
UC Irvine
UC Irvine Previously Published Works

Title
VADRE: A Visual Approach to Performance Analysis of Distributed, Real-time Systems

Permalink
https://escholarship.org/uc/item/4sh2t92h

Journal
Proceedings of the 2005 International Conference on Modeling, Simulation and Visualization
Methods, 1

Authors
Harmon, Trevor
Klefstad, Raymond

Publication Date
2005-06-27

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4sh2t92h
https://escholarship.org
http://www.cdlib.org/

VADRE: A Visual Approach to Performance
Analysis of Distributed, Real-time Systems

Trevor Harmon and Raymond Klefstad
Department of Electrical Engineering and Computer Science

The Henry Samueli School of Engineering
University of California, Irvine

608 Engineering Tower
Irvine, CA 92697-2625

{tharmon, klefstad}@uci.edu

Published in:
Proceedings of the 2005 International Conference on Modeling, Simulation and Visualization Methods.

Arabnia H. R., Editor. June 2005, Las Vegas, USA. ISBN 1-932415-70-X. 272 pages.

Abstract— Distributed, real-time, and embedded (DRE)
systems are becoming increasingly complex, and as a result,
performance analysis of such systems is becoming increas-
ingly difficult. Current profiling tools are ill-equipped to
analyze DRE system performance, primarily due to the
distributed nature of these systems. We have begun to
address this problem by forging the first in a suite of tools
that we call VADRE (vā'dUr): Visual Analysis of Distributed,
Real-time, and Embedded systems. Like a CAT scan for
distributed systems, these tools will provide a simplified
and highly visual means of inspecting and understanding
a system’s performance.

To demonstrate the feasibility and potential benefits of
VADRE, we have developed the first tool in the suite. Called
Jango, it is specialized for the CORBA domain. It can
automatically collect timing data from a CORBA-based
distributed system and display a timeline of remote method
calls. With input from the user, it can run a basic deadline
checking algorithm, revealing precisely when and where a
deadline is missed. This technique simplifies and quickens
the process of testing a distributed system for adherence
to real-time constraints. As a case study in validating the
capabilities of Jango, we have applied it to a robotic DRE
control system and discuss the results here.

I. BACKGROUND

For stand-alone software, a variety of useful tools for
performance analysis have become available in recent
years. Valgrind [1], FunctionCheck [2], and JProbe [3],
for example, collectively known as profilers, usually
come equipped with powerful and mature user interfaces
that simplify the process of performance analysis. Armed
with these tools, a developer can more easily instrument
code under observation, collect timing measurements,
and graph the results.

Profiling code in this manner helps uncover hidden
inefficiencies that, when compounded, greatly reduce
performance. Finding and eliminating these buried bot-
tlenecks naturally makes the software run faster, but it

can also lower resource utilization to the point where
additional features and services can be added. A crypto-
graphic system, for example, may only be able to support
512-bit encryption because a longer key length would
exceed the abilities of the processor. With sufficient
profiling, a developer could reduce CPU utilization to a
point where the encryption strength could be increased.
Thus, performance analysis is vital not just for improving
the observed performance of a system; it can also be the
catalyst for new capabilities of the software that would
not otherwise be possible.

These seemingly sophisticated tools have an Achilles’
heel, however. As soon as an application is distributed
across a network, today’s profilers become ineffective.
They are typically designed for monolithic, stand-alone
applications, and they fail to address the unique require-
ments of networked software. While some profilers can
attach to processes remotely through a network, this does
not solve the problem, as profiling still takes place within
a single node. Other tools, such as Ethereal [4], can
provide performance analysis of a network by examining
individual packets, but this low level of detail is gener-
ally not useful for developers of distributed, real-time
applications, who need to answer higher-level questions
such as:

• Which process in my system is causing the most
network congestion?

• Where and when does my system miss its real-time
deadlines?

• Why does CPU utilization on this node suddenly
rise every three seconds?

• Or simply: What in the world is my distributed
system doing?

Today’s performance analysis tools are ill-equipped to

answer these questions. They simply cannot handle mul-
tiple pieces of code on multiple devices, all running in
parallel. With this type of concurrency, the system state
is unpredictable; performance bottlenecks may occur one
day and disappear the next. In the future, the analysis
problem will only grow worse: Distributed, real-time
systems are becoming increasingly complex, and without
better profiling tools, developers will find increasing
difficulty in solving performance problems.

II. M OTIVATION

In our research, we have observed first-hand the limi-
tations of current performance analysis tools. We develop
middleware for distributed, real-time, and embedded
(DRE) systems, and the most sophisticated profiler we
have at our disposal is the simple “get current time”
command. We can, for example, determine the round-
trip time of a remote method call by inserting two such
commands, one before and one after the call, and then
computing the difference.

In order to analyze the performance of a distributed
application that uses our middleware, we must scatter
dozens of these command pairs throughout a distributed
system, hoping to collect enough timing data that tells
us where the bottlenecks lie. It is a tedious and error-
prone task: Insert too many statements, and the timing
trace becomes nearly unreadable; insert too few, and a
vital piece of timing data may be lost. And no matter
how effective our logs are, we are still faced with a
monumental maintenance problem. Whenever our code
changes, our logs must change as well, wasting time and
possibly breaking the delicate performance traces we had
constructed.

We knew that this method of performance analysis
was both inadequate and inefficient, and we have been
investigating alternative techniques. Our research in this
area has led us to what we believe is the key to effective
performance analysis for DRE applications: the power
of visualization. With a highly graphical depiction of a
system, rather than the text-based approach provided by
traditional tools, developers could more easily pinpoint
bottlenecks, detect missed deadlines, and ensure that
performance requirements are met. Thus, our approach
would provide something like a “CAT scan” for the DRE
domain, where the patient is the system and the doctor
is the developer.

With this motivation in mind, we have taken the initial
steps in developing and refining our visual approach to
performance analysis. Our goal is to develop a suite
of tools, which we refer to collectively as VADRE
(v ā'dUr), or Visual Analysis of Distributed, Real-time, and
Embedded systems. They will be analogous to traditional
debugging and profiling tools but enhanced for the
unique requirements of distributed, real-time systems.

With VADRE, the objective is to provide a user-friendly
graphical view of highly complex distributed systems,
augmented with low-level performance metrics, without
overwhelming the developer with stack traces and timing
logs.

The visual approach we advocate here should not be
confused with the graphical user interfaces already avail-
able for many profiling tools. KProf [5], for instance,
is a graphical front-end that can translate the flat text
dumps generated by gprof [6] or FunctionCheck into
two-dimensional function call graphs. Massif [7], an-
other graphical profiler, can produce charts showing heap
memory consumption over time. While these graphical
depictions can be very useful, they typically provide
too much detail. With no application-specific knowledge,
they must assume that all data is important, resulting in
complex graphs and hierarchies that can bury the user
in an avalanche of information. And unlike VADRE,
they ignore the problem of distributed applications and
generate data only for a single local process.

III. T HE VADRE CONCEPT

Our visual approach to performance analysis is fun-
damentally different from existing tools. We want to
abolish the traditional, rigid concept of a profiler as noth-
ing more than a histogram of function call frequency.
The computing power available today, even in com-
modity desktop workstations, is capable of much more
sophisticated algorithms for analyzing and visualizing
performance data. Powerful 3D rendering hardware, for
example, is popular for games and scientific visualiza-
tion, but it is underutilized as a software engineering tool.
By applying these highly optimized graphics processors
to the task of visualizing performance data, analysis of
DRE system behavior could be greatly simplified.

A. Structural Visalization

Instead of text-based logs and the occasional two-
dimensional chart, we want to present performance data
as a three-dimensional virtual world that the user can
explore and view from any angle. Each node in the
distributed system would appear as a sphere in this
virtual world, and lines running between the spheres
would represent connections between nodes (e.g., serial
lines or Ethernet cables), as depicted in Figure 1. This
representation of the distributed system is potentially
more natural and intuitive than traditional performance
analysis techniques, for it views the distributed system as
a whole, rather than a disparate collection of individual
performance metrics.

With lines and spheres representing the structure of the
distributed system, we augment this virtual environment
with performance data, drawing as much inspiration as
possible from the natural world. For example, congested

Fig. 1. A visual depiction of a distributed system, such as this concept
art of a three-node control system, can make performance analysis a
much easier task. With a single glance, one can see that the Detector
node is performing most of the work and is in need of optimization. As
the number of nodes increases, the distributed system wouldbecome
more complex, and the size of the performance data would grow, but
these intuitive visual cues would remain, making the analysis a more
tractable task and reducing reliance on text-based logs.

(“hot”) resources, such as a network link full of packets,
are represented by red colors; underutilized (“cold”)
resources, such as an idle processor, are blue. Network
bandwidth is depicted by line size: low-baud serial lines
are thin, while Ethernet connections are fat. Higher CPU
utilization on a node increases the size of the sphere;
lower utilization decreases it.

With this “bird’s-eye-view” of a distributed system,
developers could avoid information overload and see
at a glance where the system is underperforming. The
approach could also reveal interactions between nodes
that conventional profilers would miss, such as increased
CPU utilization in one area of the system causing
network congestion in another.

While a global level of detail is often exactly what a
DRE developer needs when profiling a system, situations
may arise in which a finer grain of performance data
is necessary. For example, a developer may wish to
see more data about the performance of a particular
node. This local-only level of analysis is not prevented
by VADRE; in fact, we believe it should be integrated
directly into the VADRE tool suite. A simple mouse
click on a sphere, for instance, could open a window of
performance data, including function call and memory
usage graphs, generated by a traditional profiling tool.

Thus, the VADRE approach is a hybrid of high-level
and low-level visualization, eliminating the tedious and
error-prone task of sifting through text-based perfor-
mance data. It combines the best of both worlds: a highly

informative yet easily digestible look at the system as a
whole, plus fine-grained performance metrics available
when needed.

B. Temporal Visualization

As defined in Section III-A, tools based on the
VADRE approach address the problem of distributed
performance analysis, but they do not provide any pro-
filing of real-time behavior. In this section, we refine the
VADRE approach for visualization and analysis of the
temporal characteristics of DRE systems.

Temporal analysis is necessary because developers in
the DRE domain often must know whether messages
passed from one node to another arrive before a specific
deadline. Typically, these messages are passed period-
ically, at regular intervals, and if a missed deadline
ever occurs, the entire system may fail. Thus, when the
system is in a development and testing phase, it is critical
that the developer know exactly where missed deadlines
occur and what sequence of events led to the failure.

The conventional approach to this problem is unfor-
tunately quite primitive. As a case in point, we collab-
orated recently with an aerospace company on a DRE
system that required high predictability and extremely
low variation in message arrival times. Analyzing this
system’s temporal performance required the company to
field test it and send us long lists of numbers showing
the round-trip times of remote method calls. As we
optimized the system, the company would re-test it
and send us new numbers, but finding evidence of the
expected performance increase was a tedious process.
Even after calculating the timing deltas between two
successive field tests, identifying speed improvements
required a time-consuming walk through the logs.

With this experience to guide us, we were inspired
to develop a smarter approach. We desired a visual
representation of these timing logs, showing us at a
glance how well a system is performing. We envisioned
a timeline much like the one in Figure 2, where time
progresses down along the vertical axis, and messages
passed between nodes appear as diagonal lines running
between the two axes. This visual depiction would not
only facilitate our understanding of the temporal behav-
ior of a system, but it would also allow easy performance
comparisons between two competing implementations,
simply by overlaying one timeline with another.

In the process of developing the VADRE approach to
performance analysis, we realized that the timeline con-
cept could be integrated directly into the tool suite. For
example, a VADRE profiler that collects performance
data for generating the visualization of Figure 1 would
already have enough information to generate the timeline
of Figure 2. Therefore, a user navigating the performance
visualization could simply select two nodes (spheres)

� � � � � � � � � � � � � � � � � �
	
 � � �

	
 � � �

	 � � � �

	 � � � �

	 � 	 � �

	 � � � �

� � � � � � �
� � � � � � �

� �
� � � � � � � � �
 � �

� � �

� � � � � � � � �
� ! ! " #

� � �

� � � � � � �
� � � � � � �

� �
� � � � � � � � �
 � �

� � �

� � � � � � �
� � � � � � �

� � �

Fig. 2. A timeline such as this one, which features message-passing
delays and critical deadlines, shows at a glance how well thesystem is
performing. In this example, the timeline provides the developer with
a visual cue—the red arrow—indicating that the system has missed
a deadline. Simple but effective, this visual depiction of timeliness is
a marked improvement over current techniques of manual, log-based
analysis.

of interest and ask the tool to generate a timeline for
the nodes automatically. The developer could then scroll
through a complete visual history of the interaction
between two nodes, providing greater insight into the
cause of a failure, for instance. This automatic timeline
generation would also enable developers to modify their
code and quickly see how the change affects run-time
performance of the system and whether it breaks any
deadlines.

IV. JANGO: VADRE FOR CORBA

Building the VADRE tool suite described in Sec-
tion III is a formidable task. DRE systems vary widely in
language, operating system, choice of middleware, and
overall complexity. Therefore, it is a long-term process
to develop tools that will automatically inspect a DRE
system, identify its structure, instrument its code to
gather performance data, and finally visualize this data.

In the near term, however, we have constructed a first-
generation, fully functional prototype of a profiler based
upon the VADRE approach. This was made possible by
focusing our prototype on a specific domain: CORBA-
based [8] applications that conform to the Real-time
Specification for Java (RTSJ) [9]. By limiting ourselves
to this context, we were able to produce the first
VADRE-based performance analysis tool, which we call
Jango.

Jango works by parsing the structure of a CORBA
application and automatically identifying the method

calls between remote nodes. It then instruments these
methods so that the time of each call is recorded.
Next, the developer runs the application, and Jango logs
a history of every remote method call. Finally, upon
termination of the application, Jango loads the recorded
history and displays it according to the timeline concept
described in Section III-B.

A. CORBA Facilities for VADRE

In addition to its use of our VADRE approach for
visualization, Jango is innovative in the way it har-
nesses the power of CORBA for performance analysis.
It demonstrates two key techniques that show CORBA
as a remarkably appropriate platform for visual analysis
of DRE systems:

1) CORBA requires the developer to declare inter-
object, cross-network method calls in strict In-
terface Definition Language (IDL) [10] syntax.
This restriction greatly simplifies Jango’s task of
parsing application code and finding remote calls.
It also eliminates guesswork: By writing IDL, the
developer has already done the work of identify-
ing the important methods that are candidates for
performance analysis. Thus, Jango instantly gains
application-specific knowledge and can automati-
cally filter out events that are not likely to be of
interest to the developer.

2) CORBA providesportable interceptors[11], a
framework for instrumenting method calls with ad-
ditional run-time behavior. Traditionally, portable
interceptors have been used for adding functional-
ity [12] or for debugging. Jango, on the other hand,
exploits these high-level interceptors for collecting
performance metrics. This technique is vastly sim-
pler and much less error-prone than attempting to
identify method calls at the packet level, which
may be required when outside of the CORBA
environment.

B. Implementation Challenges

Because IDL provides no information about timing
and other real-time constraints, developers must supply
these details to Jango manually. This inconvenience
is contrary to our VADRE philosophy, which strives
for automatic gathering of performance data. Therefore,
developing a version of IDL that supports real-time
metadata is a key component of our future work in this
area, as discussed in Section V.

In addition, Jango has a dangerous dependence on
clock synchronization. Performing time comparisons be-
tween two nodes, as shown in Figure 2, requires some
notion of global time. As a result, high-precision syn-
chronization of the local clock on each node may be
necessary for accurate performance analysis and timing

Fig. 3. This distributed real-time control system, consisting of robot
arms, light sensors, and a microcontroller, served as a prototype for
testing the performance analysis abilities of Jango.

comparisons. Theoretically, true synchronization of this
type is impossible due to clock drift, and workarounds
such as Lamport’s logical clocks [13] must be employed.

In practice, however, we have found that clock syn-
chronization using the Network Time Protocol [14] is
sufficient for Jango. For the vast majority of applications,
cross-network message-passing deadlines are specified
on the order of milliseconds, a large enough margin that
NTP can guarantee. For this reason, clock drift can be
ignored for VADRE tools such as Jango.

C. Results and Analysis

To test Jango’s potential as a novel and practical
performance analysis tool, we developed a small case
study. We constructed a real-time control system of
three distributed, concurrently-executing components:
two robotic arms and a light sensor. The light sensor
interacts with the robotic control system to perform tasks
in real-time, such as grabbing a ball as it passes by
(see Figure 3). The entire system is controlled by a
distributed, CORBA-based application that we developed
using ZEN middleware [15] and the RTSJ.

This real-world prototype enabled us to test and refine
our implementation of Jango. For example, we were
able to record the message flow between the robots and
the sensor, then display a timeline of the results. The
timeline revealed the average latency in message passing,
as well as any instances where the latency exceeded our
specified deadlines.

The prototype also helped us discover capabilities in
Jango that we had not expected. We learned, for instance,
that Jango could help determine the impact of individual
hardware components in a DRE system. For example, we
could swap the network hub in our system for a different
model and then see how the change affects the message-
passing delays of Jango’s timeline, and therefore which
network hub offers the greater performance benefit.

Although we could come to the same conclusion without
the help of Jango, its VADRE approach makes the task
faster, less tedious, and, because of the CORBA facilities
described in Section IV-A, it eliminates the need for any
manual logging or poring through console traces.

V. FUTURE WORK

Naturally, a single test case of our own making is
not sufficient to validate the usefulness of both Jango
and our VADRE approach to performance analysis. It
demands a more rigorous test, such as an experiment
among end-users. For instance, two groups of distributed
application developers could be provided with faulty,
underperforming code; one group analyzes it with tra-
ditional tools while the other uses Jango. The speed
and ease at which the two groups locate and repair
the performance problems in the system could then be
compared. Because our VADRE project is still in its
infancy, however, we relegate this experiment to future
work.

Another component of our future work is to provide
support in Jango for real-time extensions to IDL. Such
extensions would enable Jango to annotate timelines di-
rectly, without user input of deadline constraints, making
the entire process of instrumenting, analyzing, and visu-
alizing the performance of a real-time CORBA applica-
tion completely automatic. Currently, we are considering
adopting and building upon the Real-time Multimedia
Interface Definition Language (RIDL) [16] for use with
Jango.

As our VADRE tool suite expands and matures, we
plan to extend it with recording capabilities. These
recordings, or “DRE movies,” could be shared among
colleagues, providing a medium for communication and
team collaboration never before possible. For example,
the movies could be clipped, showing only some critical
failure, then played back as a visual aid for new team
members. Such movies could also become an important
educational tool, in much the same way as animations
of sorting algorithms are used in programming classes
today.

VI. CONCLUSION

Current profilers are adequate for stand-alone soft-
ware, but they cannot meet the needs of distributed, real-
time applications. While some tools, such as the system
profiler for QNX Neutrino [17], have attempted to fill
this gap, they tend to flood the developer with low-level
details, and they lack application-specific knowledge.

We argue that a visually rich profiling tool is nec-
essary, capable of providing a more intuitive, visceral
perspective of an application’s performance metrics. The
VADRE approach is one step toward this goal and
should prove useful not just as a profiler but as a

reverse-engineering mechanism, helping shed light on
the sometimes mysterious inner-workings of distributed,
real-time systems.

REFERENCES

[1] J. Seward, “Valgrind,” http://valgrind.kde.org/,
2004.

[2] Y. Perret, “FunctionCheck,” http://www710.
univ-lyon1.fr/∼yperret/fnccheck/profiler.html,
2002.

[3] Q. Software, “JProbe,” http://www.quest.com/
jprobe/index.asp, 2004.

[4] G. Combs, “Ethereal,” http://www.ethereal.com/,
2004.

[5] F. Pillet, “KProf,” http://kprof.sourceforge.net/,
2004.

[6] S. L. Graham, P. B. Kessler, and M. K. McKusick,
“gprof: a call graph execution profiler,” in
SIGPLAN Symposium on Compiler Construction,
1982, pp. 120–126. [Online]. Available: citeseer.
ist.psu.edu/graham82gprof.html

[7] J. Seward, “Massif: a heap profiler,”
http://developer.kde.org/∼sewardj/docs-2.2.0/
ms main.html, 2004.

[8] O. M. Group, “The Common Object Request Bro-
ker: Architecture and Specification,” 2000.

[9] R.-T. for Java Expert Group, “The Real-Time Spec-
ification for Java,” 2004.

[10] O. M. Group, “Interface Definition Language,”
http://www.omg.org/gettingstarted/omgidl.htm,
2004.

[11] R. Baldoni, C. Marchetti, and L. Verde, “CORBA
request portable interceptors: analysis and applica-
tions,” in Concurrency and Computation: Practice
and Experience, 2003, pp. 551–579. [Online].
Available: citeseer.ist.psu.edu/baldoni03corba.html

[12] M. Wegdam and A. Halteren, “Experience with
CORBA interceptors,” inWorkshop on Reflective
Middleware, 2000. [Online]. Available: citeseer.ist.
psu.edu/wegdam00experiences.html

[13] L. Lamport, “Time, clocks and the ordering of
events in a distributed system,” inCommunications
of the ACM, 1978.

[14] D. Mills, “Network time protocol (version 3) spec-
ification, implementation and analysis,” 1992.

[15] D. C. S. Raymond Klefstad, Arvind S. Krishna,
“Design and performance of a modular portable
object adapter for distributed, real-time, embedded
CORBA applications,” inDistributed Objects and
Applications, 2002.

[16] S. Pope, A. Engberg, and F. Holm, “The real-
time (multimedia) interface description language:
RIDL,” in IEEE Multimedia Technology and Ap-
plications Conference, 2001.

[17] P. N. Leroux, “System profiling optimizes dis-
tributed applications,”EE Times, 2003.

