
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Topics in Khovanov homology

Permalink
https://escholarship.org/uc/item/4sg5g6ct

Author
Wilson, Benjamin Edward

Publication Date
2012
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4sg5g6ct
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, SAN DIEGO

Topics in Khovanov Homology

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Mathematics

by

Benjamin Wilson

Committee in charge:

Professor Justin Roberts, Chair
Professor Ken Intriligator
Professor David Meyer
Professor Dan Rogalski
Professor Vivek Sharma

2012



Copyright

Benjamin Wilson, 2012

All rights reserved.



The dissertation of Benjamin Wilson is approved,

and it is acceptable in quality and form for publi-

cation on microfilm:

Chair

University of California, San Diego

2012

iii



DEDICATION

To my family, Ed, Lynn, Kim, Pandora and J-ray.

iv
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ABSTRACT OF THE DISSERTATION

Topics in Khovanov Homology

by

Benjamin Wilson

Doctor of Philosophy in Mathematics

University of California San Diego, 2012

Professor Justin Roberts, Chair

In this dissertation we work with Khovanov homology and its variants. Khovanov

homology is a “categorification” of the Jones polynomial. It consists of graded chain

complexes which, up to chain homotopy, are link invariants, and whose graded Euler

characteristic is equal to the Jones polynomial of the link. Rasmussen’s invariant gives

a bound on the smooth 4-ball genus of a knot. We construct bounds on Rasmussen’s

invariant which are easily computable from any diagram. Using this construction, one

also obtains representatives for the homology classes of the Lee homology of the knot.

These bounds are sharp precisely for homogeneous knots, a class of knots containing

both alternating knots and positive knots. We prove that a class of braid-positive

links, more general than torus links, are Khovanov thick. From this observation we

get infinite families of prime knots all of which are Khovanov thick. This is further

evidence toward Khovanov’s conjecture that all braid positive knots other than the

T (2, 2k + 1) torus knots are thick. We provide a technique for creating cobordisms

between knots which result in injections at the homological level. The technique is

applied and studied in the case of ribbon knots.

xii



Chapter 1

Introduction

One of the latest developments in knot theory is the construction of “categorified”

link invariants, initiated by Mikhail Khovanov in his paper “A Categorification of

the Jones Polynomial”. This construction gives new tools for attacking and solving

various problems in low dimensional topology.

1.1 A Brief History of Link Invariants

Mathematical properties of knots - circles smoothly embedded in 3-space - have

been studied for a long time. Carl Gauss discovered the link integral for computing

the linking number of two knots in the early eighteen hundreds. A convenient way of

studying links is through planar projections called diagrams, projecting the link down

to two dimensions. Knots and links are studied up to isotopy, and hence invariants

(functions which agree on all presentations of a given link) are needed to distinguish

links.

The tabulation of knots began in the nineteenth century as well with Peter Tait.

In the early twentieth century, topologists J.W. Alexander and Kurt Reidemeister

began studying knots. This led to the development of the Reidemeister moves. These

are a set of moves on planar diagrams of links. Two diagrams represent the same

link if and only if they are related by a series of Reidemeister moves. This also led

to the development of the the Alexander polynomial, a polynomial invariant of links.

This invariant was fairly strong at distinguishing knots and was originally defined

geometrically. In the 1970s, Conway showed that this invariant could be described

1
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combinatorially. He also showed that the invariant satisfied a skein relation, which

means that diagrams which differ locally (in a specific way) have related invariants.

In 1984, Vaughn Jones discovered what is now known as the Jones polynomial.

The recursively defined formula was fairly computable and proved to be a very strong

invariant of knots. Very few knots with small crossing numbers exhibited equal Jones

polynomials. This discovery led to the introduction of many other polynomial in-

variants, such as the HOMFLYPT polynomial, and the Kauffman bracket, one of

the key ingredients being the idea of a skein relation. Edward Witten proposed new

framework for the Jones polynomial with ideas from physics which implied related

invariants for three manifolds. Simultaneously, the quantum invariants by Witten,

Reshetikhin, and Turaev were developed.

The latest development in the field of link invariants, discovered around the year

2000, are the Khovanov and knot Floer homologies. These are generalizations of

the Jones and Alexander polynomial. We describe them in more detail in the next

section.

1.2 Link Homologies

In his 2000 paper [Kho00], Mikhail Khovanov developed a new perspective on

link invariants. He created a “categorified” version of the Jones polynomial. In this

case, this means he developed a chain complex related to a link whose graded Euler

characteristic is equal to the Jones polynomial of that link. This development is

analogous to the relationship between the ranks of simplicial homology groups and

Betti numbers. In that case, the Euler characteristic of the simplicial complex is

given by either the alternating sum of the Betti numbers or the alternating sum of

the ranks of the homology groups.

The categorification is achieved by taking a modified version of Kauffman’s state-

sum formula and building a chain complex whose pieces match those of the terms

in the sum. It has been shown that this construction is functorial, meaning that

maps between links give rise to maps between their homologies in a well defined way.

This was first shown, up to sign, by Jacobsson [Jac04]. The sign ambiguity was later

removed by Clark, Morrison, and Walker [CMW09]. We will investigate some of these

cobordisms in later chapters. The construction given by Khovanov is also a strictly



3

stronger invariant than the Jones polynomial. There are knots (51 and 10132) which

have the same Jones polynomial, but different Khovanov homology.

Khovanov homology has allowed for proofs of theorems that were previously only

possibly via gauge theory. Jacob Rasmussen [Ras04] gave a relatively short com-

binatorial proof of the Milnor Conjecture, which states that the slice genus of the

(p, q) torus knot is (p − 1)(q − 1). These combinatorial type proofs and ultimate

computability of the invariant have given rise to many of the current open questions

regarding Khovanov homology.

The Khovanov complex has a nice combinatorial description and was shown to be

very computable [BN07]. Many conjectures were based on these early computations,

some of which are listed in [Kho03]. One of the conjectures, is about the “thick-

ness” of Khovanov’s homology. Due to the work of E.S. Lee, alternating links are

shown to have “thin” homology. We focus our attention on positive braids, which are

very different from alternating knots and are conjectured to have “thick” Khovanov

homology.

1.3 Organization and Summary of Results

This dissertation is organized as follows. In chapter 2, we describe the basics of

knots, links, braids and the Jones polynomial.

In chapter 3, we describe the construction of Khovanov homology and its variants.

We also describe the properties enjoyed by Khovanov homology, which will be readily

used in the following chapters.

In chapter 4, we develop a method of bounding the s-invariant. This method not

only gives bounds on the s-invariant, but also gives the homological representatives

in the expected quantum grading. This means that, since the s invariant of a knot is

a lower bound for the smooth slice genus of a knot, we can determine a lower bound

on the smooth slice genus of a knot simply by combinatorial methods using any one

of its diagrams.

In chapter 5, we develop a method providing more evidence toward a conjecture

of Khovanov regarding the thickness of positive braid closures. We show that, when

written in a certain normal form, many positive braids are Khovanov thick.
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In chapter 6, we investigate the effect of cobordisms of small genus on the homology

of links. If two links are related by a specific set of “finger” moves and ultimately a

merging of components, then their homologies are related.



Chapter 2

Preliminaries

2.1 Knots and Links

By a knot we mean a smooth embedding of S1 into R3 (or S3). By a link we mean

a disjoint collection of knots. We will denote the number of components of a link L

by |L|. We will consider links only up to isotopy, where one link can be continuously

deformed to another. Every knot that can be isotoped to the standard circle will be

referred to as the unknot. By a link invariant, we mean any function on the set of

links which gives the same value on all links in an isotopy class.

To every link we can associate a diagram by taking a regular projection onto

R2. Such a diagram has only finitely many double points and at each point retains

information about crossings, distinguishing the over-strand from the under-strand.

Due to the work of Reidemeister, two diagrams are said to represent isotopic links

if and only if they are related by a series of Reidemeister moves. Two diagrams are

related by a Reidemeister move if they differ locally by one of the moves in figure

2.1.

Thus a function defined on diagrams is a link invariant if and only if it is invariant

under Reidemeister moves. This allows us to study invariants of links by studying

their diagrams. We can associate an orientation to a knot and a knot diagram by

indicating which direction the knot is traversed. A link is oriented by choosing an

orientation for each component. For an oriented link diagram, each crossing will

resemble one of the following:

5
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R1

(a) Reidemeister 1

R2

(b) Reidemeister 2

R3

(c) Reidemeister 3

Figure 2.1: Reidemeister Moves

positive crossing negative crossing

For a link diagram D, we let n+(D) (n−(D)) represent the number of positive

(negative) crossings. We denote the writhe of diagram w(D) = n+(D)− n−(D) .We

say that a diagram is positive if all crossings present are positive crossings. We will

discuss invariants satisfying a skein relation involving the following local pictures

L+ L− L0

The pictures are meant to represent three link diagrams who differ only in a

small neighborhood. L+ and L− represent the diagram with a positive and negative

crossing, respectively and L0 is known as the oriented resolution of the crossing.

A link diagram is said to be alternating if, when one follows the strands of each

component, the strand alternates between overstrand and understrand at consecutive

crossings. A link is said to be alternating if it has at least one alternating diagram.

A knot diagram is positive if all of the crossings in the diagram are positive. A knot

is called positive if it has a positive diagram.

The connected sum of two oriented knots K1 and K2, denoted K1#K2, is the

knot obtained by the following procedure. Take disjoint projections of each knot

it the plane. Find a rectangle in the plane whose boundary has four components,
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two disjoint from the knots and one component on each knot. Remove the bound-

ary components of the rectangle which intersect the knots and replace with the two

boundary components which do no intersect the knot. The result will be a diagram

representing a single knot. To perform a connected sum of links, one may perform a

similar procedure by first selecting the component of each link which is to be joined.

The resulting connected sum of L1 and L2 will have |L1| + |L2| − 1 components. A

knot is said to be prime if it is not the connected sum of two nontrivial knots.

2.2 Braids

The braid groups were introduced by E. Artin in his 1925 paper. They give us

an alternate way of describing links. We now provide a description of Artin’s braid

group. For each n ∈ Z, we have a group

Bn = {σ1, . . . , σn−1|σiσj = σjσi if |i− j| > 1, σiσjσi = σjσiσj if |i− j| ≤ 1}

called the braid group on n strands. These relations are most easily seen using

diagrams. The generators σi are strand crossings of the form

1

i

i+1

n

The relations in the braid group are

= =

A braid is said to be positive if it can be written such that the exponents of each

generator have the same sign. We use B+
n to denote the subsemigroup of Bn consisting

of such braids.

Two braids b1, b2 ∈ Bn are said to be equivalent if τ−1b1τ = b2 for some braid

τ ∈ Bn. We can close a braid to give a link by connecting corresponding ends in pairs



8

as follows

B

Proposition 2.2.1 (Alexander). Every link can be obtained as the closure of a braid.

Conjugate braids give isotopic links when closed. A more general result of Markov

gives a precise condition on when two braid closures represent the same link. A

Markov stabilization M± : Bn → Bn+1 is a transformation given by M+(b) = bσn

and M−(b) = bσ−1
n .

Theorem 2.2.2. (Markov) Two braids represent isotopic links if and only if one

can pass from one to the other by using conjugations in the braid group, Markov

stabilizations and their inverses.

2.3 Torus Links

In chapter 5 we make reference to a special kind of link, called a torus link. Such

links are specified by pairs of integers p and q. The torus link Tp,q is link which winds

around an unkotted torus in R3 p times longitudinally and q times meridianally. Such

links can also be given a description via braids. The Tp,q torus link can be obtained

as the closure of the braid on p strands given by (σ1 · · ·σp−1)q . Below is a picture of

the braid representing the T4,5 torus knot, with 4 strands and 5 full crossings.

The torus link Tp,q will be a knot if p and q are coprime. The torus link is trivial

if and only if p = ±1 or q = ±1. For any p and q, the torus links Tp,q and Tq,p

are isotopic. This is not so easily seen in the braid presentation, (they don’t even

have the same number of crossings!), but is straightforward from the torus embedding

definition.
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2.4 Jones Polynomial

To distinguish links, one typically uses link invariants. These are often computed

using a diagram of the link. The Jones polynomial is a Laurent polynomial in the

variable t1/2. We denote the Jones polynomial of a link L by VL(t). The most

elementary way to compute the Jones polynomial is by skein theory. One uses the

normalization VU(t) = 1 for the unknot and recursively uses the following skein

relation to obtain a polynomial in t1/2.

t−1VL+ − tVL− = (t1/2 − t−1/2)VL0

Another, more tractable approach was offered by Kauffman. He introduced the

bracket operation for diagrams which gives a state-sum model for computing the Jones

polynomial. The computation is remarkably straightforward and computable. These

relations were originally defined in terms of the variable t1/2, but we use a different

variable q2 = t and a renormalization based on VU(q) = (q + q−1) for the unknot. To

describe the state-sum formula, we need to introduce some notation. Let D be a link

diagram. For a crossing, there are two possible “smoothings” defined according to

the following picture

10

One can perform a smoothing at each crossing in D. The result of smoothing each

crossing, called a state, will be a set of circles in the plane. We can encode states

combinatorially by choosing a 0 or 1 resolution for each crossing in the diagram.

Thus, if D has n crossings, each length n binary string s ∈ {0, 1}n corresponds to

a specific state for the given diagram. To each such string, we assign the following

variables. Let r(s) be the number of 1s in s and let k(s) denote the number of

circles in the corresponding resolution of D. To each such state, we assign the value

qr(s)(q + q−1)k(s). The state-sum is as follows

< D >=
∑

states s

(−1)r(s)qr(s)(q + q−1)k(s)

An alternative definition of the Kauffman bracket is as follows. We can recursively

define the bracket with the relations
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= - q D D= ( q + q-1 )

= 1ø

With these definitions we assume that the diagrams look the same except for

where the local relation occurs. From these properties we can see that the Kauffman

bracket is invariant under Reidemeister 3 moves, but has the following relation with

Reidemeister 1 and 2 moves.

= q-1 = -q2 = -q1

From these relations, we can see that a correction term is needed to make the

bracket an actual link invariant. That renormalization factor is (−1)n−qn+−2n− . With

this correction, the Jones polynomial is then related to the bracket in the following

way

VL(q) = (−1)n−qn+−2n− < D >

We now include a graphic for the calculation of the Kauffman bracket for the

trefoil knot, presented as the closure of a positive braid. The corresponding factors

from each of states is represented at the bottom of the diagram.

n+=3
n-=0

q0(q + q-1)2                -                3q1(q + q-1)1              +                3q2(q + q-1)2              -              q3(q + q-1)3

Figure 2.2: The Kauffman state-sum calculation of the trefoil knot

Using this calculation and the writhe corrected formula we obtain Vtrefoil(q) =

q2 + q6 − q8.



Chapter 3

Khovanov and Lee Homology

Khovanov homology is a categorification of the Jones polynomial. In essence,

it replaces the integer valued coefficients with vector spaces, diagrams with chain

complexes and the polynomial with a bi-graded homology. We will discuss this con-

struction here, working from the Kauffman state-sum formula. The result will be

a bigraded chain complex whose Euler characteristic is the Jones polynomial of the

related link. We now recall some algebraic preliminaries regarding graded modules.

3.1 Graded Modules

Definition 3.1.1. Let M =
⊕

Mk for k ∈ Z be a graded Z-module where Mk

represents the k-th graded component of M . The the quantum dimension of M is

the power series

q dim(M) =
∑
k∈Z

rank(Mk)q
k

where rank(Mk) = dimQ(Mk ⊗Q).

The quantum dimension satisfies the following properties

q dim(M ⊕N) = q dimM + q dimN

q dim(M ⊗N) = q dimM · q dimN

Definition 3.1.2. Let ql for l ∈ Z be the degree shift operator. That is, if M =⊕
Mk, then qlM is the graded module given by (qlM)k+l = Mk. Then we have that

q dim(qlM) = ql(q dimM).

11
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Definition 3.1.3. Let M =
⊕

jMj and N =
⊕

j Nj be graded Z-modules where Mj

and Nj denote the j-th graded component of M and N , respectively. A Z-module

map f : M → N is said to be graded with degree d if f(Mj) ⊂ Nj+d. A module

map is called degree preserving (or grading preserving) if it is graded of degree zero.

A graded chain complex is a chain complex for which the chain groups are graded

Z-modules and the differentials are graded.

Definition 3.1.4. Let [s], s ∈ Z, be the height shift operation on chain complexes.

That is, if C is a chain complex, · · · → Ci → Ci+1 → · · · of modules, then C[s]r =

Cr−s with all differentials shifted accordingly.

Definition 3.1.5. The graded Euler characteristic χq(C) of a graded chain complex

C is the alternating sum of the graded dimension of its homology groups

χq(C) =
∑
i

(−1)iq dim(H i).

3.2 Khovanov’s Construction

Let L be a link and D its planar projection. Let n be the number of crossings

in the projection, with n+ (n−) the number of positive (negative) crossings. Our

goal is to create a chain complex whose graded Euler characteristic agrees with the

Jones polynomial. Recalling Kauffman’s state-sum formula, there is a correspondence

between elements of {0, 1}n and states for the given diagram, allowing us to write the

state-sum formula as follows

< D >=
∑

statess

(−1)r(s)qr(s)(q + q−1)k(s).

We can rewrite the state-sum formula by collecting terms based on the number of 1

resolutions

< D >=
n∑
i=0

(−1)iqi
∑

statess|r(s)=i

(q + q−1)k(s).

To each state, instead of associating the term (q+ q−1)k(s), we will associate a graded

module whose quantum dimension is (q + q−1)k(s). This is accomplished using the

following procedure. Let A be the Z-module generated by 1 and x with |1| = 1 and

|x| = −1. This gives q dim(A) = q + q−1. Using the tensor properties of quantum
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dimension, it is easily seen that q dimA⊗k = (q + q−1)k. Thus, to each state s, we

associate the module A⊗k(s). Now to fit these pieces into a chain complex, C∗,∗(D).

Following the rewritten state-sum formula, we will separate states into different ho-

mological degrees determined by number of 1 resolutions present in the state. So

Ci,∗(D) = qi
⊕

states|r(s)=iA
⊗(k(s)). This chain complex has support in homological

degrees 0 ≤ i ≤ n. One refers to this chain complex as the “cube” of resolutions,

thinking of each state as giving a “vertex” of the cube.

Now we must associate graded differentials, known as edges, to the cube. The

differential on the chain complex will be constructed by assembling maps between

specific states. For states s1, s2 ∈ {0, 1}n, we say that s1 ≤ s2 if each entry of s1 is

less than or equal to the corresponding entry of s2. For example, 010011 ≤ 110011.

We place a non-zero differential, ds1,s2 , between two states s1, s2 if s1 ≤ s2 and

r(s2) = r(s1) + 1, that is s2 has one more 1 than s1. Two such diagrams differ only

locally at the crossing where the states have differing resolutions. This difference is

easily seen to be either an increase or decrease in the number of circles present by

one. If the number of circles decreases, we say there is a merge between the states

and if the number of circles increases, we say there is a split between the states. To

a merge, we associate the (grading preserving) map m : A⊗ A→ qA given by

m(1, 1) = 1 m(1, x) = m(x, 1) = x m(x, x) = 0.

To a split, we associate the (grading preserving) map ∆ : A→ qA⊗ A given by

∆(1) = 1⊗ x+ x⊗ 1 ∆(x) = x⊗ x.

These two maps turn A into a commutative Frobenius algebra. Such an algebra

satisfies the following commutative diagrams:

A⊗ A⊗ A
Id⊗m

��

m⊗Id // A⊗ A
m
��

A⊗ A m // A

A

∆
��

∆ // A⊗ A
∆⊗Id
��

A⊗ A Id⊗∆ // A⊗ A⊗ A

A⊗ A
Id⊗∆

��

∆⊗Id //

m◦∆

((

A⊗ A⊗ A
Id⊗m
��

A⊗ A⊗ A m⊗Id // A⊗ A

Thus we can assign differentials to the chain complex using the merge or split on

the appropriate tensor factors and identity maps on the rest. As seen from the com-
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C0                                                         C1                                                       C2                                                  C3

n+=3

n-=0

Figure 3.1: Chain Complex for the Trefoil Knot

mutation of the Frobenius algebra, signs are needed to create an actual differential.

To do this, we need to consider each “face” of the cube. Two states s1, s2 contribute

a face to the cube if s1 ≤ s2 and r(s2) = r(s1) + 2. This means that the states differ

in only two crossing locations where the two crossings are changed from a 0 resolution

in s1 to a 1 resolution in s2. There are two intermediate states, each with one 1 and

one 0 resolution, in between s1 and s2. By inspection, the two paths from s1 to s2

must constitute one part of the relations held by any Frobenius algebra. So each

face in the (unsigned) cube of resolution commutes. In order to turn the maps into

a proper differential, we can simply make each face anticommute. This can be done

systematically. To do so, one chooses an order on the n crossings of the diagram. We

can then give the current maps signs in the following way. Suppose s1 ≤ s2 and differ

only in entry j. The differential will have the sign (−1)f(s1,s2) where f(s1, s2) is the

number of 1’s in the resolution that appear prior to entry j in the given ordering.

This construction is diagram dependent. Just as the Jones polynomial needs a

writhe correction term, this construction needs an overall normalization to be a link
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invariant. We denote this normalized chain complex as

C(D) = qn+−2n−C[n−]

The homology groups of the shifted complex we denote by Hi(D). Thus

Hi,j(D) = H i−n−,j−n++2n−(D).

Theorem 3.2.1. ( [Kho00], [BN05]) The homology groups Hi(D) are independent

of the choice of planar projection D. Furthermore, the graded Euler characteristic of

the complex C(D) is equal to the Jones polynomial of the link L.

Hence we can writeH(L) and callHi(L) the homology groups of L. The homology

groups for a knot do not depend on the orientation of the knot.

3.3 Properties of Khovanov Homology

This construction enjoys some nice properties relative to operations on diagrams

of knots. We list them here.

Proposition 3.3.1. For an oriented link L,

Hi,j(L) = 0

if i < n−, i > n+, or j + 1 ≡ |L|( mod 2).

This proposition says that the homology can only be nonzero for homological de-

grees between n− and n+ and q-gradings which match the parity of the number of

components of the link. We introduce the Poincaré polynomial for Khovanov homol-

ogy, which we will denote Kh(L)(q, t), as a compact way to display the homology of

the link. The polynomial is defined as follows

Kh(L)(q, t) =
∑
i,j

tiqj dim(Hi,j(L))

With this notation, the relation to the Jones polynomial is given by Kh(L)(q,−1) =

JL(q).

The Khovanov homology of a link is often represented by a grid labeled homo-

logical and quantum gradings in the horizontal and vertical directions, respectively.
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Figure 3.2: Kh(Trefoil) = q1 + q3 + t2q5 + t3q9

The darkened squares represent the diagonals j − 2i = σ(K)± 1, where σ(K) is the

signature of the knot.

The homology of alternating links was observed experimentally to occupy only

two diagonals, which gives rise to the following definition regarding the “thickness”

of a link.

Definition 3.3.2. Let L be a link and H(L) its homology. Let

S = {j − 2i|Hi,j(L) 6= 0}.

We define the Kh-width (referred to as width) of link to be |S|, that is the number

of diagonals on which the homology is non-zero.

We call a knot Kh-thin if its homology occupies only two diagonals and Kh-thick

otherwise. We have the following theorem due to Lee

Proposition 3.3.3. ( [Lee02]) Non-split alternating links are Kh-thin.

This explains the phenomenon that many of the small crossing number prime

knots have thin homology, as many of those knots are alternating. Khovanov has

shown that determining the thickness of prime knots is enough to determine the

thickness of all knots.

Proposition 3.3.4. ( [Kho03]) K1#K2 is Kh-thick if and only if one of K1 and K2

is Kh-thick.
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This proposition follows from the more general result relating the homology of a

connected sum of links to the homology of its components.

Proposition 3.3.5. ( [Kho00]) Let K1 and K2 be knots. Then the connected sum

K1#K2 satisfies the following long exact sequence

→ Hi−1,j−1(K1 ∪K2)→ Hi−1,j−2(K1#K2)→ Hi,j(K1#K2)→

→ Hi,j−1(K1 ∪K2)→ Hi,j−2(K1#K2)→ Hi+1,j(K1#K2)→

The knot with smallest crossing number which does not have thin homology is the

knot 942. The figure 3.3 shows the Khovanov homology of the knot. The darkened

lines are again the signature diagonals and the dark square is meant to highlight the

nonzero homology off the signature diagonal.
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Figure 3.3: Kh(942) =

t−4q−7 + t−3q−3 + t−2q−2 + t−1q−1 + t−1q1 + q−1 + q1 + q3 + t1q3 + t2q7

Given a knot K with a distinguished positive crossing, there is a long exact se-

quence involving the diagrams obtained from the 0 resolution K0 and 1 resolution K1

of the distinguished crossing. The unnormalized long exact sequence is given by

→ H i−1,j−1(K1)→ H i,j(K)→ H i,j(K0)→

→ H i,j−1(K1)→ H i+1,j(K)→ H i+1,j(K0)→ .
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For a positive crossing, the 0 resolution is oriented and the 1 resolution is unori-

ented. Thus we can choose the corresponding orientation for K0 and an arbitrary

orientation for k1. If we let c = n−(K0) − n−(K) the long exact sequence has the

following for on the normalized homology

→ Hi−c−1,j−3c−1(K1)→ Hi,j(K)→ Hi,j−1(K0)→

→ Hi−c,j−3c−1(K1)→ Hi+1,j(K)→ Hi+1,j−1(K0)→ .

Similarly for a distinguished negative crossing with K0 the oriented resolution

and K1 the unoriented resolution with c as above, we have the following long exact

sequences

→ Hi,j−1(K0)→ Hi,j(K)→ Hi−c−1,j−3c−1(K1)→

→ Hi+1,j−1(K0)→ Hi+1,j(K)→ Hi−c,j−3c−1(K1)→ .

3.4 Lee Homology

In this section we will describe what is known as Lee homology. Lee proved that

there is a modification to the differentials provided by Khovanov which results in

another link homology. This homology does not capture the Jones polynomial and

is instead much smaller. The homology is said to be “boring, but in an interesting

way.” The modification is as follows. Lee defines additional differentials denoted with

a prime. The maps ∆′ : A→ A⊗ A and m′ : A⊗ A→ A are 0 except for

∆′(x) = 1⊗ 1 m′(x⊗ x) = 1

Lee shows that these maps commute with the given ∆ and m. This means that, with

the sign assignment, ∆ + ∆′ and m + m′ can be used to form a new differential, d′

on the same cube of resolutions. The new differential d′ is not grading preserving.

The Khovanov differentials preserve grading, but the Lee differential increase grading

by 4. So instead of a bigraded homology theory, we get a filtered homology theory

denoted HLee. With this setup, Lee proves the following

Proposition 3.4.1. For a link L, HLee(L) has rank 2|L|.
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Each pair of homology classes corresponds precisely to an orientation o of the

chosen link L For each orientation o of a link diagram D, there is a corresponding

oriented resolution O(D) which contributes a summand in the Khovanov chain com-

plex. She shows that the oriented resolutions of a link provide special state-cycle

representatives for the Lee homology. These are representatives of minimal quantum

filtration grading. To find the actual filtration grading of the cycles, one must deter-

mine the highest filtration grading which contains cycle representatives. To do this,

one must consider a minimax type computation, which is typically difficult to do by

inspection. We will describe these elements in detail in chapter 4.

Proposition 3.4.2. The homological gradings of the Lee homology elements are de-

termined by the linking number `(L1, L2) for each pair of link components L1 and

L2.

This means that for a knot, the homology consists of two pieces in homological

degree 0. Rasmussen proved that these two pieces in fact differ by 2 degrees in

the associated graded of the induced quantum filtration grading on homology. The

average of the filtration of these pieces is then an invariant which can be read from

Lee homology. We call this integer the s-invariant, denoted s(K).

Proposition 3.4.3. ( [Ras04]) For a knot K,

|s(K)| ≤ 2g4(K)

where g4(K) is the smooth 4-ball genus of the knot.

This construction by Lee can also be interpreted as giving a spectral sequence

whose first page is Ei,j
1 = Hi,j

Kh(L) ⊗ Q which converges to Ei,j
∞ = HLee(L). For a

knot, K, the spectral sequences converges to E∞ = Q ⊕ Q. Specifically, E0,s±1
∞ =

Q ⊕ Q where the even integer s is Rasmussen’s invariant. The differentials in the

spectral sequence on page i are of bidegree {1, 4i}. It is conjectured that this spectral

sequence always converges after the second page. This spectral sequence is useful for

many computational purposes, especially when combined with the above long exact

sequences. We show in figure 3.4 the differential pairings of the spectral sequence for

the Lee homology of the 942 knot. The remaining terms after cancellation appear in

filtration gradings ±1, meaning s(942) = 0.
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Figure 3.4: The spectral sequence cancellation of H(942)

3.5 A Categorical Formulation

Encapsulating Khovanov and Lee Homology

Both Khovanov and Lee homology have nice geometric interpretations as described

by Bar-Natan in [BN05]. Khovanov’s original description was based of a certain

Frobenius algebra. Frobenius algebras over a commutative ring R are well known to

be the same thing as representations of the monoidal category Cob1+1 of cobordisms

into the tensor category Mod−R. This shows that the category Cob1+1 is equivalent

to the free tensor category on a single Frobenius algebra object, namely the circle.

As described before, a Frobenius algebra is an algebra A with maps Id,∆,m, ι, ε

satisfying certain relations. The maps can be visualized as surfaces (maps between

circles) in the following way

A A A

A

A

A

A: : :

: : A

A

A

Id ι ε

Δ m

R R
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The surfaces are subject to relations up to isotopy the corresponding maps are

subject to the relations those isotopies would impose. The commutative triangles

explained previously can now be represented graphically. The algebra is both com-

mutative and cocommutative

= =

The algebra also satisfies the namesake Frobenius relation

= =

We can introduce an additive structure on Cob1+1 by taking linear combinations of

morphisms to make the hom sets into abelian groups. Additionally, we can introduce

formal direct sums of objects and write the Khovanov complex as a complex of objects

from this category. The objects are actually represented by the Kauffman states

themselves and the differentials correspond to split and merge surfaces. We don’t

have a homology theory, as there is no sense of kernel or image in this category, but

the chain homotopy type of the complex is well defined. The Khovanov and Lee

algebras can be viewed as surfaces, each having their own set of relations. Relations

must be imposed to make the result homotopy invariant under Reidemeister moves.

Dror Bar-Natan [BN07] determined the relations needed.

Before we describe the relations, we must introduce some shorthand notation for

these surfaces. We let a dot on a surface represent one half of the related surface with

genus.

=
1

2

The relations needed for Khovanov homology are
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=

= 0 = 2 = 0

+

while for Lee homology we need

=

= 0 = 2 = 1

+

The relations are very similar for Khovanov and Lee, the one difference being the

double dot relation. We denote the sphere relation by S, and we call the relation

at the bottom “neck-cutting”. These relations can be described through a universal

version of the category. Instead of imposing an integer valued relation for a double

dotted surface, we allow an indeterminate α which corresponds to 1
8

of a closed genus-

3 surface. We then have a base ring Z [α] for our the universal category. With the

dotted surface relation above, α is equivalent to a sphere with 3 dots. Using the neck

cutting relation, we can pull pairs of dots off of surfaces and replace them with a

coefficient α.

= + = α

Using this relation, one can recover Khovanov homology by setting α = 0 and by

Lee homology by setting α = 1. The relation α = 1 is inhomogeneous.

The categorical formulation of Khovanov homology allows for some computational

advantages. Note that the category contains an empty 1−manifold as an object. With
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the dotted surface structure, there is an isomorphism between a circle in the plain

and two quantum grading shifted empty diagrams. This relationship is known as

“delooping” and is due to Bar-Natan in [BN07].

Lemma 3.5.1. (Bar-Natan) If a state S contains a closed loop l, then it is isomorphic

to the direct sum of two copies q1S ′ and q−1S ′ of S in which l is removed, one taken

with a degree shift of +1 and one with a degree shift of −1. The isomorphisms are as

follows:

0

0

q1

q-1

This delooping isomorphism allows the chain complex to be simplified by remov-

ing circles from states. This isomorphism is also grading preserving, and thus no

information is lost in delooping. The following figure shows how delooping can be

used to simplify a chain complex.

-~ -~

q1

q-1

q1

q-1

q1 q1 q1

The original map here was a merge between two circles. By delooping the the

top circle, we get a homotopic chain complex with the top map being the identity

morphism. This leads us to our next proposition. Using generalized linear algebra, we

can remove inessential summands from the chain complex, potentially changing the

remaining maps in the complex. We now introduce the Gaussian elimination lemma

from [BN05].

Lemma 3.5.2. (Bar-Natan) If ϕ : b1 → b2 is an isomorphism (in some additive

category C), then the four term complex segment in Mat(C)
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[
C
] [

b1

D

] [
b2

E

] [
F
]

(
α

β

) (
ϕ δ

γ ε

) (
µ ν

)

is isomorphic to the direct sum of complexes

[
C
] [

b1

D

] [
b2

E

] [
F
]

(
0

β

) (
ϕ 0

0 ε− γϕ−1δ

) (
0 ν

)

This lemma allows us, in combination with delooping, to remove inessential pieces

of chain complexes before computing homology at the cost of modifying some differ-

entials. Each of the differentials in the Khovanov complex is graded, the “new”

differential given by ε− γϕ−1δ will be of homogeneous degree. Using this elimination

lemma we can simplify the example complex even further to obtain the following:

-~ q-1

q1

q-1

q1

Simplifications like the one above lead to Khovanov homology being readily com-

putable. In fact, the KnotTheory‘ package provided by Bar-Natan and Morrison is

able to compute Khovanov homology for knots of under 40 crossings in seconds and

knot under 100 crossings in a reasonable amount of time. The results on these com-

putations for knots with small crossing number are displayed at katlas.org [MBN]

thanks to Bar-Natan and Morrison.



Chapter 4

Bounds on Rasmussen’s Invariant

In this chapter we will create chain maps to obtain bounds on Rasmussen’s s-

invariant. By using maps instead of other techniques, we also obtain actual states

which realize these bounds. In general, the s-invariant of a knot is hard to compute.

It is conjectured that the s-invariant can be read from the Poincaré polynomial corre-

sponding to the homology of the knot. We can compute the the s-invariant in certain

cases: positive knots and alternating knots. For a positive knot K, H0,j(K) = Q for

j = s(K) ± 1 and is 0 otherwise. So for a positive knot, the s-invariant can be read

from the t = 0 term of the Poincaré polynomial. For alternating knots, the support

of the Khovanov homology was shown to be precisely the signature diagonals. In

this case, s(K) = σ(K). We generalize the technique for calculating the s-invariant

for positive diagrams to general diagrams. The technique will provide bounds, upper

and lower, on the s-invariant of a knot, dependent on the diagram. Andrew Lobb

provides bounds on the s-invariant which agree with our bounds. His techniques

are non-constructive, however. Tetsuyo Abe has determined when these bounds are

sharp. Our technique will not only calculate the s invariant in these situations, but

will provide generators for the Lee homology as well.

4.1 Lee Homology and Oriented Resolutions

Our goal is to create a chain map C(U)→ C(D), from an oriented diagram of the

unknot to an oriented diagram of another knot. Investigating the degree of this map

will allow us to give bounds on Rasmussen’s s invariant of the associated knot. We

25
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Figure 4.1: The oriented resolution of the knot 940

will do so by composing maps piece by piece to obtain the final desired map. First,

we describe Lee homology in more detail. Given an oriented diagram D of a link L,

we write O(D) to represent the oriented resolution of the diagram. In the Khovanov

construction, this corresponds to taking the 0 resolution at all positive crossings and

1 resolution at all negative crossings in the diagram. One should also note that

the oriented resolution contributes a summand in the Khovanov chain complex in

homological degree 0.

The direct summand of C(D) corresponding to the oriented resolution has a few

special properties. It has n− incoming maps and n+ outgoing maps. Each of the

incoming maps is a split map ∆ over a negative crossing and each of the outgoing

maps is a merge map m over a positive crossing.

⊕
O(D)⊕

∆

∆

∆

m

m

m

Lee used these observations to provide generators for Lee homology. The original

basis for Khovanov’s algebra was given by the graded elements 1 and x. Lee changes

basis to a = 1 + x and b = 1 − x, which are orthogonal (m(a, b) = 0) in Lee

homology. Given a knot diagram D with orientation o, the oriented resolution state

O(D) contributes a direct summand to the Khovanov complex. We can label this state

with the alternating tensor products so = a⊗b⊗a⊗· · ·⊗a and so = b⊗a⊗b⊗· · ·⊗b,
where adjacent circles all have opposite labels. Since each differential out of this
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summand is a merge between adjacent circles, each of these states clearly represents a

cycle. Lee shows that these cycles in fact generate homology. These are not necessarily

the cycles which lie in the highest filtration grading possible. To determine the s-

invariant, one must find homological representatives of highest filtration gradings.

Let us now consider a diagram with all positive crossings. The s invariant is known

to have value n+−k+1, where k is the number of circles in the oriented resolution. The

two Lee canonical elements so and so are the highest degree homological generators.

Their sum and difference so ± so generate Lee homology and have quantum grading

n+ − k + 1 ± 1. This is the basic idea behind the maps we wish to create. To

construct our chain maps, we wish to copy this type of alternating state labeling

to each “negative patch” in our diagram. So, we wish to construct maps which

create this alternating label of circles in the oriented resolution. We want a set of

maps ϕ : ◦ → ◦◦ which achieve this alternating labeling. The second tensor factor

indicates the newly labeled circle.

ϕA(a) = a⊗ b , ϕA(b) = −b⊗ a

ϕO(a) = a⊗ 1 , ϕO(b) = b⊗ 1

ϕD(a) = a⊗ b , ϕD(b) = b⊗ a

The maps ϕA and ϕD appear similar, but their realizations will become apparent

shortly. We will also need adjoint maps ϕ′ : ◦◦ → ◦ which behave well with alternating

labels as inputs to construct our inverse chain maps. We would ideally like maps which

behave in the following way:

ϕ′A(a⊗ a) = 0 , ϕ′A(a⊗ b) = −2a , ϕ′A(b⊗ a) = −2b , ϕ′A(b⊗ b) = 0

ϕ′O(a⊗ a) = a , ϕ′O(a⊗ b) = −a , ϕ′O(b⊗ a) = b , ϕ′O(b⊗ b) = −b

ϕ′D(a⊗ a) = 0 , ϕ′D(a⊗ b) = −2a , ϕ′D(b⊗ a) = 2b , ϕ′D(b⊗ b) = 0

These maps can be achieved using cobordisms in Lee’s category. Working in Lee’s

category means that we can remove double dots from a surface. We will adopt the

notation that a map with an overline is a dotted version of that map. We will use

this notation only when there is only one connected component. For example Id is

the identity map with a dot. With the Lee local relations in place, f = f for any
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map f , since the two dots can be isotoped across the connected component and then

cancel. We now introduce maps that we will use in our construction. Let us consider

the map ϕA : ◦ → ◦◦

The map ϕA will take a state and label the newly born circle with the alternate

state. The name is meant to indicate this assignment. This map has filtration degree

−1. We also consider the map ϕO : ◦ → ◦◦ given by

This map will assign the value 1 to a newly born circle, hence the name ϕO. This

map has filtration degree 1. We will also need a third map, ϕD : ◦ → ◦◦ given by

Note that the map ϕD is the map ϕA postcomposed with a dotted identity map

on one of the components. This map is not homogeneous and has filtration degree

−3. We will also need the adjoint versions of these maps to create an inverse map.

Let us consider the map ϕ′A : ◦◦ → ◦

We also consider the map ϕ′O : ◦◦ → ◦ given by
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the inversion of the third map, ϕ′D : ◦◦ → ◦ is given by

Note the subtle sign differences among the maps. The maps ϕA and ϕD are closely

related, as are ϕ′A and ϕ′D. We now investigate the interaction between these maps

and their compositions. We illustrate one of the compositions graphically. Consider

the composition ϕ′A ◦ ϕA. The figure 4.2 shows the composition and cancellation of

pieces using the Lee relations.

This shows that the composition of ϕA with ϕ′A gives the map −2Id. Using similar

cancellations and isotopies results in the following list of compositions:

ϕ′A ◦ ϕA = −2Id

ϕ′A ◦ ϕO = −Id

ϕ′A ◦ ϕD = −2Id

ϕ′O ◦ ϕA = −Id

ϕ′O ◦ ϕO = 0

ϕ′O ◦ ϕD = −Id

ϕ′D ◦ ϕA = −2Id

ϕ′D ◦ ϕO = −Id

ϕ′D ◦ ϕD = −2Id

This list of compositions will enable us to simplify the proofs later. One should

keep in mind that we are working over Q so the powers of 2 and the signs appearing
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= +

= = 2

Figure 4.2: The composition ϕ′A ◦ ϕA
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Figure 4.3: The Seifert graph of the knot 940

in the compositions will ultimately be invertible. We now make a few notes about

the behavior of these maps with the differential maps appearing in the Khovanov

complex, namely ∆ and m. The maps ϕA and ϕD are specifically constructed so that

the composition m ◦ ϕA = 0 and m ◦ ϕD = 0. Their respective adjoint maps are also

constructed so that ϕ′A ◦∆ = 0 and ϕ′D ◦∆ = 0. That is, these maps were created to

behave well with the special properties of the direct summand corresponding to the

oriented resolution.

4.2 Construction of the chain maps

We will construct the chain maps using the ϕ maps described in the earlier sec-

tions. To avoid adding extra grading shifts to the calculation, we will work with an

unshifted version of the Khovanov complex. We will leave out the final q-grading

shift of qw(D). This formal shift simply changes the quantum gradings of each piece

of the chain complex as well as the corresponding filtration gradings in the Lee com-

plex. The direct summand corresponding to the oriented resolution will be the source

and target of our chain map. We will now define graphs associated to an oriented

resolution which will allow us to construct our maps algorithmically.

Definition 4.2.1. To an oriented resolution O(D) corresponding to a diagram D,

we can assign a decorated graph T (D), called the Seifert graph, in the following

manner:

For each circle in O(D) we add a vertex to the graph. Each crossing in D is incident to

two circles in O(D). For each positive crossing in D, we add the corresponding edge

to T (D) assigned with +. For each negative crossing in D, we add the corresponding
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edge to T (D) assigned with −.

A few notes about Seifert graphs. A crossing in diagram will always correspond to

an edge between distinct vertices. This means that the graph will have no edges which

start and end at the same vertex. The Seifert graph will also contain no cycles of odd

length. This is due to the fact that the circles in the oriented resolution can naturally

be given an orientation that agrees with the original orientation of the diagram. An

odd length cycle would force a loop to have two different orientations. These two

facts combined tell us that Seifert graphs are bipartite. The vertices can be separated

into two groups, those whose corresponding loops inherit a clockwise orientation and

those that inherit a counterclockwise orientation. Observed locally, it is clear that a

crossing must be incident to two circles of opposite orientation.

Definition 4.2.2. To a Seifert graph T (D) we can associate two graphs:

The graph T+(D) is formed by removing all negative (−) edges from T (D) and T−(D)

is formed by removing all positive (+) edges from T (D).

+- - - -+

T(D) T  (D) T  (D)
+ -

Figure 4.4: Associated Seifert graphs of the knot 940

We now introduce some terminology for Seifert graphs and their associated sub-

graphs. We will say that two vertices in T (D) are positively (negatively) connected

if at least one of the edges between them in T (D) are marked with a plus (minus).

We say that two vertices in T (D) are strictly positively (negatively) connected if all

connections between them are positive (negative).

For the graph T+(D), we choose a spanning forest (a collection of trees), called

F+(D). Similarly, we choose a spanning forest F−(D) for the graph T−(D). We

will now use these graphs to define the desired chain map. Assign an ordering of the

vertices in T+(D). We will do this as follows. Pick a vertex in in T+(D) (preferably

one with an edge connecting to it). Label that vertex with a 1. Label all adjacent

vertices 2, 3, . . . consecutively in some arbitrary way. Move to the next lowest num-

bered vertex and label all unlabeled adjacent vertices. Proceed until all connected
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vertices are labeled, then move to a new connected component and repeat with the

next available label.

These spanning forests will give us directions for creating our chain map. We

define the chain map in the following fashion. We will describe this as an algorithm,

exhausting the vertices in order. At each step, we will add a map to the total compo-

sition. The algorithm for constructing the chain map based on the choice of spanning

forests.

We start with vertex 1 of T+(D). The circle in O(D) corresponding to this vertex

will be the starting point of our map. The initial step of the composition will be to

map the chosen (crossingless) unknot to this circle using an identity cobordism. We

now describe the algorithm for exhausting the forest. We consider a vertex exhausted

once we have prescribed a morphism to the corresponding circle in O(D). What we

describe will be a way of mapping elements from the unknot complex to the complex

corresponding to D. We will show later that this is indeed a chain map.

Algorithm: For each edge in F+(D) connected to the current vertex, we add a

composition to our map using the state copying map, ϕA, above. To do this, we create

the map for this stage of the composition by taking the identity map on all previously

added components and by using the map ϕA to add the circle corresponding to the

latest vertex to the map. The vertices are positively connected because they are

connected by an edge in T+(D).

Once we have exhausted the edges in the current tree, we choose another tree in

the forest. We add the first circle of the new connected component using the ϕO map.

This composition can be done from any previously added vertex. We then add each

connected vertex using the ϕA map as above.

We continue this process until the only remaining forests are single vertices. Once

each edge from the spanning forest has been accounted for, we must consider each

of the vertices left in the T−(D). They have no positive edges connected to them in

the graph, sop they are not involved in any outgoing merge maps. Thus, for each

remaining vertex, we use the map ϕO to add that vertex to the current composition.

This will account for all of the circles in the diagram. All that remains is to show that

this map is indeed a chain map. Call the resulting composition I : C(U) → C(D).

Figure 4.5 shows the result of the construction for the given diagram of the 41 knot.
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Figure 4.5: The resulting chain map I for the knot 41



35

We now discuss some properties of the resulting map. The composition, once

simplified and once terms are collected, will be a map which is the identity on one

component along with dotted and undotted caps to the remaining components. Typ-

ically, this map will have several terms. We begin with an observation about each

positive component of the graph.

Lemma 4.2.3. Suppose, in the construction of I, that two vertices share a positive

edge. Let dα be the term of the differential in C(D) which corresponds to the merging

of those two circles from the oriented resolution. Then dα ◦ I = 0.

Proof. We prove this using the basis a, b for the Lee homology of the unknot and

by considering the first connected component. If we consider I(a), we see that the

state alternating map ϕA will alternate states to all adjacent circles. This means that

the resulting image will be one term with alternating a and b labels on each of the

circles. By construction, circles adjacent to each other which share a positive crossing

will have opposite labellings, one with basis element a and one with basis element b.

This is guaranteed by the fact that the graph has no odd cycles. By examining the

Lee basis, we see that m(a, b) = 0 = m(b, a). So dα ◦ I = 0, since the circles must

be labeled oppositely and this part of the differential is a merge of circles. Since the

image of a or b under this composition dα◦I are both 0, their sum and difference must

also be 0. Since a+b = 2, the image of 1 under this map must also have this property.

For all components beyond the first, we used the map ϕO in our construction, and

hence the image on the first circle in the new component must be 1. Thus, for any

two vertices that share a positive crossing, the term contributed to the composition

with the differential is 0.

This observation allows us to prove that I is indeed a chain map.

Proposition 4.2.4. The constructed I is a map of filtered chain complexes, and hence

of their associated graded complexes.

Proof. We consider the Lee basis a, b again. By the above lemma, the resulting

states I(a) and I(b) are both cycles of H(D). The composition I ◦ d is trivial as

all differentials in the chain complex of the unknot without crossings are 0. Thus

d ◦ I = 0 = I ◦ d. So the map commutes with the differential and we have that I is

indeed a chain map.
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The constructed map will only provide bounds for Rasmussen’s invariant if this

cycle actually represents a nonzero class in homology. We now show that this map

is invertible, and hence the image is nontrivial. The map we construct from C(D) to

C(U) will be a chain map. As before, we restrict ourselves to the direct summand

of C(D) corresponding to the oriented resolution of D. To form a chain map out

of C(D) the primary concern will be commutation with the incoming maps to the

oriented resolution, which are all merge maps (m′s) associated to negative crossings.

We will construct the map with choice made in our construction of I.

We now construct the map I ′ : C(D)→ C(U). We still have our chosen spanning

tree from the construction of I. We create our map from compositions vertex by

vertex as we did before, but this time in reverse.

Here is the algorithm to construct the inverse map. Start with the last vertex we

added to I. If the current vertex was only negatively connected in the Seifert graph,

then we use the map ϕ′A to cap off the latest circle. If the vertex is both positively

and negatively connected to the previous vertex, we use the map ϕ′D to cap off the

last circle. If the vertex is strictly positively connected, we use the map ϕ′O to cap off

the circle. For each map and stage of the composition, all other circles are mapped

using the identity cobordism. We continue until we reach the last vertex, at which

point we map using the identity cobordism.

Proposition 4.2.5. The constructed I ′ is a chain map.

Proof. By construction, similar to the map I, any vertex with a negative connection

is removed using the map ϕ′A or ϕ′D. The compositions ϕ′A ◦∆ = 0 and ϕ′D ◦∆ = 0.

Since the image of the differential in the oriented resolution added is given purely

by the image of split maps (∆). Any such image will label two circles (which are

negatively connected) with the same element. By observing the maps ϕ′A and ϕ′D, we

see that two circles with the same label are killed by these maps. The only way an

element could live would be to be an alternating state, alternating between a and b on

adjacent circles. Again, since there are no odd cycles and all but one circle is removed

by the map P , there must be a point in the composition where two circles with the

same labeling are fed into either ϕ′A or ϕ′D. Hence, the image of any differential after

composition with P will be 0. Thus I ′ is a chain map.

Proposition 4.2.6. The map I is invertible and I ′ is an inverse.
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Proof. The map P was constructed precisely to simplify with the map I using appli-

cations of the concertina-like relations of the type ϕ′A ◦ ϕA = −2Id. If a vertex was

only negatively connected, the circle was added in I by composition using the map

ϕO and removed in P using the map ϕ′A. From the list in the previous section we can

see that this composition results in the map −Id on the circle which will be removed

next. We use the maps ϕ′A and ϕ′D to remove the remaining circles. Note that the

two maps ϕ′A and ϕ′D differ by a dot on either component. Using only the maps ϕ′A

and ϕ′D guarantee that we construct a chain map, again by the no odd cycle property.

Removing these maps in order will result in either −Id a dotted identity or −2Id. So

in all cases, undoing our composition results in either an identity or dotted identity.

Hence the final resulting composition will be either the identity map or the dotted

identity with powers of 2 present, all of which are invertible.

The constructed inverse has a much higher degree than is necessarily needed to

provide an inverse. Using similar constructions to I : C(U)→ C(D) and I ′ : C(D)→
C(U), we can construct maps P : C(U) → C(D) and P ′ : C(D) → C(U) similarly.

We construct P ′ using the maps ϕ′A and ϕ′O exactly as we constructed the map I, but

with negatively connected vertices replacing positively connected ones.

Proposition 4.2.7. The map P ′ : C(D) → C(U) is a chain map which is an iso-

morphism on Lee homology.

Proof. The proof is similar to the proofs that I is a chain map and mostly rely on the

no odd cycle property of Seifert graphs. Any state in the image of a boundary map

must have two identically labeled circles. Those circles will be killed by either the

ϕ′A or ϕ′O maps. Looking at the definition of the maps ϕ′A and ϕ′O, we can see that

if one feeds in the state which is alternately labeled with a and b, the image under I

is non zero. The image of the map only depends on the label of the circle which is

connected to the only circle in the unknot diagram. The image thus contains both a

and b and is seen to be an isomorphism.

The names I and P chosen in this section are meant to imply injection and

projection, referring to the maps direction relative to the unknot. One map injects

the chain complex of the unknot, the other projects the more complicated diagram

to that of the unknot.
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4.3 Bounds on Rasmussen’s Invariant

In this section we begin by introducing some notation regarding Seifert graphs

which will allow us to more easily determine the degrees of the resulting maps from

the previous section. Let Γ be a graph. Let e(Γ) be the number of edges present in

the graph. Let v(Γ) be the number of vertices. Let c(Γ) be the number of components

of the graph.

These descriptions and the construction of the map I in the previous section give

us an easy way to determine the degree of the final composition.

Proposition 4.3.1. Given the diagram D of a knot K, the map I : HLee(U) →
HLee(D) has filtration degree w(D)− v(T (D)) + 2c(T+(D))− 1.

Proof. We constructed the map I using compositions of the maps ϕA and ϕO. These

maps have degree −1 and +1 respectively. We used the map ϕA to add each positively

connected circle beyond the first in each connected component of the diagram. Thus

the composition regarding the negative circles provides v(T (D)) − c(T+(D)) (this

accounts for all vertices except for the first chosen vertex and the first vertex of each

component after that) compositions of degree−1 resulting in the v(T (D)) terms in the

degree calculation. The vertices which were added at the beginning of each component

of the graph were added using the degree 1 map, ϕO, a total of c(T+(D)) − 1 times

(all but the first circle). The total degree (which is additive under composition) is

w(D)− v(T (D)) + 2c(T+(D))− 1. The writhe shift is present due to the fact that we

are using normalized Khovanov homology and the fact that the writhe of an untwisted

unknot is 0.

Note that this bound does not depend on the choice of spanning forest above,

only on the number of times each map was used. Thus the bound is independent

of the choices (other than diagram) which were made to construct the map I. This

proposition allows us to give a lower bound on Rasmussen’s invariant for any knot,

which depends on the given diagram of the knot.

Theorem 4.3.2. For a knot K and a diagram D of K we obtain the lower bound

s(K) ≥ w(D)− v(T (D)) + 2c(T+(D))− 1
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Proof. This follows from the degree of the constructed I and the fact that the s

invariant of the unknot is 0.

We can see immediately that for a positive diagram D (a diagram with no negative

crossings) of a knot K that this bound agrees with the known fact s(K) = w(D) −
v(T (D)) + 2c(T+(D)) − 1 = n+ − v(T (D)) + 1 for positive diagrams. Thus, strictly

negative circles present in the diagram give us a way to increase the lower bound for

the s invariant.

We also obtain upper bounds using the map P ′.

Proposition 4.3.3. Given the diagram D of a knot K, the map P ′ : HLee(D) →
HLee(U) has filtration degree −w(D)− v(T (D)) + 2c(T−(D)) + 1

Theorem 4.3.4. For a knot K and a diagram D of K we obtain the upper bound

s(K) ≤ w(D) + v(T (D))− 2c(T−(D)) + 1

So, we can see that, given a diagram, we obtain bounds on the s invariant (and

hence lower bounds on the slice genus) just by looking at the connectivity of circles

in the Siefert graph. Thus we get the bounds

w(D)− v(T (D)) + 2c(T+(D))− 1 ≤ s(K) ≤ w(D) + v(T (D))− 2c(T−(D)) + 1

These bounds show that the s invariant is bounded from the writhe by the number

of circles in the Seifert resolution, hence, the smaller the number of circles in the

resolution, the better the bound. These bound also show that a circle with only

positive connections will decrease the upper bound and a circle with only negative

connections will increase the lower bound. From these results and the relationship of

the s-invariant with the slice genus, we get the following bound

2g4(K) ≥ w(D)− v(T (D)) + 2c(T+(D))− 1

for any diagram D of the knot K.

We can also investigate the difference in these upper and lower bounds to deter-

mine when these bounds are in fact equal. The difference, ∆s(D),

(w(D) + v(T (D))− 2c(T−(D))− 1)− (w(D)− v(T (D)) + 2c(T+(D))− 1)

= 2v(T (D))− 2c(T−(D))− 2c(T+(D)) + 2

= 2 [v(T (D))− c(T−(D))− c(T+(D)) + 1]
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is given by 2 [v(T (D))− c(T−(D))− c(T+(D)) + 1]. This shows that the bounds are

in fact equal when this quantity is zero. Examining this calculation, we can determine

when this difference will be zero. The difference in the bounds in 0 for positive knot

diagrams as c(T−(D)) = v(T (D)) and c(T+(D)) = 1. Similarly for negative knots

diagrams. But this difference is also 0 for alternating knot diagrams. If a knot has an

alternating diagram, the oriented resolution, and thus the Seifert graph has a special

property. The complement of the oriented resolution of an alternating diagram can

be separated into two regions, one positive and one negative, such that adjacent

regions have opposite signs. These regions are labeled so that any positive crossing

appears in the positive region and each negative crossing appears in each negative

region. Each region contributes a component to either c(T−(D)) or c(T+(D)). There

is one more region than there are circles in the oriented resolution, so v(T (D)) + 1 =

c(T−(D)) + c(T+(D)). Thus we can see that the difference between the bounds must

be 0.

Another class of knots for which the two bounds agree are closures of homogeneous

braids. A homogeneous braid is a braid that can be written as a word where either

σi or σ−1
i appears, but not both. The corresponding Seifert graph of the closure

of the braid is easily seen to be a straight line with a vertex for each circle in the

oriented resolution. Each set of edges between a vertex have the same sign, so each

edge decreases the number of components of either T+(D) or T−(D), but not both.

There is one less edge than vertex, so there are a total of n + 1 components. Thus

the difference between the bounds is 0.

Thanks to the work of Abe in [Abe10], we have the following characterization of

knots for which this bound is tight. A cut vertex is a vertex where, if removed from

the original graph, the resulting graph has more components. A block of a graph is a

maximal subgraph with no cut vertices. A signed graph is homogeneous if each block

has the same sign. We say a link is homogeneous if it has a homogeneous diagram.

Theorem 4.3.5. [Abe10] A diagram D of a knot is homogeneous if and only if

∆s(D) = 0

So this class of knot diagram is exactly the class for which our bounds are tight.

This class of knot includes alternating knots, positive and negative knots, as well as

homogeneous braids. There are knots which are homogeneous but not alternating,
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+ +

-

Figure 4.6: A homogeneous diagram of the knot 943

nor positive. The knot 943 in the knot table shown in figure 4.6 is the simplest knot

which is homogeneous but neither alternating nor positive.

4.4 Representative Cycles

In the previous section, we constructed bounds on the s-invariant which are easy to

compute just by diagrammatic calculations. The formalism allows us to obtain precise

representatives of the homology classes whose filtration degrees we need to compute

if we are to get an exact value of s. A note about these states, since we showed that

the map can be constructed using the ϕO map on strictly negative components, we

can determine that there is a state representing Lee homology classes with 1 labels

on all strictly negatively connected circles. The labellings on the other circles depend

on the choice of spanning trees in the construction of I. The difference being which

positive component was chosen first. This component will have different labellings

dependent on whether a 1 is fed into the constructed map or an x. The labellings

on all positive patches are given by linear combinations of the basis elements a and

b and can be worked out for any given choice. The chain maps which provide an

upper bound for the s invariant do not construct a representative cycle. If it did, all

s-invariants would be determined by this bound, as the s-invariant is defined by the

highest filtration degree of the cycles which represent it. It is easy to find examples

where the constructed upper bound does not agree with the actual s-invariant of the

knot. We now discuss the image of the constructed map I. To do this, we will first
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consider, for a positive diagram D, the elements of HLee(D) which represent the Lee

homology. The degree of the Lee generators of a positive diagram are known to be

n+ − v(T (D)) + 1± 1. The generators are given by so ± so. The states so and so are

given by labellings of circles by alternating a’s and b’s in the oriented resolution. In

our chosen basis representatives, a = 1+x and b = 1−x, we can see that these states

resemble the following

a⊗ b⊗ a⊗ · · · ⊗ b⊗ a

and

b⊗ a⊗ b⊗ · · · ⊗ a⊗ b

Expanding these in terms of the 1, x basis we obtain

(1 + x)⊗ (1− x)⊗ (1 + x)⊗ · · · ⊗ (1− x)⊗ (1 + x)

and

(1− x)⊗ (1 + x)⊗ (1− x)⊗ · · · ⊗ (1 + x)⊗ (1− x)

We can further expand these using the properties of tensor products. We will collect

terms with like degrees

1⊗ 1⊗ · · · ⊗ 1

x⊗ 1⊗ 1⊗ · · · ⊗ 1− 1⊗ x⊗ 1⊗ · · · ⊗ 1 · · ·+ 1⊗ 1⊗ · · · ⊗ 1⊗ x
...

1⊗ x⊗ x⊗ · · · ⊗ x− x⊗ 1⊗ x⊗ · · · ⊗ x · · ·+ x⊗ x⊗ · · · ⊗ x⊗ 1

x⊗ x⊗ · · · ⊗ x

The signs present on each term can be determined by examining which circles have

a label b and determining the number of x’s in the term contributed by such circles.

This shows that there is parity involved in the signs of each individual term, but one

can see that changing between the so and so labellings will change the sign of each

term in a predictable fashion. So, terms which have an even number of x’s contributed

from b labeled circles are positive, while terms with an odd number of x’s contributed

from b labeled circles are negative. We are interested in the terms which contribute to

lower quantum gradings, so we will now look at the sign of the all x term. To do this

we must consider the parity of the number of circles in the oriented resolution. Once
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again, the Seifert graph is bipartite, meaning the circles in the oriented resolution

can be separated into two groups. This separation is determined by the induced

orientation on the resolution. If the number of circles oriented clockwise has the

same parity as the number of circles oriented counter-clockwise, then the all x term

will have the same sign in both so and so. If the number of circles in each group have

differing parity, one of the labellings will have and odd number of b’s, the other an

even number. So the all x terms in this case will have differing signs. We get the

following classification

Proposition 4.4.1. The states so± so lie in different quantum filtration gradings. If

the number of clockwise oriented circles in the oriented resolution has the same parity

as the number of counter-clockwise oriented circles, then so ± so lives in grading

n+ − v(T (D)) + 1± 1. Otherwise, so ± so lives in grading n+ − v(T (D)) + 1∓ 1 .

More can be said about these particular states. Each term in so±so has congruent

quantum grading mod 4. This gives us an easy way to determine the representatives

combinatorially. We simply need to express all terms with a given number of x’s and

1’s with the appropriate signs, which are forced due to alternate labellings of adjacent

circles. So, so ± so is generated given by all terms with an even number of x’s (with

appropriate signs) and so ∓ so is given by all terms with an odd number of x’s.

Now back to the maps we used to create our bounds. The image of this map is

the alternate labeling of circles by a’s and b’s. Thus the image of our map is the

two states so and so. Thus their sum and difference is in the image as well. In fact,

the image of 1 under the given map will always be the higher of the two quantum

gradings, for degree reasons. We can see this also by the fact that if we feed a 1

into the map, that the all x term does not appear. So, the image of 1 under the

constructed map is given by the sum of terms with an appropriate number of x’s and

signs based on the parity of the number of circles in the oriented resolution.

We now combine this information about positive diagrams with the general con-

struction of our map. The constructed map simply copies this idea to each connected

component. The exception being components with only one vertex, which simply

get the labeling of 1 in the resulting state. So the image of the map is the tensor

product of the above states for each connected component of the graph. The signs

are determined by the connectivity of the graph and the parity of each connected
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component.

We conclude this section with an example. The maps for the 41 knot given in

figure 4.5 will yield the following states. When we feed the state 1 into the map, the

output is given by x⊗ 1⊗ 1− 1⊗ x⊗ 1. Feeding in the state x results in the output

1⊗1⊗1−x⊗x⊗1 (thanks to the fact that x2 = 1). These two states have quantum

gradings −1 + 1 + 1 = 1 and −1− 1 + 1 = −1, respectively, giving a lower bound of

0 ≤ s(41). Since the diagram is alternating and hence homogeneous, Abe’s theorem

indicates that the s invariant for this knot is 0 and the Lee homology is realized by

those states.



Chapter 5

Positive Braids and Thickness

In this chapter we show that the homological thickness of (the closure of) a positive

braid is related to the Garside index of the braid. This gives more positive evidence

toward one of Khovanov’s conjectures stated in [Kho03]. His conjecture states that

all prime braid-positive knots other than the T (2, 2k + 1) torus knots are Khovanov

thick. In [Sto07], Stosic showed that all other torus knots are thick. We widen the

class of braid-positive knots which are thick to braids which have a torus-like twist

anywhere in their presentation. This class also includes all known thick torus knots.

5.1 Garside Powers and Thickness

There are many useful classes of knot diagrams in knot theory: alternating di-

agrams, quasi-alternating, and as seen in the last chapter, homogeneous diagrams.

We now discuss another relevant type of diagram, this time for braid-positive links.

The key element in our thickness result is a normal form presented by Garside as a

solution to the word problem for positive braids. For each n ∈ Z, the braid group Bn

has a special element ∆n called the Garside element. This element can be written

∆n = (σ1)(σ2σ1) . . . (σn−1 . . . σ1).

Illustrated below is ∆4, an element of B4

45
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These elements can also be described inductively, using the natural inclusion of

braid groups Bn ↪→ Bn+1 where we include a braid on the first n strands. We can

describe ∆n as

∆n = ∆n−1(σn−1 . . . σ1)

We, again, illustrate this with our 4 strand example

=

The Garside element is also known as a half twist. The half twist has the following

commutation relation ∆nσi = σn−i∆n. Thus a full twist, ∆2
n, commutes with each

generator σi and hence each braid. The full twist ∆n generates the center of the braid

group Bn.

Δn Δn=

Each braid, whether positive or not, has a special form called the Garside normal

form.

Proposition 5.1.1 (Garside). Any braid b ∈ Bn can be written in the form ∆k
nb

+

where k ∈ Z and b+ ∈ B+
n .

Proof. We can replace the inverses of the generators, σ−1
i , with a conjugate braid

of the form ∆−1b+
i for some b+

i ∈ B+
n (One writes ∆−1

n ∆n and omits one positive

exponent to do so). We can then collect all of the powers of ∆n on the left using the

commutation relations. The resulting braid is of the desired form as the commutation

relations do not change the exponents of the σi
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By pulling out powers of ∆n from b+ and using cancellations of the form ∆n∆−1
n =

Id, one obtains a minimal presentation of the form ∆k
nb

+ where b+ has no factors of

∆n. We call k, the the exponent of the Garside element in the minimal presentation,

the Garside index of the braid. Note that k can be positive or negative. In the case

of positive knots, k ≥ 0.

We will now outline some facts about this special element of the braid group as it

relates to links. The primary fact we will make use of is that in the given presentation

of the half twist, each strand crosses each other strand once and only once. With the

standard orientation of the braid, each of the crossings in the half twist is positive.

We will be considering the Khovanov complex of positive braids, so we must consider

what happens to the braids when a plat (that is to say the unoriented resolution of

a positive crossing) is placed beside a half twist. A plat is a braid like element of the

following form

Plats are described as turn-backs and are not elements of the braid group, but

are necessary objects when studying links as braid closures. Let ei represent the plat

which connects strand i to strand i+ 1. The Garside element behaves very well with

regards to turn-backs. When a plat is placed adjacent to a Garside element, the plat

can be “pulled” through the braid element to the beginning of the link element. The

plat also remains connected to the two strands it was connected to at the end of the

Garside element once pulled through the diagram. This reduction in the number and

type of crossings will be useful in computing the homology of certain links via the

long exact sequences.

-~

When given the standard orientation, the Garside element ∆n has n(n − 1)/2

crossings, each of which is positive. We now give a count of negative crossings when

a plat placed next to a Garside element. The presence of the plat means we cannot
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give the braid the standard orientation.

Lemma 5.1.2. Let b = ∆neib
′ be a generalized braid element with b, b′ ∈ Bn. The

link formed by the closure of b will have at least n − 1 negative crossings, regardless

of orientation.

Proof. We inspect the standard presentation of the Garside element for this result.

Give the resulting braid any orientation. Due to the plat, the two strands connected

by the plat must have opposite orientation. Each strand in the Garside element

crosses each other strand exactly once. Therefore, one of the plat connected strands

must produce a negative crossing with each other strand in the braid, of which there

are n − 2. The plat strands also cross each other, providing the n − 1st negative

crossing.

Since a plat can pull through a Garside element and the result is a plat on the

same two strands, a plat can be pulled through multiple adjacent Garside elements.

Proposition 5.1.3. A power of the Garside element ∆k
n with k ≥ 0 adjacent to a

plat has at least k(n− 1) negative crossings, each of which can be removed by isotopy.

Proof. Each copy of the Garside element has two strands which ultimately connect

to the plat, giving them opposite orientation. Thus the lemma above provides the

n−1 negative crossings for each power of the Garside element. The plat can be pulled

through each copy and thus can be isotoped out of the diagram.

The skein long exact sequence in Khovanov homology behaves well with the ability

to pull plats through the half twist. It allows us to the show that positive crossings

which occur adjacent to the half twist have no effect on the homology groups in

low homological dimensions. First, a lemma regarding the homology of an unshifted

complex.

Lemma 5.1.4. If a diagram D is can be isotoped to a diagram D′ with l fewer negative

crossings, then H i(D) = 0 for all i < l.

Proof. Let n− = n−(D) and n′− = n−(D′). Then l = n− − n′−. By prop. 3.3.1,

H(D′)i = 0 for each i < n′−. So H(D)i = 0 for i < n′− as these diagrams represent

the same link. Thus H(D)i = 0 for i < l.
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With this assertion, we can prove the following.

Lemma 5.1.5. Let b ∈ B+
n . Let b1 = ∆k

nb and b2 = ∆k
nσjb for any 1 ≤ j ≤ n− 1 and

k ≥ 0. Then

H i,q(b1) = H i,q+1(b2) for i ≤ k(n− 1)

Proof. We use the long exact sequence for a distinguished positive crossing, that

crossing being σj. The crossing is positive and thus we use the positive crossing long

exact sequence

→ H i−1,j−1(K1)→ H i,j(K)→ H i,j(K0)→

→ H i,j−1(K1)→ H i+1,j(K)→ H i+1,j(K0)→ .

Since the unoriented resolution K1 features a plat adjacent to a Garside element, we

know that the chain complex corresponding to K1 is homotopy equivalent to one with

n − 1 fewer negative crossings. Hence H i,j(K1) = 0 for all i < n − 1. This means,

that for such i < n− 1, the long exact sequence reduces to

→ 0→ H i,j(K)→ H i,j(K0)→ 0

showing that the unshifted homological groups of K and K0 are isomorphic for i <

n−1. We can use the fact that k(n−1) crossings are removable to establish this fact

for higher powers of the Garside element.

So, we can add crossings to a positive braid presentation containing a half twist

while preserving low homological dimension. We will use this observation to establish

thickness of positive braids with certain Garside normal form.The method of proof we

use to establish thickness follows that of Stosic. The following result is from [Sto07],

where he established the thickness of torus knots.

Theorem 5.1.6. (Stosic) Let K = Tp,q, 3 ≤ p ≤ q ∈ Z be a torus link. Then

rank H4,(p−1)(q−1)+5(Tp,q) > 0

This fact, that the fourth homology group is nontrival in the given quantum

grading, provides the required thickness. This gives us an element on the j − 2i =

(p − 1)(q − 1) + 5 − 2(4) = (p − 1)(q − 1) − 3 diagonal. Two other diagonals are

provided by the fact that the s-invariant of a positive braid has quantum grading
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(p−1)(q−1), so the corresponding homological representatives lie in quantum grading

(p−1)(q−1)±1. We then have that the homology of the (p, q) torus knot occupies at

least three diagonals and are thus Kh-thick. This result shows that not only are most

torus knots Kh-thick, but that the thickness occurs in low homological dimension. We

will establish a similar fact for many braid positive links using the Garside normal

form. This will allow us to extend the thickness results to any braid with a relatively

low Garside index.

We begin by calculating the Khovanov homology of the closure of the Garside

braid. Note that the Garside braids are defined inductively and the closure of ∆n

relates to ∆n+1 quite nicely. In the given presentation of the Garside element ∆n+1,

only one power of σn is present. Therefore, in the closure of the braid, this crossing is

simply a Markov stabilization and can be removed without affecting the closure type

of the braid. The result will be a braid whose closure is given by ∆n with a few extra

positive crossings. As we have seen above, those crossings can be removed to show

that the first few homology groups are in fact the same for ∆n+1 and ∆n.

Proposition 5.1.7. For the closures of the Garside elements ∆n+1 and ∆n, we have

Hi,j+n−1(∆n+1) = Hi,j(∆n) for i ≤ n− 1

Proof. Since ∆n+1 = σn · · ·σ1∆n we can compare their respective closures. The

closure of σn−1 · · ·σ1∆n on n strands is the same link as the closure of ∆n+1 so their

homology groups agree. The braid σn−1 · · ·σ1∆n is conjugate to ∆nσn−1 · · ·σ1, so the

have the same closure. We can then use the above lemma to remove each σ on the

right of the ∆n.

We will now establish the thickness of the closure of the Garside element for

small n by presenting the corresponding Poincaré polynomials in table 5.1. The

Poincaré polynomials are too large for the table, so they are truncated after the

fourth homological degree. The thickness of their respective homologies is established

by that point. The table also shows stability (after a quantum grading shift of n− 2)

of the first homology groups for each of the closures. We can see that for for n ≥ 5,

the closures of the Garside delta braids are indeed thick. We can also see that the

squares of Garside delta braids are also Kh-thick for n ≥ 3.
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Table 5.1: Thickness of Garside Braid (∆n) Closures

n Poincaré Polynomial S = { 2i - j}

2 q−1 + q {−1, 1}

3 1 + q2 + q4t2 + q6t2 {0, 2}

4 q2 + q4 + q6t2 + q10t3 + q10t4 + q12t4 {2, 4}

5 q5 + q7 + q9t2 + q13t3 + q11t4 + 2q13t4 + . . . {3, 5, 7}

6 q9 + q11 + q13t2 + q17t3 + q15t4 + q17t4 + . . . {5, 7, 9, 11}

7 q14 + q16 + q18t2 + q22t3 + q20t4 + q22t4 + . . . {8, 10, 12, 14, 16}

8 q20 + q22 + q24t2 + q28t3 + q26t4 + q28t4 + . . . {12, 14, 16, 18, 20, 22}

9 q27 + q29 + q31t2 + q35t3 + q33t4 + q35t4 + . . . {15, 17, 19, 21, 23, 25, 27, 29}

Table 5.2: Thickness of squares of Garside Braid (∆2
n) Closures

n Poincaré Polynomial S = { 2i - j}

2 1 + q2 + q4t2 + q6t2 {0, 2}

3 q3 + q5 + q7t2 + q11t3 + q9t4 + 3q11t4 + 2q13t4 {1, 3, 5}

4 q8 + q10 + q12t2 + q16t3 + q14t4 + q16t4 + . . . {4, 6, 8, 10}

5 q15 + q17 + q19t2 + q23t3 + q21t4 + q23t4 + . . . {7, 9, 11, 13, 15, 17}

6 q24 + q26 + q28t2 + q32t3 + q30t4 + q32t4 + . . . {12, 14, 16, 18, 20, 22, 24, 26}
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These lemmas establish the following facts. If a positive braid has a high enough

Garside power relative to its braid index, then the knot is Kh-thick. To put it precisely,

Theorem 5.1.8. Let b ∈ B+
n be a positive braid. Let b = ∆k

nb
+ be the Garside normal

form of the braid. If n ≥ 3 and k ≥ 2 or if n ≥ 5 and k ≥ 1, then the link formed by

the closure of b is Kh-thick.

Proof. We apply the above lemma to remove each positive crossing in b+. The thick-

ness of a Garside braid appears in homological degree 4, so all that is required is

(k)(n − 1) > 4. This occurs when n ≥ 5 and k ≥ 1 or when n ≥ 3 and k ≥ 2. The

closure of the braid then has the same first four homology groups as the corresponding

Garside Power (up to some positive quantum grading shift), and the Kh-thickness is

present.

Thus we obtain many Kh-thick knots. A result of Sullivan [Sul97] states that

positive braids with a half twist, whose closures are knots, are prime. Thus we can

create thick knots by starting with Garside powers and closing the positive braid to

a knot. This result reestablishes the fact that the torus knots T (p, q) for p, q ≥ 3 are

thick as the T (p, q) torus knot (p < q) can be obtained as the closure of the braid

∆2
pb for some positive braid b ∈ Bp.



Chapter 6

Injectivity of Homology of Certain

Links

In this chapter we will show that under certain conditions, cobordisms will help us

determine the homology groups of certain links. The question we ask is what kind of

homological comparisons can we get using cobordisms. In general, a cobordism with

high genus will destroy much of the homology present, simply for degree reasons. It

is because of this that we restrict our studies to cobordisms with low genus.

6.1 The Reidemeister Invariance Maps

In Dror Bar-Natan’s paper [BN05], he gives geometric descriptions of the maps

which correspond to the Reidemeister moves. These maps and their inverses show

that two complexes which differ by a Reidemeister move have homotopy equivalent

chain complexes. We will make extensive use of these maps and their properties in

the next section. The key step in these relations is the behavior of a merge followed

immediately by a split. This composition will result in a tube connecting each of the

original components. First we need a way to describe our chain maps diagrammat-

ically. As in chapter 4, the dotted surface represents one half of the related surface

with genus.

53
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Proposition 6.1.1. Let D be a link diagram. The map given by

on one component and identities elsewhere is a chain map from C(D) to itself.

Proof. Call this map f : C(D) → C(D). What we show here is that functorial

cobordisms between knots are in fact maps of A-modules. The map f is the identity

on all components but the marked one, so we must investigate how the dotted piece

interacts with each part of the differential. The dot acts by multiplication by x on

the appropriate tensor factor of A. The differential corresponding to the dotted piece

can either be an identity, split or merge. In any of these cases, the action of the dot

commutes with the differential.

We can therefore describe a self chain map on a complex C(D) by a dotted diagram

of the link. The dot indicates which component to place the one half saddle in the

resulting chain map.

Using the neck cutting relation, we get the following relationship:

= +

The composition of two saddles results in a tube. Using the neck cutting relation

on this tube, we can see that the resulting morphism is a sum of other maps. These two

maps are each dotted identity maps, one term for each side of the merged components.

We will adopt the following naming convention for these maps. We will not be

using the Reidemeister three move. In the case of Reidemeister moves one and two,

one of the two related diagrams has more crossings. Our naming will be such that ρ1

and ρ2 map to the diagram with more crossings. The maps the other direction will

be designated with a prime, ρ′1 and ρ′2. Finally, the diagram with an extra crossing

in the Reidemeister one move will differ by having either extra negative crossings or

positive crossing. We denote these (when appropriate) by a superscript plus or minus.

For example, the map ρ′1 is the map from the diagram with and extra positive loop

to the diagram without.
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We present these cobordisms here for reference. First, ρ+
1 , the Reidemeister I

move for a positive crossing

ρ1
+

2

Second, ρ2, the second Reidemeister move

Idρ2

The following are the chain maps themselves, without the complexes present for

clarification
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ρ1
+=2

ρ  =2

The main technique we will use will be to compose an invariance map with its

inverse. In the proof that the chain complexes are indeed homotopy equivalent, one

uses a chain homotopy h. The terms of this homotopy are zero in the compositions we

are interested, namely the compositions ρ′1 ◦ ρ1 and ρ′2 ◦ ρ2. One can easily check that

these compositions all result in the identity map on the components involved. For our

purposes, the maps will also be decorated with dots. So we must investigate how the

maps behave under the presence of dots, that is what does the composition ρ′1 ◦ f ◦ρ1

look like, where f is an identity map with a dotted component. We investigate the

composition of the first Reidemeister map with dotted identities.

=2

This composition shows that if we twist a strand, compose with a dotted iden-

tity, then untwist the strand, the result is again a dotted identity (with an overall

negative sign). So the dot anticommutes with a Reidemeister I move. The resulting

composition is similar for a negatively twisted Reidemeister I move. For the second

Reidemeister move,

=

+

- - -=

The action of the dot on the other strand in the Reidemeister two move can be

determined from symmetry. So, what this shows is that under composition with a

dot, the dot remains in the Reidemeister one type moves and “pulls through” the

Reidemeister two moves. Again, overall signs appear, but signs can be inverted. It is
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also clear, given the local nature of these moves, that a dot located away from these

moves remains at its original location. These maps lay the groundwork for the next

section. We will repeatedly use these maps to determine the relationship between

the homology of diagrams related in specific ways. What we have shown is that the

action of dotted cobordism (up to overall sign) commutes with Reidemeister move

maps.

6.2 Injectivity Result

In this section we describe the construction of diagrams which will ultimately have

related homology. The actions we describe will be called “ribbon moves”. We will

essentially pull ribbon like pieces of link diagrams using Reidemeister moves to obtain

related diagrams. The prototype example will be the one in figure 6.1, showing a

relationship between a diagram of the unknot and a diagram of the knot 61. We

will consider changes between diagrams which are isotopies and Reidemeister moves

of type one and two. Reidemeister III will be unnecessary in these constructions.

We may always assume that the ribbon is “thin” enough to avoid needing the triple

point move. Pulling the ribbon past a double point can be accomplished using two

sequential Reidemeister II moves near the crossing instead. The ultimate goal is to

construct an identity cobordism from a diagram to itself which factors through the

homology associated to another knot diagram, generally with higher crossing number.

We will devote the rest of the section to proving the following theorem.

Theorem 6.2.1. Let L1 and L2 be links. Let D1 be a diagram of L1∪U and Dn+1 be a

diagram representing L2. Suppose D1, . . . , Dn+1 are a sequence of diagrams where Di

differs from Di+1 by isotopy and a single Reidemeister I or II move for i = 0, . . . n−1

and that Dn differs from Dn+1 by a merge between a component of L1 and the added

unknot. Then the induced chain map is an injection:

Hi,j(L1) ↪→ Hi,j(L2) for all i, j

We start with the diagram D0, which is a diagram from L1. We can map into

the chain complex for the diagram D1 using a map which is the identity on L1 and
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Figure 6.1: Constructing the 61 knot with ribbon moves
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a birth to the unknot. Each subsequent diagram in the series D1, . . . , Dn+1 is gotten

by performing a Reidemeister I or II move on the selected strand of L1.

K
Figure 6.2: The diagram D1

We continue using the Reidemeister I and II moves until we reach diagram Dn.

At each stage, we get a chain map fi : C(Di)→ C(Di+1) and a resulting composition

from f0,n : C(D0)→ C(Dn). The final move is to perform a merge between the chosen

strand and a piece of the unknot. So we get a chain map from C(D0) → C(Dn+1)

which is determined by a birth, a series of Reidemeister moves, and finally a merge

between link components. We show that this map is injective by providing an in-

verse map. The last operation performed in the composition was a merge between

two link components. This means the first operation in the reverse process will split

the two link components. As shown in the section 1 of this chapter, performing a

merge and split in succession one obtains a neck which can be cut. The resulting

map from C(Dn) → C(Dn), obtained by neck cutting, can be described by dotted

diagrams, one dotted on the link component at the merge point, the other dotted on

the unknot component. To construct the map back to the original chain complex,

we simply undo all the Reidemeister moves in reverse order. We can perform inverse

Reidemeister moves to get maps from C(Di+1) to C(Di). At each stage of the com-

position, either the Reidemeister involves a dotted strand and the dot will “carry”

through the diagram, or the Reidemeister move occurs away from the dot and the

dot remains on the map. The result of the total composition from C(D0) → C(D0)

will be a birth, Reidemeister moves, a neck cutting resulting in a pair of dotted maps,

inverse Reidemeister moves, and finally a death. Below is a diagram representing the

composition of the maps from C(D1)→ C(D1) before the birth and death occur.

One can see that the application of the initial birth and final death maps will result
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K K
Figure 6.3: The resulting chain map C(D1)→ C(D1)

in a sphere on the first term and a dotted sphere on the second. Given the relations

in Khovanov homology, the map which contains a closed sphere will result in the 0

map. The second will be the identity map with a closed dotted sphere on C(D0). The

dotted sphere can be removed and replaced with a coefficient of 1. All maps used in

the process were chain maps, so we get that the H(D0) “factors through” H(Dn+1).

Thus the homology injects as desired.

6.3 Examples and Ribbon Knot Construction

A note about the limitations of this technique. The simplest application of this

technique is equivalent to taking the connected sum with an unknot. The homology

of the larger knot clearly injects in this case. The technique does not work for general

connected sums, as we need to be able to “cap off” one of the links to get the desired

identity on one of the components. Even if one of the components is slice (that is it

bounds a locally flat disc in in D4) the resulting induced map may not be injective

on homology. The result can be applied in succession to obtain a chain of injecting

homologies. For example, we have the following two stage construction of a ribbon

knot where the ribbon moves attaching the new discs are highlighted.

The resulting injection of homologies is best observed by looking at the coeffi-

cients of the Poincarè polynomials of the corresponding knots. The terms in the

second polynomial corresponding to terms in the first are highlighted. The Khovanov

homology of the knot in the upper right portion of the diagram is given by:

2

q
+ q +

1

q5t2
+

1

qt
+ qt+ q3t+ q5t2 + q5t3 + q9t4

and the homology of the knot in the lower half of the diagram is given by:
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Figure 6.4: Two stage ribbon knot construction

4

q
+ 2q +

1

q5t2
+

1

q3t
+

1

qt
+ 4qt + 3q3t + 5q3t2+4q5t2 + 6q5t3

+5q7t3+6q7t4 + 6q9t4 + · · ·+ q21t10

The homology of the knot indicates that it is not equivalent to a known ribbon knot

with fewer than 12 crossings. We also have an example to show that this construction

can be used to construct prime knots which are not ribbon. We show a ribbon move

on a diagram of the trefoil to create the knot 10147. Again, the ribbon move used to

attach the unknot is highlighted.

We show the homology of the trefoil :

q + q3 + q5t2 + q9t3

injects into the homology of the knots 10147:
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Figure 6.5: Construction of the knot 10147 from the trefoil knot

3q + 3q3 +
1

q7t4
+

1

q5t3
+

1

q3t3
+

2

q3t2
+

1

qt2
+

2

qt
+

2q

t
+

2q3t+ 2q5t+ 2q5t2+2q7t2 + q7t3 + 2q9t3 + q11t4

One should also note that the injectivity result has no analog for the Jones polyno-

mial, nor does the Jones polynomial indicate whether an injection is possible. Com-

paring the Jones polynomial of the trefoil

− 1

q9
+

1

q5
+

1

q3
+

1

q

to the Jones polynomial of the 10147 knot,

1

q7
− 1

q5
+

1

q3
− 1

q
+ q + q3 + q7 − 2q9 + q11

we can see that the exponents do not align. Moreover, the coefficients q−5 and q−1

differ in sign.

Another question one may ask is whether or not injection of homology is a rare

occurrence. To determine if an injection is possible, one can compare the coefficients

of the respective Poincarè polynomials of knots. As shown above, the construction can

be used to construct prime knots from other knots. We ran a check to see how likely

this occurrence is by comparing homologies of prime knots with low crossing number.

Without regarding differing orientations, there are 802 prime knots with fewer than

12 crossings. A computer comparison of the ranks of the Khovanov homology of each

of the prime knots with fewer than 12 crossings shows that injection is only possible

about 7% of the time. This is not just injectivity of certain homological and quantum

degrees, but the entire homology of the knot. This fact is meant to illustrate the
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bigrading of the homology is quite a restriction when considering comparing homology

groups.

The previous example shows that we can construct non-ribbon knots using this

technique by starting with a non-ribbon knot. If we restrict ourselves to constructions

starting with the unknot, one can ask which ribbon knots can be created using this

method. Any knot created using this technique starting from the unknot will clearly

be ribbon. In Kawauchi’s book [Kaw96], he presents a table which shows that every

ribbon knot with fewer than 11 crossings can be obtained using this construction with

only one iteration. We give a presentation of the ribbon knot 1099 from that table to

demonstrate this construction.

Figure 6.6: Construction of the knot 1099

The next natural question is whether all ribbon knots can be created iteratively

a single disk at a time. By definition, a ribbon knot K can be given by the boundary

of a smooth disc in D4 such that ∂D = K and D admits no maxima. So, Morse theo-

retically, the disc bounding the ribbon knot will only have minima (which correspond

to the addition of circles in our construction) and saddles. This leads to the following

definition regarding the construction of ribbon disks. Let K be a ribbon knot in S3

and let D be a smooth disk in D4 with ∂D = K admitting no maxima. Let m(D) be

the number of saddles in the given presentation of D.



64

Definition 6.3.1. Let K be a ribbon knot in S3. The saddle number of K, denoted

sn(K), is given by

sn(K) = min{m(D)|D is a smooth disc in D4 with no maxima such that ∂D = K}

The diagrams in [Kaw96] show that sn(K) = 2 for all ribbon knots with fewer than

11 crossings. We present a knot K in figure 6.7 with sn(K) ≤ 2. The construction

uses 3 discs and two saddles, which can not obviously be added in succession.

Figure 6.7: Construction of a ribbon knot using three minima and two saddles

Ribbon knots and ribbon cobordisms (cobordisms without maxima) form a cat-

egory. Khovanov homology provides a functor from this category to the category of

abelian groups. The maps induced by this construction are taken to injective maps

under this functor. The construction is directional, but it is unclear whether the

construction can “simplify” a knot. Showing that the functor applied to the sur-

faces made using this construction are actually proper injections would answer this

question.

6.4 Future Work

The use of ribbon moves to construct knots and knot cobordisms leaves many

directions for future work. One of the first questions to investigate is whether or not

this construction can create a knot that has a lower crossing number. It is still an open

question whether the crossing number is additive under connected sum [Lac09]. Using
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the crossing numbers of the knots to determine their complexity would accomplish

this goal. Another way to measure complexity is to compare the total ranks of the

Khovanov homology of the knots (i.e. comparing Kh(K)(1, 1) for each knot K).

Experimentally, the knots created using this technique always have higher total rank.

For example, Kh(31)(1, 1) = 4 where Kh(10147)(1, 1) = 28.

The difference in total rank also appears to be related directly to the complexity

of the ribbon move. Twisting the ribbon using a Reidemeister I move experimentally

results in a shift in homological degree, but the number of Reidemeister II moves used

appears to increase the total rank. We present two ribbon knots in figure 6.8 both

of which represent 10 crossing ribbon knots. The total homological rank of the two

knots are Kh(103)(1, 1) = 26 and Kh(1035)(1, 1) = 50. By comparison, the simplest

such ribbon knot has total rank Kh(61)(1, 1) = 10.

Figure 6.8: Ribbon presentations of the knots 103 and 1035

The total rank of the homology appears to be more aligned with the complexity

of the ribbon presentation rather than the crossing number of the knot. The Alexan-

der polynomial is well known to encode strong topological properties. For example,

the Alexander polynomial gives an upper bound for the 3-genus of a knot and the

Fox-Milnor condition starts that the Alexander polynomial of a ribbon or slice knot

admits symmetric factorization. No such analog is known for the Jones polynomial or
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Khovanov polynomial. The total rank of the Khovanov homology appears to pick up

the complexity of the ribbon presentation of the knot. So, one can ask how surfaces

bounding the knot affect the total rank of the homology. To illustrate this relation-

ship further, we provide a table of the total ranks of the ribbon knots with fewer than

11 crossings along with a measure of the complexity of their ribbon presentations. We

define rs(D), the ribbon number, of a ribbon diagram D to be the number of ribbon

singularities in the diagram D. For example, the ribbon numbers of the diagrams in

figure 6.8 are 4 and 6 respectively. We use the diagrams present in Kawauchi’s book

for the purpose of computing the ribbon number.

Table 6.1: Total ranks of ribbon knots of fewer than 11 crossings

Knot Total Rank rs(D) Knot Total Rank rs(D)

61 10 2 1048 50 6

88 26 4 1075 82 8

89 26 4 1087 82 8

820 10 2 1099 82 8

927 50 6 10123 122 10

941 50 6 10129 26 4

946 10 2 10137 26 4

103 26 4 10140 10 2

1022 50 6 10153 18 3

1035 50 6 10155 26 4

1042 82 8

The table presents an interesting correspondence between the ribbon singularity

number and the total rank. This is indicative of the Khovanov homology picking

up information regarding bounding surfaces and their embeddings. The table also

indicates a couple of patterns in the total rank of ribbon knots. First, a definition.

Definition 6.4.1. We say that knot K of square rank if Kh(K)(1, 1) = n2 + 1 for

some integer n.

One will notice that many of the total ranks in the table are of the form (rs(D) +

1)2 + 1. This does not hold for all ribbon knots. One can construct a ribbon knot D
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with rs(D) = 7 and Kh(D)(1, 1) = 626 = 252 + 1. As we can see from the total rank

of the ribbon knot 10153, not all of the ribbon knots are of square rank. One may

ask how often knots are of square rank. Amongst prime knots with crossing number

less than 12, square rank knots are rare. It is a known fact that for any knot K, the

knot K#mK is ribbon. Calculating the Khovanov homology for all knots of the form

K#mK, where K is prime and has fewer than 12 crossings, one sees that many of

the total ranks are squares plus one. There are knots which are not ribbon but are

of square rank. This identification does not give a criterion for being ribbon, but it

is worth investigating why so many ribbon knots are of square rank, and so many

non-ribbon knots are not.

Another observation is that for each ribbon knot K in the table, Kh(K)(1, 1) ∼= 2

mod 8. This does not hold for other knots. For example, the total rank of the

trefoil knot is 4. The mod 8 congruence of the total rank was verified for all knots

K#mK where K is a prime knot with fewer than 12 crossings. Notice also that

Kh(31)(1, 1) ∼= Kh(10147)(1, 1) mod 8 and the two are related via a ribbon move.

This observation leads us to the following conjectures.

Conjecture 6.4.2. If K is a ribbon knot, then

Kh(K)(1, 1) ∼= 2 mod 8

The ribbon construction is an example of a concordance between knots. One may

also make the following conjecture.

Conjecture 6.4.3. If K1 is concordant to K2, then

Kh(K1)(1, 1) ∼= Kh(K2)(1, 1) mod 8

The phenomenology discussed in this section is quite surprising. If these tech-

niques or observations can be used to find a criterion for ribbon knots, Khovanov

homology will become a better tool for studying the potential gap between ribbon

and slice knots. The empirical evidence that Khovanov homology is detecting the

complexity of smooth bounding surfaces of knots is worthy of further study.



Bibliography

[Abe10] Tetsuya Abe. The Rasmussen invariant of a homogeneous knot.
arXiv:1003.5392v1 [math.GT], 2010.

[BN05] Dror Bar-Natan. Khovanov’s homology for tangles and cobordisms. Ge-
ometry and Topology, 2005.

[BN07] Dror Bar-Natan. Fast Khovanov homology computations. J. Knot Theory
Ramifications, 2007.

[CMW09] David Clark, Scott Morrison, and Kevin Walker. Fixing the functoriality
of Khovanov homology. Geom. Topol. 13, 2009.

[Jac04] Magnus Jacobsson. An invariant of link cobordisms from Khovanov ho-
mology. Geometric Topology, 2004.

[Kaw96] Akio Kawauchi. A Survey of Knot Theory. Birkhäuser, 1996.
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