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Abstract

The goal of phylodynamics, an area on the
intersection of phylogenetics and population
genetics, is to reconstruct population size dy-
namics from genetic data. Recently, a se-
ries of nonparametric Bayesian methods have
been proposed for such demographic recon-
structions. These methods rely on prior spec-
ifications based on Gaussian processes and
proceed by approximating the posterior dis-
tribution of population size trajectories via
Markov chain Monte Carlo (MCMC) meth-
ods. In this paper, we adapt an integrated
nested Laplace approximation (INLA), a re-
cently proposed approximate Bayesian infer-
ence for latent Gaussian models, to the es-
timation of population size trajectories. We
show that when a genealogy of sampled in-
dividuals can be reliably estimated from ge-
netic data, INLA enjoys high accuracy and
can replace MCMC entirely. We demonstrate
significant computational efficiency over the
state-of-the-art MCMC methods. We illus-
trate INLA-based population size inference
using simulations and genealogies of hepati-
tis C and human influenza viruses.

1 INTRODUCTION

Estimation of population size dynamics from molecu-
lar data is a fundamental task in ecology and pub-
lic health. Since population size fluctuations affect
the variability of population gene frequencies, current
molecular sequence data provide information about
the past population size trajectory. Such indirect in-
ference is particularly useful in retrospective studies,
where assessing past population sizes via sampling or
fossil records is impossible. For example, RNA sam-
ples of hepatitis C virus (HCV) obtained in 1993 were

sufficient to estimate the dynamics of HCV infections
in Egypt from 1895 to 1993 (Pybus et al., 2003); and
ancient and modern musk ox mitochondrial DNA sam-
ples, dated from 56,900 radiocarbon years old to con-
temporaneous, allowed for estimation of musk ox pop-
ulation dynamics throughout the late Pleistocene to
the present (Campos et al., 2010).

Molecular sequence data of individuals sampled at a
single time point (isochronous sampling) or at differ-
ent points in time (heterochronous sampling) are re-
lated to each other via, a usually unknown, genealog-
ical relationship. A genealogy is a rooted bifurcating
tree that describes the ancestral relationships of the
sampled individuals (left upper box in Figure 1). In
the genealogy, each internal node indicates that the
two lineages met a common ancestor. Such events are
called coalescent events, and these events occur at co-
alescent times.

Kingman’s coalescent (Kingman, 1982) is a probability
model that describes a stochastic process of generat-
ing a genealogy of a random sample of molecular se-
quences given the effective population size (Nordborg,
2001; Hein et al., 2005). The original formulation,
that considered only a constant population size, was
later generalized to a variable population size (Slatkin
and Hudson, 1991; Griffiths and Tavaré, 1994). Sta-
tistically, the coalescent model was an important ad-
vance, because it allowed for likelihood-based inference
of population dynamics.

Many coalescent-based methods for estimation of effec-
tive population size trajectories have been developed
over the last 10 years. For a recent review see (Ho and
Shapiro, 2011). Some methods assume that a fixed
genealogy is available (Fu, 1994; Pybus et al., 2000)
and others may or may not consider the genealogi-
cal uncertainty and can produce estimates of popula-
tion size trajectories from a fixed genealogy or directly
from molecular data (Kuhner et al., 1995; Drummond
et al., 2002, 2005; Minin et al., 2008). Felsenstein
(1992) showed that likelihood-based methods that ac-



count for genealogical uncertainty are statistically the
most efficient. However, all methods that incorpo-
rate genealogical uncertainty in population size dy-
namics reconstruction integrate over the space of ge-
nealogies using Markov chain Monte Carlo (MCMC).
Such MCMC sampling of genealogies is computation-
ally expensive. Sometimes, a single genealogy esti-
mated from sequences that contain sufficient phylo-
genetic information is enough to estimate population
trajectories accurately (Pybus et al., 2000; Minin et al.,
2008). In this paper, we are interested in providing a
fast estimation of population size trajectories from a
fixed genealogy.

Some coalescent-based methods assume a simple para-
metric form of the population size trajectory (e.g., ex-
ponential or logistic growth), allowing the model pa-
rameters to be estimated by maximum likelihood or
Bayesian methods. However, more flexible nonpara-
metric methods are preferable for populations with
poorly understood population dynamics, where it may
be difficult to justify a simple parametric form of the
population size trajectory. In fact, all recently devel-
oped methods rely on Bayesian nonparametric tech-
niques to perform inference (Opgen-Rhein et al., 2005;
Drummond et al., 2005; Heled and Drummond, 2008;
Minin et al., 2008; Palacios and Minin, 2011). A com-
mon characteristic of most of these methods is the
assumption of a piece-wise linear trajectory of effec-
tive population sizes and the possibility of the num-
ber of parameters growing with the number of sam-
ples. Bayesian skyline methods (Drummond et al.,
2005; Heled and Drummond, 2008) and Opgen-Rhein
et al. (2005) use multiple change point models to es-
timate population trajectories in a Bayesian frame-
work. The method of Opgen-Rhein et al. (2005) is
implemented only for a fixed genealogy. Recently,
Bayesian nonparametric approaches that rely on Gaus-
sian processes have been successfully implemented
(Minin et al., 2008; Palacios and Minin, 2011). These
methods model the effective population size as a func-
tion of a Gaussian process (GP) a priori, providing
more flexible priors than previous Bayesian nonpara-
metric methods.

GP-based models use MCMC methods to perform
Bayesian inference. We show that when the geneal-
ogy remains fixed, these models fall into a general class
of latent Gaussian models, for which integrated nested
Laplace approximation (INLA) can be used to perform
computationally efficient approximate Bayesian infer-
ence (Rue et al., 2009; Illian et al., 2012). Here, we
adapt the INLA methodology to the estimation of pop-
ulation size trajectories and replace MCMC entirely.
Our approximation is accurate and much faster than
MCMC, while still providing the benefits of the Gaus-
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Figure 1: Example of a genealogy of 10 individuals ran-
domly sampled at time t10 (red circles) from the population
depicted as black circles. When we follow the ancestry of
the samples back in time, two of those lineages coalesce at
time t9, the rest of the lineages continue to coalesce until
the time to the most recent common ancestor of the sam-
ple at time t1. The population size trajectory is shown as
the solid black curve. When the population size is large
(around t5), for any pair of lineages that exist at time t5
(red circles at t5), it takes longer to meet their most recent
common ancestor (t4). The upper left box shows the ge-
nealogy reconstructed by following the ancestry of the 10
sampled individuals. The genealogy in the upper left cor-
ner is the aligned representation of the genealogy depicted
in the main plot.

sian process-based Bayesian nonparametric approach.
We illustrate the performance of our method with sim-
ulated and two real data sets.

2 COALESCENT BACKGROUND

We assume that a genealogy with time measured in
units of generations is available. Let tn = 0 denote the
present time when all n available sequences are sam-
pled (isochronous ) and let tn = 0 < tn−1 < ... < t1
denote the coalescent times of lineages in the geneal-
ogy. Figure 1 depicts an example of such a genealogy
with time going backwards, that is, the first coalescent
time occurred tn−1 generations ago and all the sam-
ples meet the common ancestor t1 generations ago. Let
Ne(t) denote the time evolution of the effective popu-
lation size as we move into the past. Then, the con-
ditional density of the coalescent time tk−1, given the
previous coalescent time tk, takes the following form:

P [tk−1|tk, Ne(t)] =
Ck exp

[
−
∫ tk−1

tk

Ck
Ne(t)

dt
]

Ne(tk−1)
, (1)

where Ck =
(
k
2

)
is the coalescent factor that depends

on the number of lineages k = 2, ..., n, meaning that
the density for the next coalescent time is quadratic
in the number of lineages and inversely proportional
to the effective population size. The larger the popu-



lation size, the more genetic variability is in the pop-
ulation and hence, the longer it takes for two lineages
to coalesce. The larger the number of lineages, the
faster two of them meet their common ancestor. Fig-
ure 1 shows an example of a population that experi-
ences growth and then a decay in population size. In
this case, no pair of lineages coalesces between times
t4 and t5, because the population is large during this
time interval, while it takes little time for a pair of
lineages to find their common ancestor after time t4,
when the population size becomes very small.

The heterochronous coalescent arises when samples of
sequences are collected at different times. The con-
ditional density of a coalescent time tk−1 is slightly
different than Eq. 1 since it takes into account the
fact that the number of lineages at each time point
depends not only on the number of coalescent events
(in which case, the number of lineages decreases by
one each time), but also on the new samples incorpo-
rated into the analysis at any time after the last coa-
lescent time tk. The details of the heterochronous co-
alescent are omitted for brevity, however, all methods
described here have been implemented to incorporate
heterochronous sampling. See (Felsenstein and Ro-
drigo, 1999) and (Drummond et al., 2002) for a more
detailed account of heterochronous sampling.

Under this coalescent-based framework, we ignore the
effects of population structure, recombination and se-
lection (Nordborg, 2001). The parameter of interest,
the effective population size, can be used to approxi-
mate census population size by knowing the generation
time in calendar units and the population variability
in the number of offspring. The latter quantity might
be difficult to know a priori, however, sometimes it
suffices to analyze an arbitrarily rescaled population
size trajectory, assuming the variability in the number
of offspring remains constant.

2.1 ESTIMATION OF Ne(t) USING A
DISCRETE-TIME GMRF

There are two approaches to estimation of effective
population size trajectories that use Gaussian pro-
cesses. The first approach, developed by Minin et al.
(2008), assumes a priori that given a genealogy, the
effective population size trajectory is a piecewise con-
stant trajectory with change points (knots) placed at
coalescent times. That is,

Ne(t) =

n∑
k=2

exp (γk) 1(tk,tk−1](t), (2)

where

γ = (γ2, ..., γk) ∼MVN
(
0, (τQ)−1

)
and

1(tk,tk−1](t) =

{
1 if t ∈ (tk, tk−1],

0 otherwise.

More specifically, a priori γ is assumed to be an in-
trinsic Gaussian Markov random field (GMRF) on a
chain graph connecting nodes 2 through n. Minin et al.
(2008) used a random walk of the first order (rw1) on
an irregular grid of mid-points of inter-coalescent time
intervals. For this reason, we refer to this method here
as the coalescent grid Gaussian process (CGGP). The
random walk construction implies that matrix Q is
tridiagonal and positive semidefinite (hence the intrin-
sic GMRF). See (Rue and Held, 2005) for background
on GMRFs. The precision parameter τ has a Gamma
prior distribution with α = β = 0.001. The authors
estimate γ and τ by MCMC sampling from the poste-
rior distribution of these parameters. The estimated
trajectory and the corresponding uncertainty are re-
ported in the form of pointwise posterior medians and
95% Bayesian credible intervals (BCIs) obtained from
the MCMC samples.

2.2 ESTIMATION OF Ne(t) USING A
CONTINUOUS-TIME GP

Instead of modelling Ne(t) as a piecewise continu-
ous function a priori, Palacios and Minin (2011) pro-
pose a more flexible prior specification and place a
transformed Gaussian process prior on Ne(t). The
transformation is a sigmoidal function with a lower
bound. This particular transformation is required by
the authors in order to perform exact posterior infer-
ence via a data augmentation scheme, which is simi-
lar to the work of Adams et al. (2009). However, a
log-Gaussian transformation using a finely discretized
Gaussian process, in principle, would produce similar
results (Møller et al., 1998; Adams et al., 2009).

2.2.1 EXACT POSTERIOR INFERENCE
WITH GP

Palacios and Minin (2011) place the following prior on
Ne(t):

Ne(t) =

(
λ

1 + exp[−γ(t)]

)−1
, (3)

where
γ(t) ∼ GP(0, C) (4)

and GP(0, C) denotes a Gaussian process with mean
function 0 and covariance function C. A Gaussian pro-
cess restricted to finite data is a multivariate Gaussian
distribution. That is, γ(t1), ..., γ(tB) ∼ MVN(0,Σ).
A priori, 1/Ne(t) is a sigmoidal Gaussian process, a
scaled logistic function of a Gaussian process which
range is restricted to lie in [0, λ]; λ is a positive con-
stant hyperparameter, inverse of which serves as a



lower bound of Ne(t) (Adams et al., 2009). The like-
lihood function is the product of the conditional den-
sities in Eq. 1 and involves integration of Ne(t), that
under the GP assumption, is intractable. The authors,
following earlier work by Adams et al. (2009) on Pois-
son processes, do inference assuming an augmented
data likelihood which allows to bypass intractability in
the likelihood. The authors implement their method
for the Brownian motion GP with a precision param-
eter τ . They place a Gamma prior distribution on the
precision hyperparameter τ with α = β = 0.001 and
a mixture of uniform and exponential distributions on
an upper bound of 1/Ne(t) (or equivalently, a lower
bound on Ne(t)) as follows:

P (λ) = ε
1

λ̂
I{λ<λ̂} + (1− ε) 1

λ̂
e−

1
λ̂
(λ−λ̂)I{λ≥λ̂}, (5)

where ε > 0 is a mixing proportion and λ̂ is our best
guess of the upper bound, possibly obtained from pre-
vious studies. The authors estimate τ and Ne(t), or
equivalently, τ , γ(t) and λ by MCMC sampling from
the posterior distribution of these parameters. The es-
timated trajectory and the corresponding uncertainty
are reported in the form of the pointwise posterior
medians and 95% BCIs evaluated at a grid of points
{s1, ..., sB} obtained from the MCMC samples. This
grid can be made as fine as necessary after the MCMC
is finished. The values of {γ(s1), γ(s2), .., .γ(sB)} are
obtained via the GP predictive distribution condition-
ing on the values of each iteration. This method will
be referred to as exact Gaussian process (EGP).

2.2.2 DISCRETIZED CONTINUOUS-TIME
GP

The continuous-time version of the prior specified in
Eq. 2, is

Ne(t) = exp [γ(t)] , (6)

where γ(t) is the Gaussian process described in Eq.
4. However, for the same reason described in sec-
tion 2.2.1, the likelihood function becomes intractable.
Palacios and Minin (2011) showed that estimation of
the effective population size is analogous to the esti-
mation of an inhomogeneous intensity of a point pro-
cess. In this context, and under the prior described in
Eq. 6, estimation of Ne(t) is computationally equiv-
alent to the estimation of the intensity function of a
Log-Gaussian Cox process (Møller et al., 1998). In a
Log-Gaussian Cox process, the likelihood is commonly
approximated by discretization. The approximation
method proceeds by constructing a fine regular grid
{s1, ..., sB} over the observation window and approxi-
mate ∫

dt

Ne(t)
=

∫
exp [−γ(t)] dt, (7)

by
B∑
j=2

exp
(
−γ∗j

)
∆, (8)

where ∆ is the distance between grid points, and γ∗j is
a representative value of γ(t) in the interval (sj−1, sj),
usually γ((sj − sj−1)/2). Note that if the Gaussian
process is a Brownian motion process, this approxi-
mation is similar to the CGGP method described in
section 2.1. The difference is in the construction of
the grid. In the CGGP method, the grid is irregular
and determined by the coalescent times. For this rea-
son, we call approximation (8) a regular grid Gaussian
process (RGGP).

3 INTEGRATED NESTED
LAPLACE APPROXIMATION

INLA provides fast and accurate Bayesian approxima-
tion to posterior marginals in latent Gaussian mod-
els (Rue et al., 2009). Latent Gaussian models are
a wide class of hierarchical models in which the re-
sponse variables y = (y1, . . . , yn) are assumed to be
conditionally independent given some latent param-
eters η = (η1, . . . , ηn) and other parameters θ1. The
second hierarchical level corresponds to specifying η as
a function of a GMRF x = (x1, . . . , xn) with a preci-
sion matrix Q and hyperparameters θ2, and the third
and last hierarchical stage corresponds to prior specifi-
cations for the hyperparameters θ = (θ1,θ2) Formally,

π(y|η,θ1) =
∏
j

π(yj |ηj(xj),θ1), (9)

x ∼MVN(0,Q−1(θ2)), (10)

and

θ ∼ P (θ). (11)

An interface in R, called INLA, implements a wide vari-
ety of likelihoods (Eq. 9), link functions (η) and GM-
RFs (Eq. 10), including the Poisson likelihood model
for each observed value of yj (not necessarily the same
for every yj) with a logarithmic additive link func-
tion and random walk of first order as a GMRF. See
www.r-inla.org for documentation.

The coalescent with variable population size (Eq. 1),
together with the GMRF prior specification (Eq. 2)
falls into the latent Gaussian model class, so INLA
can be implemented for these coalescent models. In
the case of the continuously specified GP (section 2.2),
the approximate posterior method described in Section
2.2.2 (RGGP) also falls into the latent Gaussian model
class.



3.1 INLA FOR PHYLODYNAMICS

Although INLA is implemented for a wide variety of la-
tent Gaussian models, we will only describe the main
steps of the approximation for posterior inference of
effective population size trajectories. A typical sum-
mary of the posterior distribution of the effective pop-
ulation size trajectory, Ne(t), is described by posterior
medians and 95% BCIs evaluated pointwise on a grid
of time points. These values can be obtained from the
posterior marginals of the population trajectory on the
grid. For the CGGP model described in section 2.1,
we then wish to obtain the posterior marginals

Pr(γi|t) =

∫ ∞
0

Pr(γi|τ, t)Pr(τ |t)dτ, i = 2, .., n (12)

and

Pr(τ |t), (13)

where t denotes the vector of coalescent times. A
nested procedure is used to construct approximations
of Pr(γi|τ, t) and Pr(τ |t) first and then numerically in-
tegrate out τ to arrive at Pr(γi|t). The approximation
of the marginal of τ is

P̃r(τ |t) ∝ Pr(γ, τ, t)

P̃rG(γ|τ, t)

∣∣∣∣
γ∗(τ)

, (14)

where γ∗(τ) is the mode of the full conditional
Pr(γ|τ, t), obtained using the Newton-Raphson algo-
rithm, and P̃rG(γ|τ, t) is the Gaussian approximation
of this full conditional constructed via a Taylor ex-
pansion around γ∗(τ). The resulting P̃rG(γ|τ, t) is a
Gaussian distribution with mean γ∗ and precision ma-
trix Q +diag(c), where Q is the prior precision matrix
of the GMRF γ and a vector c consists of the second
order Taylor series coefficients.

The approximation to the full conditional Pr(γi|τ, t)
is the following:

P̃r(γi|τ, t) ∝ Pr(γ, τ, t)

P̃rG(γ−i|τ, t)

∣∣∣∣
γ∗

−i

, (15)

where γ∗−i = EG(γ−i|γi, τ, t) and P̃rG(γ−i|τ, t) are

derived from P̃rG(γ|τ, t).

For the continuously specified GP approximation de-
scribed in section 2.2.2, the INLA approximation is,
in essence the same, but the GMRF is placed at the
mid-points of a finer and regular grid. In this case,
there are two levels of approximation, one level corre-
sponding to the likelihood discretization and another
level corresponding to the approximation of marginal
posterior distributions of model parameters.
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Figure 2: INLA vs MCMC for CGGP: Simulated data
under the constant population size (first row), exponential
growth (second row) and expansion followed by a crash
(third row). The true trajectories are represented by black
dashed lines. We show posterior medians estimated with
MCMC sampling (solid black lines) and 95% BCIs esti-
mated with MCMC (gray shaded areas). Posterior medi-
ans obtained using INLA are denoted by solid blue lines
and INLA 95% BCIs are shown as dashed blue lines.



4 RESULTS

4.1 SIMULATED DATA

We compare INLA and MCMC approaches for the
models described in sections 2.1 and 2.2. We simulate
three genealogies relating n = 100 individuals under
the following demographic scenarios:

1. Constant population size trajectory: Ne(t) = 1.

2. Exponential growth: Ne(t) = 25e−5t.

3. Population expansion followed by a crash:

Ne(t) =

{
e4t t ∈ [0, 0.5],

e−2t+3 t ∈ (0.5,∞).
(16)

Figure 2 shows the log effective population size tra-
jectories recovered for the three scenarios under the
CGGP model using the MCMC approach (black lines
and gray shaded areas) and the INLA approach (blue
dark lines and blue dashed lines). In all the cases,
the INLA approximation is very close to the results
obtained using MCMC.

Figure 3 shows the log effective population size tra-
jectories recovered for the same three scenarios for the
continuously specified GP. In this case, the comparison
is not entirely fair because we are comparing the exact
MCMC method (EGP) with the doubly approximated
INLA on the RGGP model. Nevertheless, both esti-
mations look very similar for the last two cases (ex-
ponential growth and expansion followed by crash).
In all cases, INLA results are very similar to the re-
sults for the CGGP model and the difference between
the MCMC method and INLA methods in the con-
stant trajectory example could be an artifact of the
likelihood approximation and the convergence of the
MCMC method. However, a more likely explanation
is poor approximation of the marginal posterior of the
Brownian motion precision, τ , by INLA. Indeed, when
we examined MCMC-based and INLA-based marginal
posteriors of τ , we found that the two marginals did
not agree at all.

4.2 HEPATITIS C VIRUS IN EGYPT

We analyze a genealogy estimated from 63 HCV E1
sequences sampled in 1993 in Egypt. This is perhaps
the most commonly used dataset for evaluating dif-
ferent methodologies for estimation of population size
trajectories. Minin et al. (2008) compared population
size trajectories recovered from a single fixed geneal-
ogy and from the sequence data directly. The authors
show that there is little difference between these two
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Figure 3: INLA vs MCMC for RGGP and EGP respec-
tively: see Figure 2 for the legend.
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Figure 4: HCV in Egypt. Estimation of the log effective population size trajectories. In both plots, INLA approximations
to posterior medians and 95% BCIs are represented by blue solid lines and blue dashed lines respectively. Approximations
using MCMC sampling are represented by black solid lines and shaded areas. The left plot shows the results assuming
the CGGP model and the right plot shows the result assuming the EGP for the MCMC sampling results and the RGGP
model for the INLA approximation.

estimation protocols. They argue that in this case ge-
nealogical uncertainty does not play a significant role
in the estimation of the Egyptian HCV population dy-
namics.

Figure 4 shows the recovered effective population sizes
as black lines and uncertainty as gray shaded areas for
the CGGP (left plot) and the EGP (right plot) using
MCMC and as blue solid lines and blue dashed lines
for the INLA approximation for CGGP (left plot) and
RGGP (right plot). In this case, it is remarkable how
similar the INLA approximations are to the MCMC
results, even for the continuously specified model with
the double approximation (INLA-RGGP). In all cases,
the known aspects of the HCV epidemic in Egypt
are recovered: an exponential growth starting around
1920s and a decline in population size after 1970s (Py-
bus et al., 2003).

4.3 INFLUENZA A VIRUS IN NEW YORK

We analyze a genealogy estimated from 288 H3N2 se-
quences sampled in New York state from January, 2001
to March, 2005 to estimate population size dynamics
of human influenza A in New York. This genealogy has
also been analyzed before (Palacios and Minin, 2011)
and can be obtained from the authors. The key as-
pects of the influenza A virus epidemic in temperate
regions like New York are the epidemic peaks during
winters followed by strong bottlenecks at the end of

the winter season. The first plot in Figure 5 shows
the recovered population size trajectories assuming the
CGGP model. In this case, the MCMC and the INLA
approximation deviate from each other substantially,
however, the expected peaks during the winter seasons
in 2002, 2004 and 2005 are recovered by both meth-
ods. The MCMC approach does not recover a peak
in the 2003 season, while the INLA approximation re-
semble more the results from the continuously speci-
fied model. INLA and MCMC results are very similar
for the continuously specified model (right plot of Fig-
ure 5) with the notable differences in 95% BCIs near
the time to the most recent common ancestor. This
difference again may be an artifact of the double ap-
proximation involved.

4.4 RUNNING TIMES

The MCMC chains used for the CGGP model have
length 1,000,000 with 100,000 of burn-in and generated
using the BEAST software (Drummond and Rambaut,
2007; Minin et al., 2008) on a desktop PC. The run-
ning times range from 20 minutes to a couple of hours
depending on the data. For the INLA approach, re-
sults were generated using the R interface INLA on the
same computer in less than 2 seconds for all scenarios.

For the continuously specified GP model described in
section 2.2, MCMC times are at best as fast as MCMC
for the CGGP approach, while the results obtained
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Figure 5: Influenza A in New York. Estimation of the log effective population size trajectories. In both plots, INLA
approximations to posterior medians and 95% BCIs are represented by blue solid lines and blue dashed lines respectively.
Approximations using MCMC sampling are represented by black solid lines and shaded areas. The left plot shows the
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using INLA, were generated in less than 5 seconds on
a grid of size 1000.

5 DISCUSSION

We show that recent Gaussian process-based Bayesian
nonparametric approaches to estimation of effective
population size trajectories fall into a larger class of
latent Gaussian models, allowing us to perform ap-
proximate Bayesian inference using INLA. We show
that it is possible to estimate population size trajec-
tories from fixed genealogies in seconds without sacri-
ficing any modeling advantages of recently developed
Bayesian nonparametric methods.

We did observe a significant discrepancy between the
INLA approximation and MCMC inference for the
continuously specified GP model in the case of con-
stant population size. We want to point out that
in this case, we are not comparing apples to apples.
We should be comparing INLA approximation to the
MCMC for the regular grid approximation of the con-
tinuously specified GP. However, we did not have ac-
cess to approximate GP-based MCMC for phylody-
namics. In the absence of a better option, we are
comparing INLA to the exact MCMC for this GP
model (Palacios and Minin, 2011). Therefore, we re-
main uncertain whether the grid approximation or the
INLA approximation is to blame for the discrepancy

observed in the top plot of Figure 2. The discrepancy
between the marginal posterior distributions estimated
by INLA and MCMC and the fact that the precision of
the RGGP likelihood discretization did not have any
effect on our results suggest that INLA approximation
indeed fails in this simulation scenario. This asser-
tion is supported by another disagreement of INLA
and MCMC for the CGGP model in the influenza A
example, where we are comparing apples to apples.

A natural extension of the methods presented here is
the incorporation of genealogical uncertainty into the
model. This extension can be accomplished by intro-
ducing another level of hierarchical modeling and ana-
lyzing molecular data directly (Drummond et al., 2005;
Minin et al., 2008). Even though the full posterior
distribution of population trajectories from molecular
sequence data no longer falls into the latent Gaussian
model class, we believe that the extension is possible
using Metropolis independence sampler (Rue et al.,
2004). Nevertheless, the ability to obtain fast esti-
mates of population size trajectories from a fixed ge-
nealogy (as with INLA) should be a boon for biological
researchers who need to screen multiple populations of
interest quickly or to provide an online analysis of epi-
demic outbreaks with enormous flow of molecular data
in real time (Fraser et al., 2009).

There are other approaches to the estimation of effec-



tive population sizes under more complicated coales-
cent models that include recombination (McVean and
Cardin, 2005; Li and Durbin, 2011). These methods
assume a simple change point model for the effective
population size trajectory. In principle, Bayesian non-
parametric approaches similar to the approaches dis-
cussed here can be applied in this setting. However,
presence of recombination makes such extensions po-
tentially challenging.

Other approximate Bayesian methods could be ap-
plied to Bayesian nonparametric phylodynamics, such
as variational Bayes (VB) (Bishop, 2006) and expecta-
tion propagation (EP) (Cseke and Heskes, 2010). For
our particular application with a sparse GP prior, such
as Brownian motion, Cseke and Heskes (2010) show
that INLA should be faster than EP methods.
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