
UCSF
UC San Francisco Previously Published Works

Title
Targeting the Ras pathway in pediatric hematologic malignancies.

Permalink
https://escholarship.org/uc/item/4sf3d9dj

Journal
Current Opinion in Pediatrics, 33(1)

ISSN
1040-8703

Authors
Pikman, Yana
Stieglitz, Elliot

Publication Date
2021-02-01

DOI
10.1097/mop.0000000000000981
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4sf3d9dj
https://escholarship.org
http://www.cdlib.org/


Targeting the Ras pathway in pediatric hematologic 
malignancies

Yana Pikman1, Elliot Stieglitz2

1Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA and Division of 
Hematology/Oncology, Boston Children’s Hospital, Boston, MA

2Department of Pediatrics, Benioff Children’s Hospital, Helen Diller Family Comprehensive 
Cancer Center, University of California, San Francisco, San Francisco, CA

Abstract

Purpose: Ras pathway mutations are one of the most common type of alterations in pediatric 

hematologic malignancies and are frequently associated with adverse outcomes. Despite ongoing 

efforts to use targeted treatments, there remain no food and drug administration (FDA) approved 

medications specifically for children with Ras pathway mutated leukemia. This review will 

summarize the role of Ras pathway mutations in pediatric leukemia, discuss the current state of 

RAS pathway inhibitors and highlight the most promising agents currently being evaluated in 

clinical trials.

Recent findings: Efficacy of RAF and MEK inhibitors has been demonstrated across multiple 

solid and brain tumors and these are now considered the standard of care for treatment of certain 

tumor types in adults and children. Clinical trials are now testing these medications for the first 

time in pediatric hematologic disorders such as acute lymphoblastic leukemia, juvenile 

myelomonocytic leukemia and histiocytic disorders. Novel inhibitors of the Ras pathway, 

including direct RAS inhibitors, are now being tested in clinical trials across a spectrum of 

pediatric and adult malignancies.

Summary: Activation of the Ras pathway is a common finding in pediatric hematologic 

neoplasms. Implementation of precision medicine with a goal of improving outcomes for these 

patients will require testing of Ras pathway inhibitors in combination with other drugs in the 

context of current and future clinical trials.
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Introduction

Activation of the Ras signaling pathway is one of the most common findings in cancer. RAS 

proteins act as molecular switches that cycle between the active, GTP-bound, state, and the 

inactive, GDP-bound, state. RAS is activated by guanine nucleotide exchange factors 

(GEFs), and the GTP bound RAS interacts with a number of effectors. GTPase-activating 

proteins (GAPs) downregulate RAS by accelerating its intrinsic GTPase activity. Alterations 

including point mutations, insertion/deletions, rearrangements, amplifications and deletions 

have been reported in nearly every gene in this pathway. NRAS, KRAS, HRAS, NF1, 
PTPN11, BRAF, and CBL are among the most commonly altered genes and lead to 

hyperactive signaling in effector pathways including PI3K/mTOR/AKT and 

RAF/MEK/ERK which are mitogen-activated protein kinases (MAPK). The final result is 

upregulation of pro-survival transcription factors resulting in increased cellular proliferation 

and enhanced survival (Figure 1).

In pediatrics, Ras pathway mutations are among the most common genomic alterations in 

both solid and hematologic malignancies. This review will focus on pediatric hematological 

malignancies with an emphasis on recent advances in pharmacological targeting of the Ras 

signaling pathway.

Incidence of Ras mutations in pediatric leukemia

Ras pathway activation is common in pediatric hematological malignancies (Table 1). Ras 

pathway mutations are found in over 30% of infant B-cell acute lymphoblastic leukemia (B-

ALL)(1–3), non-infant B-ALL(4, 5) and high hyperdiploid B-ALL(6–8). Ras pathway and 

receptor tyrosine kinase (RTK) mutations are present in 70% of near haploid B-ALL(9). Ras 

(NRAS, KRAS, BRAF, NF1, and PTPN11) mutations are present in approximately 14% of 

T-ALL(10) and up to 30% of early T-cell precursor ALL(11). Ras mutations are also 

frequent in myeloid malignancies with nearly half of pediatric myelodysplastic syndromes 

(MDS)(12) and one-third of acute myeloid leukemia (AML)(13, 14) patients harboring Ras 

mutations. In ALL and AML, the mutations are often subclonal and can be gained or lost at 

diagnosis and relapse(1, 15). Despite the frequent sub-clonal nature at diagnosis, Ras 

mutations appear to retain prognostic relevance. Ras pathway mutations have been 

associated with early relapse, chemotherapy resistance and poor survival in both patients 

with infant KMT2A-rearranged ALL(3), non-infant ALL(16) and AML(17). While not all 

Ras mutations from diagnosis persist at relapse, de novo mutation in Ras pathway genes can 

also appear at the time of disease progression(18). In distinction to ALL and AML, the Ras 

pathway is universally activated in juvenile myelomonocytic leukemia (JMML), with 95% 

of patients harboring founding Ras pathway mutations that always persist in the event of 

relapse(19).

While mutations in the Ras pathway are the most common mechanism of upregulated RAS 

signaling, other mechanisms have been reported as well. Methylation, leading to silencing of 

RASSF1A and RASD1 gene expression have also been implicated in RAS activated 

hematologic diseases, most notably multiple myeloma(20, 21). Point mutations and fusions 

involving RTKs, such as CSF1R, ALK, PDGFRB and FLT3, have been reported in a variety 
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of myeloid and lymphoid neoplasms leading to constitutive activation of the Ras pathway 

with elevated levels of phosphorylated ERK(22–26).

Associations with specific subtypes of leukemia

Ras pathway mutations are often found in association with other genetic features in acute 

leukemia. For KMT2A rearranged acute leukemia, Ras mutations are found in over 30% of 

ALL (1, 27) and AML(14, 28). These mutations appear to cooperate in leukemogenesis as 

the presence of NRAS p.G12D and FLT3 mutations have been shown to accelerate leukemia 

onset in a KMT2A-MLLT3 driven AML and lead to a more aggressive disease(29).

Patients with hyperdiploid ALL have excellent outcomes with overall survival greater than 

90% at 5 years(30). Despite the favorable prognosis, hyperdiploid ALL is responsible for a 

disproportionate number of relapses because it is one of the most common subtypes of ALL 

in children. Studies have implicated the presence of Ras mutations, in particular KRAS and 

NRAS, as poor predictors of outcome when they co-exist with CREBBP even if they are all 

subclonal at diagnosis. This “malicious liaison” of CREBBP with Ras mutations has been 

associated with early relapse due to a possible combinatorial effect that leads to resistance to 

chemotherapy(8).

Pediatric patients with Ph-like, or BCR-ABL1-like, disease have inferior outcomes 

compared to those without these gene expression signatures(26, 31). While most patients 

with this subtype of ALL have CRLF2 over-expressing or ABL class kinase fusion lesions, 

approximately 5% of patients have been found to harbor Ras mutations leading to a Ph-like 

designation (26). One recent study among pediatric Korean patients demonstrated that 68% 

of patients with a BCR-ABL1-like signature harbored mutations in the Ras pathway, higher 

than any other subtype in that study(32).

FDA approved compounds targeting the MAPK signaling pathway

Given the frequent prevalence of Ras mutations in cancer, efforts to pharmacologically target 

this pathway have been a longstanding goal in cancer therapy. Despite early setbacks in 

targeting RAS itself, novel insights into molecular biology and advances in structural 

chemistry have led to the development of clinically relevant medications for the treatment of 

Ras pathway mutant cancers (Table 2). First, we will review two classes of FDA approved 

inhibitors of the Ras pathway, RAF and MEK inhibitors. Despite FDA approval for their use 

in subsets of solid tumors, RAF and MEK inhibitors do not have FDA approval for any 

hematological malignancy.

RAF inhibitors

BRAF is the most frequently mutated gene in the MAPK pathway with nearly 10% of all 

human cancers harboring an alteration. Mutations in ARAF and CRAF are infrequent 

compared to BRAF, which can be categorized into 3 distinct classes (I, II and III). Under 

physiologic conditions, RAS proteins interact with BRAF, undergo dimerization and 

subsequent activation. Mutations can alter this balanced process and the effects are 

dependent on the type of mutation. Class I mutations affect codon V600 and represent ~90% 

of all BRAF alterations. These mutations allow BRAF to signal as a monomer, resulting in 
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constitutive activation and upregulation of MAPK signaling leading to elevated levels of 

phosphorylated ERK, independent of RAS. Class II mutations include activating point 

mutations, fusions and in-frame deletions which all lead to activated BRAF dimers that also 

function independent of RAS activation. Class III alterations are unique in that they are 

dependent on RAS activation, frequently co-occur with N/K/HRAS mutations and lead to 

high receptor tyrosine kinase activity.

There are reports of BRAF alterations in chronic lymphocytic leukemia, chronic myeloid 

leukemia and hairy cell leukemia, all diseases that predominantly affect adults. BRAF 
mutations in pediatric AML, ALL, MDS are also rare but are frequent in histiocytic 

disorders(33). Histiocytic disorders can be broadly grouped into Langerhans cell 

histiocytosis (LCH) and non-Langerhans cell histiocytoses (non-LCH) of which several 

varieties have been named including Rosai Dorfman disease, Erdheim-Chester disease 

(ECD), juvenile xanthogranulomatous disease and histiocytic sarcoma. In contrast to acute 

leukemias, histiocytic disorders harbor ARAF alterations alone or in combination with other 

MAPK mutations (most commonly NRAS) in approximately 20% of cases (34, 35). BRAF 
p.V600E mutations occur in approximately 65% of LCH patients(36). NRAS and KRAS 
mutations are also seen in both LCH and non-LCH patients. More recent reports have 

identified mutations in the gene MAP2K1 (which encodes for MEK1) in ~ 20% of LCH and 

ECD patients without BRAF or NRAS/KRAS mutations. Elevated MAPK signaling is the 

hallmark of LCH and non-LCH and therefore attempts to treat these disorders with both 

RAF inhibitors and MEK inhibitors have been tested. LCH patients with BRAF p.V600E 

mutations have been treated with single agent RAF inhibitor, vemurafenib, with one basket 

study demonstrating an overall response rate (ORR) of 43% in LCH and ECD(37). Another 

ongoing study in pediatrics combines vemurafenib with cytarabine and cladribine in the 

treatment of newly-diagnosed BRAF p.V600E mutated LCH (NCT03585686). Vemurafenib 

and dabrafenib are FDA approved for the treatment of BRAF mutant melanoma.

MEK inhibitors

MEK is downstream of RAS in the MAPK pathway and has been shown to be upregulated 

in a variety of leukemias. While directly inhibiting RAS has been vexing, pre-clinical data 

provided the justification to test inhibiting the downstream effector, MEK, as a strategy in 

pediatric leukemia. Trametinib, cobimetinib, selumetinib and binimetinib inhibited the 

growth of primary Ras pathway mutant leukemia cells in vitro and in vivo in different 

subtypes of ALL(5, 16, 38). Interestingly, KMT2A-rearranged samples without Ras 

mutations have also been noted to respond to MEK inhibition, suggesting activation of the 

pathway via other mechanisms besides genetic mutations(38, 39).

An adult phase 1 study tested the MEK inhibitor trametinib in adult patients with a variety of 

relapsed or refractory hematologic malignancies, including MDS, chronic myelomonocytic 

leukemia and AML. Responses were seen in nearly 30% of Ras mutated leukemias but only 

3% of non-mutated cases(40). Cobimetinib has been tested in adults with advanced 

histiocytic disorders with an ORR of nearly 90%, irrespective of genotype(41). Due to the 

unique dependency on the Ras pathway in JMML, a phase II trial of trametinib in patients 

with relapsed or refractory disease is under way (NCT03190915). While Ras pathway 
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mutant ALL has been associated with steroid resistance (42), glucocorticoids and the MEK 

inhibitor selumetinib, have been shown to be synergistic in pre-clinical models(43) and led 

to the ongoing Seludex clinical trial (NCT03705507). There are four FDA approved MEK 

inhibitors including trametinib, selumetinib, binimetinib and cobimetinib in a variety of 

solid tumors. Selumetinib is FDA approved for patients greater than 2 years old with NF1 

and plexiform neurofibromas.

Combination therapy with MEK inhibitors

Signaling pathway inhibition along two nodes has the potential for more durable inhibition 

and prevention of upregulation of pathway enzymes as a mechanism of resistance to a single 

drug. BRAF inhibition causes upregulation of ERK signaling pathway, supporting targeting 

of both proteins. This approach may be efficacious in targeting the signaling pathway even 

in the setting of wildtype BRAF(44). The combination of a BRAF inhibitor with a MEK 

inhibitor has proven effective in melanoma(45, 46) and the combination of dabrafenib and 

trametinib was recently tested in adult patients with ECD (NCT02281760).

Given the prevalence of Ras pathway mutations in hematological malignancies, combining 

inhibition of this pathway with other novel compounds may offer additional therapeutic 

benefit. For example, the oral BCL2 inhibitor, venetoclax, has transformed treatment of both 

newly diagnosed and relapsed adult patients with AML. Venetoclax has now been tested in 

combination with the hypomethylating agents, decitabine and azacitidine (47) as well as 

with conventional chemotherapy including cytarabine(48). The first published prospective 

study in relapsed pediatric AML using venetoclax was in combination with cytarabine with 

or without idarubicin and demonstrated an overall response rate of 69% in the 35 patients 

treated on the phase I/II study(49). However, resistance to venetoclax is common and 

combinatorial approaches beyond hypomethylating agents and cytarabine are therefore 

being explored. Preclinical testing demonstrated synergy between venetoclax and the 

MEK1/2 inhibitor, cobimetinib, in 7 of 11 AML cell lines tested including in lines resistant 

to the individual medications(50). One mechanism for this synergy was the downregulation 

of MCL-1 protein levels and disruption of BCL2:BIM complexes, leading to the release of 

BIM and eventual cell death. A clinical trial is now underway in adults testing the 

combination of venetoclax, azacitidine and trametinib for patients with relapsed or refractory 

AML or MDS (NCT04487106). Similar work in ALL had previously demonstrated synergy 

of BCL-2/BCL-XL inhibitors, venetoclax or ABT-263, and the MEK1/2 inhibitor, 

trametinib, across multiple B-ALL cell lines with or without MAPK mutations(51). That 

preclinical study also identified BIM as the potential mediator of synergy. BIM is 

dephosphorylated as a result of MEK inhibition which then neutralizes MCL-1, and 

eventually leads to BCL2 mediated apoptosis. A phase 1B trial combined cobimetinib with 

venetoclax in elderly patients with relapsed or refractory AML but data from the trial are not 

yet published (NCT02670044). Combinations of MAPK targeted agents with venetoclax 

and/or other novel drugs will need to be explored further in clinical trials.
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Novel Ras pathway inhibitor development

While Ras isoforms have historically been considered directly “undruggable”, recent efforts 

have focused on alternate strategies. Here we will discuss drugs targeting the Ras pathway 

that are still in clinical development and therefore not FDA approved for use outside of 

clinical trials.

Farnesyl transferase inhibitors

Another approach to target RAS focuses on inhibiting its necessary interaction with the 

inner plasma membrane. This interaction is mediated by the addition of a farnesyl lipid to its 

carboxy-terminal CAAX motif. Efforts to directly interfere with RAS GTPase have centered 

on farnesyltransferase, a member of the prenyltransferase family, involved in catalyzing the 

chemical reaction between farnesyl diphosphate and protein-cysteine during the protein 

post-translational modification, with RAS being one of its targets. This is one of the first 

modification steps leading to the active RAS protein. Farnesyltransferarse inhibitors (FTIs) 

were trialed in several phase 3 studies across different cancers but few if any responses were 

seen in KRAS or NRAS mutated cancers(52). Specifically in pediatric hematologic 

malignancies, tipifarnib, an FTI, was tested in newly diagnosed JMML patients in a window 

setting followed by stem cell transplant. However, outcomes were not significantly different 

than in prior studies and the addition of an FTI was not determined to be beneficial(53). 

Tipifarnib was also tested in older adults with AML with acceptable toxicities but limited 

efficacy(54). A mechanism of resistance to FTIs was identified which involved an alternative 

post-translational modification by an enzyme geranylgeranyltransferase I (GGTase I) via a 

process called prenylation. Recently however, there has been interest in resurrecting FTIs for 

HRAS mutated cancers because they lack this alternative mechanism in response to FTI. 

Tipifarnib and a more potent FTI, lonafarnib, are now being tested in more rationally 

designed clinical trials focusing on HRAS mutant cancers including within the MATCH 

study being conducted through the Children’s Oncology Group (NCT04284774) (55, 56).

KRAS G12C inhibitors

RAS proteins act as a binary switch in either the active or inactive state. In the active state, 

Switch I (residues 32–38) and Switch II (residues 60–75) regions undergo conformational 

changes leading to activation of downstream signaling of the MAPK pathway(57). 

Oncogenic mutations in KRAS at codon G12, G13 and Q61 result in decreased stimulation 

of GAPs and therefore higher levels of GTP-bound KRAS. This active form of the protein 

leads to downstream activation of signaling pathways via interactions at the GTPase-

binding-domain (GBD) of effector proteins including RAF, MEK and ERK among others. 

GTPases can be recharged by GEFs, which weaken the binding of GDP and catalyze its 

replacement with GTP.

Previous attempts at inhibiting RAS included strategies to identify GTP-competitive 

inhibitors of RAS(58). However, GTP binds to RAS proteins with picomolar activity, 

effectively precluding that as a feasible approach. Several groups have recently demonstrated 

that allele specific inhibition of KRAS may be a tractable approach(59). Small molecules 

were discovered that covalently bind to G12C mutant form of KRAS during a screen 
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utilizing GDP-bound KRAS-G12C tethering approach. The compounds bind to a region of 

the Switch 2 region and block nucleotide exchange and therefore decrease the binding of 

RAS to both BRAF and CRAF. These compounds were found to have selectivity for KRAS 
p.G12C mutated cancers. Drugs in this class have been rapidly shepherded into the clinic 

and are now the focus of several ongoing studies(60). One phase I/II clinical trial testing 

sotorasib, enrolled 129 patients who harbored KRAS G12C mutations across a variety of 

solid tumors. No dose limiting toxicity was observed. Activity of sotorasib was most 

pronounced in patients with non-small cell lung cancer where 88% of patients had disease 

control which included objective responses and stable disease. Responses were also 

observed in a smaller proportion of patients with colorectal, pancreatic, endometrial, 

appendiceal cancers and melanoma. However, median progression-free survival was 4 

months(61). KRAS p.G12C is a rare variant in leukemia in general and even more so in 

pediatric patients. As such, there have yet to be any clinical trials specifically designed using 

an allele specific approach for patients with hematologic malignancies but a proof of 

principle regarding direct inhibition of RAS has now been demonstrated.

SHP-2 inhibitors

The protein tyrosine phosphatase SHP-2, encoded by PTPN11, is a critical regulator of the 

Ras signaling pathway. Activating, somatic mutations in PTPN11 are the most common 

cause of JMML and germline mutations are the most common cause of Noonan syndrome. 

SHP099 is a selective small-molecule SHP-2 inhibitor, which stabilizes SHP-2 in an auto-

inhibited conformation(62). SHP099 suppresses RAS-ERK signaling and has been shown to 

have activity in vitro and in vivo(63). Although PTPN11 mutations are common in AML and 

JMML, SHP099, an allosteric inhibitor does not have activity for the most common 

alterations including D61Y, A72V and E76K due to conformational selection to the closed 

state that reduces drug affinity(64).

Previous studies have demonstrated that compensatory upregulation of upstream pathways 

including FGFR1 are possible mechanisms of resistance to long-term MEK inhibition. In a 

preclinical study using KRAS mutant colorectal cancer cell lines, SHP099 blocked 

activation of RAS signaling through several RTKs. In addition, synergy was noted between 

combined MEK and SHP2 inhibition, revealing a potentially strategy to prevent MEK 

inhibitor mediated resistance(65). A clinical trial involving the allosteric SHP2 inhibitor 

furthest along in clinical development, RMC-4630, is now being tested in combination with 

cobimetinib in adults relapsed and refractory solid tumors (NCT03989115). Early studies of 

TNO155, an allosteric inhibitor of SHP-2, are currently in clinical trials for adults with solid 

tumors (NCT03114319, NCT04000529, NCT04330664, NCT04294160).

SOS1 inhibitors

SOS1 is a KRAS activator and a major control point for Ras pathway regulation. SOS1 can 

be activated in response to MEK inhibition, a mechanism of resistance to RAS pathway 

inhibition. SOS1 inhibitors, BI-3406 and BAY293, interfere with SOS1 function. BI-3406 

binds to the catalytic domain of SOS1, preventing its interaction with KRAS(66). KRAS 
mutant cells lines with a variety of G12 and G13 mutations, are sensitive to BI-3406. Cell 

lines with KRAS/NRAS Q61 mutations are less sensitive to BI-3406, possibly due to their 
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lowest intrinsic GTPase activity. Interestingly, 7 out of 14 tested cell lines carrying NF1 
aberrations were also sensitive to BI-3406(66). Sensitive cell lines show sustained inhibition 

of ERK1/2 phosphorylation. BI-3406 attenuates feedback activation of MEK signaling in 

response to MEK inhibitors, enhancing sensitivity to MEK inhibitors and promising for 

potential combination use(66). BAY293 is another inhibitor of the KRAS::SOS1 interaction, 

interfering with the KRASG12C-SOS1 complex and showing synergy when combined with 

a covalent KRAS G12C inhibitor, ARS-853(67). BAY293 did not show selectivity for 

KRAS mutant cells when tested head to head with BI-3406(66).

PI3K/AKT inhibitors

The PI3K/mTOR/AKT signaling pathway is upregulated in many Ras pathway mutant 

leukemias. In addition, there are several types of genomic alterations in the pathway itself, 

including loss of function alterations in the tumor suppressor PTEN, activating mutations in 

PI3K, and amplifications that can also result in increased signaling. One effector protein in 

this pathway is AKT and there have been several attempts to target this protein. MK-2206, 

an oral, allosteric inhibitor of AKT, was evaluated in a phase II clinical trial for adult 

patients with relapsed or refractory AML. Among the 18 patients evaluated, only 1 had an 

objective response leading to study termination(68). In addition, correlative biology assays 

performed on the study using a reverse phase protein array indicated that even at the 

maximum tolerated dose there was only modest decrease in phosphorylated levels of AKT. 

Upregulation of upstream signaling pathways including PI3K and mTOR were also noted as 

a possible mechanism of resistance. There have more recently been attempts to trial 

traditional ATP-competitive AKT inhibitors such as ipatasertib which is now being tested in 

adults with a variety of solid tumors. Afuresertib, another oral, reversible, ATP-competitive, 

pan-AKT kinase inhibitor was first tested in a phase 1 trial for adults with a variety of 

hematologic malignancies with the most promising results seen in patients with multiple 

myeloma (69). A phase IIa study using the same compound was then tested in adult LCH 

patients with an ORR of 33% and 28% in treatment naive and relapsed/refractory patients, 

respectively(70). PTX-200 is a synthetic tricyclic nucleoside inhibitor that inhibits the 

phosphorylation of AKT1/2/3 but does not have activity on the kinase itself. There is an 

ongoing trial of PTX-200 (triciribine) in combination with cytarabine for adult patients with 

relapsed or refractory AML (NCT02930109). In general, development of clinically active 

AKT inhibitors has lagged behind inhibitors of RAF, MEK and more recently ERK owing to 

structural limitations in targeting AKT.

ERK inhibitors

ERK1 and ERK2 are encoded by the same gene and are splice variants. When GTP-bound 

RAS recruits and activates RAF, it phosphorylates and activates MEK which then 

phosphorylates and activates ERK which eventually translocates to the nucleus. There are 

multiple substrates of ERK including transcription factors and kinases that regulate key 

cellular functions including differentiation, proliferation and death. There are multiple 

feedback mechanisms in this pathway; ERK1/2 can phosphorylate BRAF/CRAF which then 

inhibit phosphorylation of MEK. Additionally, Sprouty proteins and dual-specificity 

phosphatases provide negative feedback by dephosphorylating ERK1/2. ERK is the last 

effector in the MAPK pathway and is therefore an attractive treatment strategy in Ras 
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mutated cancers. Targeting ERK may also overcome resistance mechanisms that arise in the 

setting of inhibiting MEK which include amplification of RAF or downregulation/mutations 

in MEK. Ulixertinib is an oral ERK1/2 inhibitor that is furthest along in clinical trial 

development. In vitro, ulixertinib resulted in reduced proliferation and inhibited 

phosphorylation of target substrates despite increased phosphorylation of ERK1/2. In vivo 
studies demonstrated efficacy even in models with acquired resistance to MEK or combined 

BRAF and MEK therapy(71). A phase 1 study was completed in patients with advanced 

solid tumors that resulted in an overall response rate of 15%(72). A phase 1/2 study of 

ulixertinib in adults with AML and MDS has been completed but results are not yet 

published (NCT02296242). An ongoing study in pediatrics using ulixertinib is being 

conducted in patients with relapsed or refractory solid tumors and histiocytic disorders with 

MAPK alterations (NCT03698994).

Conclusion

Despite initial obstacles in targeting the MAPK pathway for the treatment of cancer, there 

has been a recent surge in the development of compounds with potential to inhibit the Ras 

signaling pathway including KRAS itself. There is newfound optimism that the success of 

Ras pathway targeting agents in solid tumors will be translated to the treatment of pediatric 

patients with hematological malignancies, where Ras pathway mutations are among the 

most common genomic alterations. Translation to pediatric leukemia patients has the 

greatest likelihood of being effective by using a combination of the agents described above, 

thereby preventing upregulation of parallel or upstream pathways.
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Key points:

• Ras mutations are among the most common alterations in pediatric 

hematologic malignancies and are frequently associated with adverse 

outcomes.

• RAF and MEK inhibitors are the Ras pathway inhibitors furthest along in 

clinical development and are now being tested in pediatric leukemia patients.

• Novel Ras pathway inhibitors including directly inhibiting KRAS p.G12C are 

now being tested in adults with solid tumors.

• A combination of agents is the most likely approach to have clinical activity 

in Ras mutated pediatric leukemia.
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Figure 1. Clinically relevant inhibitors of the RAS pathway.
Approved inhibitors are listed in green and inhibitors currently in development are listed in 

blue. Figure was created in Biorender.com.

Abbreviations: FTI, farnesyltransferase inhibitor; i, inhibitor; RTK, receptor tyrosine kinase; 

GTP, guanosine triphosphate; GDP, guanosine diphosphate.
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