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Climate change is increasingly exposing populations to rare and novel

environmental conditions. Theory suggests that extreme conditions will

expose cryptic phenotypes, with a concomitant increase in trait variation.

Although some empirical support for this exists, it is also well established

that physiological mechanisms (e.g. heat shock protein expression) change

when organisms are exposed to constant versus fluctuating temperatures.

To determine the effect of common, rare and novel temperatures on

the release of hidden variation, we exposed fathead minnows, Pimephales
promelas, to five fluctuating and four constant temperature regimes (constant

treatments: 23.5, 25, 28.5 and 318C; all fluctuating treatments shared a mini-

mum temperature of 228C at 00.00 and a maximum of 25, 28, 31, 34 or 378C
at 12.00). We measured each individual’s length weekly over 60 days, critical

thermal maximum (CTmax), five morphometric traits (eye anterior–posterior

distance, pelvic fin length, pectoral fin length, pelvic fin ray count and

pectoral fin ray count) and fluctuating asymmetry (FA, absolute difference

between left and right morphometric measurements; FA is typically associ-

ated with stress). Length-at-age in both constant and fluctuating conditions

decreased with temperature, and this trait’s variance decreased with temp-

erature under fluctuating conditions but increased and then decreased in

constant temperatures. CTmax in both treatments increased with increasing

water temperature, while its variance decreased in warmer waters. No con-

sistent pattern in mean or variance was found across morphometric traits or

FA. Our results suggest that, for fathead minnows, variance can decrease in

important traits (e.g. length-at-age and CTmax) as the environment becomes

more stressful, so it may be difficult to establish comprehensive rules for the

effects of rarer or stressful environments on trait variation.

This article is part of the theme issue ‘The role of plasticity in phenotypic

adaptation to rapid environmental change’.
1. Introduction
Earth is experiencing vast changes in both spatial and temporal patterns of

climate variables such as temperature, wind and precipitation. The mean com-

bined land and ocean surface temperature has increased 0.858C between 1880

and 2012 [1]. In addition, precipitation [2], sea level [3], ice cover [4] and

frequency of severe weather [5] are all changing at an unprecedented rate.

These changes are, in turn, having widespread effects in ecosystems,

mediated by the effect of climatic variables on the physiology of organisms

[6]. Geographical range [7] and migration pattern shifts [8], increased variability

in population abundance through time [9] and modification of species inter-

actions [10] are only some of the observed consequences. For these reasons,

the ability to cope with future environmental changes will be crucial to the

survival of many species [11,12]. In particular, how species respond to changes
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in temperature, one of the most consequential abiotic

variables (especially for ectotherms), will, in large part,

determine their fate [13].

Although climate change is often discussed in terms of

averages (e.g. increase in projected mean temperature), the

increasing prevalence of extreme temperatures is also quite

apparent. Increases in variance have already been observed

and are predicted to become further exacerbated [1]. In fact,

a complete departure from current temperature regimes is pro-

jected to have happened by 2047 (assuming a stay-the-course

scenario; [14]). Periods of extreme temperature can have a

disproportionate impact on the mortality and morbidity of

plants and animals, yet are not necessarily well accounted

for with means [15–17]. Thus, many populations will be

increasingly challenged by rare and novel environmental

conditions [18–20].

Some theory suggests that natural selection acts to canalize

phenotypes in commonly faced environments [21,22], but rare

and novel conditions could expose hidden phenotypes, with a

concomitant increase in trait variation [22–24]. Variation is, of

course, a critical component of the adaptive capacity of a

population, as the rate of evolution is proportional to the addi-

tive genetic variance [25]. Increased trait variation can lead

to significant ecological [26–28] and evolutionary changes

[29–33], and the release of this variation in extreme environ-

ments has been suggested to be an important evolutionary

process [34–36]. In yellow dung flies, for instance, exposure

to heat stress led to an increase in variance in the number of

sperm storage organs in females [37]. The expression of cryptic

variation has also been shown to increase in experimental

brown trout populations exposed to novel pH levels [38],

and previously unencountered diet conditions are likely to

have released variation and driven the evolutionary transition

from omnivory to carnivory in spadefoot toad tadpoles [30].

More examples are summarized in [35,39].

However, it is unclear whether the theoretical prediction of

increased variance in novel environments occurs consistently

(i.e. whether reaction norms really ‘fan out’ as predicted;

[40–42]). For instance, if optimal conditions are required to

produce a fully expressed phenotype, then stressful envi-

ronments will only induce a subset of potential phenotypes,

thereby decreasing variation [40]. Studies on Drosophila
revealed increases in the variance of some traits and decreases

in others when exposed to stressful environments [43]. In a

survey of 247 studies, Hollander & Bourdeau [44] found that

organisms exposed to native predators (thus experiencing a

‘common’ environment) showed significantly more plasticity

than those exposed to introduced (novel) ones. Yet another

recent meta-analysis arrived at a similar conclusion, finding

mixed evidence for the release of variation in rare or novel

environments (increased coefficients of variation for life-his-

tory traits but not for morphological traits under highly

stressful environments; [45]).

Additionally, almost all work on phenotypic variation in

novel conditions is conducted under constant environments

(but see [46]). Although simpler from an experimental stand-

point, important differences exist when individuals are

subjected to fluctuating conditions (reviewed in [47,48]).

Growth, development and thermal tolerance in many

ectotherms can differ significantly when exposed to daily

thermal fluctuations versus a constant environment with the

same mean temperature (e.g. [49,50]). For example, daily fluc-

tuating temperatures can delay embryonic development in a
longhorned beetle [51] and can increase the upper thermal tol-

erance limit in zebrafish [52] relative to that of constant

temperatures. Not surprisingly, failing to incorporate thermal

variability can seriously bias predictions of species’ responses

to climate change [47,53].

Here, we use the fathead minnow, Pimephales promelas, to

explore the interaction of these two phenomena in thermal

biology: the effects of novel temperatures and of daily thermal

variation on life-history and morphological traits. We reared

these fish under constant (23.5, 25, 28.5 and 318C) and fluctuat-

ing (22–25, 22–28, 22–31, 22–34 and 22–378C) temperature

environments that ranged from common to exceptionally

hot. We then quantified variation in length-at-age, critical

thermal maximum (CTmax), meristic and morphometric char-

acters, and fluctuating asymmetry (FA). We hypothesized

that fluctuating temperatures will result in improved perform-

ance at more stressful temperatures (when compared with fish

in constant conditions), and that fluctuating thermal regimes

will result in higher levels of phenotypic variation, as the

underlying physiology is likely to be different.
2. Material and methods
(a) Model system
The fathead minnow is a cyprinid endemic to large parts of North

America. Its range stretches from the Northwest Territories of

Canada to northern Mexico, as well as from New York to

Nevada and into parts of California in the continental USA [54].

Fathead minnows can tolerate a wide range of temperatures;

when acclimated to 228C, they exhibit a critical thermal maximum

of 36.4+ 0.75 (mean+ s.d.) [55]. Fathead minnows are used for a

variety of purposes, including mosquito population control [56],

bait [54,56] and toxicology studies [57].

(b) Temperature set-up
One-day-old P. promelas were shipped to our laboratory on 1 July

2017 from the US Environmental Protection Agency’s Mid-Conti-

nent Ecology Division Laboratory. We allowed them to acclimate

for 24 h at 258C (temperature at which they were spawned) and

then moved them to one of the temperature treatments. For the

first 11 days, larvae were kept in groups of approximately 10

fish. Thereafter, fish were reared in individual chambers inside

225 l tanks. Individual growth chambers consisted of plastic

Petri dish bottoms surrounded by cylinders of 762 mm mesh.

In all treatments, temperatures were controlled by tank-specific

APEX Jr controllers (Neptune Systems, Morgan Hill, CA, USA) on

an hourly basis and actual temperature was within +0.28C of the

nominal treatment temperature. In all fluctuating treatments,

the lowest temperature was 228C at 00.00. Daily temperatures

increased linearly to one of five maximum temperatures: 25

(mean daily temperature: 23.58C), 28 (mean 25.2), 31 (mean 26.5),

34 (mean 28.4) or 378C (mean 29.5) (figure 1). Twenty fish were

grown at each of the fluctuating treatments. Controllers were

checked daily for consistency/accuracy. For comparison, there

were four constant temperature treatments: 23.5, 25, 28.5 and

318C (+0.28C), with 14 individuals per treatment (figure 1). Fish

were kept under these conditions for the duration of the experiment

(60 days). We replicated each temperature treatment in two 225 l

tanks. For reference, water temperature at the Lake Superior

National Estuarine Research Reserve (Superior, WI, USA) can

reach 27–288C during summer days, and water can remain greater

than 278C for 10 h these days (summer mean temperature: 20.68C;

electronic supplementary material, figure S1). Our temperature

treatments were selected based on this water temperature data.
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(c) Husbandry
Water was filtered and checked weekly to ensure appropriate

quality. We fed fish 1-day-old Artemia nauplii (San Francisco

Bay Brand, Newark, CA, USA) for the first 11 days and then

switched to TetraMin flake food (Tetra Spectrum Brands, Blacks-

burg, VA, USA). All fish were fed ad libitum three times daily,

and the light cycle was maintained at a 16 L : 8 D cycle for the

duration of the experiment. This rearing protocol is similar to

the standard for these fish [58].

(d) Measurements
(i) Length-at-age
Starting with 13-day-old larvae, we measured length every week

for a total of eight measurements per fish. We photographed each

fish from above at a standard height of 65 cm, while the fish

remained in 1 cm of water (within its chamber, to minimize

stress). A Nikon D7200 camera with an AF-S Micro Nikkor

105 mm macro lens was used. Photos were measured using

IMAGEJ 1.50i (NIH, Bethesda, MD, USA).

(ii) Critical thermal maximum
CTmax, defined as the temperature at which locomotion becomes

disorganized [59], was measured at age 54–56 days. Fish were

transferred from their experimental table to the test chamber

and allowed to acclimate for 10 min. Water temperature was

raised 18C every 2 min until visual inspection indicated that

the fish were unable to maintain equilibrium (uncontrolled

swimming) for approximately 2 s. The CTmax assay was

performed on all fish at their peak daily temperature.

(iii) Meristic/morphometric traits and fluctuating asymmetry
We measured five traits on the left and right side of individuals:

eye anterior–posterior distance, pelvic fin length, pectoral fin

length, pelvic fin ray count and pectoral fin ray count. Fish were

sacrificed and then photographed; measurements were obtained

electronically on IMAGEJ. These measurements were also used to

calculate FA (i.e. the absolute difference between left and right

measurements; a common approach to evaluate stress in organ-

isms; [60]). The characters measured are all commonly used in

studies of asymmetry [60].

(e) Statistical analysis
To assess trends with temperature in the mean and variance of

different traits, we fitted a series of general linear and additive

models. The goals of these analyses are to elucidate the main pat-

terns, rather than test specific hypotheses. Specifically, we wished
to know whether there was a trend with temperature and whether

or not the trend was linear. Thus, to allow full flexibility for the

trends, we considered linear models, piecewise linear models

with two segments and penalized B-spline models. Model selec-

tion was done using Akaike’s information criterion (AIC).

However, the B-spline model was never the ‘best’ model for any

trait and we did not consider it further. Thus, our model compari-

son was restricted to continuous models with one or two linear

segments. These two-segment models are occasionally referred

to in the literature as ‘breakpoint regressions’, and the value of

the independent variable at which the slope changes is referred

to as the ‘breakpoint’.

For the mean, we fitted the raw data for each individual

using a Gaussian likelihood. To determine a trend with tempera-

ture in the variance for each trait, we used squared deviations

from the mean for each temperature, i.e. z ¼ [y 2 m(x)]2, as the

input data [61]. To see why this works, note that if the raw

data are normally distributed conditional on the independent

variable, i.e. yjx � N(m(x),v(x)), then the likelihood for z is

Gamma(3/2, 1/[2v(x)]) for which E(zjx) ¼ v(x). Since regression

minimizes the distance between the model estimate and E(zjx),

it should provide an adequate description of the trend in

variance.

In addition, because the collection of traits measured on a

given individual are unlikely to be independent, we also con-

ducted MANOVA analyses testing for differences between

constant and fluctuating treatments, using mean temperature in

each treatment as a covariate. This analysis was performed on

(i) all of the traits combined, and (ii) traits grouped according

to their correlation structure. Specifically, group A consisted of

all of the length-at-age traits, group B included all of the morpho-

metric and meristic traits and group C the asymmetry traits.

Analysing the independent blocks separately allows somewhat

greater interpretability without loss of information. We adopted

a maximum-likelihood approach to performing the MANOVA

using likelihood ratio tests to evaluate the effect of fluctuations,

temperature and their interaction. All analyses were carried out

in MATLAB 2017a.
3. Results
Mean length-at-age for both constant and fluctuating con-

ditions tended to decrease with temperature in all ages

measured (figure 2). Sixty-day-old fathead minnows were

10.6 mm shorter in fluctuating 22–378C than in fluctuating

22–258C water, and 7.1 mm shorter at constant 318C than

at constant 23.58C. Under fluctuating conditions, the
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relationship between length and temperature was linear over

the temperatures measured at early ages, yet the oldest ages

were better modelled by a two-segment regression (electronic

supplementary material, table S1). The break in the

regression occurred between the fluctuating 22–318C (mean

26.58C) and fluctuating 22–348C (mean 288C) treatments. It

is important to note that the exact break point in the

regression is approximate, and indicates only that the

response changes direction somewhere in the vicinity of the

temperature indicated by the break.

Variance in length, on the other hand, exhibited a more

complicated pattern (figure 3). Interestingly, it decreased

consistently with temperature under fluctuating conditions,

especially at older ages (figure 3). Under constant thermal

environments, over the last three ages measured (46, 53 and

60 days old), variance increases as water warms up to a point

(between 25 and 28.58C) and then decreases at very high temp-

eratures (as evidenced by AIC preferring the linear model with

two segments; electronic supplementary material, table S2).

As temperature increased, so did mean CTmax for fish in

both constant and fluctuating conditions (figure 4). Differ-

ences in CTmax between fish at the lowest and highest

temperature treatments were 4.68C (fluctuating) and 4.58C
(constant). Two-segment models outperformed their one-seg-

ment counterparts (electronic supplementary material, table

S1), though the break was at a higher temperature in the con-

stant environments. Variance in CTmax decreased as a

function of temperature in both thermal treatments (figure 4).

FA in pelvic and pectoral fin length was generally smaller

under constant environments, but this was not the case for eye

diameter or pelvic and pectoral fin ray counts (figure 5).

Variance in pelvic fin length and pelvic fin ray count was

high at cooler and warmer temperatures in the constant

treatment; under fluctuating conditions, there was no trend

with temperature (figure 6).
Integrating all traits into a single MANOVA indicated a

significant effect of temperature, temperature treatment

(constant versus fluctuating) and their interaction (electronic

supplementary material, table S3).

Survival in both treatments was depressed at higher temp-

eratures: fluctuating 22–258C ¼ 0.95, fluctuating 22–288C ¼
0.95, fluctuating 22–318C ¼ 0.95, fluctuating 22–348C ¼ 0.80,

fluctuating 22–378C ¼ 0.55, constant 23.58C ¼ 0.57, constant

258C ¼ 1.00, constant 28.58C ¼ 1.00 and constant 318C ¼ 0.36.
4. Discussion
The importance of hidden phenotypic variation is under-

scored by recent calls for a mechanistic (i.e. physiological)

understanding of climate change impacts [13,62]. We must

understand how populations react to rare/novel environ-

ments if we are to accurately predict their fates over short

and long time scales [63]. Consistent with earlier results on

the temperature-size rule [64], we found that mean length-

at-age in older fish decreases as temperatures increase. This

was true in constant and fluctuating conditions, suggesting

that our treatments were in the decreasing part of their ther-

mal performance curve. In addition, the decrease with

temperature was more extreme when temperatures fluctuated

than when they were constant.

Although we were unable to fit nonlinear reaction norms

to our data, this result is consistent with the idea that the reac-

tion norm for the highest temperatures is convex (i.e. the

reaction norm must accelerate downward in those tempera-

tures that the fish in the fluctuating treatments experienced

for which we have no constant temperature data). Specifically,

because the growth trajectories are nearly linear, we can

imagine that growth in length is approximately given by

dL/dt ¼ g(T ) þ s(T )1, where g(T ) is the mean growth rate
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and s(T )1 is white noise with zero mean and temperature-

dependent variance and s2(T ). The mean size at age t is given

by the integral E½LðtÞ� ¼
Ð t

0 g(T). To see the effect of convexity

in g, we can approximate this integral around the mean tempera-

ture as
Ð t

0 gðTÞ �
Ð t

0 gð�TÞ þ g0ð�TÞðT � �TÞ þ 1=2g00ð�TÞðT � �TÞ2

and hence
Ð t

0 gðTÞ � tgð�TÞ provided that g00ð�TÞ , 0, which is

Jensen’s inequality [65,66]. Note also that this simple model

predicts that the effect of varying temperature on the mean

size of fish should increase with age as it does in our data.

Variance in length-at-age (in older fish) showed an analo-

gous pattern with temperature in the two treatments: fish in

waters whose temperatures fluctuated daily were less vari-

able at the more extreme thermal conditions, while fish

exposed to constant temperatures exhibited higher variability

at intermediate temperatures (25 and 28.58C). Under the

simple model above, the variance in length is given by

V½LðtÞ� ¼
Ð t

0 s
2ðTÞ, so in the constant temperature treatments,

V½LðtÞ� ¼ s2ð�TÞt. Based on figure 3, this suggests that there is

a unimodal relationship between the noise variance and

temperature. Again, we expect the variation across tempera-

ture treatments to be more extreme in the older fish. In

addition, the variance in the fluctuating temperature treat-

ment will be less than in the constant temperature

treatment when the noise magnitude is a convex function

of temperature, i.e. s200ð�TÞ , 0, which is—at least broadly—

consistent with what was observed in the constant tempera-

ture treatments. This is analogous to Jensen’s inequality for

variance (see also [67]).

Mean critical thermal maxima (upper thermal tolerance

limits) for fish in both treatments increased with increasing

water temperature, as is repeatedly observed [68]. CTmax

was higher in fish reared under fluctuating conditions (com-

parison of black and red data points in figure 4 under similar

mean temperatures). Hormesis (i.e. mild exposure to a
stressful temperature having positive effects on an organism;

[69]) appears to be at work here. Mechanistically, extreme

temperatures influence the kinetic induction of heat shock

proteins such as Hsp70, Hsp90, Hsp27 and Hsp22, which

have differing transcriptional responses when exposed to
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fluctuating versus constant temperature regimes [70]. Fathead

minnows are also able to ramp up heat shock protein

production in the spring as water temperatures increase [71].

Owing to the different magnitude and timing of induction,

these proteins could play a role in mediating thermal tolerance,

although the frequency of the exposure (i.e. daily versus seaso-

nal versus episodic events like heat waves) could also be

important [70,72]. It is possible, then, that exposing fathead

minnows to higher temperatures daily could trigger upregula-

tion of these chaperone genes. Interestingly, in the most

extreme fluctuating treatments, the daily excursions to high
temperatures provided a beneficial mild exposure for CTmax

but a detrimental one when it came to growth, as was reported

for zebrafish [52] and three Australian frogs [73]. This suggests

that a trade-off may exist between growth and thermal toler-

ance [74], an important consideration when making

predictions related to climate change. Variance in CTmax—

like in length-at-age—decreased in warmer waters.

No consistent pattern in mean or variance was found

across morphometric traits or FA, although variance in FA

tended to be lower in constant temperatures than in fluctuating

temperatures for pelvic and pectoral fin lengths.
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Our results add to a growing body of evidence,

suggesting that variance can decrease as the environment

becomes more stressful [41,43] (but see [75,76]). This could

be a result of strong genetic correlations between benign

and rarer/more stressful environments, so that trait values

at the extreme are determined in large part by the shape of

the reaction norm in common environments [77,78]. We

note, however, that sometimes different genes are upregu-

lated based on the severity of the thermal stress [79], and it

is unclear how the expression of these genes is correlated

across environments. Furthermore, an organism’s response

to constant stress, as opposed to stress under fluctuating con-

ditions, can be quite different. Fluctuating temperatures have

been shown to cause differential gene expression [70] and to

possibly call on different responses: constant temperature

regimes appear to involve modification of a large part of

the transcriptome while (non-stressful) fluctuations induce

smaller changes in gene expression, but ones that are

different and independent [80].

If stress responses are somewhat similar regardless of

stressor [81], then we would expect less variation when

exposing organisms to any number of stressful environments.

Hoover et al. [82] reared fathead minnows under four salinity

treatments and found more variation in reproductive traits

(e.g. egg number, egg fertilization rate and time spent

caring for nests), not less as we found for length-at-age and

CTmax. Different stressors have been shown to have disparate

effects on a given trait of wild mustard [83], and even a single

stressor can have different effects on variance in multiple

traits (e.g. low nutrient conditions reduced phenotypic

variance in leaf length and number, among others, but
increased it in seedling height [83]). Given the existence of

several other examples (e.g. [43,83–85], establishing compre-

hensive rules for the effects of rarer environments on trait

variation will be a challenge.

Most work to date has been focused on identifying the

mean thermal limit of a population (see [86] for a historical

perspective), and evolutionary forecasts have been attempted

based on these population-average values [9,87–89]. Yet,

many aspects of a population’s thermal biology can be

traced not to mean temperature measures, but to fluctuations,

extremes and episodic events (e.g. [90–92]). Despite the diffi-

culties, it is clear that we need to incorporate these into

predictions of species responses to climate change.
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