√

Λ̃
≪ rcurv(τ) Ð→ e

√
Λ̃ τ ≫ 1, (4.17)

where α is the Hubble radius of the late time universe. In this region, the relation between the FLRW
coordinates (τ, χ) and the de Sitter static coordinates (t, r) is given by

⎧⎪⎪⎪⎨⎪⎪⎪⎩

αe
τ
α =

√
α2 − r2 e

t
α ,

α
2

√
−κχe τα = r,

(4.18)

leading to the sµ vector in the static coordinates

⎛
⎝
st

sr
⎞
⎠
≈
⎛
⎜
⎝

− 8
3α3

r2

(1−r2/α2)2 e
− 2t
α

−2
r(1 − r2

α2 )

⎞
⎟
⎠
≈
⎛
⎝
− 8r2

3α3 e
− 2t
α

−2
r

⎞
⎠
. (4.19)

We thus find that both st and sr are negative, and ∣st∣ ≪ ∣sr ∣ in the relevant region.

From the above analysis, we conclude that in the holographic description of de Sitter spacetime,
the region swept by holographic slices is the interior of the static patch. Thus, what is analogous to
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the exterior of a single-sided black hole is the interior of a static patch in de Sitter spacetime. This
indicates that the interior of the static patch is the region in which semiclassical field operators can
be reconstructed in a simple manner. We note that the same conclusion can also be obtained by
regularizing de Sitter spacetime in different ways, for example by considering a big-bang universe filled
with two fluid components with the equation-of-state parameters w = −1 and w > −1, or with a single
fluid component of w = −1 + ε, where ε (> 0) is taken sufficiently small that the system can be viewed
as in a de Sitter vacuum [40,41]. This provides a justification for the description of de Sitter spacetime
adopted in Sections 2 and 3, focusing on a single static patch.24

It is important that the holographic description based on a single static patch, which we may call
“single-sided” de Sitter spacetime, assumes an appropriate physical regularization. Had we started with
exact de Sitter spacetime, then the location of a leaf would be on the bifurcation surface or the future
horizon. In this case, a subregion of the leaf would have degenerate extremal surfaces, all of which are
located on the future horizon and have areas equal to the volume of the subregion. This would imply
that holographic slices sweep only a codimension-1 surface in the bulk, i.e. the future horizon, failing to
reconstruct the codimension-0 spacetime [40].25 For Θk = 0 and Θl ≠ 0, this can also be seen from the
fact that sµ ∝ kµ.

The picture of a single-sided de Sitter spacetime is shown in Fig. 9, in which the region near the
bifurcation surface and the past horizon should be viewed as regularization dependent. This picture
can also be obtained if we begin with a renormalized holographic screen foliated by renormalized leaves
located deep inside the static patch and then push the screen outward by unrenormalizing it using the
flow equation. Renormalized leaves then approach the bifurcation surface (or the future horizon if the
assumed deviation from exact de Sitter spacetime is significant), but they never get there. Given the
non-decoupling of bulk gravity on these leaves, we expect that the holographic theory on the screen is
gravitational, but we do not make any further speculation about this theory here.

de Sitter entropy

The fact that holographic states in a single-sided de Sitter spacetime are analogous to those in a single-
sided black hole suggests that we can interpret the de Sitter entropy in an analogous manner to the black
hole case [135]. At the classical level, de Sitter spacetime is parameterized by one continuous number:
the Hubble radius α. At the quantum level, this freedom leads to the corresponding independent
quantum states, which are discretized. The number of independent states corresponding to the value of
the Hubble radius between α and α + δα is

N ∼ eSGH
δα

α
, (4.20)

24 It is also comforting that there is a perturbative positive energy theorem in a static patch of de Sitter spacetime [134].
25 More precisely, if we use global information of the boundary state, the interior of the static patch may be reconstructed.
However, the entanglement wedge of a boundary subregion in this case contains either the entirety or none of the interior,
depending on the size of the subregion. This indicates a “singular” nature of the limit of de Sitter spacetime.
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Figure 9: A holographic description of “single-sided” de Sitter spacetime. Holographic slices agree
(approximately) with equal-time hypersurfaces in static coordinates. The smaller the amount of UV
renormalization becomes, the closer renormalized leaves are to the bifurcation surface. The geometry
in the vicinity of the past horizon (indicated by light green) and the bifurcation surface (light blue) is
regularization dependent.

where
SGH = πα

2

l2P
(4.21)

is the Gibbons-Hawking entropy. As in standard statistical mechanics, this result does not depend on
the detailed choice of δα (unless δα is taken to be exponentially small in SGH).

Now, suppose that the time scale for the evolution of a de Sitter microstate is given by ∆t. Using
the energy of Eq. (3.16), we find that the required uncertainty of α, determined by ∆E∆t ∼ 1, is

∆α ∼ l2P
∆t

. (4.22)

We expect that ∆t ∼ 1/TH ∼ α because of large redshift between the location of the stretched horizon,
where everything is controlled by the string scale, and the location at which the time t is measured,
r = 0. This gives

∆α ∼ l
2
P

α
. (4.23)

In the semiclassical regime α≫ lP, this uncertainty is smaller than the Planck length, ∆α≪ lP, which
is consistent with the fact that the Hubble radius can be precisely specified (treated classically) in a
semiclassical theory.

Note that the situation described above is analogous to the black hole case. For a black hole, E =M
and r+ ∼Ml2P give ∆r+ ∼ l2P/∆t. Assuming ∆t ∼ 1/TH ∼Ml2P, this leads to

∆r+ ∼
1

M
. (4.24)
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In the semiclassical regime M ≫ 1/lP, we find ∆r+ ≪ lP.

There is one apparent difference between the de Sitter and black hole cases. Since the de Sitter
spacetime is an “inside-out” version of the black hole spacetime, simple operators can cause excitations
inside the stretched horizon, r < rs, and with many such excitations the geometry will be backreacted.
In particular, we can form a black hole inside the de Sitter horizon, leading to a different semiclassical
geometry. We will now try to understand microscopic entropies of such geometries and their relations
to the de Sitter entropy.26

We naturally expect that the original theory on the holographic screen can accommodate all such
solutions. This interpretation is consistent if we regard a holographic theory of de Sitter spacetime to
be associated with a fixed vacuum energy ρΛ (within uncertainty), and not a fixed horizon radius. In
this case, the solution with a black hole has an entropy smaller than the solution with no black hole [39],
so the dimension of the Hilbert space of the holographic theory is

dimH ∼ ∑
∆S≤∆Smax

eSGH−∆S ⇒ ln dimH ∼ SGH (4.25)

even including all the spacetimes with varying sizes of black holes. Here, ∆S is the entropy deficit of a
spacetime with a black hole(s), SGH is the Gibbons-Hawking entropy expressed in terms of the vacuum
energy ρΛ or the Hubble radius α0 of the de Sitter spacetime without a black hole

SGH = πα
2
0

l2P
= 3

8ρΛl4P
, (4.26)

and ∆Smax is the entropy deficit when the cosmic and black hole horizons have the same radius, which
occurs with r+,bh = r+,dS = α0/

√
3:

∆Smax = SGH − 2 × πα
2
0

3l2P
= πα

2
0

3l2P
= 1

8ρΛl4P
, (4.27)

where the factor of 2 comes from the fact that we have both cosmological and black hole horizons. The
fact that ∆Smax is positive serves as a consistency check for our interpretation.27

In fact, because of the inside-out nature, forming black holes inside the de Sitter horizon is analogous
to forming (small) black holes outside the black hole horizon, specifically in the zone, while keeping the

26 A similar issue was also discussed in Ref. [45].
27 In d + 1 dimensions, this occurs when the black hole mass becomes

M = d − 1

d − 2
(d − 2

d
)
d/2 vol(Ωd−1)

8πld−1
P

αd−2
0 (4.28)

with

r+,bh = r+,dS =
√

d − 2

d
α0. (4.29)

Here, vol(Ωd−1) = 2πd/2/Γ(d/2) is the volume (area) of the (d − 1)-dimensional unit sphere. The maximal entropy deficit
is thus

∆Smax =
vol(Ωd−1)αd−1

0

4ld−1
P

⎡⎢⎢⎢⎢⎣
1 − 2 × (d − 2

d
)
d−1
2

⎤⎥⎥⎥⎥⎦
, (4.30)

which is indeed positive for all d ≥ 2.
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total energy fixed (though the latter necessarily breaks the spherical symmetry). Such excited states can
be included in the Hilbert space associated with the central black hole without changing its dimensions,
ln dimH = Sbh, at the leading order.

4.3 Holographic Hilbert spaces

Before concluding this section, we discuss the structure of holographic boundary Hilbert spaces in a
more general setting. The picture presented here builds on the analyses performed in Refs. [13,40] and
is suggested by relations between bulk geometries and boundary entanglement entropies.

Effective boundary Hilbert spaces Heff(A)

Consider a set of states associated with a leaf σ characterized by its volume A on the boundary. (A is
an area from the point of view of bulk spacetime.) Holography implies that the number of degrees of
freedom on the leaf is given by

N = A
4GN

, (4.31)

which we will assume to be uniformly distributed over the leaf. Here, we have used GN instead of lP,
since discussion in this subsection does not depend on the number of spacetime dimensions. We denote
the Hilbert space comprising states of these N degrees of freedom by Heff(A), so that

ln dimHeff(A) = A
4GN

. (4.32)

The reason for the subscript “eff” will become clear later.

We expect that states of these N degrees of freedom can represent various different spacetimes,
or more precisely the domain of dependence Dσ of a spacelike hypersurface bounded by σ in these
spacetimes. In addition, for a given bulk spacetime, there may be many independent states in Heff(A)
that span the space of microstates for the spacetime, as in the case of black hole and de Sitter spacetimes.
How can these happen?

Let us assume that the entanglement entropy of subregions of a boundary state ∣ψ⟩ dual to a semi-
classical geometry can be calculated via the Hubeny-Rangamani-Ryu-Takayanagi (HRRT) prescrip-
tion [87–89] (or its quantum extension [90–92]). In particular, we assume that the boundary and bulk
Hilbert spaces can be appropriately factorized, which may involve a gauge choice or the introduction of
edge modes [136–141]. Here we consider the “classical limit,” meaning that all the subregions we con-
sider contain O(N ) degrees of freedom. Given a bulk spacetime, one can then find the corresponding
entanglement entropies for all subregions of the boundary. The collection of all boundary subregions
and their corresponding entanglement entropies will be referred to as the entanglement structure of the
state, which we denote by S(∣ψ⟩).

First, we note that for a given entanglement structure S0, we can always find a basis of the Hilbert
space Heff(A) in which all basis states have the specified entanglement structure. This is because
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by applying local unitaries to a state, one can generate eN orthogonal states while preserving the
entanglement structure of the original state. This fact, however, does not mean that these eN states
span an eN -dimensional space of microstates for bulk spacetime corresponding to the entanglement
structure S0. Indeed, by generically superposing eO(N ) of these states, one would obtain a state whose
entanglement structure is drastically different from S0, so that the resulting state is dual to a completely
different spacetime, if it represents bulk spacetime at all.

Of course, given an entanglement structure, there exists a subspace of dimension eO(N
p) with p < 1

in which generic states have this same entanglement structure up to O(N p) corrections. This is because
we generally have

S(
eM

∑
i=1

ci∣ψi⟩) = S0 +O(M), (4.33)

where S(∣ψi⟩) = S0 for all i, so that for M = O(N p) the corrections are suppressed by powers of N
compared to S0, which is of order N . The subspace obtained in this way, however, comprises only
an exponentially small subset of Heff(A); in particular, it is a measure zero subset of Heff(A) in the
classical limit.

A nontrivial thing is that for N ≫ 1, there exist subspaces of dimension eO(N ) in which generic
states have the same entanglement structure S0 up to small corrections. Specifically, for such a subspace
spanned by basis states ∣ψi⟩ (i = 1,⋯, eQN ), we have

S(
eQN

∑
i=1

ci∣ψi⟩) = S0 +O(N p; p < 1), (4.34)

where Q ≤ 1 does not scale with N . The existence of these subspaces with entanglement structures
invariant under superpositions is expected from canonical typicality (also referred to as the general
canonical principle) [142,143], which states that generic states in such a subspace have the same reduced
density matrix for small subsystems (up to small corrections). This is the case despite the fact that the
size of the subspace is large enough that one would naively think that superpositions would ruin the
entanglement structure at O(N ). The proof of this statement is purely kinematical and hence applies
generally. In fact, according to canonical typicality the correction term in Eq. (4.34) is exponentially
small, O(e−QN /2).

In Fig. 10, we show a sketch of the collection C of states inHeff(A) which have the same entanglement
structure S0 up to corrections higher order in 1/N

C = {∣ψ⟩ ∣S(∣ψ⟩) = S0 +O(N p; p < 1)} (4.35)

in the case that they form a subspace of dimension eQN with Q < 1. In addition to this subspace
represented by the pink plane, C contains eN − eQN states (slightly “thickened” in Heff(A)) orthogonal
to it, which are schematically represented by the red arrow. Furthermore, in the eQN -dimensional
subspace, there are exponentially rare states that do not have the entanglement structure S0. These
states can be obtained by fine-tuning coefficients when we expand ∣ψ⟩ in terms of the basis states ∣ψi⟩
of the subspace and are represented by white arrows.
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Figure 10: A sketch of the collection of states in holographic Hilbert space Heff(A) which have the same
entanglement structure at leading order in 1/N . It forms an eQN -dimensional subspace of Heff(A)
(represented by the pink plane) except that exponentially rare nongeneric states are excluded (white
arrows), and that eN − eQN isolated states orthogonal to it are added (red arrow).

In Ref. [40], it was argued that it is this eQN -dimensional subspace that comprises the space of
microstates for a spacetime. In particular, for Q < 1 the corresponding entanglement structure S0 can
be non-maximal,28 and generic states in this subspace can have dual bulk spacetimes which are simply
reconstructable. In this case, even if one considers an exponentially large superposition of microstates,
geometric operators are effectively linear so long as the state is generic within the subspace [93]. On the
other hand, if Q = 1, the “subspace” is the whole Hilbert spaceHeff(A), so applying Page’s analysis [144],
we see that the only entanglement structure consistent with Eq. (4.34) is that of maximal entropy. In
this case, the resulting spacetime is not in a simple wedge, and reconstruction of the bulk requires some
level of nonlinearity, or state dependence.29

The structure discussed above allows for a single holographic Hilbert space Heff(A) to harbor effec-
tive subspaces dual to different geometries. In fact, similarly to Eq. (4.25), one can show that Heff(A)
satisfying Eq. (4.32) can support a number of eQN -dimensional subspaces with Q < 1. Geometric op-
erators are approximately linear in each of these subspaces, which gives the effective linear space of
microstates for a fixed semiclassical geometry.

Fundamental boundary Hilbert space HUV

So far, we have considered boundary Hilbert space with fixed volume A: Heff(A). However, general
spacetime involves boundary evolution in which the volume of a leaf (a boundary equal-time surface)

28 By the entanglement structure being maximal, we mean that for any subregion A its entanglement entropy SA is
maximal, i.e. SA = ∥A∥/4GN, at the leading order in 1/∥A∥. Here ∥A∥ is the volume of A on the boundary.
29 This is indeed the case for the interior of a black hole; see Section 5.1.
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changes [42]. Such an evolution can occur in the “fundamental” Hilbert space HUV which contains, at
least effectively, Heff(A)’s with different A’s:30

HUV ⊃ {Heff(A) ∣dimHeff(A) ∈ N}. (4.36)

A naive possibility is to literally have HUV ⊃ ⊕AHeff(A), but this need not be the case. In fact,
motivated by the relation between geometric objects in the bulk and quantum information theoretic
quantities on the boundary, which has been learned in AdS/CFT and is expected to apply beyond, one
can imagine that Heff(A)’s are contained in HUV in a more intricate manner.

In Refs. [13, 112], it was envisioned that Heff(A) is embedded in HUV as an effective subspace (in
the sense discussed before; see, e.g., Fig. 10) in which a generic state has the property

∑
i

Si =
A

4GN
, (4.37)

where Si represents the entanglement entropy of the state in a sufficiently small subregion, Ai, of the
holographic space Ω, on which HUV is defined; the sum runs over all of these small subregions such that
Ω = ∪iAi and Ai ∩Aj = ∅ (i ≠ j). This allows us to consider holographic states of all bulk spacetimes,
and also their dynamics, in a single Hilbert space HUV.

The Hilbert space HUV will be defined by introducing a short distance cutoff δ in Ω and then sending
δ to zero, so that

dimHUV →∞. (4.38)

For (d + 1)-dimensional asymptotically AdS and flat bulk spacetimes, Si will behave as

Si ∼
∥∂Ai∥
δd−2

and Si = f(Ai)
∥Ai∥
δd−1

, (4.39)

respectively. Here, ∥x∥ represents the volume of the object x, ∂Ai is the boundary of Ai, and f(Ai) is
a function of O(1).31

According to this picture, states representing a cosmological spacetime with finite leaf area comprise
a tiny effective subspace of HUV, obtained from a generic state in HUV by an infinite number (in the
limit δ → 0) of fine-tunings.32 It will be interesting to study the dynamics in HUV in the thermodynamic
limit, using information from semiclassical theory.

5 Analytic Extension of Spacetime in Quantum Gravity

In a single-sided system, the spacetime region obtained from analytic extension in general relativity—
e.g. the interior of a black hole and the region outside a static patch in de Sitter spacetime—emerges

30 A semiclassical description is valid only when dimHeff(A) ≫ 1, but we will be sloppy about it in writing Eq. (4.36).
31 In asymptotically flat spacetime, for example, the ratio of f(Ai) for Ai being a half of Ω, A1/2, to that for Ai being a
cutoff size region, Aδ, is f(A1/2)/f(Aδ) = (1/

√
π){Γ[d/2]/Γ[(d + 1)/2]}.

32 A similar picture was discussed for de Sitter spacetime in Ref. [145].
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as a collective phenomenon involving horizon (and possibly other) modes. This can occur because a
huge gravitational red/blueshift at the stretched horizon makes the string dynamics relevant in a static
description, which makes the state take a generic, universal form across all low energy species. In this
section, we review this construction [21–25] and refine it to include the effect of black hole evolution
analyzed in Section 3.3.

5.1 The interior of a black hole

Consider a state of a black hole of massM at some time t = t∗. We assume that it is in the semiclassical
vacuum state, which is achieved typically more than one scrambling time tscr after the last perturbation,
where33

tscr = 2r+[ln
r+
lP

+O(1)]. (5.3)

As discussed in Section 3.1, we assume that the mass of the black hole (as well as other quantities
such as the momentum) is specified with the maximal precision allowed by the uncertainty principle,
∆M ∼ TH. If the state of the system involves a superposition of a black hole of a wider range of masses,
then our consideration below applies to each of the branches containing a black hole with minimal
uncertainties.34

Ignoring evolution effects for now, a black hole vacuum state is given as in Eq. (3.40). This state
picks out a set of special states of the combined system of soft and far modes: those multiplied by the
hard-mode states ∣{nα}⟩ in Eq. (3.40). We denote these states using the double-ket symbol

∥{nα}A⟫ = ςAn
eSbh(M−En)

∑
in=1

eSrad

∑
a=1

cAnina∣ψ
(n)
in

⟩∣φa⟩. (5.4)

Here, A is the index for the microstate, specified by the coefficients cAnina in Eq. (3.40), and ςAn is the

33 This expression is obtained from the fact that the scrambling time represented in ingoing Eddington-Finkelstein time
v = t + r∗ is [33]

vscr =
1

2πTH
lnSbh ≈ 4r+ ln

r+
lP
. (5.1)

The scrambling time in Schwarzschild time is then related to this time by [24]

tscr = vscr + r∗s ≈ 2r+ ln
r+
lP
, (5.2)

where the r∗s term in the middle expression comes from the fact that the scrambling time in Eq. (5.1) is defined as the
minimal time needed to recover information about an object falling into the stretched horizon (at r∗ = r∗s) at a location
sufficiently far from the horizon, r∗ ≈ O(r+). In the last equation, we have used r∗s ≈ −2r+ ln(r+/lP), obtained from
Eq. (2.17) by identifying ls with lP.
34 In practice, different branches decohere with environment, so focusing on a single branch is phenomenologically forced
on us when we discuss the physics of the black hole itself, such as its interior, using the pure state language. Of course,
when discussing more global aspects, such as the full unitarity of a black hole formation and evaporation process, we
need to take into account all these branches [83,84]. However, the effect from such a superposition, i.e. a superposition of
“macroscopically distinguishable” black holes, is subdominant in entropic consideration, compared with the Bekenstein-
Hawking entropy associated with a black hole with minimal uncertainties.
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normalization constant

ςAn = 1√
∑e

Sbh(M−En)

in=1 ∑e
Srad

a=1 cA∗ninac
A
nina

=
√
z e

En
2TH (1 − 1

2
ε̃AAn ) , (5.5)

where z is given by Eq. (3.31). The last expression is obtained by using statistical properties of cAnina
in Eq. (3.42), and ε̃ABn is the quantity analogous to εABn in Eq. (3.38):

ε̃ABn ≡ z e
En
TH

eSbh(M−En)

∑
in=1

eSrad

∑
a=1

cA∗ninac
B
nina − δAB ≈ O(e−

1
2
{Sbh(M−En)+Srad}), (5.6)

which satisfies

(ε̃ABn )∗ = ε̃BAn , ∑
n

e
−En
TH

z
ε̃ABn = 0. (5.7)

Substituting Eq. (5.4) into Eq. (3.40), we see that the state can be written in the thermofield double
form

∣ΨA(M)⟩ = 1√
z
∑
n

e
− En

2TH ∣{nα}⟩∥{nα}A⟫, (5.8)

up to exponentially suppressed corrections of order e−{Sbh(M)+Srad}/2. We can also check that the
states ∥{nα}A⟫ are orthonormal in {nα} as well as the microstate index A, up to exponentially small
corrections [25]:

⟪{mα}A∥{nα}B⟫ = δmn ηABn , (5.9)

where

ηABn ≡
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 for A = B

ε̃ABn ≈ O(e− 1
2
{Sbh(M−En)+Srad}) for A ≠ B.

(5.10)

Since the spectrum of the states ∣{nα}⟩ represents semiclassical physics in the zone of the single-sided
black hole, the corresponding states ∥{nα}A⟫ of the soft and far modes can be identified as the states
in the second exterior of an effective two-sided black hole, given by Eq. (5.8).

With this identification, one can construct annihilation and creation operators for modes in the
second exterior

b̃Aγ =∑
n

√
nγ ∥{nα − δαγ}A⟫⟪{nα}A∥ (5.11)

=∑
n

√
nγ ς

A
n−γ
ςA∗n

eSbh(M−En−γ )

∑
in−γ=1

eSbh(M−En)

∑
jn=1

eSrad

∑
a,b=1

cAn−γin−γa
cA∗njnb∣ψ

(n−γ)
in−γ

⟩∣φa⟩⟨ψ(n)jn
∣⟨φb∣, (5.12)

b̃A†
γ =∑

n

√
nγ + 1 ∥{nα + δαγ}A⟫⟪{nα}A∥ (5.13)

=∑
n

√
nγ + 1 ςAn+γ

ςA∗n

eSbh(M−En+γ )

∑
in+γ=1

eSbh(M−En)

∑
jn=1

eSrad

∑
a,b=1

cAn+γin+γa
cA∗njnb∣ψ

(n+γ)
in+γ

⟩∣φa⟩⟨ψ(n)jn
∣⟨φb∣, (5.14)

in addition to those in the first exterior, Eqs. (3.49) and (3.50). Here, n±γ ≡ {nα ± δαγ}, and we have
used the same symbol γ to specify both the first and second exterior modes. From these operators,
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one can then construct annihilation and creation operators for interior modes, as well as the infalling
time evolution operator, through an appropriate Bogoliubov transformation [21–25].35 We will see this
construction more explicitly below for an evaporating black hole.

In this picture, the second exterior of the black hole emerges effectively as a collective phenomenon
associated with the soft and far modes. Note that while the energy of each soft or early Hawking mode
may be tiny, ≲ TH, their collective excitation can have a much larger energy, ≫ TH. In particular, a
“quasi particle” created by b̃A†

γ in the second exterior has energy Eγ , which is negative and ∣Eγ ∣ > TH.
The fact that this energy is negative implies that the Hamiltonian H of the original single-sided black
hole is mapped to the generator of the timelike isometry in the effective two-sided picture

H ↦HR −HL, (5.15)

where HR and HL are the Hamiltonian operators acting on the first and second exteriors, respectively.
As we will see below, excitation in the black hole interior is a superposition of quasi-particle excitations
built by b̃Aγ ’s and b̃

A†
γ ’s and original excitations in the zone.

It is worth mentioning that we have no freedom in choosing the basis in the space of ∥{nα}A⟫’s. In
other words, the interpretation that ∥{nα}A⟫ is a state in which nα of the mode corresponding to α in
the first exterior is excited in the second exterior, is not invariant under unitary transformation

∥{nα}A⟫ → ∥{nα}A⟫ =∑
n′
Unn′∥{n′α}A⟫, (5.16)

so that a state obtained by acting b̃Aγ or b̃A†
γ on ∣ΨA(M)⟩ in Eq. (3.40) cannot be regarded as the

vacuum state at the semiclassical level. This is because the minimal uncertainty condition imposed on
∣ΨA(M)⟩ allows us to physically distinguish between different ∣{nα}⟩’s, and hence there is no ambiguity
in defining the corresponding ∥{nα}A⟫’s. Our framework, therefore, does not suffer from the “frozen
vacuum” problem posed in Ref. [146].

We also comment that ∣φa⟩ in Eq. (5.4) may not consist of only the early Hawking radiation; if a
major portion of the radiation interacts with other degrees of freedom, such degrees of freedom must
also be included in ∣φa⟩. This is because ∣φa⟩’s represent states of all the degrees of freedom that are
entangled significantly with the hard and soft modes. It follows that the degrees of freedom that were

35 This construction differs from a similar construction in Refs. [26, 31, 32], in which the degrees of freedom that are
identified as those in the first exterior of the effective two-sided black hole increase as the black hole evaporates; in
particular, Hawking radiation emitted earlier composes degrees of freedom in the first exterior. In the construction here,
the number of degrees of freedom composing the first exterior (zone modes) decreases as the evaporation progresses; in
particular, early Hawking radiation is identified as a part of the degrees of freedom in the second exterior.
The idea that the construction of interior operators involves early Hawking radiation was promoted in Ref. [29], but

its specific realization is different here. In contrast to the picture laid out in Ref. [29], the second exterior of the effective
two-sided geometry arises primarily from degrees of freedom directly associated with the black hole (soft modes), and the
involvement of Hawking radiation is indirect (although it is significant for an old black hole, i.e. a black hole that is nearly
maximally entangled with the rest of the system). In particular, the structure of entanglement is not bipartite between
the first exterior and early Hawking radiation degrees of freedom as envisioned in Ref. [29].
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once the second-exterior degrees of freedom keep playing that role even if they no longer take the form
of Hawking radiation. This situation, however, does not last forever. The role as a second exterior
emerges only relationally with respect to the hard modes. Thus, after the black hole is evaporated
completely, the Hawking radiation as well as any other degrees of freedom that have interacted with it
become regular matter that does not have any spacetime interpretation.

Finally, we emphasize that the construction described here is performed in a theory with gravity
in the bulk, implying that the precise spectrum of the horizon and zone modes (represented by the
boundary conditions on the stretched horizon in the low energy field theory) are not arbitrary; rather,
they are determined by a consistent UV theory. In other words, the construction here should be viewed
as being performed in a holographic boundary theory (see, e.g., footnote 42 below). The physics in a
nongravitational bulk can be reproduced if we send lP → 0 (with fixed r+ = 2Ml2P), which implies ls → 0

because of Eq. (3.12). The change from the distant description to the infalling description considered
here is then reduced to the change of reference frames in quantum field theory (from the Rindler to
Minkowski frame for r+ →∞).

Effective theory of the interior of an evaporating black hole

As we have seen in Section 3.3, for an evaporating black hole some of the ingoing zone modes are
not excited in the black hole vacuum; see, e.g., Eq. (3.44) and Fig. 4. Strictly speaking, however, the
coefficients of the terms involving zone-mode states in which these modes are excited are not exactly
zero (though they are exponentially suppressed); see footnote 16. We can therefore define the double-ket
states as in Eq. (5.4) for all {nα} and construct annihilation and creation operators, Eqs. (5.11)–(5.14),
for the second exterior mode corresponding to any hard mode γ in the first exterior.

Nevertheless, it is true that in the black hole vacuum state, the hard-mode states in which these
ingoing modes are excited do not have sizable coefficients. We thus have to use Eq. (5.4) in Eq. (3.44)
instead of Eq. (3.40), and we obtain

∣ΨA(M)⟩ ∝ ∏
ᾱ∈ ingoing

mΦ≲TH, ω∼TH

bᾱ ∑
n

∏
α′∈ ingoing

ω>ω(`)
barrier

δnα′ ,0 e
− En

2TH ∣{nα}⟩∥{nα}A⟫, (5.17)

up to exponentially small corrections. We thus find that the ingoing modes α′ with the frequency larger
than the barrier height are virtually not entangled with the corresponding second exterior modes in the
vacuum microstate.

This implies that the spacetime is not smooth across the future horizon of the second exterior, or
the past horizon of the first exterior, since the missing entanglement is essential for the connectedness
of the spacetime there. The spacetime region which the effective theory built on the state in Eq. (5.17)
describes is thus the shaded region in Fig. 11, which we refer to as region K. Here, U and V are the
Kruskal-Szekeres coordinates erected at t = t∗:

ds2 = −dUdV + r2dΩ2
d−1, (5.18)
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Figure 11: The spacetime regionK described by the effective theory of the interior erected at a boundary
(Schwarzschild) time t = t∗.

which are given in the near horizon region by

⎧⎪⎪⎪⎨⎪⎪⎪⎩

U = −Re−ω

V = Reω,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

U = Re−ω

V = Reω,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

U = Re−ω

V = −Reω,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

U = −Re−ω

V = −Reω
(5.19)

for Region I (U < 0, V > 0), Region II (U,V > 0), Region III (U > 0, V < 0), and Region IV (U,V < 0),
respectively, with

R = 2
√
r+∣r − r+∣, ω = 1

2r+
(t − t∗). (5.20)

With the state given by Eq. (5.17), the interior of the black hole is in the semiclassical vacuum in the
infalling frame.

We now study in more detail how the interior region is described in this effective theory. Let us
first take the Schrödinger picture (as we have implicitly been doing). We want to understand what an
object located in the zone and falling toward the black hole will experience as it crosses the horizon.
An excited state with N particles in the zone can be obtained by applying appropriate superpositions
of creation operators b†γ on a black hole vacuum state:

∣Ψ(t = t∗)⟩ ≡
N

∏
i=1

⎛
⎝∑γ

f (i)γ b†γ
⎞
⎠
∣ΨA(M)⟩, (5.21)

where ∣ΨA(M)⟩ is the black hole vacuum microstate in Eq. (3.44), and f (i) is the wavefunction of the
i-th particle represented in the γ space. This state can be straightforwardly mapped to that in the
effective theory—we simply have to take ∣ΨA(M)⟩ to be that in Eq. (5.17) instead of Eq. (3.44). We
denote this state in the effective theory by ∣Ψ(τ = 0)⟩:

∣Ψ(t = t∗)⟩↦ ∣Ψ(τ = 0)⟩, (5.22)
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by choosing the origin of the infalling time τ to match the boundary time t = t∗.

The operators used to interpret a state in the effective theory is given by bγ and b†γ in Eqs. (3.49)
and (3.50) and b̃Aγ and b̃A†

γ in Eqs. (5.11) and (5.13). In particular, we can form infalling mode operators
out of superpositions of these operators

aAξ =∑
γ

(αξγbγ + βξγb†γ + ζξγ b̃Aγ + ηξγ b̃A†
γ ), (5.23)

aA†
ξ =∑

γ

(β∗ξγbγ + α∗ξγb†γ + η∗ξγ b̃Aγ + ζ∗ξγ b̃A†
γ ), (5.24)

where ξ is the label in which the frequency ω with respect to boundary time t is traded with the
frequency Ω associated with infalling time τ , and αξγ , βξγ , ζξγ , and ηξγ are the Bogoliubov coefficients
calculable using the standard field theory method [54,55].36

To obtain the generator of infalling time evolution H̃, we start from the generator of boundary time
evolution

H =Hsoft +∑
γ

ωγb
†
γbγ +Hint({bγ},{b†γ}), (5.26)

where Hsoft gives time evolution of the soft modes as well as interactions between the hard and soft
modes. The infalling time evolution generator is then given by

H̃ =∑
ξ

Ωξa
A†
ξ aAξ + H̃int({aAξ },{a

A†
ξ }), (5.27)

where H̃int({aAξ },{a
A†
ξ }) is determined by matching it with Hint({bγ},{b†γ}). The state in the effective

theory evolves as
∣Ψ(τ)⟩ = e−iH̃τ ∣Ψ(τ = 0)⟩. (5.28)

Note that the generator in Eq. (5.27) contains a term that involves both bγ and b̃Aγ operators, e.g. b†γ b̃Aγ′ ,
even in the free part. Thus, it acts on the hard and soft (and far) modes simultaneously, as can be seen
in Eqs. (5.12) and (5.14).

The effective theory is defined with the initial state on Σ, the zone at t = t∗, and its mirror in the
second exterior Σ̃, and the spacetime is not smoothly connected across the U axis (or formally has an
infinite energy shock wave along the U axis). We can, therefore, trust results obtained using the theory
only in the region

K =D(Σ ∪ Σ̃) ∩ {(U,V )∣V > 0}, (5.29)

36 For a massless scalar field, for example, Eq. (5.23) takes the form

aAξ = ± i

2π
√

ΩξTH
∫

∞

0
dωγ

⎡⎢⎢⎢⎢⎢⎣

Ξ√
1 − e−

ωγ
TH

bγ +
Ξ∗

√
e
ωγ
TH − 1

b†γ −
Ξ∗

√
1 − e−

ωγ
TH

b̃Aγ −
Ξ√

e
ωγ
TH − 1

b̃A†
γ

⎤⎥⎥⎥⎥⎥⎦
(5.25)

in the near horizon limit. Here, we have adopted the continuum notation for the sum over the frequency, and Ξ =
(Ωξ/2πTH)±

iωγ
2πTH Γ (1 ± ωγ

2πiTH
) / ∣Γ (1 ± ωγ

2πiTH
)∣ is a pure phase. The ± symbol in these equations takes + and − for ingoing

and outgoing modes, respectively.
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shown in Fig. 11, where D(X) represents the domain of dependence of X. This is, however, all we need
to describe the fate of the fallen object. Note that here we consider the fate of an object falling into a
black hole in its semiclassical vacuum. Also, if an object leaves the region D(Σ ∪ Σ̃) before hitting the
singularity, we can choose to erect an effective theory at a different time such that the entire trajectory
of the object (until it hits the singularity) is contained in the region described by the effective theory;
such a choice is always possible [21].

The description of the interior which is more along the lines of a conventional quantum field theory
treatment can be obtained by adopting the Heisenberg picture [25]. With the operators in Eqs. (5.23)
and (5.24), quantum field operators at τ = 0 are given by

Φ̃Γ(x,0) = ∑
s,Ω,L

(fs(Ω,L)ϕΩ,L(x)aAξ + gs(Ω,L)ϕ∗Ω,L(x)a
A†
ξc ) , (5.30)

where we have decomposed index ξ into Γ, s, Ω, and L which represent species, spin, frequency, and
orbital angular momentum quantum numbers, respectively, with ξc representing the CPT conjugate of
ξ. Here, fs(Ω,L) and gs(Ω,L) are the standard factors providing Lorentz representation of the field
(Dirac spinors, polarization vectors, etc), and ϕΩ,L(x) are the spatial wavefunctions, determined by
matching Φ̃Γ(x,0) with quantum field operators of the original theory at t = t∗.37

The Heisenberg picture field operators can then be defined as

Φ̃Γ(x, τ) = eiH̃τ Φ̃Γ(x,0)e−iH̃τ , (5.31)

where H̃ is given in Eq. (5.27). The quantities we are interested in are the correlators

⟨Φ̃Γ1(x1)Φ̃Γ2(x2)⋯ Φ̃Γn(xn)⟩ = Tr [ρ̃(0)Φ̃Γ1(x1)Φ̃Γ2(x2)⋯ Φ̃Γn(xn)] , (5.32)

where xi = {xi, τi}, and ρ̃(0) = ∣Ψ(τ = 0)⟩⟨Ψ(τ = 0)∣. Since these are expectation values in the state at a
fixed time τ = 0, we must adopt the in-in formalism rather than the more conventional in-out formalism
to calculate them. This ultimately comes from the fact that the S-matrix cannot be defined at the
semiclassical level for an object falling into a black hole.

Using the Schwinger-Keldysh method, Eq. (5.32) can be written as a path integral over an appro-
priate closed time contour with the boundary condition given by ρ̃(0). We can also calculate it using
perturbation theory in the canonical in-in formalism. Note that fields in Eq. (5.32) need not be in
the interior of the black hole; they only need to be in the region K. We can thus compute correlators
between fields inside and outside the horizon using Eq. (5.32).

In the construction of the effective theory described so far, we have used an input from semiclassical
theory to determine the coefficients in Eqs. (5.23) and (5.24). However, we expect that this is ultimately
not needed. In particular, we expect that these coefficients are determined (though not uniquely) by
the requirement that the generator H̃ can be written in the local form in terms of the original quantum
fields [22]; namely, when aAξ ’s in H̃ are represented by bγ ’s and b̃Aγ ’s which in turn are represented by

37 This match requires information of the coefficients in Eqs. (5.23) and (5.24).
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quantum fields and their canonical conjugates, H̃ takes a local form in the first and emergent second
exteriors. To find the coefficients directly from the boundary theory, one possibility is to use a physical
probe to construct the infalling Hamiltonian, along the lines of Refs. [147, 148]. We leave a detailed
study of these issues for the future.

State dependence and intrinsic ambiguity

The operators in the effective theory constructed so far, b̃Aγ , b̃
A†
γ , aAξ , and a

A†
ξ , depended on the vacuum

microstate, indexed by A, on which the excited states are built. This dependence, however, can be
relaxed in such a way that a single set of operators can describe an object in the zone even if it is
entangled arbitrarily with the vacuum microstates [25,30] (see also Ref. [32]).

The Hilbert space spanned by all the independent vacuum microstates of a black hole of mass M is
given by

M =
⎧⎪⎪⎨⎪⎪⎩

eStot

∑
A=1

aA∣ΨA(M)⟩
RRRRRRRRRRR
aA ∈ C,

eStot

∑
A=1

∣aA∣2 = 1

⎫⎪⎪⎬⎪⎪⎭
, (5.33)

where Stot is given by Eq. (3.46). We consider a subspace ofM spanned by eSeff independent microstates

M̂ =
⎧⎪⎪⎨⎪⎪⎩

eSeff

∑
A′=1

aA′ ∣ΨA′(M)⟩
RRRRRRRRRRR
aA′ ∈ C,

eSeff

∑
A′=1

∣aA′ ∣2 = 1

⎫⎪⎪⎬⎪⎪⎭
, (5.34)

where Seff < Stot. By choosing the bases ofM and M̂ appropriately, we can take {∣ΨA′(M)⟩} to be a
subset of {∣ΨA(M)⟩}, so ⟨ΨA′(M)∣ΨB′(M)⟩ = δA′B′ .

We now define the following operators associated with the Hilbert subspace M̂

B̃γ =
eSeff

∑
A′=1

b̃A
′

γ , B̃†
γ =

eSeff

∑
A′=1

b̃A
′†

γ , (5.35)

where b̃A
′

γ and b̃A
′†

γ are given by Eqs. (5.12) and (5.14). These operators will work as desired if the
excited states obtained by acting b̃A

′

γ ’s and b̃A
′†

γ ’s on ∣ΨA′(M)⟩ are effectively orthogonal for different
A′’s. In fact, we can show that the algebra of these operators in the black hole Hilbert space built on
M̂, i.e. the space spanned by the vacuum microstates of M̂ and the states in which these microstates
have been excited, is the same as that of the mode operators in the second exterior of the corresponding
two-sided black hole, up to correction of order [25]

ε = max

⎧⎪⎪⎪⎨⎪⎪⎪⎩

e
Emax
2TH

e
1
2
{Sbh(M)+Srad}

,
e
Emax
2TH

+Seff

eSbh(M)+Srad

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (5.36)

where Emax is the maximum energy which an excitation can carry in the semiclassical theory. Given
that Emax ≪M , we find that the error is exponentially small for

Seff ≺ Sbh(M) + Srad ≈ Stot, (5.37)
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where the symbol ≺ here means that Seff is smaller than Sbh(M)+Srad and that the fractional difference
between Seff and Sbh(M) + Srad is not exponentially small, specifically

Sbh(M) + Srad − Seff ≫ Emax

2TH
. (5.38)

Below, we use the symbols ≺ and ≻ to mean similar relations.

Similarly, we can define infalling mode operators

Aξ =∑
γ

(αξγbγ + βξγb†γ + ζξγB̃γ + ηξγB̃†
γ), (5.39)

A†
ξ =∑

γ

(β∗ξγbγ + α∗ξγb†γ + η∗ξγB̃γ + ζ∗ξγB̃†
γ), (5.40)

which act linearly in the black hole Hilbert space built on M̂. Here, the coefficients αξγ , βξγ , ζξγ , and
ηξγ are the same as those in Eqs. (5.23) and (5.24). The matrix elements of products of Aξ and A†

ξ in
the black hole Hilbert space built on M̂, then, are the same as the corresponding field theory values on
the two-sided black hole background, up to corrections suppressed by ε in Eq. (5.36).38

The existence of operators Aξ and A†
ξ allows us to erect the effective theory such that the dependence

of operators on states is invisible in the effective theory. Suppose that the state at t = t∗ is an entangled
state between semiclassical excitations and black hole vacuum microstates

∣Ψ(t∗)⟩ =
Stot

∑
A=1

∑
I

dAI(t∗)∣ΨA,I(M)⟩, (5.41)

where ∣ΨA,I(M)⟩ represents the state in which the semiclassical excitation I exists on the black hole
vacuum state ∣ΨA(M)⟩. Even in this case, given that the logarithm of the dimension of the excitation
Hilbert space, Sexc, is much smaller than Stot, we can write the state using the Schmidt decomposition
as

∣Ψ(t∗)⟩ =
K
∑
I=1

gI ∣ΨA(I),I(M)⟩, (5.42)

where ∑KI=1 ∣gI ∣2 = 1, gI > 0, and K is the Schmidt number. The point is that since K satisfies

K ≤ Sexc ≪ Sbh(M) + Srad, (5.43)

M̂ can always be taken to contain the space of vacuum microstates spanned by {∣ΨA(I)(M)⟩∣I = 1,⋯,K}.
This guarantees that the effective theory respects the standard tenet of quantum mechanics that physical
observables are given by linear operators acting on the Hilbert space of the theory.

Since Seff only needs to satisfy Eq. (5.37), one might think that a single, fixed set of Aξ, A†
ξ operators

can cover the states built on most of the black hole vacuum microstates inM of Eq. (5.33) by taking

Seff = c{Sbh(M) + Srad} (5.44)

38 Precisely speaking, the operators Aξ and A†
ξ (and B̃γ and B̃†

γ) can be used for states built on a larger vacuum microstate
space. Specifically, the algebra of these operators is the same as the corresponding semiclassical algebra in the space of
black hole states built on a typical state in subspace M̂′ ofM as long as dim(M̂′ ∩ M̂) ≻ dimM̂′/2 [25].
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with c close to (but not exponentially close to) 1. This is, however, not the case. The dimension of the
space M̂⊥ of vacuum microstates that are orthogonal to the states in M̂ is

dimM̂⊥ = eStot − eSeff , (5.45)

which is much larger than dimM̂ = eSeff even for c close to 1. In fact, for c > 1/2, there is a simple
relation between the fraction of M which a fixed set of operators can cover and the size of error for
using these operators:

dimM̂
dimM ≈ ε. (5.46)

This makes it clear that we cannot use a fixed set of operators to cover a significant fraction of states
in M while keeping the error ε small. In fact, to cover all states in M by fixed sets of operators, we
need double exponentially large number, O(eeStot−Seff ), of sets.39

Finally, we note that the construction of the effective theory described here has an intrinsic ambiguity
coming from the fact that the actions of infalling mode operators are not strictly orthogonal to M̂ in
the space of black hole microstates. Specifically, we find that the inner product between states obtained
by operating mode operators on two vacuum microstates ∣ΨA(M)⟩ and ∣ΨB(M)⟩ reproduces the field
theory value multiplied by δAB, but with corrections of order ε in Eq. (5.36) which are not proportional
to δAB. The existence of these exponentially suppressed corrections means that an excited state cannot
have an exact and unambiguous association with a unique vacuum microstate.

The fact that the corrections are only of order ε, however, implies that up to these exponentially
suppressed corrections, the mode operators bγ , b

†
γ , B̃γ , B̃†

γ , Aξ, and A†
ξ act only on the excitation index

I, and not on the vacuum index A′. In other words, ignoring these corrections, the Hilbert space can
be viewed as

H ≈Hexc ⊗ (Hvac ≅ M̂), (5.47)

where these mode operators act only on Hexc, and an excited state can be associated “uniquely” with
a vacuum microstate. The exponentially suppressed corrections discussed here constitute an intrinsic
ambiguity of semiclassical physics, resulting from the fact that the black hole system (consisting of zone
and horizon modes as well as the relevant degrees of freedom of far modes) is finite dimensional.

Consistency with the semiclassical expectation

Suppose that a falling object hits the stretched horizon at t = t∗ when viewed from the exterior. The
object then disappears from the zone, but this does not mean that the state immediately becomes the
quasi-equilibrium form of Eq. (3.44) with Eq. (3.42) at t = t∗; rather, it stays in a state with excited
horizon modes for a while. Now, consider that we erect an effective theory of the interior shortly after
t∗: t = t∗+δt. In this case, the effective theory can have semiclassical excitations in the interior reflecting

39 This is related to the well-known fact that in a Hilbert space of dimension eS ≫ 1, there are O(ee
S

) approximately
orthogonal states with exponentially small overlaps of O(e−S/2).
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Figure 12: The spacetime regions described by effective theories erected at t = t∗ (blue) and t = t∗ +∆t
with ∆t > 0 (red). The black arrow indicates a falling object that reaches the stretched horizon at t = t∗.

the fact that there is an object that has fallen into the horizon at t∗. These include everything that
the object does to the spacetime region described by the effective theory; in particular, the excitations
existing in the effective theory need not be the object itself.40

On the other hand, if we erect an effective theory more than one scrambling time after the last
disturbance to the stretched horizon, t = t∗ +∆t with ∆t > tscr, then we expect that the effective theory
finds the semiclassical vacuum in the interior, since the black hole state has already equilibrated by
then. (There can be zone mode excitations corresponding to semiclassical objects in the zone.) Is this
consistent with the semiclassical expectation?

In Fig. 12, we show by the central blue diamond the spacetime region described by the effective
theory erected at t = t∗, at which the object reaches the stretched horizon. The coordinates U and V
are given by Eqs. (5.19) and (5.20). Now, consider the Kruskal-Szekeres coordinates Ũ and Ṽ adapted
to the effective theory erected at t = t∗ +∆t, which are related to U and V by

Ũ = Ue
1

2r+
∆t
, Ṽ = V e−

1
2r+

∆t (5.48)

(so that Ũ = U and Ṽ = V for ∆t = 0). The spacetime region that can be described by this theory,
depicted by the red shaded region in Fig. 12 for ∆t > 0, must thus satisfy

Ũ ≲ rz = O(r+) ⇒ U ≲ r+e−
1

2r+
∆t
. (5.49)

40 Suppose, for example, that the object hits the stretched horizon at t = t∗ with almost the speed of light. Then, the
object will not appear in the effective theory erected at t = t∗ + δt, since it is squeezed into the U axis so strongly that
it cannot exist in the effective theory, a theory that cannot describe physics below the Planck length. Even in this case,
however, the object may emit a high energy quantum in the outward direction shortly after it crosses the horizon. The
quantum would then have to appear in the effective theory as a signal emerging from somewhere on the U axis to the
positive V direction, if δt is sufficiently small. (This modification of the boundary condition along the U axis must occur
though a map of horizon excitations in the microscopic theory to the effective theory, which requires a UV physics.)

58



It is then clear that the object that fell into the horizon at t = t∗ spends only tiny proper time in this
region, given by

∆τ ≲ r+e−
1

2r+
∆t
. (5.50)

Since holography limits the maximum amount of information an object can handle to be of O(1) per
Planck time, this implies that the object cannot cause any physical effect in an effective theory erected
after t = t∗ +∆tmax, with

∆tmax = 2r+ ln
r+
lP
, (5.51)

where the expression is reliable up to fractional corrections of order 1/ ln(r+/lP). Comparing this with
the scrambling time in Eq. (5.3), we find that the picture is indeed consistent with what we expect from
semiclassical theory.

Young black hole and the role of the Page time

The construction of the effective theory described so far applies to a black hole of any age. However,
if the black hole is young, i.e. if it is not maximally entangled with other systems, then we can have
an alternative construction in which the b̃Aγ and b̃A†

γ operators act only on soft-mode states, without
involving far mode degrees of freedom [23,25].

This is done by projecting operators in Eqs. (5.11) and (5.13) on the space of soft-mode states using
the Petz map [149,150]. Specifically, we can take

b̃Aγ = σ−1/2 [∑
a

⟨φa∣ (∑
n

√
nγ ∥{nα − δαγ}A⟫⟪{nα}A∥) ∣φa⟩]σ−1/2, (5.52)

b̃A†
γ = σ−1/2 [∑

a

⟨φa∣ (∑
n

√
nγ + 1 ∥{nα + δαγ}A⟫⟪{nα}A∥) ∣φa⟩]σ−1/2. (5.53)

Here,

σ =∑
a

⟨φa∣ (∑
n

∥{nα}A⟫⟪{nα}A∥) ∣φa⟩, (5.54)

and ∥{nα}A⟫’s are given by Eq. (5.4). Note that b̃Aγ , b̃
A†
γ , and σ are operators acting only on the space

of soft-mode states. Infalling mode operators acting only on the hard and soft modes can then be
constructed by substituting these b̃Aγ and b̃A†

γ in Eqs. (5.23) and (5.24).

The algebra of the above mode operators in the black hole Hilbert space, i.e. the space obtained
by acting mode operators on the vacuum state in Eq. (3.44), follows that of semiclassical theory up to
errors of order

εyoung = max{ 1

e
1
2
Sbh(M)

,
eSrad

eSbh(M)
} . (5.55)

Therefore, if the black hole is young, i.e. Srad < Sbh(M), then the operators b̃Aγ and b̃A†
γ in Eqs. (5.52)

and (5.53) as well as aAξ and aA†
ξ constructed using them can be used to describe the interior of the black

hole (up to corrections suppressed exponentially in a macroscopic entropy). This elucidates the role of
the Page time in constructing the effective theory: if a black hole is young, then interior operators can
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be represented purely using the black hole degrees of freedom (i.e. zone and horizon modes), while if it
is old, then the operators must involve the early Hawking radiation (i.e. far modes).

The promotion of b̃Aγ , b̃
A†
γ , aAξ , and aA†

ξ operators to act linearly in M̂ can be made similarly as
before. In particular, errors of the promoted operators are of order

ε̂young = max{ 1

e
1
2
Sbh(M)

,
eSrad+Seff

eSbh(M)
} , (5.56)

so that these operators work correctly as long as

Seff ≺ Sbh(M) − Srad. (5.57)

This agrees with the result of the general analysis in Ref. [30].

Incidentally, in the way of constructing an effective theory of the interior described here, operators
b̃Aγ and b̃A†

γ cannot be represented using only far modes, even if the black hole is old. Namely, unlike
Eqs. (5.52) and (5.53), projecting operators in Eqs. (5.11) and (5.13) on the space of far-mode states
does not work. Technically, this is because of the energy constraint imposed on the black hole, i.e. the
combined system of zone and horizon modes. The relation of this statement to entanglement wedge
reconstruction, in which the interior of an old black hole is reconstructed only using the early Hawking
radiation, will be discussed below.

Relation to entanglement wedge reconstruction

As we have seen, operators in our effective theory describing the interior must involve horizon degrees
of freedom, regardless of the age of the black hole. On the other hand, the analysis [33–37] based on
holographic entanglement wedge reconstruction [151–156] says that after the Page time operators acting
on early radiation are sufficient to reconstruct a portion of the black hole interior. What is the relation
between these two statements?

A key ingredient to understanding this is the boundary time evolution [24]. In general, entanglement
wedge reconstruction assumes that we know the time evolution operator of the boundary theory; in
models discussed in Refs. [33–37], for example, the Hamiltonian of a system consists of boundary
conformal field theory as well as an auxiliary theory coupling to it. With this knowledge, one can
reconstruct the state of some of the horizon modes at t = th from the state of the radiation at t = tR if

tR > th + tscr. (5.58)

Note that as discussed in Section 3.2, the notion of zone, horizon, and far modes is associated with a
specific time t, so that a component of a horizon mode at some time can become a far mode at a later
time.

A detailed way in which the reconstruction described above works was discussed in Ref. [24]. It
is essentially the Hayden-Preskill protocol [52] applied to the horizon and zone modes. Recall that
zone modes at t = th − tsig either become horizon modes (for ingoing modes) or far modes (for outgoing
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(a) (b)

Figure 13: (a) Radiation at t = tR, R(tR), contains information about some of the horizon and zone
modes at t < tR − tscr − tsig. This allows us to reconstruct a portion Irad of the interior spacetime
corresponding to the inner wedge of the stretched horizon at t = tR − tscr. The amount of information
that can be reconstructed, however, depends on the location of an object in ingoing time, which is
indicated by the gradation of the red shade. (b) Radiation after the black hole is fully evaporated,
R(t > tevap), allows for reconstruction of the full interior region.

modes) by t = th. Here, tsig ≈ ∣r∗s∣ is the signal propagation time: the time it takes for a massless
quantum to propagate from the stretched horizon to the edge of the zone. Hence, radiation at tR
satisfying Eq. (5.58) can reconstruct some of the zone modes. In fact, we can arbitrarily choose which
zone modes to reconstruct, and we can take them to be hard modes. This implies that radiation at
t = tR can reconstruct an object in the interior of the effective theory erected at t = t∗ if

t∗ < tR − tscr − tsig (5.59)

and t∗ + tscr > tPage. In other words, an object in the black hole interior can be reconstructed from
radiation at t = tR if it exists in the inner wedge of the stretched horizon at

t = tR − tscr, (5.60)

assuming tR > tPage. This is sketched in Fig. 13(a). The entanglement island, Irad, of the radiation,
R(tR), represents the spacetime region in which some information about the region is reconstructed.
Thus, its edge, i.e. the minimal quantum extremal surface for R(tR), is located near the stretched
horizon at t = tR − tscr. Given that the discussion for reconstruction here is intrinsically semiclassical,
and hence does not have a precision of resolving the Planck scale, this is consistent with what was found
in Refs. [33–35].

We stress that while the entanglement island Irad represents the interior region which one can
reconstruct from the radiation R(tR), the amount of information that can be reconstructed, or the size
of code subspace [106, 107] one can construct, depends on the location in this region. Suppose one
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wants to reconstruct an interior object that has a significant amount of information, say having (coarse-
grained) entropy Sobj. Then, the radiation must contain the corresponding amount of information. This
modifies Eqs. (5.59) and (5.60) to

t∗ < tR − tscr − tsig −
Sobj

TH
(5.61)

and
t = tR − tscr −

Sobj

TH
, (5.62)

where tR must satisfy tR > tPage + Sobj/TH. This feature inherits from the use of the Hayden-Preskill
protocol, and more fundamentally boundary time evolution, in the reconstruction. Because of the
scrambling and quantum error correcting nature of black hole dynamics, one can arbitrarily choose
which information to reconstruct [52], but the amount of information to be reconstructed is bounded
from above by

Sobj ≤ TH(tR − tscr − vobj), (5.63)

where vobj is the ingoing Eddington-Finkelstein time v at the location of the object, chosen so that v = t
at the stretched horizon. This is represented by the gradation of the red shade in Fig. 13(a).

The discussion above makes it clear that entanglement wedge reconstruction is nothing but the
statement of unitarity as viewed from the exterior. Indeed, the entanglement island of radiation after
the black hole is fully evaporated can be viewed as the entire interior; see Fig. 13(b).41

The understanding of entanglement wedge reconstruction described above also elucidates why an
operator acting only on radiation R(tR), in particular a unitary operator representing a physical ma-
nipulation of R(tR), can affect the interior of a black hole Irad in a seemingly acausal manner. In the
manifestly unitary picture adopted so far in this paper, based on an external view of the black hole, an
excitation X in the interior Irad is, in fact, “located” in the zone and/or stretched horizon at t < tR (and
possibly in the early radiation as well for an old black hole), which is timelike separated from R(tR).
There is, therefore, no a priori reason why the operator generating X commutes with operators acting
on the radiation at t = tR. In particular, an operator OR acting on R(tR) can be a “precursor” [157,158]
of X; i.e., when evolved backward in time, OR induces a change of the state of an object falling into
the black hole at an earlier time, which changes the interior of the black hole.

On the other hand, in the global spacetime picture of general relativity, it is still true that radiation
at t = tR is spacelike separated from the interior region Irad. This raises the question of why there can be
any unitary operator acting on R(tR) which affects Irad, without completely jeopardizing the intuition
coming from the semiclassical, global spacetime picture. This issue was studied in Ref. [159], in which it
was argued that if the dynamics of a black hole is sufficiently complex (e.g. leading to a pseudorandom
state), then the information about the interior Irad cannot be accessed by any simple operator acting
on R(tR) which does not have exponential computational complexity. This reproduces the causality of

41 Strictly speaking, the existence of an island in this case is not rigorously established, since its edge cannot be obtained
as a surface that is quantum extremized in the regime in which a semiclassical description is valid. However, from physical
consideration as well as continuity of Irad in t, we expect that R(t) (t > tevap) has the entire interior region as the “island.”
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the semiclassical theory, assuming that it represents only a feature of simple operations performed on
the system in each observer frame.

In the present context, the required complexity arises from the dynamics of the stretched horizon as
viewed from the exterior of the black hole. Note that the time t∗ at which the effective theory describing
Irad is erected must satisfy Eq. (5.61). This implies that ingoing zone modes (as well as most of the
horizon modes) at t = t∗ must go through the complex horizon dynamics before they become radiation
modes at t = tR. In particular, this is true for the ingoing hard modes for any choice of hard modes
describing the object carrying the entropy Sobj. The semiclassical picture emerging from our framework,
therefore, respects causality, at least in the sense of Ref. [159].

In entanglement wedge reconstruction, reconstructing the interior on a Hawking radiation state
involves backward time evolution, so that the resulting boundary operators acting on the radiation
degrees of freedom are highly fragile; i.e., a small deformation of the operators destroys the success of
the reconstruction. In the case of the effective theory, on the other hand, interior operators are given
simply by Eqs. (5.12), (5.14), (5.23), and (5.24) in terms of hard, soft, and far mode operators at time
t∗, which can be obtained easily in the boundary theory from the structure of entanglement of the
whole state at t = t∗, if such a state is given.42 In this “equal-time” conversion between the distant and
infalling descriptions, which use modes at a given time t∗ directly, there is no upper limit on the amount
of information about the infalling object described, such as that in Eq. (5.63); the only restriction on
the size of the object is the one coming from the validity of the semiclassical picture.

5.2 The outside of a de Sitter static patch

A construction analogous to the black hole interior can be applied to a state describing de Sitter
spacetime [22]. As we have argued in Section 4.2, a microstate representing empty de Sitter spacetime
consists of the state of the “zone modes” inside a static patch as well as that of the horizon modes.
Thus, by choosing a subset of the zone modes as hard modes, it can be written in the form of Eq. (3.34)
with S(E − En) → SdS(E − En). Here, SdS(E) is given by Eq. (3.27), and E is the “energy” given in
terms of the Hubble radius α by E = α/l2P; see Eq. (3.16). As in the case of a black hole, we can define
the “double-ket” states using soft modes

∥{nα}A⟫ = ςAn
eSdS(E−En)

∑
in=1

cAnin ∣ψ
(n)
in

⟩, (5.64)

where A = 1,⋯, eSsys , and ςAn is the normalization constant

ςAn = 1√
∑e

SdS(E−En)

in=1 cA∗ninc
A
nin

=
√
z e

En
2TH [1 +O(e−

1
2
SdS(E−En))] , (5.65)

42 A specific construction can go as follow. We can fist construct zone mode operators bγ and b†γ using the HKLL
procedure [11,12,114] or its extension [16]. We can then expand the full state ∣Ψ(t∗)⟩ at t = t∗ in terms of the eigenstates
of number operators b†αbα’s and identify the ∥{nα}⟫ states associated with ∣Ψ(t∗)⟩. This allows us to define b̃γ and b̃†γ

operators acting on ∥{nα}⟫’s, and hence infalling operators aξ and a†
ξ through Eqs. (5.23) and (5.24). The effective theory

of the interior (erected at t = t∗) can then be obtained using the generator H̃ of time evolution, given in Eq. (5.27).
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where TH = 1/2πα, and z is given by Eq. (3.31). In terms of these states, the de Sitter vacuum microstate
can be rewritten as

∣ΨA(E)⟩ = 1√
z
∑
n

e
− En

2TH ∣{nα}⟩∥{nα}A⟫. (5.66)

Since the state ∣{nα}⟩ is specified by the occupation numbers nα of modes inside the stretched
horizon of a static patch, which we refer to as the polar region here, the thermofield double state in
Eq. (5.66) represents a vacuum state at τ = 0 of global de Sitter spacetime of which the original static
patch is a portion. Here, τ is global de Sitter time, or time associated with closed slicing. This implies
that ∥{nα}A⟫ should be identified as the state of the other hemisphere of the static patch at τ = 0. States
in which modes in the polar region are excited or deexcited are those obtained by acting corresponding
creation operators Eq. (3.50) or annihilation operators Eq. (3.49), respectively, to a de Sitter vacuum
microstate.43 These states are naturally mapped to excited states in the effective theory built on
Eq. (5.66).

As in the case of a black hole, we can introduce annihilation and creation operators for modes in
the other hemisphere in the effective theory as

b̃Aγ =∑
n

√
nγ ς

A
n−γ
ςA∗n

eSdS(E−En−γ )

∑
in−γ=1

eSdS(E−En)

∑
jn=1

cAn−γin−γ
cA∗njn ∣ψ

(n−γ)
in−γ

⟩⟨ψ(n)jn
∣, (5.67)

b̃A†
γ =∑

n

√
nγ + 1 ςAn+γ

ςA∗n

eSdS(E−En+γ )

∑
in+γ=1

eSdS(E−En)

∑
jn=1

cAn+γin+γ
cA∗njn ∣ψ

(n+γ)
in+γ

⟩⟨ψ(n)jn
∣, (5.68)

which can be used to form annihilation and creation operators for global time slicing

aAξ =∑
γ

(αξγbγ + βξγb†γ + ζξγ b̃Aγ + ηξγ b̃A†
γ ), (5.69)

aA†
ξ =∑

γ

(β∗ξγbγ + α∗ξγb†γ + η∗ξγ b̃Aγ + ζ∗ξγ b̃A†
γ ), (5.70)

where ξ is the label in which the frequency ω with respect to static time t is traded with the frequency
Ω associated with global time τ , and αξγ , βξγ , ζξγ , and ηξγ are the Bogoliubov coefficients (which, of
course, differ from the black hole case). The correspondence between the black hole and de Sitter cases
is summarized in Table 1. Note that for de Sitter spacetime, there is no region corresponding to the
region outside the zone of an evaporating black hole.

Physical quantities in global de Sitter spacetime can be calculated using the global time evolution
operator

U(τ) = e−iH̃τ , (5.71)

where
H̃ =∑

ξ

Ωξa
A†
ξ aAξ + H̃int({aAξ },{a

A†
ξ }). (5.72)

43 Deexcited states become relevant if Gibbons-Hawking radiation is extracted by a material.
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Evaporating black hole Cosmological de Sitter spacetime

microscopic level

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

zone region polar region
stretched horizon stretched horizon

far region —–

effective theory
⎧⎪⎪⎨⎪⎪⎩

two-sided black hole global de Sitter spacetime
the second exterior the other hemisphere

Table 1: Correspondence between an evaporating black hole and cosmological de Sitter spacetime.

In the Heisenberg picture, this can be done by evolving quantum fields Φ̃a(x,0) formed from aAξ and
aA†
ξ at τ = 0 as

Φ̃a(x, τ) = U(τ)†Φ̃a(x,0)U(τ) (5.73)

and sandwiching their products by the state ∣Ψ(τ = 0)⟩ of the effective theory at τ = 0 obtained by
matching with the state of the microscopic theory at t = 0. (∣Ψ(τ = 0)⟩ = ∣ΨA(E)⟩ if the system is in the
semiclassical vacuum.) In the Schrödinger picture, the state must be evolved with U(τ) while Φ̃a(x,0)
are inserted at intermediate stages of the evolution.

The promotion of operators to a less state-dependent form can be made in a similar way to the back
hole case, Eqs. (5.35), (5.39) and (5.40). The analysis of errors of operator algebras can be performed
similarly. In particular, the global description in the effective theory has an intrinsic error of order

ε = max

⎧⎪⎪⎪⎨⎪⎪⎪⎩

e
Emax
2TH

e
1
2
SGH

,
e
Emax
2TH

+Seff

eSGH

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (5.74)

where SGH is the Gibbons-Hawking entropy, Emax is the maximum energy that an excitation can carry
in the effective theory, and Seff represents the size of the microscopic Hilbert space covered by the
promoted operators, as defined in Eq. (5.34).

Like the case of a black hole, the effective theory of global de Sitter spacetime is intrinsically
semiclassical in that the algebra of operators in the theory is defined only up to an uncertainty of
e−SGH/2. This is consistent with the observation in Ref. [59] that symmetries of classical de Sitter
spacetime cannot be implemented exactly in a finite-dimensional Hilbert space.

Consistency with the semiclassical expectation

Suppose an object hits the stretched horizon in the static patch description at some time t = tobj. The
state shortly after it will not take the form of Eq. (3.34) with random cAnin which leads to the vacuum
state of Eq. (5.66). Instead, it stays in an excited state for a while, reflecting the existence of an object
just outside the horizon. In the effective theory, this is represented as the existence of an excitation in
the other hemisphere at τ = 0. Such an excitation has a physical significance, since we can retrieve (a
part of) information about it if the system leaves the de Sitter phase after t = tobj, e.g. by tunneling
into a Minkowski vacuum; see Fig. 14.
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r = 0

t = t
*

Minkowski

bubble

effective global de Sitter spacetime

static

patch

Figure 14: Information outside the static patch in the effective theory can be retrieved if the system
leaves the de Sitter phase at a later time, for example by tunneling into a Minkowski bubble universe.

According to the static patch description, the system is expected to relax into an equilibrium state
of the form of Eq. (3.34) when one scrambling time44

tscr = α[ln
α

lP
+O(1)] (5.77)

has passed after the object hits the stretched horizon. This implies that if we erect the effective theory
at t∗ > tobj + tscr, then the effective theory sees the vacuum in the other hemisphere. Is this consistent
with the semiclassical expectation?

In Fig. 15, we depict the Penrose diagram of the situation in which an object hits the stretched
horizon at tobj, and a Minkowski bubble is nucleated at the location of the observer, r = 0, at t = tobj+∆t.
We expect that if ∆t > tscr, the observer cannot receive any information from the object, since then
the effective theory erected at t = tobj +∆t will not have an excitation in the other hemisphere of the
effective global de Sitter spacetime, and so there is nothing that can send a signal to the observer. From

44 To obtain this expression, we can consider an analogue of ingoing Eddington-Finkelstein time in de Sitter spacetime,
v = t − r∗, and use the general expression for scrambling time to obtain

vscr =
1

2πTH
lnSdS ≈ 2α ln

α

lP
. (5.75)

The scrambling time in static time is then
tscr = vscr − r∗s ≈ α ln

r+
lP
, (5.76)

where we have used r∗s ≈ α ln(r+/lP), obtained from Eq. (2.28) by identifying ls with lP.
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r = 0

t = tobj

Minkowski

bubble

global de Sitter spacetime

static

patch

stretched

horizon

t = tobj + Dt
object

tobj

Figure 15: An object falling into the stretched horizon at t = tobj can try to send a physical signal to
the observer at r = 0 who enters a Minkowski bubble nucleated at r = 0 at t = tobj+∆t. The holographic
static-patch description of de Sitter spacetime suggests that this is not possible if ∆t is larger than the
scrambling time tscr. This expectation is consistent with the semiclassical picture, since for ∆t > tscr

the object would have to send the signal within proper time τobj ≲ lP, which is not possible.

the viewpoint of the object, this implies that it cannot send any signal to the observer after it crosses
the t = tobj +∆t hypersurface.

This is indeed consistent with what semiclassical theory implies. We can show that in order for the
signal to reach the Minkowski bubble, and hence the observer, the object must send it within the proper
time

τobj ≲ lP (5.78)

after it crosses the t = tobj +∆t hypersurface, but this is not possible because the holographic principle
does not allow for the object to send physical information within lP. Incidentally, this conclusion does
not change even if the object is accelerated toward r = 0 after it crosses the stretched horizon, as long
as the invariant acceleration is smaller than O(1/ls).45

45 Note that here we have considered the case in which the system was in a meta-stable de Sitter phase before entering a
Minkowski phase. We expect that the situation is different if the earlier, de Sitter phase is only approximate in that there
is noticeable time dependence of background spacetime, as in the case of slow-roll inflation. A different analysis will be
needed for such cases.
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Schwarzschild de Sitter spacetime

Our analysis applies straightforwardly to a Schwarzschild de Sitter spacetime which has a black hole of
radius rbh (centered at r = 0) in de Sitter spacetime of radius rdS, as long as rbh is sufficiently smaller
than rdS. (The case in which rbh and rdS are comparable is analogous to the case of a near extremal
black hole, which we do not consider in this paper.)

Specifically, if rbh ≪ rdS, the black hole can be viewed as a small excitation for the purpose of
erecting the effective theory outside the de Sitter horizon, so that the construction described so far goes
through without significant modifications. The situation is similar for the effective theory of the black
hole interior. A notable thing is that if the black hole is old enough that it is maximally entangled
and that the majority of emitted Hawking radiation has reached the stretched de Sitter horizon, then
operators describing the black hole interior must involve degrees of freedom associated with the de Sitter
horizon.

6 Intrinsically Extended Spacetimes

So far, we have been considering “realistic,” single-sided systems and seen how the effective two-sided
pictures emerge as collective phenomena associated with the stretched horizon degrees of freedom.
However, there is nothing theoretically wrong in considering “intrinsically two-sided” systems which
involve two copies of holographic theories discussed so far. In fact, such systems have been considered
in various contexts in black hole [160–171] and de Sitter [43–48,172–177] physics.

In this section, we discuss how such intrinsically two-sided systems can be understood in the frame-
work described so far. In particular, we will see how these and single-sided systems lead to similar
semiclassical physics, despite the fact that states in the two cases have rather different structures at the
microscopic level. While we focus here on the two-sided case for a black hole, we expect it is relatively
straightforward to extend it to black holes with more than two exterior regions [178].

6.1 Two-sided eternal black hole

Let us consider a static, two-sided eternal black hole. Strictly speaking, for a finite black hole mass,
this system exists only as a large AdS black hole, but we can imagine that a two-sided black hole in
asymptotically flat spacetime also behaves in approximately the same manner if it is sufficiently large
compared with the scale that we are interested in.

We specifically consider a thermofield double state which is prepared by the Euclidean path integral
over a half of the time compactified on a circle of length β [160]. In the context of the AdS/CFT
correspondence, this is a thermally entangled state of two CFTs. Similar to the case of a single-sided
black hole, we divide modes in each side of the black hole into zone and horizon modes at the state
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preparation time, which we refer to as t = 0.46 We then have four classes of modes, i.e. zone and horizon
modes in both (right and left) sides of the black hole.

Assuming that the two sides of the black hole have the same microscopic structure (which corresponds
to the case that the two CFTs are the same), the black hole vacuum state at t = 0 as viewed from the
exterior is given by

∣Ψ(M)⟩ = 1√
∑µ′ e−βEµ′

∑
µ

e−
β
2
Eµ ∣µ⟩R∣µ⟩L, (6.1)

where ∣µ⟩R represent energy eigenstates of the holographic theory describing the right side with energy
Eµ and similarly for ∣µ⟩L. The mass M of the black hole is related to β by a smoothness condition for
spacetime [179]:

M = r+
2l2P

(1 + r2
+
L2

) , β = 4πr+L
2

3r2
+ +L2

, (6.2)

where L is the AdS length. In the context of holography, this relation can be viewed as arising from the
requirement that the boundary spacetime can be smoothly extended to the bulk spacetime [180].

We note that the state ∣Ψ(M)⟩ has exactly zero energy under the two-sided (modular) Hamiltonian
H =HR−HL, which is possible because the system is static under time evolution generated by H.47 This
time evolution corresponds to Schwarzschild time evolution in a single-sided black hole; see Eq. (5.15).

In general, the energy eigenstates ∣µ⟩R do not agree with the number eigenstates of the zone and
horizon modes for the right side (and similarly for the left side). However, to describe the dynamics of
a zone mode that has energy E ≳ 1/β = TH, this issue can be ignored. Consider, for example, a zone
mode of energy ∼ E localized at r̄∗ in the zone and having a Gaussian tale of the form ∼ e−O(1)E2(r∗−r̄∗)2 .
The correction arising from the existence of the stretched horizon to the quantum theory of matter on
classical black hole background is then suppressed by the exponential of E2(r̄∗ − r∗,s)2. This implies
that the effect of the deviation of zone-mode states from the thermofield double form coming from their
interactions with the stretched horizon is negligible compared with the factor of e−βE/2 if the mode is
sufficiently hard (E ≫ 1/β) or away from the stretched horizon (r̄∗ − r∗,s ≫ β).

We now take a subset of the zone modes on the right side as right-side hard modes, whose state
we denote by ∣n⟩R. Here, n = {nα} represents the set of occupation numbers of these modes. The
corresponding zone modes on the left side are then left-side hard modes, whose state is ∣n⟩L. The rest
of the modes on the right and left sides are right- and left-side soft modes, respectively, whose states we
denote by ∣ψi⟩R and ∣ψi⟩L. Here, the index i runs over all soft-mode states, not just those in a specific
energy window, since we no longer impose the energy constraint for modes on one side.

The state in Eq. (6.1) can then be approximated, for the purpose of describing the dynamics of hard
modes, as

∣Ψ(M)⟩ ≈ 1√
Z
∑
n
∑
i

e−
β
2
(En+Ei)∣n⟩R∣ψi⟩R∣n⟩L∣ψi⟩L, (6.3)

46 For a large AdS black hole, we define zone modes to be all the modes other than horizon modes defined as in Section 3.2.
47 We can extend the state in Eq. (6.1) to the case in which two CFTs are different. In this case, the state must have some,
though exponentially small, energy uncertainty, reflecting the fact that the spectra of the two CFTs are not identical.
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where En and Ei are the energies carried by ∣n⟩R and ∣ψi⟩R defined with respect to H (or HR), and

Z =∑
n
∑
i

e−β(En+Ei). (6.4)

We can then build an effective theory of the interior on the vacuum microstate of Eq. (6.3).48

It is important to realize that the microscopic entanglement structure of ∣Ψ(M)⟩ in Eq. (6.3) is
different from that of a microstate of a single-sided black hole, which takes the form of Eq. (3.28)
(ignoring the entanglement with far modes). In particular, in Eq. (6.3), the hard modes on the right
side, which we identify as “our” side, are entangled directly with those on the left side, while in Eq. (3.28)
they are entangled with the soft modes on the same side.

The way in which the thermal nature is introduced is also different in two setups. In Eq. (6.3), the
Boltzmann factors are introduced already at the microscopic level, while in Eq. (3.28) the coefficients
take random values, and the Boltzmann factors for the hard modes arise only statistically after tracing
out the soft modes; see Eq. (3.37). In the case of the two-sided black hole, tracing out the left side gives

ρR = 1

Z
∑
n
∑
i

e−β(En+Ei)∣n⟩R∣ψi⟩R R⟨n∣ R⟨ψi∣. (6.5)

Further tracing out the soft modes lead to

ρR,hard =
1

z
∑
n

e−βEn ∣n⟩R R⟨n∣, (6.6)

where z = ∑n e−βEn . At the microscopic level, the two-sided black hole is a model of a single-sided black
hole only in the sense that Eq. (6.6) takes the same form as Eq. (3.37).

Excited states in which there are objects in the right exterior (our side) of the black hole are obtained
by acting with the annihilation/creation operators

bRγ =∑
n

√
nγ ∣{nα − δαγ}⟩R R⟨{nα}∣, (6.7)

b†Rγ =∑
n

√
nγ + 1 ∣{nα + δαγ}⟩R R⟨{nα}∣ (6.8)

on the vacuum state in Eq. (6.3). As in the case of a single-sided black hole, describing the interior
requires time evolution operator other than that generated by H =HR−HL. The appropriate generator
H̃ can be constructed using annihilation/creation operators acting on left-side hard modes

bLγ =∑
n

√
nγ ∣{nα − δαγ}⟩L L⟨{nα}∣, (6.9)

b†Lγ =∑
n

√
nγ + 1 ∣{nα + δαγ}⟩L L⟨{nα}∣ (6.10)

as
H̃ =∑

ξ

Ωξa
†
ξaξ + H̃int({aξ},{a†

ξ}), (6.11)

48 In this particular case, we can take the hard modes to be the entire zone modes, though this is not the case in general.
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where

aξ =∑
γ

(αξγbRγ + βξγb†Rγ + ζξγbLγ + ηξγb
†
Lγ), (6.12)

a†
ξ =∑

γ

(β∗ξγbRγ + α∗ξγb
†
Rγ + η

∗
ξγbLγ + ζ∗ξγb

†
Lγ) (6.13)

are infalling mode operators with the coefficients αξγ , βξγ , ζξγ , and ηξγ taking the same values as those
in Eqs. (5.23) and (5.24) for near horizon modes. The reason why the construction here need not involve
soft modes is that the black hole vacuum state given in Eq. (6.3), in fact, factors into hard-mode and
soft-mode parts:

∣Ψ(M)⟩ ≈ ( 1√
z
∑
n

e−
β
2
En ∣n⟩R∣n⟩L)

⎛
⎝

1√
∑j e−βEj

∑
i

e−
β
2
Ei ∣ψi⟩R∣ψi⟩L

⎞
⎠
, (6.14)

so that the soft-mode piece can simply be ignored. Note that unlike the construction in Refs. [169,170],
we do not claim that the generator H̃ of infalling time evolution can be represented purely on the right
operators.49 The evolution with H̃ in Eq. (6.11) allows us to describe the semiclassical physics in the
domain of dependence of the union of zones on both sides at t = 0.

This erection of the effective theory without involving soft modes is essentially nothing other than
the construction of the semiclassical theory from the beginning. The unknown UV physics, including
the effect of ignoring horizon modes, is reflected in the choice of the vacuum in the effective theory.
For example, for a large AdS black hole in thermal equilibrium with the ambient AdS spacetime, the
correct choice for typical soft-mode states is the Hartle-Hawking vacuum. This choice, however, cannot
be derived from the low energy consideration alone.

We note that our starting point of Eq. (6.1) involves a choice of time. Suppose we evolve the state
∣Ψ(M)⟩ under the full, microscopic Hamiltonian HR +HL:50

∣Ψ(M)⟩ → e−i(HR+HL)t∣Ψ(M)⟩ = 1√
∑µ′ e−βEµ′

∑
µ

e
−(β

2
+2it)Eµ ∣µ⟩R∣µ⟩L. (6.15)

In general, this state is not equivalent to ∣Ψ(M)⟩; the phases on the right-hand side have a physical
meaning. For example, as t increases from 0, the maximal interior volume of a spatial surface anchored
to the boundaries at time t grows, although for t ≳ eSBH the mixing between the hard and soft modes
becomes so important that the naive semiclassical picture of interior volume grow ceases to apply [181].

In the two-sided state in Eq. (6.3), the von Neumann entropy of the right side is given by

SR = −Tr [ρR lnρR]

49 In the large N limit construction of Refs. [169,170], operators bRγ , b†Rγ , bLγ , and b
†
Lγ generate a type III1 von Neumann

algebra (which becomes type II∞ at the next order in 1/N [171]), so that Hilbert spaces for ∣n⟩R, ∣n⟩L, ∣ψi⟩R, and ∣ψi⟩L
are not defined. This is not the case for finite N as envisioned here.
50 It is important that this evolution is performed using the full, microscopic Hamiltonian (or equivalently performed in
the boundary theory), since the analogous operator HR +HL in the bulk field theory is singular at the bifurcation surface.
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=∑
n
∑
i

e−β(En+Ei)

Z
[β(En +Ei) + lnZ] , (6.16)

where ρR is given by Eq. (6.5). Approximating that the density of states of the soft modes does not
depend on Ei and denoting it by Ssoft(M), we have up to O(1) coefficients

∑
i

→ β ∫ dEi e
Ssoft(M), (6.17)

where β is used to match the dimension. This gives

Z ∼∑
n

eSsoft(M)−βEn = z eSsoft(M), (6.18)

and
SR = ln [z eSsoft(M)] + β⟨En⟩R +O(1). (6.19)

Here,
⟨En⟩R = 1

z
∑
n

Ene
−βEn (6.20)

is the thermal energy of the hard modes in the right exterior, as measured by H. Thus, up to the
thermal contribution of the hard modes (and an unimportant O(1) term), the entropy SR agrees with
Ssys given by Eqs. (3.30) and (3.31), which is the entropy of a single-sided black hole. Namely, for a
two-sided black hole in the state of Eq. (6.3), the entropy of the black hole is given at the leading order
by the entanglement entropy between the two sides (i.e. two CFTs in the AdS/CFT context).

Evaporation and the destruction of the wormhole

Let us now consider coupling the two-sided black hole discussed so far to a reservoir so that the black
hole can radiate into it. We do this on the right side (i.e. our side) of the black hole and see its effect
on an object falling into the black hole from the same side.

Before coupling the two systems, the state is given by the product of the black hole state in Eq. (6.3)
and the ground state of the reservoir system ∣φ0⟩:

∣Ψ0⟩ =
1√
Z
∑
m
∑
j

e−
β
2
(Em+Ej)∣m⟩R∣ψj⟩R∣m⟩L∣ψj⟩L∣φ0⟩, (6.21)

where Z is given by Eq. (6.4). After the coupling of the two systems, this state is no longer an energy
eigenstate, so it starts evolving. Specifically, the coupling injects positive energy shock waves into the
two systems, after which the Hawking emission process begins. This process backreacts and produces a
superposition of black holes having different masses and momenta (at different locations) in the right-
side space. As discussed in Section 3.1, we focus on a branch in which the black hole has a well-defined
mass and (vanishing) momentum, within the minimum uncertainty required by quantum mechanics.
We can then say that after time t is passed, the state for each (m,j) changes as51

∣m⟩R∣ψj⟩R∣φ0⟩
time evolutionÐÐÐÐÐÐÐ→
+ projection

∑
n

eSbh(MR−En)

∑
in=1

∑
a

cmjnina∣n⟩R∣ψ(n)in
⟩R∣φ(m,j)a ⟩, (6.22)

51 We regard the left states ∣m⟩L∣ψj⟩L as (approximate) eigenstates of the left boundary Hamiltonian so that they do not
evolve.
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where

∑
n

eSbh(MR−En)

∑
in=1

∑
a

∣cmjnina∣
2 = 1, (6.23)

MR is the mass of the black hole as viewed from the right side, and ∣φ(m,j)a ⟩ represents the state of
the reservoir. Here, ∣n⟩R∣ψ(n)in

⟩R and ∣φ(m,j)a ⟩ carry energies MR and Em +Ej −MR, respectively (within
the uncertainty), and we have assumed that t is not too large that the structure of the black hole is
dramatically altered (for example, that it is fully evaporated). The index of ∣ψ(n)in

⟩R now carries subindex
n because the energy of ∣ψ(n)in

⟩R is correlated with that of ∣n⟩R.

Substituting Eq. (6.22) into Eq. (6.21), we obtain the state at time t

∣Ψt⟩ =
1√
Z
∑
n
∑
m

eSbh(MR−En)

∑
in=1

∑
j
∑
a

e−
β
2
(Em+Ej)cmjnina∣n⟩R∣ψ(n)in

⟩R∣m⟩L∣ψj⟩L∣φ(m,j)a ⟩. (6.24)

We assume that for t > tscr, the coefficients cmjnina take Gaussian random values across (n, in, a) for each
(m,j), as in Eq. (3.42), although this assumption is less justified than that for a single-sided black hole.
Now, consider the (non-normalized) states multiplying ∣n⟩R in the sum over n in Eq. (6.24).

∥n⟫R,nn =
1√
Z
∑
m

eSbh(MR−En)

∑
in=1

∑
j
∑
a

e−
β
2
(Em+Ej)cmjnina∣ψ

(n)
in

⟩R∣m⟩L∣ψj⟩L∣φ(m,j)a ⟩. (6.25)

With the assumption stated above, the norms of these states are given by

R,nn⟪n∥n⟫R,nn =
1

Z
∑
m

eSbh(MR−En)

∑
in=1

∑
j
∑
a

e−β(Em+Ej)∣cmjnina∣
2

= 1

(∑n e−βREn) e
−βREn , (6.26)

up to corrections exponentially suppressed in Sbh(MR). Here, in the last line we have used

⟨∣cmjnina∣
2⟩ = 1

∑n∑a eSbh(MR−En)
(6.27)

Ô⇒
eSbh(MR−En)

∑
in=1

∑
a

∣cmjnina∣
2 = eSbh(MR−En)

(∑n eSbh(MR−En))
= 1

(∑n e−βREn) e
−βREn , (6.28)

and
βR = ∂Sbh(E)

∂E
∣
E=MR

(6.29)

is the temperature of the black hole as viewed from the right side, which is different from β. The state
∥n⟫R,nn is thus related to the corresponding normalized state ∥n⟫R by

∥n⟫R,nn =
1√

∑n e−βREn
e−

βR
2
En∥n⟫R. (6.30)

From Eqs (6.25) and (6.30), we find that the state in Eq. (6.24) can be written in the thermofield
double form

∣Ψt⟩ =
1√

∑n e−βREn
∑
n

e−
βR
2
En ∣n⟩R∥n⟫R. (6.31)
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This allows us to erect the effective theory of the interior, following the construction described in
Section 5. In particular, it implies that an object located in the zone of the right side at time t will
smoothly pass through the horizon (of the black hole of mass MR) from the right side.52

It is interesting to consider what happens if the initial state has an excitation in the second exterior,
i.e. the exterior on the left side. Suppose that the state at the time of the coupling, t = 0, has an
excitation in the zone, e.g.,

∣Ψinit⟩ =
N

∏
i=1

⎛
⎝∑γ

f (i)γ b†Lγ
⎞
⎠
∣Ψ0⟩, (6.33)

where ∣Ψ0⟩ is given by Eq. (6.21). In this case, the state after t > tscr is given by Eq. (6.24) with the
replacement

e−
β
2
Emcmjnina∣φ

(m,j)
a ⟩ → ∑

p

e−
β
2
EpUmp c

pj
nina

∣φ(p,j)a ⟩, (6.34)

where Ump is a unitary matrix which has the indices p = {pα} and m = {mα} and depends on f
(i)
γ .

Similarly, if there is an excitation on the left side that fell into the stretched horizon at an earlier time,
then the state of the left-side soft modes at t = 0 deviates from that in Eq. (6.21), causing the change
of the state at time t

e−
β
2
Ejcmjnina∣φ

(m,j)
a ⟩ → ∑

k

e−
β
2
EkV j

k c
mk
nina∣φ

(m,k)
a ⟩, (6.35)

where V j
k is a unitary matrix acting on the space of the left-side soft states. With the changes in

Eqs. (6.34) and (6.35), we can define ∥n⟫R,nn analogously to Eq. (6.25) and calculate its norm

R,nn⟪n∥n⟫R,nn =
1

Z
∑
m

eSbh(MR−En)

∑
in=1

∑
j
∑
p,p′
∑
k,k′
∑
a,a′

e−
β
2
(Ep+Ep′+Ek+Ek′)Um∗p Ump′ V

j∗
k V j

k′c
pk∗
nina

cp
′k′

nina′
⟨φ(p,k)a ∣φ(p

′,k′)
a′ ⟩

= 1

(∑n e−βREn) e
−βREn , (6.36)

which we find is the same as Eq. (6.26) up to exponentially suppressed corrections. Here, we have
assumed that there is no intricate (and unexpected) cancellation between V j∗

k V j
k′ and c

pk∗
nina

cp
′k′

nina′
in the

sum over (k, k′), which would jeopardize the scaling in the last line.53

With this assumption, we thus find that the state of the effective theory is still given by Eq. (6.31).
This implies that the existence of an excitation on the left exterior at t = 0 cannot affect the effective
theory erected at t > tscr after evaporation began on the right side. In other words, the Einstein-Rosen

52 We can also erect an effective theory as viewed from the left exterior, i.e. the opposite to the side from which the black
hole evaporates. The construction is analogous to that described here—we identify ∥m⟫L as the state that comes with
∣m⟩L, leading to the state in the effective theory

∣Ψ′
t⟩ =

1√
∑n e−βEn

∑
n

e−
β
2
En ∣n⟩L∥n⟫L, (6.32)

where β = ∂Sbh(E)/∂E∣E=M . The analysis presented below also applies to this case with similar conclusions.
53 A similar assumption is not needed for Um∗

p Ump′ , since the number of degrees of freedom of semiclassical excitations is
too small to jeopardize this scaling anyway.
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bridge between the two sides is broken by Hawking radiation for t > tscr, although an object falling into
the black hole from either side sees smooth spacetime when it crosses the horizon.

At the technical level, this occurs because the energy constraint in Eq. (6.22) (i.e. the condition that
the mass of the black hole as viewed from the right side is MR) breaks entanglement between the right
and left side modes necessary to have a bridge [21]. To see this, we can trace out the soft and far modes
in the state of Eq. (6.24)

Trsoft+far ∣Ψt⟩⟨Ψt∣ =
1

(∑m′ e−βREm′ ) (∑n′ e−βEn′ )
∑
m
∑
n

e−βREme−βEn ∣m⟩R∣n⟩L R⟨m∣ L⟨n∣ (6.37)

and find that it takes a different form than

Trsoft+far ∣Ψ0⟩⟨Ψ0∣ =
1

∑n′ e−βEn′
∑
m
∑
n

e−
β
2
(Em+En)∣m⟩R∣m⟩L R⟨n∣ L⟨n∣, (6.38)

obtained from the thermofield double state which has a connected Einstein-Rosen bridge. In particular,
we see that the hard modes on the right side are mostly entangled with the right-side soft modes and
far modes in ∣Ψt⟩, and not with modes on the left side as in ∣Ψ0⟩.

Physically, this breaking of the Einstein-Rosen bridge occurs due to decoherence caused by Hawking
emission from the right side. After the Hawking emission, black holes of different masses (as viewed from
the right side) can be semiclassically discriminated, so that they should be viewed as living in different
branches of the wavefunction. Thus, unless a falling object somehow preserves coherence among these
different branches,54 it cannot see any signal sent from the left exterior inside the black hole. In general,
the Einstein-Rosen bridge—or wormhole—prepared by the thermofield double state in Eq. (6.3) is fragile
under a realistic physical process occurring to it.55

Entangled black holes

For a reason similar to the case above, entangled black holes of the form

∣Ψ(M1,M2)⟩ =
eSsys(M1)

∑
A=1

eSsys(M2)

∑
B=1

ηAB ∣ΨA(M1)⟩∣ΨB(M2)⟩ (6.39)

generically do not have an Einstein-Rosen bridge connecting them; an object falling into one of the
black holes sees a smooth horizon but cannot receive any signal sent in from the other black hole [21].
The same comment applies to more than two entangled black holes.

Interior holography?

We now discuss the possibility of formulating a “holographic theory of the interior.” In the discussion
so far, the fundamental degrees of freedom are assumed to live on boundaries (e.g. holographic screens

54 It is not not clear to what extent this is possible because the falling object necessarily feels gravity generated by the
black hole in question.
55 If the decoherence is imperfect, the two sides can be “weakly connected,” e.g. connected in the interior but with a
physical domain wall between the two horizons.
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time time

Figure 16: Holographic theory of the interior may be constructed by distributing the interior degrees of
freedom over the horizon H(t), which consists of two marginally trapped surfaces as indicated by the
wedges. Time t evolves toward the future on both components of the horizon. Entanglement entropy
between the two sides is computed by finding the maximin surface, obtained by minimizing the area of
a surface homologous to a component of the horizon on a Cauchy surface anchored to H(t) (green dots)
and then maximizing it over possible Cauchy surfaces, which leads to the bifurcation surface (blue dot).
The entanglement entropy is thus given by the Bekenstein-Hawking entropy of the black hole.

or AdS boundaries) outside the black hole horizon. However, discussion in Section 4 suggests that a
holographic theory may be able to live on an apparent horizon, the surface on which one of the (quantum)
expansions vanishes. We may, therefore, speculate that a holographic theory for the interior can be
formulated by picking out the degrees of freedom relevant for describing the interior and distributing
them on the horizon; see Fig. 16.

As seen in Fig. 16, the time evolution of this theory occurs toward the future on both arms of the
horizon, so that the holographic space at a given time consists of two disconnected two-spheres. One
can then calculate entanglement entropy between the left and right sides of the black hole by finding
a maximin surface [152] homologous to one of the two-spheres, which turns out to be the bifurcation
surface (see Fig. 16). The entanglement entropy is thus given by

S = Abh

4GN
, (6.40)

where Abh is the area of the horizon. The proposed theory, therefore, passes one of the simplest checks
for consistency.

It is not clear if the theory described here is fully consistent or useful. For example, the continuous
renormalization procedure in Refs. [13, 14] cannot be used here to describe the interior, since the pro-
cedure requires the bulk to be normal (while it is trapped here). We have discussed this nonetheless,
since it is related to similar proposals in de Sitter spacetime [45–48], which we will address later.
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6.2 Global de Sitter spacetime

We now discuss a possible description of global de Sitter spacetime analogous to a static, two-sided
black hole. As in the case of a two-sided black hole in asymptotically flat spacetime, we consider it to
be an approximate description of a sufficiently long-lived meta-stable de Sitter spacetime.

Specifically, we assume that global de Sitter spacetime at t = 0 can be described by a state of a
thermofield double-like form between two holographic theories each of which describes a static patch.
Following the case of a two-sided black hole, we may divide modes in each theory into “zone” and horizon
modes. We then take a subset of the zone modes to be hard modes while leaving all the other modes
as soft modes. In the case of de Sitter spacetime, however, we expect that gravity is not decoupling
in the holographic theories (because the boundary is not in an asymptotic region; see Section 4.2), so
that the two theories are interacting through it.56 We thus denote by ∣n⟩N, ∣ψi⟩N, ∣n⟩S, and ∣ψi⟩S the
states of the hard and soft modes in the limit that gravity is turned off in these holographic theories.
Here, the subscripts N and S specify the theory under consideration (referring to the north and south
hemispheres, respectively).

Assuming that the two theories have the same microscopic structure, the relevant thermofield double
state can be written as

∣Ψ′(E)⟩ ≈ 1√
Z
∑
n
∑
i

e−
β
2
(En+Ei)∣n⟩N∣ψi⟩N∣n⟩S∣ψi⟩S, Z =∑

n
∑
i

e−β(En+Ei), (6.41)

in the limit that gravity is turned off in holographic theories. Here, E = α/l2P, and En and Ei are
the energies carried by the hard and soft modes in the north hemisphere defined with respect to the
Hamiltonian H = HN −HS. We expect that the state in Eq. (6.41) can be prepared by the Euclidean
path integral over a half of the time compactified on a circle of length β (in the limit that gravity is
turned off); see Fig. 17(a). While the location of the boundary is now reversed compared with the case
of a black hole, depicted in Fig. 17(b), we assume that the periodicity β of the time direction is still
related to the temperature of de Sitter spacetime as β = 1/TH = 2πα, as in Ref. [179].

When gravity is turned on in holographic theories, the Euclidean path integral preparing the state is
expected to receive extra contributions suppressed by the gravitational coupling which are not diagonal
in the space spanned by ∣n⟩∣ψi⟩. This gives the correction to the state of the form

∣Ψ′(E)⟩ Ð→ ∣Ψ(E)⟩ = ∣Ψ′(E)⟩ + ∑
m,n
∑
j,i

εm,n;j,i ∣m⟩N∣ψj⟩N∣n⟩S∣ψi⟩S, (6.42)

where εm,n;j,i are coefficients of order l2P/α2. We suspect that these off-diagonal parts are related to the
fact that, unlike the case of a black hole, a positive energy shockwave in de Sitter spacetime gives a
traversable “wormhole” between the two hemispheres [173,176].

Excited states in which there are objects in the north and south hemispheres of the global de Sitter
spacetime can be obtained by acting annihilation/creation operators, given by Eqs. (6.7)–(6.10) with

56 By gravity we mean the full dynamics associated with gravity at short and long distances. Note that in 2+1 dimensions,
there is no massless propagating graviton.
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(a) Global de Sitter spacetime (b) Two-sided black hole

Figure 17: Preparation of a holographic state of the thermofield double form by Euclidean path integral.
In each panel, the thick red line represents the location at which the holographic theory resides, while the
shaded region corresponds to the bulk region that can be simply reconstructed, e.g., by the procedure
of continuously pulling in the boundary.

R→ N and L→ S, on the vacuum state in Eq. (6.42). Describing the region outside the horizons of the
two static patches requires time evolution operator other than that generated by H = HN −HS. The
appropriate generator H̃ can be constructed as

H̃ =∑
ξ

Ωξa
†
ξaξ + H̃int({aξ},{a†

ξ}), (6.43)

where

aξ =∑
γ

(αξγbRγ + βξγb†Rγ + ζξγbLγ + ηξγb
†
Lγ), (6.44)

a†
ξ =∑

γ

(β∗ξγbRγ + α∗ξγb
†
Rγ + η

∗
ξγbLγ + ζ∗ξγb

†
Lγ) (6.45)

are mode operators with the coefficients αξγ , βξγ , ζξγ , and ηξγ determined by semiclassical calculation.

Since the t = 0 hypersurface is a Cauchy surface, this effective theory describes the entire global
de Sitter spacetime. The theory, however, is intrinsically semiclassical. The choice of the vacuum
cannot be derived from the first principle, although we expect that the correct choice corresponding to
typical soft-mode states is the Bunch–Davies vacuum [182]. The description of field fluctuations on the
de Sitter background is also only statistical. To go beyond this, e.g. to describe the details of a state
depending also on the horizon microstate, we must resort to the microscopic theory.

In the ∣Ψ(E)⟩ state, the von Neumann entropy of the north hemisphere is

SN =∑
n
∑
i

e−β(En+Ei)

Z
[β(En +Ei) + lnZ] +O( l

2
P

α2
). (6.46)
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Figure 18: The holographic theory based on static patches consists of two weakly interacting systems
located on the stretched horizons of two static patches, with the simply reconstructed region staying
within the two patches (red). In the DS/dS correspondence, each of the holographic systems is located
by itself on de Sitter spacetime with one lower dimensions, leading to the simply reconstructed region
called the DS/dS patch (blue). The structures of the two theories are similar at t = 0.

Assuming that the density of states of the soft modes does not depend on Ei and denoting it by Ssoft(E),
we have

SN = ln [z eSsoft(E)] + β⟨En⟩N +O(1), (6.47)

where z = ∑n e−βEn , and ⟨En⟩N = ∑nEne−βEn/z is the thermal energy of the hard modes in the north
hemisphere, as measured by H. Thus, the entropy SN agrees with Ssys given by Eqs. (3.30) and (3.31)
at the leading order. Namely, in the global state of Eq. (6.42), the entropy of de Sitter spacetime can
be interpreted as the entanglement entropy between the two hemispheres, at the leading order.

Relation to the DS/dS correspondence

The theory we are considering consists of two holographic systems located on the stretched horizons of
two static patches, each of which covers one half of the spatial section of global de Sitter spacetime at
t = 0, the global time at which the spatial volume becomes minimal. These two systems, each of which
is expected to be strongly coupled, are weakly interacting through gravity. This structure is reminiscent
of that in the DS/dS correspondence [43,44], a proposed holographic description of de Sitter spacetime.

While the two theories have similar structures at t = 0, they can be different at t ≠ 0. In particular, if
we evolve our theory with HN +HS, the places where the holographic systems are located move toward
the future along the stretched horizons of the two static patches, as indicated by the red drawings in
Fig. 18. This makes simply reconstructed regions stay within the static patches. On the other hand, in
the DS/dS correspondence, each of the holographic systems is completed itself into de Sitter spacetime
of one lower dimensions, leading to the simply reconstructed region called a DS/dS patch, which is
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Figure 19: Holographic theory placed on the de Sitter horizons of two static patches can describe the
region outside the horizons (as viewed by polar observers). Entanglement entropy between the two sides
is computed by finding the maximin surface, which is nothing other than one of the horizons (blue dot).
The entanglement entropy, therefore, is given by the Gibbons-Hawking entropy.

depicted by the blue drawings in the figure.

One might speculate that the two theories represent the same system evolved differently in holo-
graphic space. It will be interesting to study this possible relation, but we leave it for the future.

Relation to the Shaghoulian-Susskind proposal

At the end of Section 6.1, we discussed the possibility of having a holographic theory of the black
hole interior by placing the relevant degrees of freedom on the apparent horizon. We can consider an
analogous situation for de Sitter spacetime, in which case the degrees of freedom relevant for describing
the region outside the horizons of the two static patches are placed on the horizon; see Fig. 19.

As in the case of the black hole, we can test the consistency of this picture by computing the
entanglement entropy between the two patches, which can be done using the maximin procedure. By
minimizing a surface homologous to one of the horizons on a spacelike surface bounded by the two
horizons at a fixed time, we find the resulting surface is nothing other than one of the horizons. The
subsequent maximization over spacelike surfaces thus gives us the same surface, so the de Sitter horizon
is the maximin surface. This gives the entanglement entropy

S = AdS

4GN
, (6.48)

where AdS is the area of the de Sitter horizon, which is consistent with the picture that the evolution
of the system is unitary. This seems to be what is proposed in Refs. [45, 46] as a holographic theory
of de Sitter spacetime (referred to as the monolayer proposal in Ref. [48]), although our interpretation
here says that the theory describes only the shaded region in Fig. 19; in particular, it does not describe
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the regions inside the two static patches.

In our picture, the degrees of freedom used for the theory described above are a subset of the degrees
of freedom of holographic theories describing the static patches. Therefore, the former are not really
independent of the latter at the microscopic level. However, we may treat them independent for the
purpose of describing semiclassical physics in the bulk. If this is the case, we can regard the holographic
theory as consisting of two layers of degrees of freedom on the horizons, one describing the outside and
the other describing the interiors of the horizons. This seems to be the proposal of Ref. [47], called the
bilayer proposal in Ref. [48].

7 Gravitational Path Integral

The approach we have described so far is based on the canonical formalism of quantum mechanics. In
particular, we have assumed the existence of a Hilbert space factor representing states of the horizon
degrees of freedom, with which we could construct an effective theory describing a spacetime region
behind the horizon—the interior in the case of a black hole—using only the low energy input that the
dynamics of these degrees of freedom is maximally chaotic (and fast scrambling).

Quantum mechanics, however, can also be formulated using path integrals, and we expect that the
same physical conclusions would be obtained from this formalism. In this section, we discuss what the
picture looks like in this case. We will see that the corresponding picture is that of Refs. [36,37], in which
aspects of unitary evolution can be reproduced by gravitational path integral that fixes the “boundary
condition” based on the quantity of interest and then integrates over all possible semiclassical geometries
consistent with it, including those with nontrivial topologies (in particular, replica wormholes). This
allows us to relate the framework described so far to the treatment based on the quantum extremal
surface prescription [33–35]. While we focus on the case of a black hole here, we suspect that a similar
story can be developed for de Sitter spacetime as well.

The picture presented here was outlined in Refs. [24,38]. The ensemble nature of the semiclassical de-
scription arising from an ensemble of microstates was also discussed in Refs. [60–64]. The understanding
of the Page curve presented here is based on the picture developed in Refs. [65–71].

7.1 Ensemble from coarse graining

The starting point for the path integral formalism is very different from that of the canonical formalism.
Specifically, in the present context it should start from a collection of classical field configurations on
classical geometries, which will then be integrated over. We are interested in a “low energy” framework
in which the detailed microscopic knowledge is not necessary to understand the physics. This implies
that a black hole must be treated as a (semi)classical object in which the detailed microscopic structure
cannot be discriminated.

This treatment, in fact, is required by quantum mechanics. As we have argued in Sections 2 and 3,
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Figure 20: The density matrix of the exterior region, whose element is specified by the field configurations
ψ+ and ψ−, can be computed by Euclidean path integral, which can be interpreted to receive equal
contributions from all the black hole microstates. Euclidean path integral can also be used to prepare
a two-sided state Ψ, which is pure and unique.

microstates of a black hole can be regarded as independent quantum states arising from superposing
energy eigenstates in a small energy window, e.g. of order TH, around M . Thus, to discriminate these
microstates, one would need an exponentially long measurement time ∼ eSbh/TH. The black hole,
however, would already have evaporated by the time such a measurement would be completed (or the
state of the black hole will be altered significantly for a large AdS black hole thermalized with the
environment). One therefore cannot operationally discriminate different microstates by performing a
measurement on the black hole.57

We thus have to regard a black hole spacetime appearing in gravitational path integral as representing
a maximally mixed ensemble of the microstates consistent with the classical specification of the black
hole [24, 38]. Note that this picture is associated with a single-sided (or a single-sided description) of a
black hole. To see this, one can imagine preparing a black hole state using Euclidean path integral in
the approximation that the black hole is static. As represented in Fig. 20, the “ψ+-ψ− component” of
the density matrix of the exterior region can then be obtained by the path integral in which the spatial
field configurations are fixed to be ψ+ and ψ− above and below the cut corresponding to the exterior
region of the black hole.

At the semiclassical level, this simply gives the thermal density matrix which we regard as the
semiclassical black hole vacuum state. We can, however, imagine following the same procedure at the
microscopic level to get the corresponding density matrix

ρmicro ∝∑
n

e−
β
2
∆H ∣n⟩⟨n∣e−

β
2
∆H , (7.1)

57 One can, of course, infer the microstate of the black hole if we prepare a specific state of initial collapsing matter and
then use the microscopic theory to simulate its time evolution.
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where {∣n⟩} is a complete set of black hole vacuum microstates consistent with the background used in
the semiclassical path integral, β = 1/TH is the periodicity of Euclidean time in the angular direction,
and ∆H is the microscopic exterior (boost) Hamiltonian. Here, the zero of ∆H is chosen to be a typical
energy associated with the space Hvac spanned by ∣n⟩’s.58

Since the matrix elements of the β∆H/2 operator in Hvac are of order or smaller than 1, we find
that many microstates contribute to ρmicro. In particular, there are exponentially many microstates that
contribute dominantly and almost equally; these are the microstates among which the matrix elements
β∆H/2 is much smaller than 1. The fact that semiclassical theory cannot resolve the detailed structure
of microstates implies that it perceives ρmicro to be the maximally mixed state59

ρsc ∝
eSbh

∑
n=1

∣n⟩⟨n∣, (7.2)

where the sum runs over a sufficiently large set of vacuum microstates ∣n⟩, whose precise specification
is not important as discussed in Section 3 (or as in standard statistical mechanics). The number of
elements of this set is of order eSbh , which we have already indicated in Eq. (7.2).

This interpretation indeed reproduces many features which are attributed to the ensemble nature of
holographic theories in lower dimensional quantum gravity [36] in terms of an ensemble of microscopic
states [24] (see also Refs. [60–64]). Incidentally, this should be contrasted with the situation in which
a global (two-sided) state is prepared by Euclidean path integral. In this case, the generated state is a
pure state

∣Ψmicro⟩∝ lim
τ→∞

e−∆H̃τ ∣i⟩ (7.3)

obtained by evolving some initial state ∣i⟩ at τ = −∞ to τ = 0. Here, ∣i⟩ is chosen in the space of
black hole (not necessarily vacuum) microstates Hbh, and ∆H̃ is the microscopic “infalling” (inertial)
Hamiltonian with its zero chosen to be a typical energy of vacuum microstates. This leads to the unique,
lowest energy eigenstate, determined by the choice of Hbh; see also discussion around Eq. (6.1).

7.2 Replica method, entanglement island, and the Page curve

With the understanding that the black hole spacetime appearing in gravitational path integral represents
the (maximally mixed) ensemble of black hole microstates, the results of Refs. [36,37] can be understood
in a simple manner.

58 The index n here corresponds to the index A in the notation in Sections 3 and 5.
59 The contributions to ρmicro from states with ∣β∆H ∣ ≫ 1 are negligible either because of the Boltzmann suppression
(for ∆H > 0) or because the number of states is too small (for ∆H < 0). The chaotic nature of the black hole dynamics
then implies that the remaining contribution can be well approximated to come from the maximally mixed ensemble of
microstates with ∣β∆H ∣ ≲ 1.
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Figure 21: (a) The (nonnormalized) density matrix ρ̂R of radiation in nongravitational region R can be
calculated by performing path integral with the boundary condition fixing the spatial field configurations
above and below the cut along R. (b) The square of the density matrix, ρ̂2

R is calculated using the replica
method, which replicates the spacetime into two and imposes the boundary condition such that one side
of the cuts along R on the two sheets are appropriately sewn together (as represented by blue arrows).

Euclidean gravitational path integral

Let us first consider a setup similar to Ref. [37] in which a black hole living in a gravitational region is
coupled to a nongravitational region.60 The black hole then radiates into the nongravitational region.
Our interest is to compute the von Neumann entropy of the emitted radiation.

Since the radiation lives in a nongravitational region, we must be able to describe its state semiclas-
sically. In particular, assuming that the system can be viewed as quasi-static at each instance of time,
we expect that the density matrix of the radiation in a region R can be calculated using a Euclidean
path integral by specifying its element by spatial configurations of the radiation field above and below
the cut on R; see Fig. 21(a). The obtained density matrix is not normalized, which we denote by ρ̂R
with the hat over ρR indicating that the density matrix is not normalized.61

60 The nongravitational region is a proxy for a weakly gravitational region. The distinction between gravitational and
nongravitational regions is necessary to correctly identify semiclassical degrees of freedom in the latter region, in particular
Hawking radiation quanta, of which the von Neumann entropy is calculated. Without this separation, the Page curve of
our interest cannot be computed using the method adopted here [183], although we expect that there is a way to reproduce
the same result without involving an artificial separation of regions, at least in principle.
61 The density matrix ρR here refers to the fine-grained (reduced) density matrix of fields in R. In the language of
Ref. [165], the radiation here is the “radiation in boldface.”
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The path integral performed, however, includes the gravitational region in which a black hole resides.
Thus, the obtained density matrix, in fact, involves an ensemble average over the black hole microstates
in the sense of Eq. (7.2)

ρ̂R = 1

eSbh

eSbh

∑
n=1

ρ̂R,n, (7.4)

where ρ̂R,n = TrRc ∣n⟩⟨n∣ represents the (nonnormalized) density matrix of R for the microstate ∣n⟩ with
Rc being the complement of R. Defining the normalized density matrix by

ρR = ρ̂R

Tr ρ̂R
, (7.5)

we can compute the von Neumann entropy of R as

S
(sc)
R = −Tr [ρR lnρR] . (7.6)

Since this involves coarse-graining, i.e. the ensemble average over microstates, the quantity S(sc)R is well
approximated by the thermal entropy of the radiation, which increases monotonically in time (until the
black hole is fully evaporated, if it is not eternal). This is Hawking’s result [1] showing the apparent
violation of unitarity in the black hole evaporation process.

However, what we really want to understand is the behavior of

S
(micro)
R = −Tr [ρR,n lnρR,n] (7.7)

(for each microstate ∣n⟩), which must show the Page behavior [20] if the evolution of the system is
unitary. In particular, S(micro)

R must go down to zero when the black hole is fully evaporated and all the
emitted radiation is included in R. A question is how (or if) we can see this behavior in a semiclassical
analysis.

The idea is that while the semiclassical description necessarily involves the ensemble average over
black hole microstates, it still allows for calculating the ensemble average of many different quantities.
For example, we can calculate the ensemble average of the square of the density matrix for the radiation
using the replica method [89, 184, 185], i.e. by replicating the spacetime into two copies and imposing
the boundary condition for the path integral such that (one side of) the cuts along R on two sheets
are appropriately sewn together; see Fig. 21(b). Performing path integral with this boundary condition
gives

ρ̂2
R = 1

eSbh

eSbh

∑
n=1

ρ̂2
R,n. (7.8)

An important point is that the performed path integral must involve all possible geometries in the
gravitational region, including those having a topology that geometrically connects the two sheets (the
replica wormhole) [36, 37]. This is because the gravitational path integral should not predetermine the
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Figure 22: Two contributions to replica method calculation of Tr ρ̂2
R. (a) The normal contribution in

which the gravitational region is filled separately on each sheet. Integration of semiclassical matter gives
eSrad coming from Euclidean evolution relating all 4 field configurations above and below the cuts on
two sheets (red arrows), while gravitational path integral gives the eSbh factor for each sheet. (b) For
the replica wormhole configuration, the gravitational regions on two sheets are geometrically connected.
The contribution from gravitation path integral is thus only eSbh , while the contribution from matter
integration gives e2Srad since there are two independent cycles for evolution (red and blue arrows).

geometry on which quantum fields are integrated over.62 In general, the inclusion of geometries with
nontrivial topologies makes Eq. (7.8) different from the square of Eq. (7.4): ρ̂2

R ≠ (ρ̂R)
2.

In Fig. 22, we illustrate the calculation of the trace of the square of the nonnormalized density matrix
ρ̂R, which we denote by Z2 = Tr ρ̂2

R. As found in Refs. [36,37], there are two contributions to this. The
first is the one in which the gravitational region is filled separately for two sheets; Fig. 22(a). Restricting
the radiation configuration to those resembling the emitted Hawking radiation at a coarse-grained level,
the integral of semiclassical fields provides a factor of eSrad , since the relevant four spatial configurations
of the fields (both sides of the two cuts) are all related by Euclidean evolution as indicated by the red
arrows in the figure. On the other hand, the gravitational path integral gives eSbh for each sheet, so
that this contribution is given by

Z
(disconnected)
2 ∼ e2Sbh+Srad . (7.9)

The other contribution is the one coming from a replica wormhole; Fig. 22(b). In this case, the radiation
contribution is e2Srad , since we now have two independent cycles for the evolution, so that the four
relevant configurations are related only pairwise (the red and blue arrows). On the other hand, the

62 As elucidated, e.g., in Ref. [70], this prescription calculates ρ̂2
R with exponential accuracy, taking into account the

detailed microscopic structure of radiation (radiation in boldface in the language of Ref. [165]). If we instead calculate
ρ̂2
R including only trivial topology, i.e. the disconnected contribution, then we would fail to capture the effect from the

exponentially complex microscopic structure, yielding ρ̂2
R as computed in the semiclassical theory (i.e. the squared density

matrix of non-boldface radiation). This latter prescription would lead to Hawking’s result [1] when we compute the
von Neumann entropy using SR = − limn→1 ∂(TrρnR)/∂n, where ρnR = ρ̂nR/(Tr ρ̂R)n.
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Figure 23: (a) The contribution to Zn with the gravitational region filled separately (light blue) on
each sheet. All semiclassical matter configurations above and below the cuts R (green dashed) are
related by Euclidean evolution (red arrow), giving the factor of eSrad . (b) For the replica symmetric
wormhole configuration, the gravitational regions on n sheets are geometrically connected. This allows
for n independent cycles for evolution (red arrows), giving the contribution from matter integration of
order enSrad .

gravitational contribution is now eSbh because it comes from a single, connected component. This
therefore gives

Z
(wormhole)
2 ∼ eSbh+2Srad . (7.10)

Adding the two contributions together, we find that Z2 ∼ max{e2Sbh+Srad , eSbh+2Srad}.

A similar analysis can be performed for Zn for n ∈ N. Assuming that the replica symmetric wormhole
connecting all n sheets dominates for Srad > Sbh, we find

Zn ∼
⎧⎪⎪⎪⎨⎪⎪⎪⎩

enSbh+Srad for Sbh > Srad

eSbh+nSrad for Srad > Sbh.
(7.11)

This is illustrated in Fig. 23. Since the density matrix ρR is given by ρ̂R/Tr ρ̂R, we thus find

TrρnR = (
Tr ρ̂nR

(Tr ρ̂R)n
) ≈

Tr ρ̂nR
(Tr ρ̂R)

n = Zn
Zn1

∼
⎧⎪⎪⎪⎨⎪⎪⎪⎩

e(1−n)Srad for Sbh > Srad

e(1−n)Sbh for Srad > Sbh,
(7.12)

where in the second equation we have used the fact that the standard deviation of Tr ρ̂nR is smaller than
its typical size in the ensemble, which we can easily be convinced. By analytically continuing this result
in n, we can now obtain the ensemble average of the von Neumann entropy of the radiation

SR = − lim
n→1

∂

∂n
TrρnR ∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Srad for Sbh > Srad

Sbh for Srad > Sbh,
(7.13)
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which reproduces the Page curve. This is because we have calculated the ensemble average of the
von Neumann entropy (which obeys the Page curve for all members of the ensemble), and not the
von Neumann entropy of the averaged density matrix as in Eq. (7.6).

Note that this observation is similar to that in Ref. [65], but here we do not consider any ensemble
of holographic theories. Instead, the relevant ensemble arises from the coarse graining of black hole
microstates, which is forced on us if we adopt any formalism involving the semiclassical picture of the
black hole, such as gravitational path integral. See also Refs. [70,71] for related discussion.

Entanglement island and the Lorentzian picture

It was shown in Ref. [37], building on the technique developed in Refs. [89,92,186], that the prescription
using the replica method in gravitational path integral is equivalent to the quantum extremal surface
prescription [91] in the original unreplicated spacetime.63 Going to the Lorentzian signature, this
therefore leads to the following picture [33–35].

In order to calculate the von Neumann entropy of radiation Srad in some region R, we need to find
an entanglement island I which extremizes the following quantity64

Sgen(R, I) =
A(∂I)
4GN

−Tr [ρsc(R ∪ I) lnρsc(R ∪ I)] , (7.14)

where A(∂I) is the area of the boundary of I, and ρsc(X) is the reduced density matrix of the region
X in the semiclassical theory. Note that I can be a null region. In general, there can be multiple such
I’s, and the entropy Srad is given by the minimum of Sgen(R, I)’s associated with all such I’s:

Srad = min ext
I
Sgen(R, I). (7.15)

This entropy is the same as that calculated by the replica method in path integral

Srad = SR, (7.16)

so that it obeys the Page curve.

It is important that this extremization procedure is performed on a global spacetime of general
relativity. In particular, for a black hole spacetime, it must be performed on the whole spacetime
including the interior of the black hole. This, therefore, gives a complementary picture to that described
in Sections 2 – 6. In the picture described here, the existence of the black hole interior is obvious—in
fact, the framework assumes it—while to understand the unitary nature of black hole evolution, one
needs to resort to a method that appropriately incorporates nonperturbative effects of quantum gravity,
such as replica wormholes. On the other hand, in the framework of Sections 2 – 6, the unitarity of

63 Strictly speaking, this was shown only in the limit that the contribution from the graviton to the semiclassical field
integration is negligible compared with those from other quantum fields. Below we assume that the equivalence of the two
prescriptions persists beyond this limit.
64 The regions R and I can be viewed either as spatial regions or causal regions associated with them.

88



the evolution is an assumption and, as a consequence, the existence of the interior is not manifest—the
interior emerges only effectively as a collective phenomenon involving horizon degrees of freedom, which
are subject to universally chaotic and fast-scrambling dynamics.

Manifestly unitary vs global spacetime descriptions

We can, in fact, understand the existence of the two frameworks discussed above—based on the mani-
festly unitary and global spacetime pictures, respectively—from the viewpoint of gauge symmetries of
the underlying theory [24,38]. As emphasized in Ref. [187], a theory of quantum gravity has nonpertur-
bative gauge redundancies much larger than the standard diffeomorphism. A particular manifestation
of this is the apparent violation of the Bekenstein-Hawking entropy bound in the semiclassical de-
scription of a black hole [24, 38, 188]. This violation arises from huge spatial volume inside the black
hole [189, 190] (including the so-called bags-of-gold configurations), which leads to the number of in-
dependent quantum states exceeding the Bekenstein-Hawking bound. Many of these semiclassically
independent states, however, are equivalent under the nonperturbative gauge symmetries, making the
number of truly independent states satisfy the Bekenstein-Hawking bound.

The two frameworks describe this phenomenon in very different, though equivalent, ways. In the
framework discussed in Sections 2 – 6, the nonperturbative gauge redundancies (as well as a part of the
standard diffeomorphism) are explicitly fixed by employing a Schwarzschild-like time foliation, which
is motivated by holography. In this framework, making unitarity manifest, the number of independent
black hole states is simply eSBH , and the apparently much larger number of independent interior states
in semiclassical theory comes from the fact that the Hilbert space spanned by the eSBH states admit
ee
SBH approximately orthogonal states, between which inner products are of order e−SBH/2 or smaller.

Since the semiclassical theory cannot detect such small inner products, it appears to accommodate
independent quantum states larger than the Bekenstein-Hawking bound in the interior of a black hole.

On the other hand, in the framework making the interior manifest, the argument runs in the other
direction. In this case, the starting point is the global spacetime picture, which is highly redundant. In
the canonical formulation of quantum mechanics, this implies the existence of over-entropic semiclassical
interior states ∣ψi⟩. After including nonperturbative effects of gravity, however, these semiclassically
orthogonal states develop small overlaps, ⟨ψi∣ψj⟩ ∼ e−SBH/2, in a such way that the rank of the matrix
Mij ≡ ⟨ψi∣ψj⟩ is reduced drastically to eSBH . Such a large number of null states are a manifestation
of the large nonperturbative gauge redundancies [187, 191], which relate even spaces with different
topologies [187, 192]. In the path integral formulation, this reduction of the semiclassical Hilbert space
to the physical one is achieved by including additional contributions to the path integral (e.g. replica
wormholes) which projects states onto those invariant under the relevant gauge symmetries as we have
seen in this section.
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8 Conclusion

In quantum gravity, there has been a difficulty in reconciling fundamental principles of physics in the
presence of a black hole (or other) horizon, particularly the unitarity of quantum mechanics and the
equivalence principle of general relativity [1]. This difficulty is, in fact, an avatar of the conventional
difficulty of describing UV physics at the Planck scale, albeit in a redshifted form. Because of a huge
gravitational redshift between the horizon and asymptotic regions, the degrees of freedom represented
by the Bekenstein-Hawking entropy [4,5], which obey an intrinsically “stringy” dynamics, appear to have
exponentially degenerate states that cannot be discriminated operationally by performing a measure-
ment on the black hole. A low energy description of quantum gravity treats these states in a thermal
way, so that unitarity appears to be lost.

While a semiclassical theory, as a low energy description of quantum gravity, cannot describe all
the microscopic dynamics of the fundamental theory, it can still be used to obtain a coarse-grained
understanding of how unitarity and the equivalence principle can coexist in a black hole system, with
only a few inputs from the UV theory. This is what we have explored in this paper.

One way of doing this is simply to postulate that the evolution of a black hole is unitary when viewed
from the exterior [17–20]. This is a view motivated by holography [6]. In this case, the existence of
the black hole interior appears to be in jeopardy [3]. We have seen, however, that with the assumption
that the dynamics of horizon degrees of freedom is chaotic and fast scrambling across all low energy
species, the interior emerges at a semiclassical level as a collective phenomenon involving the horizon,
and possibly other, degrees of freedom [21–25]. An important point is that for a black hole with minimal
uncertainties (i.e. a specific black hole at the semiclassical level), the assumption of Gaussian randomness
of the coefficients for microstates allows us to learn many features associated with the construction of
the effective theory of the interior. We do not need any further details about the microscopic theory
to figure these things out. A similar construction applies to de Sitter spacetime, which we have also
elaborated in this paper.

The compatibility between unitarity and the equivalence principle can alternatively be seen by
starting from the global spacetime of general relativity. In this case, the existence of the interior
is manifest, but at the apparent expense of unitarity as Hawking’s original calculation indicates [1].
However, while a semiclassical picture necessarily involves an average over microstates, we can directly
calculate the average of the quantity we are interested in, e.g. the von Neumann entropy of emitted
Hawking radiation, rather than the quantity in the averaged state. This is what is done in Refs. [33–37]
by employing the replica method in gravitational path integral, or equivalently the quantum extremal
surface prescription. In this way, one can see the unitarity of the underlying theory without knowing
its detailed dynamics.

Despite the fact that the two frameworks described above appear very different, they give the same
physical conclusions. In particular, a black hole evolves unitarily and has a smooth horizon. Viewed
in this way, one can conclude that historical confusions about black hole physics come from the fact
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that only one of these features can be made manifest in a given low energy description; the other one
appears in a highly nontrivial manner. We have seen that the description making unitarity (quantum
mechanics) manifest comes more naturally with the canonical/Hamiltonian formulation of quantum
mechanics, while the one making the interior (general relativity) manifest is associated with the path
integral/Lagrangian formulation. It remains to be seen if there is a microscopic formulation of quantum
gravity in which both these features are manifest at the same time.
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