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Abstract

Two Geometric Results regarding Hölder-Brascamp-Lieb Inequalities, and Two Novel
Algorithms for Low-Rank Approximation

by

Alexander Robert Rusciano

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor James Demmel, Chair

Broadly speaking, this thesis investigates mathematical questions motivated by computer
science. The involved topics include communication avoiding algorithms, classical analysis,
convex geometry, and low-rank matrix approximation. In total, the thesis consists of four
self-contained sections, each adapted from papers the author has been a part of.

The �rst two sections are both motivated by the Brascamp-Lieb inequalities, which are also
often referred to as Hölder-Brascamp-Lieb inequalities. These inequalities have featured
prominently in recent theoretical computer science work, due to connections to geometric
complexity theory [32], harmonic analysis [10], communication-avoidance [19], and many
other areas. Moreover, work generalizing the inequalities in various ways, such as to nonlinear
versions, has been impactful to the study of di�erential equations.

Section 1 studies the application of Hölder-Brascamp-Lieb (HBL) inequalities to the design
of communication optimal algorithms. In particular, it describes optimal tiling (blocking)
strategies for nested loops that lack data dependencies and exhibit a�ne memory access
patterns. The problem roughly amounts to maximizing the volume of an object provided
some of its linear images have bounded volume. The methods used are algorithmic.

Another reason for the interest in these inequalities is because they are an interesting test
case for non-convex optimization techniques. The optimal constant for a particular instance
of the inequality is given by solving a non-convex optimization problem that is still highly
structured [68, 32, 60]. Of particular relevance to this thesis is that it can be formulated as
a geodesically-convex problem, considered in the context of the manifold of positive de�nite
matrices of determinant 1 (the symmetric space SLn/SOn [8]). Even using the methods of
Section 1, the procedure is not necessarily polynomial time, and this motivates further study
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of geodesic convexity.

This lead to the work of Section 2, which discusses a notion of halfspace for Hadamard
manifolds that is natural in the context of convex optimization. For this notion of halfspace,
we generalize a classic result of Grünbaum, which itself is a corollary of Helly's theorem.
Namely, given a probability distribution on the manifold, there is a point for which all
halfspaces based at this point have at least 1

n+1
of the mass, n being the dimension of the

manifold. As an application, the gradient oracle complexity of geodesic convex optimization
is polynomial in the parameters de�ning the problem. In particular it is polynomial in
log(ε−1), where ε is the desired error. This is a step toward the open question of whether
such an algorithm exists.

The remaining two sections of the paper present a di�erent research direction, randomized
numerical linear algebra. Numerical linear algebra has long been an important part of scien-
ti�c computing. Due to the current trend of increasing matrix sizes and growing importance
of fast, approximate solutions in industry, randomized methods are quickly increasing in pop-
ularity. Sections 3 and 4 in this thesis aim to show that randomized low-rank approximation
algorithms satisfy many of the properties of classical rank-revealing factorizations.

Section 3 introduces a Generalized Randomized QR-decomposition (RURV) that may be
applied to arbitrary products of matrices and their inverses, without needing to explicitly
compute the products or inverses. This factorization is a critical part of a communication-
optimal spectral divide-and-conquer algorithm for the nonsymmetric eigenvalue problem.
In this paper, we establish that this randomized QR-factorization satis�es the strong rank-
revealing properties. We also formally prove its stability, making it suitable in applications.
Finally, we present numerical experiments which demonstrate that our theoretical bounds
capture the empirical behavior of the factorization.

Section 4 concerns a Generalized LU-Factorization (GLU) for low-rank matrix approxima-
tion. We relate this to past approaches and extensively analyze its approximation properties.
The established deterministic guarantees are combined with sketching ensembles satisfying
Johnson-Lindenstrauss properties to present complete bounds. Particularly good perfor-
mance is shown for the sub-sampled randomized Hadamard transform (SRHT) ensemble.
Moreover, the factorization is shown to unify and generalize many past algorithms. It also
helps to explain the e�ect of sketching on the growth factor during Gaussian Elimination.
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Chapter 1

Parallelepipeds obtaining HBL upper

bounds1,2

1.1 Introduction

Hölder-Brascamp-Lieb (HBL) Inequalities

HBL inequalities are very general, including famous inequalities such as Hölder's inequal-
ity and Young's inequality. To state the inequalities in general, �x maps φi : X → Xi and
measures dx, dxi on X, Xi respectively, with i ∈ {1, . . . ,m}. Then for weights {si}mi=1 ≥ 0,
they take the form ∫

x∈X

m∏
i=1

fi(φi(x))dx ≤ C(s)
m∏
i=1

‖fi‖1/si (1.1)

holding for all integrable nonnegative fi on Xi. We have denoted by ‖·‖1/si the Lp quasinorm
and by C(s) the smallest constant for which the inequality holds for all choices of fi. Perhaps
the most studied instances are when X,Xi are vector spaces with the Lebesgue measure or
abelian groups under the counting measure, and the φi are linear maps. For example, in
these cases the set of all s for which C(s) <∞ are known to form a convex polytope we will
denote by P . All of our considerations are restricted to these two cases, and are intimately
concerned with P . This polytope has an interesting structure, although the two cases di�er
slightly:

For the discrete case, [20] establishes

1Joint work with James Demmel
2Preprint [26], submitted for publication to SIAM J. Discrete Mathematics.
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Theorem 1. Given linear maps φ : Zd → Zdi, a collection si ≥ 0 satis�es inequality (??) if
and only if they satisfy for all subgroups H ≤ Zd,

m∑
i=1

si · rank(φi(H)) ≥ rank(H)

Moreover, the sharpest constant is C(s) = 1.

The Lebesgue case was studied in [10], and their Theorem 1.13 establishes

Theorem 2. Given linear maps φ : Rd → Rdi, a collection si ≥ 0 satis�es inequality (??) if
and only if they satisfy for all subspaces H ≤ Rd,

m∑
i=1

si · dim(φi(H)) ≥ dim(H)

and in addition equality holds for the case H = Rd. The sharpest constant C(s) is given by
the solution to the optimization problem over the set of positive de�nite matrices Xi � 0

C(s) = sup
Xi�0

[ ∏
i det(Xi)

si

det(
∑

i φ
T
i Xiφi)

]1/2

Motivation from communication-avoiding algorithms, and Notation

The goal of this subsection is to provide a brief summary of the computational model
introduced in [39], to motivate the origins of the problem we study. We recommend the
interested reader to �nd more detail and examples in [19].

For the application to communication-avoiding algorithms, the spaces X,Xi will be
Zd, Zdi and the measures will be the counting measures. The proofs in the main body
adopt this situation. We still note that the fundamental geometric insight of Thm ?? at
the heart of the paper remains true in the case when X,Xi are real vector spaces and the
measures are Lebesgue. As this could be of independent interest, Appendix ?? provides the
minor modi�cations needed to adapt the proofs to the Lebesgue case.

To connect the HBL inequalities to communication costs of an algorithm, within some
region of the space Zd each point will correspond to executing one step of an algorithm.
For example [39], for classical matrix multiplication C = A ∗ B, d = 3 and the point
x = (i, j, k) ∈ Z3 corresponds to the execution of

C(i, j) = C(i, j) + A(i, k) ·B(k, j)

To execute this, one needs to have the 3 corresponding array entries available in memory,
and these are indicated by the 3 linear maps φ1(x) = (i, j) (to identify the entry C(i, j)),
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φ2(x) = (i, k) and φ3(x) = (k, j). So to perform a set of computations S ⊂ Z3, one needs
the data φ1(S), φ2(S) and φ3(S). To use the memory of sizeM as e�ciently as possible, one
wants to maximize the amount of work possible, the cardinality |S| of S, given all the data
available in memory: |φ1(S)|+ |φ2(S)|+ |φ3(S)| ≤M . We approximate this by maximizing
|S| subject to the 3 constraints |φi(S)| ≤ M . (Appendix B deals with the more precise
constraint.) Theorem ?? provides this upper bound: By choosing fi to be the indicator
function of φi(S), we see x ∈ S implies

∏m
i=1 fi(φi(x)) = 1, so

|S| ≤
∫

x∈X

m∏
i=1

fi(φi(x))dx ≤
m∏
i=1

‖fi‖1/si =
m∏
i=1

|φi(S)|si ≤
m∏
i=1

M si = M
~1T s (1.2)

As stated above, this upper bound holds for all s in a convex polytope P , so the tighest
upper bound is gotten by minimizing ~1T s over all s ∈ P , a linear program. As explained in
the next section, we denote this minimum value of ~1T s by h∗(~1).

References [39, 19] show how to use this upper bound on |S|, which happens to be

Mh∗(~1) = M3/2 in the case of classical matrix multiplication, to get a lower bound on the
amount of data that needs to be moved into and out of memory in order to execute the
entire computation, which is Ω(n3/M1/2) for multiplying n-by-n matrices. This is of signif-
icant practical interest because the cost (measured in time or energy) of moving data (i.e.
communication) can be much larger than the cost of the arithmetic operations on data in
memory.

Given this lower bound on communication costs, the practical goal is to �nd an algorithm
that attains it. This means �nding a set S that not only (approximately) attains its upper
bound on |S|, but tiles all the points x ∈ Zd that correspond to the execution of an algorithm.
This means that we need to able to write Zd (or appropriate subsets) as a disjoint union of
shifted copies of S. In the case of classical matrix multiplication, the optimal S turns out to
be a cube of side lengthM1/2. Our contribution in this paper is to �nd such a parallelepiped
S in general.

Since S depends on the memory size M , in the remainder of this paper we will use the
notation S(M), and derive results that hold asymptotically in M .

Main Result

Before stating the main geometric content of the paper, we generalize the context with
no additional di�culty. Denote by | · | the Lebesgue measure or cardinality as appropriate.
Suppose we require |φi(S(M))| = O(Mαi) for some αi ≥ 0, with as always the asymptotic
part referring to M . Then generalizing to (coordinate-wise) α ≥ 0 in place of bound (??)

|S(M)| ≤
∏
|φi(S(M))|si = O(MαT s) (1.3)

and h∗(α) := min
s∈P

αT s determines the tightest upper bound.
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De�nition 3. The family of sets S(M), parametrized by integer M , are considered asymp-
totically optimal if

|S(M)| = Θ(Mh∗(α)) (1.4)

as well as for all i,
|φi(S(M))| = O(Mαi) (1.5)

We say the member sets tile if translations of a given member injectively cover the space (Rd

or Zd).

We can now state our main contribution:

Theorem 4. For any choice of α ≥ 0, there exists a family of asymptotically optimal shapes
as de�ned in De�nition ??. Moreover, the family can be chosen to be parallelepiped-like
shapes which tile.

The rest of this paper is organized as follows.

Section 2 introduces the primal and dual linear programs (LPs) associated with the
discrete HBL inequalities, as well as the tiling shape and procedure.

Section 3 shows how to construct an optimal tiling in the general case, given an optimal
solution to the HBL LP, our main result.

Section 4 draws conclusions and presents a couple possible future directions.

We include some Appendices with further details and examples:
Appendix A modi�es the shape construction from the discrete to the continuous case.
Appendix B re�nes the de�nition of �optimal� tiling to re�ect the bound∑m

i=1 |φi(S)| ≤M rather than the approximation |φi(S)| ≤M , ∀i.
Appendix C gives a numerical example of rank 1 maps in 2 dimensions.

1.2 HBL Primal and Dual

Primal

Because there are only �nitely many possible values of the rank of H and its images,
there exists a �nite list of subgroups su�cient in Thm ??. This is why we the problem of
computing h∗(α) can be formulated as a linear program (LP), if we can �nd a su�cient list
of subgroups. This can be used to justify calling P a Polytope, and the following a linear
program, even if ostensibly there are an in�nite number of constraints.

De�nition 5 (HBL Primal LP). The HBL primal LP is
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minimize
s

αT s

subject to
m∑
i=1

si · rank(φi(H)) ≥ rank(H), ∀H ≤ Zd

s ≥ 0

Although not a focus of this work, recent progress has led to a better understanding of P .
In [20] a few things are established. For one thing, only the lattice of subgroups generated by
ker(φi) under sums and intersections needs to be used to generate inequality constraints in
Theorem ??. However, this lattice is often in�nite in higher dimensions. Also, [20] describes
a terminating algorithm which discovers all the constraints needed to formulate an equivalent
LP. However, the algorithm's complexity is unknown. The results of [32] provide a number
of novel insights into algorithmic computation of the Lebesgue version of P , including a
polynomial time membership and weak separation oracles. Here are a selection of special
cases for which computation of P could be reasonably managed:

• All maps are coordinate projections [19].

• All cases when the dimension of the computation lattice is d ≤ 5 [18].

• Each ker(φi) is rank 1,2, d − 1, or d − 2, some mixes are allowed [64]. (Stated for
Lebesgue version of P).

• There are no more than 3 maps; then the kernel subgroup lattice is bound by 28, a
classical result [23].

These cases likely cover many of the communication-avoiding application cases.

Dual

In this and the subsequent section, we show how the dual of the HBL Primal LP leads
to an asymptotically optimal parallelpiped tiling of the computation lattice.

Denote the dual variable by y; its indices are in bijection with subgroups of Zd. We
require that only �nitely many of its entries are nonzero. The groups corresponding to these
indices, termed the support, are grouped into the list E with members Ej. For linear maps
L, we subsequently employ the natural shorthand

yT rank(L(E)) :=
∑
Ej

yEjrank(L(Ej))
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De�nition 6 (Dual LP). Recall the HBL setting consists of maps φi from lattice Zd. A dual
vector y will be considered to be indexed by all subgroups of Zd, but with �nitely many non-
zero coordinates. The non-zero coordinates are de�ned to be the support of y. Now de�ne
the objective value of y to be

maximize
y

val(y) := yT rank(E)

subject to Ci(y) := yT rank(φi(E)) ≤ αi, ∀φi
y ≥ 0

(1.6)

As the support list E changes during our algorithm, we use a few symbols in place of E
when extra information is present. Typically we will use Y when the supporting subgroups
are independent, and U when they are a �ag. These de�nitions are covered later.

Interpretation of Dual

The dual is important because of its geometric signi�cance. Most clearly, it is readily
interpretable when the supporting subgroups Y of the dual vector are independent. Here
independent means that rank(⊕iYi) =

∑
i

rank(Yi). We need the following intuitive lemma.

Lemma 7. Take any independent elements e1, . . . , eh contained in rank h subgroup Y ⊂ Zd.
De�ne the set

S := {z ∈ Zd|z =
∑
i

aiei with 0 ≤ ai ≤ bMkc − 1, ai ∈ Z} (1.7)

In this equation, k is an arbitrary �xed positive number, determining how sizes scale with
M .

Then for any linear map L, |S| = bMkch and |L(S)| = O(Mkr) where r := rank(L(Y )).
In applications later, L is taken to be one of the φi.

Proof. The elements in set S are O(Mk) from the origin in Euclidean distance, hiding the
dimensional factor d in the big O notation. By linearity, the elements of L(S) are also O(Mk)
from the origin in im(L). Therefore an r dimensional cube residing within L(Y ) with side
lengths O(Mk) can contain L(S). This means that |L(S)| = O(Mkr).

Finally, from independence of the ei, it follows that |S| = bMkch

We now de�ne the parallelepiped-like construction that will be used to create asymptot-
ically optimal tilings. Although not the only possible way to build good tiling shapes, it is
�exible and leads to the cleanest descriptions in the case of Zd.
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De�nition 8 (Product Parallelepiped). Suppose we are given a dual vector y, with support
given by the list of independent subgroups (Y1, . . . , Yt). Form SYi as in Eq. ??, using k = yYi.

Now de�ne a parallelepiped shape through a Minkowski sum of sets

S := SY1 + · · ·+ SYt (1.8)

The independent elements used to construct SYi are left unspeci�ed; the choice a�ects
constants, but will not a�ect optimality in the sense of Def. ??.

We will use the construction of Def. ?? to produce optimal tilings. Therefore we begin
to relate it to the HBL problem:

Proposition 9. Suppose we are given a dual vector y, whose non-zero values are attached
to a list of independent subgroups Y = (Y1, . . . , Yt). Form the product parallelepiped S of
Def. ??.

Then |S| = Θ(MyT rank(Y)). If in addition y is dual feasible, then |φi(S)| = O(Mαi) holds
for each φj.

Proof. By independence of the subgroups contained in Y, it follows that |S| =
∏
i

|SYi|.

Apply the count estimates of Lemma ?? to this:

|S| =
∏
i

Θ(M rank(Yi)·yYi ) = Θ(MyT rank(Y))

It remains to consider the images of this set under the φi in the case y is feasible. This
requires a bound on |φi(S)|. Invoking the count estimates of Lemma ?? in the second
inequality below, and feasibility property (??) of y in the third inequality

|φi(S)| ≤
∏
j

|φi(SYj)| =
∏
j

O
(
M rank(φi(Yj))yYj

)
= O(MCi(y)) = O(Mαi)

It will be necessary to strengthen the bounds on the |φi(S)| later.

It is clear enough that parallelepipeds in Rd tile, but the above version is slightly non-
standard because of the discreteness of the object. To make things explicit, Algorithm ??
below produces the translations needed to tile Zd with set S.

In the algorithm, we employ a matrix factorization for linear maps between abelian
groups (or more generally between modules over a principle ideal domain) known as the
Smith Normal Form. The Smith Normal Form of a matrix A with integer entries is of the
form A = UDV −1 where U, V are unimodular and D is diagonal with non-negative integer
entries. Its diagonal entries di := Dii are uniquely de�ned by requiring di|di+1.
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Algorithm 1 Construct a tile S and its translations T that tile Zd
1: Input: Memory size parameter M
2: Input: For each i = 1, . . . , t: subgroup Yi represented by a matrix with independent

columns
3: Input: Values yYi associated to each Yi
4: Y ← (Y1, . . . , Yt)
5: S ← {Y · (a11, a12, . . . , atht)

T | aij ∈ {0, . . . , bMyYic − 1}
6: m←

∑
hi

7: (U,D, V )← Smith Normal Form(Y )
8: U ′ ← last d−m columns of U
9: U ′′ ← �rst m columns of U
10: T1 ← {Y · (a11, a12, . . . , atht)

T | aij ∈ bMyYic · Z}
11: T2 ← {U ′ · (a1, . . . , ad−m)T | ai ∈ Z}
12: T3 ← {U ′′ · (b1, . . . , bm)T | bi ∈ {0, . . . , di − 1}}
13: T ← Minkowski sum T1 + T2 + T3

14: Return S, T

The set S returned by the algorithm exactly follows Def. ??. The translations T come
from two sources: T1 accounts for the �nite size of M while tiling the subgroup generated
by the columns of Y under integer linear combinations. In the remainder of this section, we
will write this subgroup as 〈Y 〉, to di�erentiate between the subgroup and the matrix. The
sets T2, T3 account for the need to tile each coset in Zd/〈Y 〉.

Proposition 10. Algorithm ?? correctly outputs a parallelepiped set S which under trans-
lation by T tiles Zd. This holds for any input: that is, for any selection of independent
subgroups Yi, choice of independent elements within these subgroups, associated values yYi,
and memory size M .

Proof. Let us begin with the image of Y , by considering x = Y · a. It will further be
convenient to let eij enumerate the columns of block Yi of Y , so that a is indexed by aij. We
now observe that there is exactly one member t1 ∈ T1 that yields x− t1 ∈ S. Indeed, the set
S only uses scalings of 0 to bMyYic − 1 for each eij. As Y is injective, for x − t1 ∈ S to be
true, t1 must be produced by scaling eij by an amount in the range

[aij − bMyYic+ 1, aij]

As elements of T1 are by construction required to scale eij by multiples of bMyYic, the
only such member of T1 uses a scaling of baij/bMyYicc · bMyYic for eij.

This shows that each T1 + S is exactly the image of Y . We now complete the proof by
showing that T2 + T3 contains exactly one element from each coset of
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Zd/〈Y 〉 ' Zd−m ⊕ (
d⊕

i=d−m

Z/diZ)

To be speci�c, T2 accounts for the free component, and T3 for the torsion component.

Let U ′a + U ′′b and U ′a′ + U ′′b′ be two distinct elements of T2 + T3. Saying they are in
the same coset is exactly saying their di�erence lies in im(Y ). Writing Y = UDV −1 as in
Algorithm ?? and noting V is unimodular, it is clear that im(Y ) = im(UD). Conclude that
lying in the same coset is equivalent to

U ′a+ U ′′b− U ′a′ − U ′′b′ ∈ im(UD)

As U is unimodular, This means for some c ∈ Zd

(b; a)T − (b′; a′)T = Dc

Because D is d-by-m, the last d −m coordinates of Dc are 0. This means a = a′. Also for
b, b′ to be used in T3, they must satisfy 0 ≤ bi, b

′
i < di. But then

−di < bi − b′i = dici < di

which is only possible if bi = b′i.

To conclude that all cosets are represented, we need to show that for any x ∈ Zd,
there are U ′a, U ′′b such that x − U(b; a)T ∈ im(Y ). Simply take bi = (U−1x)i mod di and
ai = (U−1x)m+i.

We include an example in Appendix ?? to illustrate this approach.

1.3 Construction of Optimal Shape

In this section, we describe an algorithm for producing an asymptotically optimal tiling.
The recipe is to formulate the primal, solve the corresponding dual, and iteratively modify
the solution of the dual to something geometrically interpretable. Consequently, at least
asymptotically, the HBL upper bounds are attainable by a parallelepiped, and to do so is
essentially no harder than describing the Brascamp-Lieb polytope P .

Solutions Supported on Flags

It might not be possible to �nd a dual vector supported on independent subgroups that
obtains the optimal value. However, it turns out that it is possible to �nd one supported on
what we here de�ne to be a �ag.
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De�nition 11. A �ag of the lattice Zd is a sequence U of strictly nested subgroups

{0} < U1 < · · · < Ut = Zd

Our approach is to establish that an arbitrary optimal solution to the dual can be trans-
formed to an optimal one supported on a �ag. The following is a simple but important
property in accomplishing this goal. It was also helpful in [20] and [64], the latter of which
found �ags useful in studying the vertices of the Brascamp-Lieb polyhedron. Indeed, one
could view Thm. ?? as an algorithmic, dual version of [64]'s insight that vertices of P
correspond to certain �ags.

Lemma 12. For any linear map L on Zd and subgroups V,W ,

rank(L(V )) ≥ rank(L(V ∩W )) + rank(L(V +W ))− rank(L(W ))

On the other hand,

rank(V ) = rank(V ∩W ) + rank(V +W )− rank(W )

Proof. The claimed equality in the lemma follows by writing a basis for V ∩W and completing
it to a basis for W with a second set of independent basis elements. Call the subgroup
spanned by the second set P . Observe P has trivial intersection with V , and the rank of P
is rank(W )− rank(V ∩W ). Applying these observations to W + V = P + V ,

rank(W + V ) = rank(P + V ) = rank(P ) + rank(V ) = rank(W )− rank(W ∩ V ) + rank(V )

establishing the result. To prove the inequality, apply the equality to subspaces L(V ),
L(W ), and then observe

L(V ∩W ) ⊆ L(V ) ∩ L(W ), whileL(V +W ) = L(V ) + L(W )

The reason for the possible inequality is that maybe there are di�erent elements v ∈ V and
w ∈ W , but L(v) = L(w).

We employ this observation repeatedly to shift the support of a dual vector onto a �ag,
through the following procedure. It takes as input a feasible y supported on an arbitrary list
E and outputs a feasible y′ supported on a �ag U with the same objective value. Recall by
feasible we mean y ≥ 0 and Eq. ?? are satis�ed.
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Algorithm 2 Find feasible y′ supported on �ag U1, . . . Ut with same objective value
1: Input: feasible vector y supported on E1, . . . , Em
2: Initialize y′ as y
3: while y′ is not supported on a �ag do
4: V,W ← any pair in the support of y′ NOT satisfying V ⊂ W or W ⊂ V
5: Let V be the member of the pair with y′V ≤ y′W
6: y′W ← y′W − y′V
7: y′V+W ← y′V+W + y′V
8: y′V ∩W ← y′V ∩W + y′V (if V ∩W 6= {0})
9: y′V ← 0
10: end while
11: Return y′ and its support, denoted U1, . . . , Ut

Theorem 13. Algorithm ?? is correct: given input a dual feasible vector y supported on
E1, . . . , Em, it outputs a dual feasible y′ supported on a �ag U = (U1, . . . Ut) with the same
objective value as y.

Proof. The existence of the pair V,W is equivalent to the support of y′ not being totally
ordered, which is equivalent to the support of y′ not being a �ag. So if the algorithm does
terminate, the support will be a �ag. We must show the algorithm terminates, and that y′

maintains the objective value and feasibility.

Induction establishes that y′ is always non-negative. Indeed, inside the while loop, the
only danger is y′W − y′V . But y′V is the smaller of the two by construction. So y′ ≥ 0 is
maintained.

Let y′′ denote the value of y′ after another pass through the while loop. We examine the
e�ect of the iteration on Eq. ??. In the case V ∩W 6= {0}, the new value Ci(y

′′) is

Ci(y
′)− y′V [rank(φi(W ))− rank(φi(V ∩W ))− rank(φi(V +W )) + rank(φi(V ))]

The bracketed quantity is non-negative by Lemma ??, meaning Eq. ?? still holds. If V ∩W =
{0}, then the new value Ci(y

′′) is

Ci(y
′)− y′V [rank(φi(W ))− rank(φi(V +W )) + rank(φi(V ))]

but using rank(φi(V ∩W )) = 0 this can be written again as

Ci(y
′)− y′V [rank(φi(W ))− rank(φi(V ∩W ))− rank(φi(V +W )) + rank(φi(V ))]

Consequently Lemma ?? applies again. Similarly, the objective value is preserved: in the
case of W ∩ V 6= {0}, the new val(y′′) is

val(y′)− y′V [rank(W )− rank(V ∩W )− rank(V +W ) + rank(V )]
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with the bracketed quantity being 0 by Lemma ??. As before, the same follows in the case
V ∩W = {0} by noting rank(V ∩W ) = 0.

It remains to establish that the algorithm will terminate. At �rst glance, it appears that
the y′ might cycle in the algorithm. However, each iteration is increasing the dual variables
on V +W and V ∩W , so the dual vector seems to be shifting towards the high and low rank
subgroups.

To capture this intuition, we de�ne a simple measure of extremeness on dual vectors.
Recall all groups reside in Zd. To a dual vector y we assign a list w(y) of length d. To do
this, set

w(y)i =
∑

U∈ support(y), rank(U)=i

yU

For example, if y is supported on 〈e1, e2〉, 〈e1〉, 〈e2〉 with values 1, .5, 2, and d = 3, then
w(y) = (2.5, 1, 0). We say y′ is more extreme than y′′ if w(y′) is reverse lexicographically
more than w(y′′). Every iteration of the while loop makes y′ more extreme; indeed, the value
yV+W increases and V +W is of strictly larger rank than V or W .

Now we show that w(y′) can take on only �nitely many values, completing the proof.
Observe that 1Ty′ stays the same or decreases each iteration, so coordinates of w(y) are bound
by ~1Ty′. Also, the values produced by the algorithm come from performing only addition
and subtraction operations on the the coordinates of y, which are rational. Consequently
coordinates of w(y′) lie in the �nite set

spanZ(yE1 , . . . , yEm) ∩ [0, 1T ]

whose size may be conservatively bounded by the least common denominator of all the
yEi .

Parallelepiped Tilings from Flags

The main theorem of the previous section allows us to transform an optimal dual vector
into another optimal dual vector supported on a �ag. Now we convert the �ag subgroups
into independent subgroups in the natural manner in order to produce a tiling shape.

De�nition 14 (Flag Parallelepiped). Suppose y is supported on �ag U. Let Y be a sequence
of independent subgroups such that Y1 + · · · + Yi = Ui. De�ne the dual vector y′ supported
on Y by

y′Yi = yUi + · · ·+ yUt

Form a product parallelepiped S of Def. ?? from y′. We will call S the �ag parallelepiped of
y, and y′ its associated dual vector.
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Here let's brie�y summarize the progress so far, and what we still need to accomplish.
Provided we formulated the HBL Primal LP and solved its dual, we found a feasible y with
objective value h∗(α). From Thm ??, we can assume y is supported on some �ag. Next apply
the �ag parallelepiped construction of Def. ?? to y′ to create a tile S and its associated y′.
Proposition ?? implies that S includes Θ(Mh∗(α)) lattice points. However, y′ might no longer
satisfy Eq. ??, so Proposition ?? does not show that |φi(S)| = O(Mαi). We need to expand
the analysis of Lemma ?? to the case of parallelepipeds instead of cubes.

Lemma 15. Consider independent subgroups Y1, . . . , Yt with corresponding dual values yYi.
Construct the product parallelepiped as in Def. ?? from these independent spaces and dual
values. Assume the subgroups are ordered so that yYi monotonically decreases with i. In
keeping with Def. ?? have Ui := Y1 + · · ·+Yi for i = 1, . . . , t, and for convenience U0 := {0}.
For any linear map L, set

di := rank(L(Ui))− rank(L(Ui−1))

Then we have the bound

|L(S)| = O

(
t∏
i=1

MyYi ·di

)
In particular, this holds for L chosen to be any of the φj.

Before beginning the proof, we remark on the signi�cance. The weaker bound used in
Proposition ?? was

|L(S)| ≤
t∏
i=1

|L(SYi)| = O

(
t∏
i=1

MyYi ·ai

)
with ai := rank(L(Yi)). From independence of the subgroups Yj, it is immediate that di ≤ ai.
For example, when L is the identity, di = ai. However, when L(Yi) is not independent of
L(Ui−1), it is always the case that di < ai.

Proof. The goal is to propose a rectangular prism T containing L(S). Of the de�ning edges,
di of them will be length O(MyYi ). This would prove the needed bound.

Intuitively, we just need to make the d1 dimensions coming from L(Y1) have the largest
size O(MyY1 ), and the next d2 dimensions coming from Y2 will need to have length O(MyY2 )
and so forth. To formally show this by constructing T , it is convenient to interpret all
subgroups instead as subspaces of Qd with the standard Euclidean inner product and its
induced norm. Now apply a Gram-Schmidt orthogonalization procedure to the sequence
L(Y1), L(Y2), . . . , L(Yt). This yields subspaces E1, . . . Et satisfying

E1 = L(Y1), E1 + · · ·+ Ei = L(Y1) + · · ·+ L(Yi), Ei ⊥ Ej for i 6= j
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Take T to be the Minkowski sum formed by cubes Ti of side length O(MyYi ) growing

in the spaces Ei. It is readily observed that |T | = O

(
t∏
i=1

MyYi ·di
)
. Denote by PEi the

orthogonal projection onto Ei. If we can show PEi(L(S)) ⊂ Ti for each i, then L(S) ⊂ T .
The proof would then be complete.

Select an arbitrary x ∈ S. That is,

L(x) = L(xY1) + · · ·+ L(xYt)

where xYj ∈ SYj . Observe that L(xYi) ∈ ker(PEj) for i < j. Also ‖L(xYj)‖2 = O(MyYj ).
This implies

PEi(L(x)) = PEi(L(xYi)) + · · ·+ PEi(L(xYt))

and therefore
‖PEi(L(x))‖2 = O(MyYi ) + · · ·+O(MyYt ) = O(MyYi )

As T is permitted to be O(MyYi ) in Ei = im(Pi), we conclude that Pi(S) ⊂ T if the
hidden constant for T large enough.

This readily applies to the construction of Def. ??:

Theorem 16. From an optimal dual feasible vector y supported on a �ag U, form a �ag
parallelepiped S. Then |φj(S)| = O(Mαj) for each φj in the HBL problem, and |S| =
Θ(Mh∗(α)).

Proof. Let y′ be the associated dual vector of S with independent subgroups Y1, . . . , Yt as de-
scribed in Def. ??. As y has positive entries, y′Yi are monotonically decreasing. Consequently,
Lemma ?? applies. It implies that

|φj(S)| = O(
t∏
i=1

My′Yi
·di) = O(

t∏
i=1

M (yYi+···+yYt )·di)

= O(M
∑
i yYi ·(d1+···+di)) = O(MyT rank(φj(U))) = O(Mαj)

That |S| = MΘ(h∗(α)) follows from Proposition ??.

This is the major theoretical result. Combined with earlier results, it notably establishes
Thm ??.
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1.4 Conclusion

In this paper, we showed how to a maximize the volume of a shape, while requiring several
of its linear images to satisfy a volume bound. To solve this problem, we extracted important
geometric information from the HBL inequalities. This construction was inspired by the
blocking strategies used inside of the nested for-loops of matrix and tensor computation
algorithms. We believe our result places those strategies into a more general context, and
would be of interest to future algorithm designers. Besides this, the construction could be
of mathematical use, as already found in [53].

There are several questions of a theoretical nature that could be interesting to explore.
When we construct tilings with size |S| = O(Mh∗(α)), the hidden constant is complicated
and possibly large. It is unclear what the size of this hidden constant is, or how close it
is to optimal. We provide an exact formulation in Appendix ??, and wonder if or when
the sharpened bound could likewise be attained. Also, the complexity of solving for h∗ and
for the volume-optimal shape is unknown and connected to other computational complexity
questions through its connection to the Brascamp-Liebb inequalities.
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Chapter 2

A Riemannian Corollary of Helly's

Theorem 1

2.1 Overview

Introduction

The extrema of functions are of fundamental importance in mathematics and its ap-
plications. Much of numerical optimization studies this topic. Most of the theory focuses
on convex functions, as it has proven hard to �nd other classes that are both useful and
tractable. The motivation for this paper comes from the desire to expand the boundaries of
this class of tractable functions.

Rigorous study of convergence rates was initiated in [67] for �rst order methods for convex
functions on Hadamard manifolds. That is, they studied gradient descent methods for simply
connected manifolds of non-positive sectional curvature. Such manifolds are di�eomorphic
to Rn and exhibit natural convex functions. In a sense, they give new classes of functions
for which optimization is tractable.

Still, as far as the author is aware, all known algorithms for general convex optimization
on Riemannian manifolds have iteration complexity depending polynomially on ε−1, where
ε is the desired accuracy. To achieve better convergence rates, further conditions are added
such as strong convexity, dominated gradients, or recently robust second-order [67], [66], [68].
One major unresolved question for Hadamard manifolds like SLn/SOn is, does convexity
enable algorithms whose time complexity depends polynomially on log(ε−1)? The answer to
this is still open, and we make progress by establishing that only a polynomial number of
gradient oracle accesses are required.

For Euclidean optimization, cutting plane methods are the standard, general approach to

1Preprint [57],submitted for publication to Journal of Convex Analysis.
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get log(ε−1) complexity. It is well known that the minimum of a convex function lies in the
halfspace opposite the subgradient direction. Cutting plane methods use this fact to reduce
the feasible set. One feature of Rn that enables this approach to succeed is the existence
of what are commonly termed centerpoints. A precise de�nition of centerpoint is given in
De�nition ??. Roughly speaking, if c is to be a centerpoint for a set S, then no halfspace
based at c should contain too large (or small) a fraction of the volume of S. Ellipsoid methods
explicitly maintain a radially symmetric set, so the center of the current ellipse provides a
perfect centerpoint. Thus a subgradient at the center of an ellipse allows one to eliminate
half of the ellipse. For more general subsets S ⊂ Rn than ellipses, Grünbaum's result in [35]
shows the existence of a centerpoint c for which any halfspace based at c contains at most a
n
n+1

-fraction of the mass of S.

As generalizing this result of Grünbaum is the main goal of this work and we funda-
mentally build from it in the proof, we summarize his result as Theorem ??. Note the
statement is for a general probability measure, a fact we will make use of by applying it to
the Riemannian volume measure.

Theorem 17. A 1
n+1

-centerpoint c exists for any probability measure on Rn, endowed with

the usual Borel σ-algebra. Here c being a 1
n+1

-centerpoint means any halfspace based at c

contains at least a 1
n+1

-fraction of the mass of the probability distribution.

We replicate this result in the more general setting of Hadamard manifolds in the hope
that others �nd the result encouraging, useful, or intrinsically interesting. Examples illus-
trating the applicability of our results to interesting problems can be found below De�nition
??. Though we present the results here to provide motivation, the de�nitions in the Section
?? make the statements precise. The main result is from Section ??,

Theorem 18. Suppose µ is a probability distribution on a Hadamard manifold M of dimen-
sion n, and µ is absolutely continuous with respect to the Riemannian volume measure volg.
Then there exists a 1

n+1
-centerpoint c for the measure µ. If we assume the support of µ is

contained in a (geodesic) convex set S, then c ∈ S. Moreover, even for the uniform measure
on convex and compact S, this value 1

n+1
cannot in general be improved.

We noted the sharpness of 1
n+1

in the above theorem because this contrasts with the guar-

anteed existence of 1
e
-centerpoints for the uniform measure on convex subsets of Euclidean

space [35].

The theorem leads to a bound on the number of subgradient oracle calls needed to
optimize a function.

Theorem 19. Suppose a subset S of Hadamard manifold M of dimension n is (geodesic)
convex, and that f : S → R is a (geodesic) convex L-Lipschitz function. Additionally assume
the minimum of f , denote by x∗, is in the ε-interior of S, meaning that the open ball centered



Chapter 2. A Riemannian Corollary of Helly's Theorem 18

at x∗ of Riemannian radius ε is contained within S. Then it is possible to �nd a point x ∈ S
such that f(x) − f(x∗) ≤ ε using O(n2 log(nL volg(S)ε−1)) subgradient oracle calls, where
volg(S) denotes the Riemannian volume of S.

De�nitions and Notation

In this section we give the de�nitions needed to frame the problem and results. Only basic
notions of Riemannian geometry are needed in this paper; these are surveyed in Appendix
??, with the present section mainly providing non-standard or less common de�nitions.

For the remainder of this paper we study triples (M, g, µ), where M is an n-dimensional,
simply-connected manifold equipped with a complete Riemannian metric g of non-positive
sectional curvature. Such Riemannian manfolds (M, g) are called Hadamard manifolds. For
each point x ∈M we denote by 〈·, ·〉x the inner product, de�ned by g, on the tangent space
TxM . The metric g also induces the Riemannian volume measure, denoted by volg. In
addition to this, we consider a probability measure µ, which we assume to be absolutely con-
tinuous with respect to volg. For the motivating application µ is taken to be the Riemannian
volume measure restricted to a subset S ⊂M , i.e. µ = 1S

volg(S)
·volg. The metric g further in-

duces a metric between points on the manifold, allowing us to de�ne the notion of geodesics,
which are locally length minimizing paths. For x ∈ M we denote by expx : TxM → M the
exponential map based at x, which maps tangent vectors to geodesics passing through x. As
explained in the Riemannian geometry overview in Appendix ??, the exponential map is a
di�eomorphism when (M, g) is a Hadamard manifold.

We proceed with de�nitions related to convexity,

De�nition 20. We say that S ⊂ M is convex if points x, y ∈ S are joined by a unique
length-minimizing geodesic contained in S.

De�nition 21. A function f : M → R is convex on its domain if its restrictions to
geodesics are convex in t. That is, f(expx(tv)) : R→ R is a convex function in t.

For such a convex function f , a tangent vector w ∈ TxM is said to be a subgradient at
x if for any v ∈ TxM ,

f(expx(tv)) ≥ f(x) + t〈w, v〉x .
The set of subgradients at x is known as the subdi�erential at x, and is denoted by ∂fx.

We note Theorem 4.5 in [63] proves that convex functions have a non-empty subdi�er-
ential at all points. Accordingly, when the convex function f is discussed, we will assume a
subgradient oracle that for any x outputs some w ∈ ∂fx. As explained in Appendix ??, the
gradient of a di�erentiable convex function is a subgradient. Therefore the subradient oracle
for such a function can be explicit.

Let us present two examples of convex functions for motivation. The �rst is general, the
second speci�c.
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• The distance to a convex subset (De�nition ??) of a Hadamard manifold is convex [8].
Thus �nding the point minimizing the mean distance or mean squared-distance to a
set of points is a convex optimization problem.

• Identify SLn/SOn with the set of positive-de�nite matrices of determinant 1 [8]. Then
for arbitrary Bi ∈ GLn, the function

log det

(
m∑
i=1

BT
i XBi

)

de�ned on SLn/SOn is convex [60]. Minimizing such a function can be used to �nd
the optimal Brascamp-Lieb constant [10]. Up to scaling, all symmetric spaces of non-
compact type (examples of Hadamard manifolds) embed as totally geodesic submani-
folds of these spaces. Therefore restrictions of this function to such submanifolds give
many more examples. Minimizing this function has �gured prominently in recent the-
oretical computer science research, notably in [68]. Their work succeeds in developing
an optimizaton procedure depending polynomially on log(ε−1) for such functions, but
the approach relies on special properties of this family of functions.

With these examples in mind, let us return for two more important de�nitions,

De�nition 22. An open halfspace based at x ∈ M is formed by applying expx(·) to a
halfspace of TxM . We denote halfspaces by

Hx(v) := {expx(w) |w ∈ TxM, 〈w, v〉x < 0} ,

for a given v ∈ TxM .

Although such halfspaces are not convex sets in the general setting of Hadamard man-
ifolds, they are naturally produced by cutting planes for convex functions. This notion of
cutting plane is justi�ed by the following lemma,

Lemma 23. Consider a convex function f : S → R, where S is a convex subset of Hadamard
manifold M . Then for any x ∈ S and any subgradient v ∈ ∂fx, the minimum of f within S
is either attained at x or lies within Hx(v)∩S. Moreover, if y ∈ S\Hx(v), then f(y) ≥ f(x).

Proof. If y /∈ Hx(v), the corresponding v′ = exp−1
x (y) satis�es

〈v′, v〉x ≥ 0 ,

and we have
f(y) ≥ f(c) + 〈v, v′〉x ≥ f(x).
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Cutting plane methods need to �nd a point for which no halfspace based at that point
has too much of the feasible set's volume. This can be captured through the notion of a
centerpoint. Our de�nition of centerpoint technically could be applied to any probability
measure on any space with a notion of halfspace. However, in proving Theorem ??, we further
restrict to the halfspaces we de�ned for Hadamard manifolds, and require the probability
measure to be absolutely continuous with respect to the Riemannian volume measure volg.

De�nition 24. A β-centerpoint of the probability measure µ on a Hadamard manifold M
is a point c such that

µ(Hc(v)) ≤ 1− β ,

for all v ∈ TcM .

Theorem ?? claimed that even for the uniform measure on convex subsets of M , a 1
n+1

-
centerpoint is the best we can guarantee. We included this comment both to contrast with
Rn, as well as to include a concrete illustration. It is not di�cult to present such an example
through studying Hn, the model space of constant −1 sectional curvature.

Towards this end, let us brie�y state the important features of the Klein model of Hn

that we require. We identify Hn with the open Euclidean unit ball B(1) ⊂ Rn, which we

take to be centered at the origin. This set is equipped with the metric g =
dx21+···+dx2n
1−x21−···−x2n

. This

leads to a volume form of

volg =
1

(1− x2
1 − · · · − x2

n)
n+1
2

dx1 ∧ · · · ∧ dxn .

Critically for our exposition, this model of hyperbolic space has its geodesics appear
as Euclidean lines; thus Riemannian halfspaces appear as halfspaces intersected with B(1).
Other work such as [9] has found this useful in studying convex objects in Hn.

For the construction demonstrating that 1
n+1

cannot in general be improved in Theorem
??, the idea is simply that convex polyhedra in Hn have their volume concentrated towards
the vertices. Let T (1) be the closed, regular n-simplex inscribed in B(1). It can be checked
that T (1) has �nite volume; such objects are called ideal polyhedra and have been studied
extensively. By symmetry, we will see that the origin ~0 is the optimal centerpoint for T (1).
However, note that a hyperplane through ~0 parallel to any of the faces will contain exactly 1
of the n+ 1 vertices. An application of the Gauss-Bonnet theorem can be used to check that
in the case of H2, the area of the halfspace containing a single vertex is π

3
. The halfspace

containing the other two vertices is of area 2π
3
. The author found this calculation to be easier

to carry out in a conformal model such as the upper half-plane model, and conjectures the
result to hold as well for higher dimensions.

For our purpose, it is more direct to modify the example slightly,
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Proposition 25. Let T (1 + δ) be a closed, regular n-simplex inscribed in B(1 + δ). We
take δ > 0 small enough so that B(1) is not inscribed in T (1 + δ). Also de�ne Sε =
T (1+δ)∩B(1−ε), which we observe to be convex and compact. Then the optimal centerpoint
of Sε approaches being a 1

n+1
-centerpoint as ε→ 0.

Proof. It is clear that S = T (1 + δ) ∩ B(1) has unbound Riemannian volume, because each
of the n + 1 vertices of T (1 + δ) lies outside of B(1). However, Sε = T (1 + δ) ∩ B(1 − ε)
has �nite volume for any ε > 0, and is convex and compact. De�ne the set of probability
measures consisting of the uniform measure restricted to Sε, i.e. µε =

1Sε

volg(Sε)
· volg.

By symmetry, the origin ~0 is the optimal centerpoint for each µε. In more detail, the
optimal centerpoint for Sε is the solution to minimizing G(y) := sup

v̂∈Sn−1

µε(Hy(v̂). Viewing

G(y) as a function on Sε ⊂ Rn, Lemma ?? establishes that it is quasi-convex. Again, this
is possible because in this model of Hn, geodesics appear as Euclidean straight lines. One
characterization of quasi-convex is f(tx + (1 − t)y) ≤ max(f(x), f(y)) for all 0 ≤ t ≤ 1.
Suppose x∗ 6= ~0 is the optimal centerpoint. Because Sε exhibits tetrahedral symmetry, we
see there are n + 1 optimal centerpoints, and their convex hull includes ~0. Using quasi-
convexity, any points in the convex hull of these n + 1 optimal centerpoints must also be
optimal. This proves ~0 is the optimal centerpoint, using the symmetry of the set Sε and
quasi-convexity of the centerpoint function G(y).

Now consider a hyperplane through ~0 parallel to one of the faces of Sε, and denote by H
+

the resulting halfspace containing only one of the vertices of T (1 + δ). Because the volumes
close to the vertices of T (1 + δ) diverge at equal rates, it follows that as ε→ 0,

µε(H
+) = volg(H

+ ∩ Sε)/volg(Sε)→
1

n+ 1
.

This concludes our proof of the sharpness of Theorem ??.

Overview and Conclusion

The remainder of this paper is organized as follows:

• Section ?? analyzes the existence of centerpoints on Hadamard manifolds.

• Section ?? presents the brief application of the above to upper bound subgradient
oracle complexity.

• Appendix ?? recalls the relevant notions of Riemannian geometry and provides refer-
ences.



Chapter 2. A Riemannian Corollary of Helly's Theorem 22

To be clear, the problem of developing an e�cient optimization procedure is far from
resolved. However, our results show that there is not an information theoretic obstacle to
developing cutting plane methods for Hadamard manifolds.

We hope our main result is of interest and encourages others to study centerpoints in
the manifold setting. Targeting optimization procedures, we believe focusing on the spaces
SLn/SOn would be of greatest interest, both for theory and applications. Computing a
centerpoint from a discrete point set would be a notable advancement. It would also be
useful to be able to sample from the Riemannian volume restricted to a convex subset.

2.2 Existence of Centerpoints

One might wonder if the centroid of a convex set of a manifold is an adequate centerpoint.
Here centroid refers to the center of mass, the point minimizing the average squared-distance.
After all, the centroid of a convex subset of Rn is an approximately optimal centerpoint [35].
However, this is tied closely to the fact that cross-sectional areas of a convex set in Rn follow
a log-concave probability distribution - a consequence of the Brunn-Minkowski inequality.
On the otherhand, for a manifold with negative sectional curvature, the distribution of
cross-sectional areas is not necessarily even unimodal. This re�ects the fact that manifold
versions of the Brunn-Minkowski inequality use curvature lower bounds as parameters, and
are qualitatively di�erent in negative curvature compared to Rn [22]. Helly's Theorem is
somewhat the opposite, as it holds in situations in which the distance function is convex.
Moreover, as cited in Appendix ??, Hadamard manifolds have convex distance functions.
One can �nd in [45] and [40] proofs that amount to:

Theorem 26. Let M be an n-dimensional Riemannian manifold of non-positive sectional
curvature. Suppose we are given a convex compact set C and a family {Cα} ⊂ C of closed
convex sets. Then if for an arbitrary selection of n+ 1 sets Cα1 ∩ · · · ∩Cαn+1 6= ∅, it follows
that ∩αCα 6= ∅

The paper [40] actually proves this result for Cat(0) geodesic spaces.

That the halfspace notion of De�nition ?? is not typically convex limits the applicability
of this generalization of Helly's Theorem. The remainder of this section proves a result
that could be a considered a Riemannian variant of the well known corollary of Helly's
theorem cited as Theorem ??. To generalize that result, we rely on a few simple regularity
properties of sets of Euclidean centerpoints, which we now collect. In the following lemma,
the halfspaces are Euclidean halfspaces, and D is the Hausdor� distance. That is,

D(A,B) := max{sup
b∈B

inf
a∈A
|a− b| , sup

a∈A
inf
b∈B
|a− b|},

where | · | denotes the Euclidean norm. In other words, D(A,B) is the minimal value ε
so that A is contained in the ε-fattened version of B and vice versa. Also recall the total
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variation distance between probability distributions is

sup
A∈F
|µ1(A)− µ2(A)|,

where | · | denotes the absolute value, as there will be no confusion. Here A can be any
measurable set, the collection of which is labeled F .

Lemma 27. Let {µx(·)} be a family of probability measures on Rn that share a compact
support Y . Assume the measures are indexed by members x of a compact metric space
X with metric d, and the measures µx(·) vary continuously with respect to total variation
distance. De�ne the Euclidean centrality function G : X × Y → R by

G(x, y) := sup
v̂∈Sn−1

µx(Hy(v̂)),

in order to measure how good of a centerpoint y is for distribution µx. Then G is continuous
under the product topology and G(x, ·) is a quasi-convex function for a �xed x. Fixing an
arbitrary α > 0, also de�ne the sets

Ux :=

{
y ∈ Rn |G(x, y) ∈

(
0, 1− 1

n+ 1
+ α

]}
in order to explicitly propose the set of centerpoints for distribution µx. For any x, these
sets have a non-empty interior. Moreover �x x ∈ X and suppose supp(µx) is a connected
set. Then xi → x, D(Uxi , Ux)→ 0.

Proof. Each {y |µx(Hy(v̂)) < a} is a halfspace. Indeed, there is a unique halfspace with
normal v̂ of mass a, and the previous set is precisely the points contained in this halfspace.
Therefore the intersection over all v̂ is a convex set. This shows that preimages under G(x, ·)
of sets (−∞, a) are convex, which is the de�nition of quasi-convex.

As we are using the product topology, the domain of G, which we denote by K = X×Y ,
is compact. Because g(x, y, v̂) : (x, y, v̂) 7→ µ(Hx(v̂)) is continuous and K is compact, g
is uniformly continuous on K × Sn−1. Thus given ε > 0, one can choose δ so that when
d(x, x′) < δ and |y − y′| < δ, then

|g(x, y, v̂0)− g(x′, y′, v̂0)| < ε

holds for any v̂0. By compactness in the last argument, we may let G(x, y) = g(x, y, v̂x,y).
Therefore

G(x, y)−G(x′, y′) = g(x, y, v̂x,y)− g(x′, y′, v̂x′,y′) > g(x, y, v̂x,y)− (g(x, y, v̂x′,y′) + ε) ≥ −ε

holds. Switching roles gives the reverse inequality, G(x, y) − G(x′, y′) < ε, which proves
continuity.

Recall the Hausdor� distance is the maximum distance it might require to travel from
a point in one of the sets to the other set. We argue by contradiction that U(·) converges
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to Ux in the Hausdor� distance metric. Assume the contrary, then either (i) there exists a
sequence of points yni ∈ Uxni such that yni are bounded away from Ux or (ii) there exists a
sequence of points yni ∈ Ux bounded away from Uxni .

In situation (i), compactness implies an accumulation point y for the sequence yni . How-
ever, continuity of G requires y ∈ Ux, because xni → x and each G(xni , yni) ∈ (0, 1− 1

n+1
+α].

This contradicts the premise that yni are bound away from Ux. In particular, this shows
that the maximum distance from a point in Uxi to the set Ux is going to 0.

In situation (ii), again by compactness there is an accumulation point y ∈ Ux that is
bounded away from in�nitely many of the Uxni . Because we have assumed α > 0, Theorem
?? and the continuity of G(x, ·) imply Ux has an interior. Note that in proving continuity of
G(x, ·), we used the absolute continuity of µx with respect to Lebesgue measure.

As a �rst subcase of (ii), we assume y is in the interior of Ux. We show by contradiction
that G(x, y) < 1− 1

n+1
+α. Supposing to the contrary, there would be v̂ such that G(x, y) =

1− 1
n+1

+ α = µx(Hy(v̂)), and we may select p ∈ Hy(−v̂)∩Ux because y is in the interior of

Ux. As p ∈ Ux and µx(Hy(v̂)) = 1− 1
n+1

, it must be the case that µx (Hy(−v̂) ∩Hp(v̂)) = 0,
hence

Hy(−v̂) ∩Hp(v̂) ∩ supp(µx) = ∅,

and this implies the boundary of H y+p
2

(v̂) is disjoint from supp(µx). Then supp(µx) ∩
H y+p

2
(−v̂) and supp(µx)∩H y+p

2
(v̂) are non-empty sets whose union is supp(µx). As these sets

are open in the induced topology on supp(µx), this contradicts the assumption that supp(µx)
is connected. Therefore we have shown by contradiction that G(x, y) < 1 − 1

n+1
+ α. We

immediately conclude from the continuity of G that y ∈ Uxi for large enough i.

In the event that y is not in the interior of Ux, we can still select an interior point y′ ∈ Ux
that is arbitrarily close to y, because the set is open and convex. For any such y′, the prior
argument establishes that y′ ∈ Uxi for large enough i. Therefore, we conclude that the
distance between y and Uxi is going to 0, contradicting our assumption. This completes the
proof showing D(Uxi , Ux)→ 0.

As a comment on the proof, the assumption that sup(µx) is connected was essential
in the �nal conclusion of the proof. This assumption, along with a few others like the
use of α, are bootstrapped out of the eventual theorem we prove. It would be nice to
eliminate the absolute continuity assumption on µx by using a more general convergence
tool like Wasserstein distance. We necessarily lose G's continuity, but it remains lower semi-
continuous. However, these topological properties alone were insu�cient for proving Ux had
an interior point or analogous �deep� point, which we found necessary in proving Hausdor�
convergence for Ux.

We are now ready for the key step in proving the main result.
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Proposition 28. Let µ be a probability measure whose support lies within a compact set
S of a Hadamard manifold M . Further assume µ is absolutely continuous with respect to
the Riemannian volume measure volg and has connected support. Then there exists a 1

n+1
-

centerpoint for µ.

Before going into the proof details, here is conceptual overview of the proof. We will
de�ne a continuous function F from S to itself, and an application of Brouwer's theorem will
show there is a �xed point. We design F so that the �xed point is a ( 1

n+1
− α)-centerpoint.

The α is inherited from the de�nition of Ux in Lemma ??, and is removed at the end of
the proof. In designing F , we adopt normal coordinates at x and pull back the measure
µ from M (i.e. the measure of U ⊂ Rn is µ(expx(U)). In these coordinates, there is a
Euclidean-convex set of Euclidean centerpoints Ux provided by the previous lemma, for the
pulled-back measure. We select the closest of these centerpoints to x and denote this point
by ux. Finally, F (x) is then de�ned by projecting ux onto S. As stated precisely in the
appendix, it is the Hadamard assumption that implies a strictly convex distance function,
making this projection possible.

The technical part of the proof mostly involves showing continuity of F (x), as it is not
hard to show that �xed points are ( 1

n+1
− α)-centerpoints. The main obstacle is to show

that ux varies continuously. To establish this, we note that the pulled back measures vary
continuously with respect to total variation. Then Lemma ?? shows that the Euclidean
centerpoint sets Ux, Ux′ are close in Hausdor� distance, provided x, x′ are close. Combining
this with convexity of the centerpoint sets, we are able to make |ux − u′x| small.

We now provide the details.

Proof. We may WLOG assume S is a closed Riemannian ball of radius R. By parallel
transport we may �x a smooth orthonormal frame V = (~e1, . . . ~en) on S, thereby determining
normal coordinate charts at each x ∈ S de�ned by

ψx : y 7→ expx(y
i~ei(x)).

Note that ψx(y) varies smoothly both in x and y. We may pull back the measure µ by ψx to
give the measures µx(y)dy. The absolute continuity of these pull back measures with respect
to Lebesgue measure is due to µ being absolutely continuous with respect to the Riemannian
volume measure. Smoothness of parallel transport ensures that the coordinate charts vary
smoothly and therefore the µx(y) vary continuously with respect to total variation distance.
Finally, since ψx are di�eomorphisms, we see that for each x ∈ S the measure µx(y) has
connected support. The set S is of radius R. Therefore in applying Lemma ??, we may
choose Y to be the closed ball of radius 2R.

First �x α > 0. For all x ∈ S, Lemma ?? then establishes the existence of non-empty
compact convex sets Ux ⊂ Rn of Euclidean ( 1

n+1
− α)-centerpoints. There is a unique point

ux ∈ Ux that is closest to x. However, it is not necessarily the case that ux is inside ψ
−1
x (S),
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because ψ−1
x (S) is not convex with respect to the Euclidean metric. To work around this,

project ux onto S. That is,

F (x) := π(ux) := arg min
s∈S

d(s, ψx(ux)) ,

where by d(·, ·) we mean the Riemannian distance. The projection is well-de�ned and con-
tinuous by [8, Corollary 5.6]. Therefore F is well-de�ned. In the following we show

• If F (x) = x, then x is a ( 1
n+1
− α)-centerpoint contained in S.

• F (x) is continuous.

Then since S is a closed ball, an application of Brouwer's �xed point theorem yields the
desired result.

We �rst show that �xed points are centerpoints. We argue by contradiction and assume
x is a �xed point of F which is not a ( 1

n+1
− α)-centerpoint. Observe that ux 6= ~0, because

this would imply x is a ( 1
n+1
− α)-centerpoint. Further, we see that ψx(H0(−ux)) ∩ S 6= ∅,

since Hux(−ux) ⊂ H0(−ux) and µ(ψx(Hux(−ux)) > 1
n+1
−α > 0 by the centerpoint property.

Next choose s ∈ ψx(H~0(−ux)) ∩ S, and consider the geodesic between x, s. This geodesic
is contained in S by the assumption that S is convex. Triangle inequalities in the form of
Toponogov's Theorem [16] (or convexity of the distance function as a simple alternative)
show that, initially, moving from x to s along the geodesic decreases the distance to ux. This
means it is not the case that π(ψx(ux)) = x.

Next we consider the continuity claim. Once we show ux ∈ Rn varies continuously with
respect to x ∈ S, then the continuity of F (x) follows because, as noted in Appendix ??,
the projection is also continuous. As a �rst step, we remark that the pull-back probability
densities µx(y) vary continuously with respect x, because they are de�ned by smoothing
varying di�eomorphisms ψx. Moreover, as S is compact and µ is supported on S, we may
assume the y are taken from a compact set. Then we may apply uniform continuity to
show there is δ so that d(x, x′) < δ implies |µx(y) − µx′(y)| < ε for any y. This establishes
continuity for the family of measures µx(y)dy, with respect to total variation distance. We
can now make use of the regularity properties provided by Lemma ??.

From the lemma's last part, by requiring d(x, x′) < δ for small enough δ, one can ensure
D(Ux, Ux′) < ε. Let hx ∈ Ux be the point closest to ux′ ; this ensures |ux′ − hx| < ε. It is also
not di�cult to see that |ux′| − |ux| < ε. Therefore |hx| − |ux| < 2ε. Critically, the Euclidean
distance to the origin is strongly convex and ux minimizes it on the Euclidean convex set Ux,
which also includes hx. Therefore, qualitatively, since |hx| and |ux| are similar in value, we
know that |hx−ux| is small. Making this quantitative through the Euclidean law of cosines,

|ux − hx|2 ≤ |hx|2 − |ux|2 = (|hx| − |ux|)(|hx|+ |ux|) < εR
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where a su�ciently large R can be taken to be twice the diameter of S. We conclude

|ux − ux′| ≤ |ux − hx|+ |hx − ux′| <
√
εR + ε ,

which establishes continuity for F (x). This essentially completes the proof, but recall that we
have used a small α parameter to de�ne Ux, and this resulted in our proving only the existence
of ( 1

n+1
− α)-centerpoints for α > 0. However, the continuity of the centerpoint function

sup
v̂∈Sn−1

Hx(v̂) on S follows from the same argument for proving continuity of G in Lemma ??.

From this and compactness of S, may conclude the existence of 1
n+1

-centerpoints.

This nearly proves the main part of Theorem ??. The main di�erence is the absence of
a few simplifying assumptions, namely compactness and connected support. The fact that
x ∈ S provided S is convex was also postponed. We complete the proof here.

Proof for Theorem ??. We �rst remove the connected support assumption. For measures µ
supported on compact S, we may WLOG assume S is a ball and therefore connected. Then
we may de�ne the probability measures (1 − ε)µ + ε 1S

volg(S)
· volg. Proposition ?? applies

to these measures. Thus it is clear that we may construct ( 1
n+1
− ε)-centerpoints for µ.

Again using the continuity of the centerpoint function and compactness of S as at the end
of Proposition ??'s proof, it follows that a 1

n+1
-centerpoint exists for µ.

Next we extend the result by removing the assumption that S is compact. Fixing some
point x ∈ M , we may de�ne the family of compact sets Si = S ∩ B̄g(x, i), where i ranges
over the positive integers and B̄g(x, i) denotes the closed ball of radius i around x. These
sets satisfy lim

i→∞
µ(Si) = 1. Applying Proposition ?? to these Si, we get points si that are at

least
(

1
n+1
− µ(SCi )

)
-centerpoints for µ. Moreover, these si must all lie in some compact set

C ⊂ S. Indeed, by the analog of the separating hyperplane theorem proven in Lemma ??,
any point p /∈ Bg(x, i) will have a halfspace Hp(v̂) ∩ Si = ∅, and thus be at most a µ(SCi )-
centerpoint. As in Lemma ??, the function G : C → R de�ned by G(y) := sup

v̂∈Sn−1

µ(Hy(v̂)) is

continuous. Because lim
i→∞

G(si) ≤ 1− 1
n+1

, C is compact, and G is continuous, it follows that

there is some c ∈ C ⊂ S such that G(c) ≤ 1− 1
n+1

. Therefore this c is a 1
n+1

-centerpoint.

If we additionally assume S is convex, then the separating hyperplane theorem again
gives that the centerpoint satis�es c ∈ S.

Finally, we remind the reader that Proposition ?? established the second part of the
theorem, concerning sharpness.

2.3 Upper Bound on Needed Subgradient Calls

We require one �nal lemma for the application to convex optimization. In this lemma,
as in the past, volg will denote the Riemmanian volume measure and Bg(x, r) the open ball
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of radius r around x.

Lemma 29. Suppose f is convex and L-Lipschitz on its convex domain S ⊂ M , where
M is a Hadamard manifold. Additionally assume the minimum x∗ is in the ε-interior of
S, meaning Bg(x∗, ε) ⊂ S. Now suppose we are given a sequence of cutting planes Hci(vi),
i = 1, 2, · · · , N with ci ∈ S and vi ∈ ∂fci such that the remaining feasible set S ′ := S∩iHci(vi)
satis�es the volume bound

volg(S
′ := S ∩i Hci(vi)) <

(ε/L)n

nn
.

Then one of the ci satis�es f(ci)− f(x∗) ≤ ε.

Proof. The main fact to be established is that volg(Bg(x∗,
ε
L

)) > volg(S
′), as this implies

that one of the complements of the halfspaces Hci(vi) must have intersected Bg(x∗,
ε
L

). By
volume comparison methods (see [16]), the volume of this geodesic ball is greater or equal
to the volume of a Euclidean ball of equal radius. A reference justifying the exact version
required is included in Appendix ?? as Theorem ??. Hence we obtain

volg(Bg(x∗,
ε

L
)) >

(ε/L)n

nn
> volg(S

′),

by using π
n
2

Γ(n
2

+1)
εn

Ln
> 1

nn
εn

Ln
in the �rst inequality.

It follows that there exists a point x′ ∈ B(x∗,
ε
L

) that lies in the complement of one of the
halfspaces Hci(vi). From Lemma ??, f(ci) ≤ f(x′). The Lipschitz bound on f then gives

f(ci)− f(x∗) ≤ f(x′)− f(x∗) ≤ L · d(x′, x∗) ≤ ε.

The proof of Theorem ?? is now a rather straightforward consequence.

Proof for Theorem ??. Lemma ?? shows that one of the origins of the cuts is ε from optimal
for the function f as soon as the remaining set, denoted by S ′, has volume O( εn

nnLn
).

We must only bound the number of halfspaces needed to reduce the volume of S ′ to this
amount. Proceeding iteratively, apply Theorem ?? with µ being the Riemannian volume
measure restricted to S ′ (i.e. µ =

1S′
volg(S′)

· volg). As the support of µ is contained in the

convex set S, Theorem ?? shows that we may choose the cut centers to be 1
n+1

-centerpoints

ci ∈ S for the remaining set S ′ ⊂ S, so that the volume is reduced by a factor (1− 1
n+1

) each
cut. This means the number of iterations needed is O(n2 log (nL volg(S)ε−1)).
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Chapter 3

A Generalized Randomized

Rank-Revealing Factorization1,2

3.1 Introduction

Rank-revealing factorizations have been around for a long time, including [13], which
introduced the world to QR with pivoting to solve least-squares problems. Since then,
many other algorithms have been proposed, among which we mention [15], [54]; for a more
complete list the reader can refer to [36]. While they all perform very well most of them
time, the only one that stably produces a strong rank-revealing factorization (in the [36]
sense, de�ned in the next section) in an arithmetic complexity comparable to QR belongs
to Ming Gu and Stanley Eisenstat [36].

Recently, the idea of using randomized algorithms for rank approximation (or more gen-
erally for low-rank approximations of matrices) has received a lot of attention due to the
applications in signal processing and information technology, for example [43] and [48]. For
a good overview of the types of algorithms involved, see [37].

We provide here an analysis of the (�Randomized URV�) factorization, or RURV, which
will allow us to prove that it has the following three properties.

• It is strong (in the Gu-Eisenstat sense, which will be explained in Section ??). In
particular, it is almost as strong as the best existing deterministic rank-revealing fac-
torization of Gu and Eisenstat [36];

• It is communication-optimal. It uses only QR and and matrix multiplication, and thus
both its arithmetic complexity and its communication complexity are asymptotically
the same as QR and matrix multiplication.

1Joint work with Grey Ballard, James Demmel, Ioana Dumitriu
2Preprint [5], submitted for publication to SIAM J. Matrix Analysis and Application.
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• If the information desired is related to the invariant subspaces, it can be applied to
a product of matrices and inverses of matrices without the need to explicitly calculate
any products or inverses.

To place these three properties in context, we compare with recent trends in the random-
ized numerical linear algebra literature. In work focused on sketching, such as the approaches
in the overview [37], it is customary to make the assumption that the rank is small, gener-
ally much smaller than the size of the matrix. In such cases, the speedups achieved by the
algorithms in [37] and others like them over QR is signi�cant, both in terms of arithmetic
complexity and other features, like parallelization; naturally, the results can be achieved
only with (arbitrarily) high probability. The downside is that this literature largely focuses
on taking advantage of matrices with low numerical rank, and quickly producing low-rank
approximations of such matrices. Such developments are insu�cient for e�ective use as a
numerical subroutine within the communication optimal generalized eigenvalue algorithm,
which at minimum require parts of the �rst and third properties mentioned above.

Other recent approaches using randomization include [29] and [49]. These works recognize
that QR with column pivoting tends to have good rank-revealing properties, but that column
pivoting induces extra communication. They build on this realization by using randomiza-
tion to guide pivot selection during the QR algorithm and introduce block pivoting strategies.
However, in contrast to our work and earlier work such as [36], theoretical bounds are not pro-
vided. We therefore emphasize that ourRURV is communication optimal while maintaining
the key theoretical properties of strong rank-revealing QR-factorizations. Moreover, RURV
is conceptually simple, as it depends only on the existence of communication-avoiding QR
algorithms, which were popularized in [27].

A subset of the authors introduced RURV in [24], for the purpose of using it as a
building block for a divide-and-conquer eigenvalue computation algorithm whose arithmetic
complexity was shown to be the same as that of matrix multiplication. The analysis of
RURV performed at the time was not optimal, and the authors of [24] had not realized
that RURV has the third property listed above. This property makes RURV unique
among rank-revealing factorizations, as far as we can tell, and it is crucial in the complexity
analysis of the aforementioned divide-and-conquer algorithm for nonsymmetric eigenvalue
computations [3].

The rest of the paper is structured as follows: in Section ?? we give the necessary
de�nitions and the algorithms we will use, and Section ?? proves some necessary probability
results; Section ?? deals with the analysis of RURV, the short Section ?? generalizes the
algorithm to work for a product of matrices and inverses, and Section ?? presents some
numerical experiments validating the correctness and tightness of the results of Sections ??
and ??.
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3.2 Randomized Rank-Revealing Decompositions

Let A be an n × n matrix with singular values σ1 ≥ σ2 ≥ . . . ≥ σn, and assume that
there is a �gap� in the singular values at level r, that is, σr/σr+1 � 1.

Informally speaking, a decomposition of the form A = URV is called rank revealing if
the following conditions are ful�lled:

1) U and V are orthogonal/unitary and R =

[
R11 R12

R22

]
is upper triangular, with R11

r × r and R22 (n− r)× (n− r);

2) σmin(R11) is a �good� approximation to σr (at most a factor of a low-degree polynomial
in n away from it),

(3) σmax(R22) is a �good� approximation to σr+1 (at most a factor of a low-degree polyno-
mial in n away from it);

(4) In addition, if ||R−1
11 R12||2 is small (at most a low-degree polynomial in n), then the

rank-revealing factorization is called strong (as per [36]).

Rank revealing decompositions are used in rank determination [61], least squares compu-
tations [14], condition estimation [11], etc., as well as in divide-and-conquer algorithms for
eigenproblems. For a good survey paper, we recommend [36].

In the paper [24], the authors proposed a randomized rank revealing factorization algo-
rithm RURV. Given a matrix A, the routine computes a decomposition A = URV with
the property that R is a rank-revealing matrix; the way it does it is by �scrambling� the
columns of A via right multiplication by a uniformly random orthogonal (or unitary) matrix
V H (the uniform distribution over the manifold of unitary/orthogonal matrices is known as
Haar). One way to obtain a Haar-distributed random matrix is to start from a matrix of
independent, identically distributed normal variables of mean 0 and variance 1 (denoted,
here and throughout the paper, by N(0, 1)), and to perform the QR algorithm on it. The
orthogonal/unitary matrix V obtained through this procedure is Haar distributed.

It is worth noting that there are in the literature other ways of obtaining Haar-distributed
matrices, and some involve using fewer random bits and/or fewer arithmetic operations; we
have chosen to use this one because it is simple and communication-optimal (as it only
involves one QR operation, which can be performed optimally from a communication per-
spective both sequentially and in parallel [27, 6, 4]. On a practical side, we note that using
less randomness would not incur any signi�cant overall savings, as the total arithmetic cost
is much higher than the cost of generating n2 normal random variables.

Performing QR on the resulting matrix AV H =: Â = UR yields two matrices, U (or-
thogonal or unitary) and R (upper triangular), and it is immediate to check that A = URV .
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Algorithm 3 Function [U,R, V ] =RURV(A), computes a randomized rank revealing de-
composition A = URV , with V a Haar matrix.

1: Generate a random matrix B with i.i.d. N(0, 1) entries.
2: [V, R̂] =QR(B).
3: Â = A · V H .
4: [U,R] = QR(Â).
5: Output R, [U,R], or [U,R, V ].

We also de�ne the routine RULV, nearly identical to RURV, which performs the same
kind of computation (and obtains a rank revealing decomposition of A), but uses QL instead
of QR, and thus obtains a lower triangular matrix in the middle, rather than an upper
triangular one. red(Note one can think of the decomposition RULV as being the transpose
of the decomposition RURV performed on AH .)

GivenRURV andRULV, we now can give a method to �nd a randomized rank-revealing
factorization for a product of matrices and inverses of matrices, without actually computing
any of the inverses or matrix products. This is a very interesting and useful procedure in
itself, and at the same time it is crucial in the analysis of a communication-optimal Divide-
and-Conquer algorithm for the non-symmetric eigenvalue problem presented in [3].

Suppose we wish to stably �nd a randomized rank-revealing factorizationMk = URV for
the matrix Mk = Am1

1 ·Am2
2 · . . . A

mk
k , where A1, . . . , Ak are given matrices, and m1, . . . ,mk ∈

{−1, 1}, without actually computing Mk or any of the inverses.
Essentially, the method performs RURV or, depending on the power, RULV, on the

last matrix of the product, and then uses a series of QR/RQ to �propagate� an orthogo-
nal/unitary matrix to the front of the product, while computing factor matrices from which
(if desired) the upper triangular R matrix can be obtained. A similar idea was explored by
G.W. Stewart in [62] to perform graded QR; although it was suggested that such techniques
can be also applied to algorithms like URV, no randomization was used.

The algorithm is presented in pseudocode below. For the proof of correctness, see Lemma
??.

3.3 Smallest singular value bounds

The estimates for our main theorem are based on the following result, a more general
case of which can be found in [30]; in particular, the following is a consequence of Theorem
3.2 and Lemma 3.5.

De�nition 30. Let sr,n be a random variable denoting the smallest singular value of an r×r
corner of an n× n real Haar matrix.

Proposition 31. The probability density function (pdf) of sr,n, with r < n/2, is given by

fr,n(x) = cr,n
1√
x

(1− x)
1
2
r(n−r)−1

2F1

(
1

2
(n− r − 1),

1

2
(r − 1);

1

2
(n− 1) + 1; 1− x

)
,
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Algorithm 4 Function U =GRURV(k;A1, . . . , Ak;m1, . . . ,mk), computes a randomized
rank-revealing decomposition URm1

1 · · ·R
mi
i V = Am1

1 · Am2
2 · · · ·Amkk , where m1, . . . ,mk ∈

{−1, 1}.
1: if mk = 1, then
2: [U,Rk, V ] = RURV(Ak)
3: else
4: [U,Lk, V ] = RULV(AHk )
5: Rk = LHk
6: end if
7: Ucurrent = U
8: for i = k − 1 downto 1 do
9: if mi = 1, then
10: [U,Ri] = QR(Ai · Ucurrent)
11: Ucurrent = U
12: else
13: [U,Ri] = RQ(UH

current · Ai)
14: Ucurrent = UH

15: end if
16: end for
17: return Ucurrent, optionally V,R1, . . . , Rk

where 2F1 is the ordinary hypergeometric function [1], and

cr,n =
1
2
r(n− r) Γ

(
1
2
(n− r + 1)

)
Γ
(

1
2
(r + 1)

)
Γ
(

1
2

)
Γ
(

1
2
(n+ 1)

) .

This Proposition allows us to estimate very closely the probability that sr,n is small. In
particular, the correct scaling for the asymptotics of sr,n under r and/or n→∞ was proved

in [31] to be
√
r(n− r) (that is, sr,n

√
r(n− r) = O(1) almost surely), which means that

the kind of upper bounds one should search for sr,n are of the form �sr,n ≤ a/
√
r(n− r)�

for some constant a. This constant a will depend on how con�dent we want to be that the
inequality holds; if we wish to say that the inequality fails with probability δ, then we will
have a as a function of δ.

Lemma 32. Let δ > 0, r, (n − r) > 30; then the probability that sr,n ≤ δ√
r(n−r)

is

P
[
sr,n ≤ δ√

r(n−r)

]
≤ 2.02δ.

Proof. What we essentially need to do here is �nd an upper bound on fr,n which, when
integrated over small intervals next to 0, yields the bound in the Lemma.

We will �rst upper bound the term (1− x)
1
2
r(n−r)−1 in the expression of fr,n(x) by 1.
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Secondly, we note that the hypergeometric function has all positive arguments, and hence
from its de�nition, it is monotonically decreasing from 0 to 1, and so we bound it by its value
at x = 0. As per [1, Formula 15.1.20],

2F1

(
1

2
(n− r − 1),

1

2
(r − 1);

1

2
(n− 1) + 1; 1

)
=

Γ
(

1
2
(n+ 1)

)
Γ
(

3
2

)
Γ
(

1
2
(n− r + 2)

)
Γ
(

1
2
(r + 2)

) ,
and after some obvious cancellation we obtain that

fr,n(x) ≤ 1

2
r(n− r) ·

Γ
(

1
2
(n− r + 1)

)
Γ
(

1
2
(n− r + 2)

) · Γ
(

1
2
(r + 1)

)
Γ
(

1
2
(r + 2)

) · 1√
x
.

The following expansion can be derived from Stirling's formula and is given as a particular
case of [1, Formula 6.1.47] (with a = 0, b = 1/2):

z1/2 Γ(z)

Γ(z + 1/2)
= 1 +

1

8z
+

1

128z2
+ o

(
1

z2

)
,

as z real and z →∞. In particular, z > 30 means that z1/2 Γ(z)
Γ(z+1/2)

< 1.01.
Provided that r, n− r > 30, we thus have

fr,n(x) ≤ 1.01 ·
√
r(n− r)

√
r(n− r)

(r + 1)(n− r + 1)

1√
x
,

and so

fr,n(x) ≤ 1.01 ·
√
r(n− r) · 1√

x
.

Note that this last inequality allows us to conclude the following:

P

[
sr,n ≤

δ√
r(n− r)

]
= P

[
s2
r,n ≤

δ2

r(n− r)

]

≤ 1.01

∫ δ2

r(n−r)

0

√
r(n− r) 1√

t
dt

= 2.02δ.

As an immediate corollary to Lemma ?? we obtain the following result, which is what
we will actually use in our calculations.

Corollary 33. Let δ > 0, r, n− r > 30. Then

P
[

1

sr,n
≤ 2.02

δ

√
r(n− r)

]
≥ 1− δ .
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3.4 Analysis for RURV

Bounding the probability of failure for RURV

It was proven in [24] that, with high probability, RURV computes a good rank revealing
decomposition of A in the case of A real. Speci�cally, the quality of the rank-revealing
decomposition depends on computing the asymptotics of sr,n, the smallest singular value of
an r× r submatrix of a Haar-distributed orthogonal n×n matrix. All the results of [24] can
be extended verbatim to Haar-distributed unitary matrices; however, the analysis employed
in [24] is not optimal. Using the bounds obtained for sr,n in the previous section, we can
improve them here.

We will tighten the argument to obtain one of the upper bounds for σmax(R22). In
addition, the result of [24] states only that RURV is, with high probability, a rank-revealing
factorization. Here we strengthen these results to argue that it is actually a strong rank-
revealing factorization (as de�ned in the Introduction), since with high probability ||R−1

11 R12||
will be small.

In proving Theorem ??, we require two lemmas that we state here and prove afterwards.

Lemma 34. Let A be an n× n matrix whose SVD is A = PΣQH , and with singular values
σ1, . . . , σn.

Let R be the matrix produced by the RURV algorithm on A, in exact arithmetic, so that
UR = AV H . Then de�ning X = QHV H ,

σmax(R22) ≤ σmin(X11)−1σr+1 , (3.1)

(3.2)

where X11 is the upper-left r × r submatrix.

Lemma 35. Carrying over the notation of Lemma ??,

‖R−1
11 R12‖2 ≤ 3σ−1

min(X11) + 6
σr+1

σr
σ−3

min(X11) .

We are ready for the main result.

Theorem 36. Let A be an n × n matrix with singular values σ1, . . . , σr, σr+1, . . . , σn. Let
1 > δ > 0. Let R be the matrix produced by the RURV algorithm on A, in exact arithmetic.
Assume that r, n− r > 30.

Then with probability 1− δ, the following three events occur:

δ

2.02

σr√
r(n− r)

≤ σmin(R11) ≤ σr , (3.3)

σr+1 ≤ σmax(R22) ≤ 2.02

√
r(n− r)
δ

σr+1 , (3.4)

||R−1
11 R12||2 ≤

6.1
√
r(n− r)
δ

+
σr+1

σr

50
√
r3(n− r)3

δ3
. (3.5)



Chapter 3. A Generalized Randomized Rank-Revealing Factorization 36

We note the upper bound in (??) and lower bound in (??) always hold. Moreover, if we
additionally assume δ >

√
2 · 1.01 · n · σr+1

σr
, then we can strengthen (??) to

||R−1
11 R12||2 ≤

4.04

δ
·
√
r(n− r) + 1 (3.6)

Remark 37. The factor
√
r(n− r) in the equations (??), (??), matches the best deter-

ministic algorithms up to a constant. When the gap is large enough so that σr+1

σr
is O(1/n)

with some small constant, so that the additional hypothesis applies, (??) also matches the
best deterministic algorithms up to a constant. Even when the gap is small, (??) shows the
factorization is strong with high probability.

Proof. To prove this theorem, we will rely on Lemma ?? and Lemma ??. For the sake of
argument �ow, we have moved the proofs of these lemmas to the end of the section.

There are two cases of the problem, r ≤ n/2 and r > n/2. Let V be the Haar matrix
used by the algorithm. From [33, Theorem 2.4-1], the singular values of V [1 : r, 1 : r] when
r > n/2 consist of (2r − n) 1's and the singular values of V [(r + 1) : n, (r + 1) : n]. Thus,
the case r > n/2 reduces to the case r ≤ n/2.

The upper bound in inequality (??) and the lower bound in inequality (??) follow from
the Cauchy interlace theorem (see [38, Theorem 7.3.9]). The lower bound in inequality (??)
follows immediately from [24, Theorem 5.2] and Corollary ??. We provide proofs of the
upper bounds of inequalities (??) and (??), below.

Theorem 5.2 from [24] states that

σmax(R22) ≤ 3σr+1 ·
s−4
r,n ·

(
σ1
σr

)3

1− σ2
r+1

s2r,nσ
2
r

;

provided that σr+1 < σrsr,n. This upper bound is lax, and we tighten it here. Note that
Lemma ?? establishes that

σmax(R22) ≤ σr+1σ
−1
min(X11) ,

where X is Haar distributed and X11 is its upper-left r × r submatrix. We conclude

σmax(R22) ≤ 2.02

√
r(n−r)
δ

σr+1 with probability 1− δ, by using Corollary ??. This completes
the proof of (2).

To prove (??), we use Lemma ??, which establishes that

‖R−1
11 R12‖2 ≤ 3σ−1

min(X11) + 6
σr+1

σr
σ−3

min(X11) ,

where again X is Haar distributed. We conclude

‖R−1
11 R12‖2 ≤ 3s−1

r,n + 6
σr+1

σr
s−3
r,n ,
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and apply Corollary ?? to get the result (??).

It remains to show the strengthened bound (??) on ‖R−1
11 R12‖2 when δ >

√
2·1.01·n· σr+1

σr
.

We use the following notation. Let A = PΣQH = P ·diag(Σ1,Σ2) ·QH be the singular value
decomposition of A, where Σ1 = diag(σ1, . . . , σr) and Σ2 = diag(σr+1, . . . , σn). Let V H

be the random unitary matrix in RURV, so that A = URV . Then X = QHV H has the
same distribution as V H , by virtue of the fact that V 's distribution is uniform over unitary
matrices.

Write

X =

[
X11 X12

X21 X22

]
,

where X11 is r × r and X22 is (n− r)× (n− r). Then

UHP · ΣX = R .

Denote Σ ·X = [Y1, Y2] where Y1 is an n× r matrix and Y2 is n× (n− r). Since UHP is
unitary, it is not hard to check that

R−1
11 R12 = Y +

1 Y2 ,

where Y +
1 is the pseudoinverse of Y1, i.e. Y

+
1 = (Y H

1 Y1)−1Y H
1 .

There are two crucial facts that we need to check here: one is that R−1
11 actually exists,

and the other is that the pseudoinverse (as de�ned above) is well-de�ned, that is, that Y1 is
full rank. We start with the second one of these facts.

The matrix Y1 is full-rank with probability 1. This is true due to two reasons: the �rst
one is that the �rst r singular values of A, ordered decreasingly on the diagonal of Σ, are
strictly positive. The second one is that X is Haar distributed, and hence Lemma ?? shows
that X11 is invertible with probability 1. It follows that Y +

1 is well-de�ned.
To argue that R−1

11 exists, note that Y1 = PHU [R11; 0] so rank(Y1)=rank(R11) as P
HU is

unitary. Since Y1 is full-rank, it follows that R11 is invertible.
Having made sure that the equation relating R−1

11 R12 and Y1 is correct, we proceed to
study the right hand side. From the de�nition of Y , we obtain that

Y H
1 Y1 = XH

11Σ2
1X11 +XH

21Σ2
2X21 , and Y H

1 Y2 = XH
11Σ2

1X12 +XH
21Σ2

2X22 .

Hence
R−1

11 R12 =
(
XH

11Σ2
1X11 +XH

21Σ2
2X21

)−1 (
XH

11Σ2
1X12 +XH

21Σ2
2X22

)
.

We split this into two terms. Let T1 be de�ned as follows:

T1 :=
(
XH

11Σ2
1X11 +XH

21Σ2
2X21

)−1
XH

11Σ2
1X12

= X−1
11

(
Σ2

1 + (X21X
−1
11 )HΣ2

2(X21X
−1
11 )
)−1

Σ2
1X12 ,
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where the last equality re�ects the factoring out of XH
11 to the left and of X11 to the right

inside the �rst parenthesis, followed by cancellation. Since X12 is a submatrix of a unitary
matrix, ||X12|| ≤ 1, and thus

||T1||2 ≤ ||X−1
11 ||2 · ||

(
Ir + Σ−2

1 (X21X
−1
11 )HΣ2

2(X21X
−1
11 )
)−1 ||2 ≤

1

sr,n
· 1

1− σ2
r+1

s2r,nσ
2
r

,

where the last inequality follows from the fact that for a matrix A with ||A|| < 1, ||(I −
A)−1|| ≤ 1

1−||A|| . The right hand side has been obtained by applying norm inequalities and

using the fact that ||X−1
11 || = s−1

r,n. The assumption on δ can be rearranged to
δ√

2·1.01·n >
σr+1

σr
.

Combine this with 1
sr,n

< 2.02
δ
·
√
r(n− r) to get

σr+1

sr,nσr
<

δ√
2 · 1.01 · n

2.02

δ
·
√
r(n− r) =

√
2

√
r(n− r)
n

≤ 1√
2

(3.7)

We conclude that

‖T1‖2 ≤
4.04

δ
·
√
r(n− r) (3.8)

We now apply similar reasoning to the second (remaining) term

T2 :=
(
XH

11Σ2
1X11 +XH

21Σ2
2X21

)−1
XH

21Σ2
2X22 ;

to yield that

||T2||2 ≤ ||X−1
11 ||22 · ||

(
Ir + Σ−2

1 (X21X
−1
11 )HΣ2

2(X21X
−1
11 )
)−1 ||2 · ||Σ−2

1 ||2 · ||Σ2
2||2

≤
σ2
r+1

s2
r,nσ

2
r

· 1

1− σ2
r+1

s2r,nσ
2
r

,

because ||X21|| and ||X22|| ≤ 1. Finally, note that (??) together with the fact that the
function x2/(1 − x2) is increasing on (0,∞) give ‖T2‖2 ≤ 1. Combining this with (??), the
conclusion follows.

We return now for the proofs of the two lemmas.

Proof of Lemma ??. Let Y = ΣX = PHUR. We begin by introducing a few block notations
naturally suggested by the singular value gap, separating the �rst r coordinates from the
�nal n− r coordinates:

X =
[
X1 X2

]
, Y =

[
Y1 Y2

]
,Σ =

[
Σ1 0
0 Σ2

]
,
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Note thatR is the upper-triangular factor resulting from QR-factorization of Y . From this
and understanding that the QR-factorization records the Gram-Schmidt orthogonalization
process, we see that R22 has the same singular values as ProjY1⊥Y2, where Y1⊥ is any matrix
whose columns are a basis for the orthogonal complement of Y1. In particular, σmax(R22) =
‖ProjY1⊥Y2‖2.

It is also clear from Y = ΣX that if Σ contains 0 elements on the diagonal, then the
corresponding rows of ProjY1⊥Y2 are 0. Therefore we make the assumption that there are no
0 singular values.

We next relate Y1 to Y2 in order to analyze this matrix. Using a common matrix identity
in �rst equality and the orthogonality of X in the third equality, we see that

im(Y1)⊥ = ker(Y H
1 ) = ker(XH

1 Σ) = im(Σ−1X2)

Thus, we seek to bound ‖ProjΣ−1X2
ΣX2‖2.

We will present a coordinate-based bound. First, it is true for any invertible U that
ProjYX = ProjY UX. We set U to be the (n − r) × (n − r) orthogonal matrix L of right-
singular vectors of ProjΣ−1X2

ΣX2. Thus,

ProjΣ−1X2
ΣX2 = ProjΣ−1X2LΣX2 ,

and by the de�nition of L,

‖ProjΣ−1X2
ΣX2‖2 = ‖ProjΣ−1X2LΣX2L[1 : n− r, 1]‖2 .

To keep notation as simple as possible, we denote Z = X2L and partition Z = (z, Z ′).
Selecting any column z′ from Z ′, observe that (Σz)H(Σ−1z′) = zHz′ = 0. Thus we can
compute the needed projection by performing Gram-Schmidt on Σ−1z with respect to Σ−1Z ′,
which we observe to produce Σ−1z − ProjΣ−1Z′Σ

−1z.

‖ProjΣ−1ZΣz‖2 =
(Σz)H (Σ−1z − ProjΣ−1Z′Σ

−1z)

‖Σ−1z − ProjΣ−1Z′Σ
−1z‖2

= ‖Σ−1z − ProjΣ−1Z′Σ
−1z‖−1

2

We are looking for an upper bound for the latter, so it su�ces to bound the quantity
‖Σ−1z − ProjΣ−1Z′Σ

−1z‖2 away from 0. Note that if we can restrict the problem to the last
n− r coordinates and get a non-trivial lower bound, we have achieved our goal.

For simplicity, we denote the last (n − r) coordinates of Z by B, of Z ′ by B′, and of z
by b. The quantity ‖Σ−1

2 b− ProjΣ−1
2 B′Σ

−1
2 b‖2 is a least squares error, speci�cally,

‖Σ−1
2 b− ProjΣ−1

2 B′Σ
−1
2 b‖−1

2 =

(
min

x∈Rn−r−1
‖Σ−1

2 B′x− Σ−1
2 b‖2

)−1

,

and on the other hand, trivially,(
min

x∈Rn−r−1
‖Σ−1

2 B′x− Σ−1
2 b‖2

)−1

≤ σr+1

(
min

x∈Rn−r−1
‖B′x− b‖2

)−1

.
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To complete the proof, we bound the quantity min
x∈Rn−r−1

‖B′x− b‖2 away from 0 in terms

of the smallest singular value of the lower right (n − r) × (n − r) submatrix of the original
random matrix X. Indeed,

min
x∈Rn−r−1

‖B′x− b‖2 = min
x∈Rn−r−1

‖B
(

1
x

)
‖2 ≥ σmin(B)

However, also recall that B is exactly the lower (n− r)× (n− r) block of X2L. As L is
unitary and applied on the right, we see σmin(B) = σmin(X22). Finally, it is not di�cult to
check that the orthogonality of X implies that σmin(X22) = σmin(X11). Therefore, in total,
we have shown

‖R22‖2 ≤ σr+1σmin(X11)−1 .

Proof of Lemma ??. Let R′ be the upper-triangular result ofQR(AṼ H), where Ṽ H is formed
by swapping column i ≤ r of V H with column j + r. This is equivalent to saying that R′ is
the upper-triangular result of QR(ΣX̃), where X̃ swaps column i with column j + r. This
point of view will be more helpful in the proof. From Lemma 3.1 of [36],

∣∣(R−1
11 R12)[i, j]

∣∣ ≤ |det(R′11)|
|det(R11)|

. (3.9)

We are particularly interested in the case when i = r and j = n− r, as will become apparent
below.

Since our bound is going to use the coordinate-based inequality (??), much as in Lemma
??, it is again useful to change coordinates to an optimal choice. One can check that
R−1

11 R12 = (ΣX1)+ΣX2, since (??) can be viewed as a generalization of Cramer's Rule.
Therefore for orthogonal matrices of appropriate sizes Ū , V̄ ,

‖R−1
11 R12‖2 = ‖ŪHR−1

11 R12V̄ ‖2 = ‖(ΣX1Ū)+(ΣX2V̄ )‖2 .

Choosing now Ū and V̄ to be given by the SVD of R−1
11 R12 in appropriate column or-

der, we can ensure that the norm of R−1
11 R12 is the lower right entry of ŪR−1

11 R12V̄
H =

(R11Ū
H)−1R12V̄

H .
Suppose now that we bounded the entries of R−1

11 R12 in terms of a function of the matrixX

that is invariant under right multiplication of X by a block-orthogonal matrix

(
ŪH 0
0 V̄

)
.

Then the bound on the bottom right entry (r, n− r) of R−1
11 R12 would apply to the operator

norm. Hence, using Equation (??), our the task is to bound

R−1
11 R12[r, n− r] ≤ |det(R

′
11)|

|det(R11)|
=
|R′[r, r]|
|R[r, r]|

.
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where R′ has resulted from swapping column r in X with column n in X.

With the preliminaries over, we introduce notation to assist in the proof. Using Matlab
notation, let X11 = X[1 : r, 1 : r], X ′1 = X[1 : n, 1 : r − 1], X ′11 = X[1 : r, 1 : r − 1],
X ′21 = X[r + 1 : n, 1 : r − 1]; xr will denote the r-th column of X, xn will denote the last
column of X2 (also of X). We make use of one projection extensively, and therefore denote
it by letter Π := Proj(ΣX′1)⊥

Σ(·). Finally, projection onto the �rst r coordinates is used, and
we denote this by ζ.

We are ready for the main part of the lemma's proof. First upper bound |R′[r, r]| =

‖ΠΣxn‖2. Let

(
w
0

)
be the maximal right singular unit-vector of the operator ΠΣζ. We

have

|R′[r, r]| = ‖ΠΣxn‖2 ≤ ‖ΠΣ

(
w
0

)
‖2 + max

‖t‖=1
‖ΠΣ

(
0
t

)
‖2 ≤ ‖ΠΣ

(
w
0

)
‖2 + σr+1

To analyze this further, decompose w = c1v + c2u where v ∈ X ′11⊥ and u ∈ im(X ′11) are
unit-vectors orthogonal to each other. We will have to control this u term later in the proof.
To this end, note that we have the following least squares interpretation:

‖ΠΣ

(
u
0

)
‖2 = min

y∈Rr−1
‖ΣX ′1y − Σ

(
u
0

)
‖2 ,

and by making y = X ′+11u and taking advantage of the fact that u is in the image of X ′11 so
that X ′11X

′+
11u = u, we obtain

‖ΠΣ

(
u
0

)
‖2 ≤ ‖Σ2X

′
21X

′+
11u‖2 ≤ σr+1σ

−1
min(X11) . (3.10)

In the second inequality above we have used that σmin(X ′11) ≥ σmin(X11).
Our main upper bound on |R′[r, r]| is then

|R′[r, r]| ≤ ‖ΠΣ

(
v
0

)
‖2 + σr+1 + σr+1σ

−1
min(X11) (3.11)

Due to the presence of ‖ΠΣ

(
v
0

)
‖2 in the bound above, we will need to consider two

di�erent cases depending on whether this term is small or large; as such, we will need to
develop two di�erent lower bounds on |R[r, r]|. We now build the the �rst lower bound on
|R[r, r]| = ‖ΠΣxr‖2.

|R[r, r]| = ‖ΠΣxr‖2 = min
y∈Rr−1

‖ΣX ′1y − Σxr‖2 ≥ min
y1∈Rr−1

‖Σ1X
′
11y1 − Σ1(xr)1‖2

= min
y1∈Rr−1

‖Σ1X11

(
y1

1

)
‖2 ≥ σrσmin(X11) ,
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where (xr)1 = xr[: r]. This proves the �rst lower bound we need,

|R[r, r]| ≥ σrσmin(X11) (3.12)

The second lower bound on |R[r, r]| is similar in spirit, and is introduced to take care of

the case when ‖ΠΣ

(
v
0

)
‖2 is large. Recall v is the unique direction orthogonal to the the

columns of X ′11, and additionally let c be the magnitude of the projection of xr onto

(
v
0

)
.

Again interpreting projection through least squares,

c = min
y∈Rr−1

‖X11

(
y
1

)
‖2 ≥ σmin(X11)

Now use the reverse triangle inequality,

|R[r, r]| = ‖ΠΣxr‖2 ≥ ‖ΠζΣxr‖2 − ‖Π(I − ζ)Σxr‖2 . (3.13)

We need to lower bound the term ‖ΠζΣxr‖2 and to upper bound the term ‖Π(I − ζ)Σxr‖2.
Decompose ζxr = ±cv + u′ with u′ in the image of X ′11. Use the same algebra as in (??) to
control the u′ term, establishing that

‖ΠζΣxr‖2 ≥ c‖ΠΣ

(
v
0

)
‖2 − ‖ΠΣ

(
u′

0

)
‖2 ≥ c‖ΠΣ

(
v
0

)
‖2 − σr+1σ

−1
min(X11) .

To upper bound the second term of (??), note that

‖(I − ζ)Σxr‖2 ≤ ‖(I − ζ)Σ‖2 = σr+1 .

Combining all of these observations and using the lower bound on c, the second lower bound
on |R[r, r]| is

|R[r, r]| ≥ σmin(X11)‖ΠΣ

(
v
0

)
‖2 − 2σr+1σ

−1
min(X11) (3.14)

To conclude the proof, we present two cases of the ratio between |R′[r, r]|, bounded in
(??), and |R[r, r]|, bounded in (??) and (??). For the �rst case, we make the assumption
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‖ΠΣ

(
v
0

)
‖2 ≥ 4σr+1σ

−2
min(X11). In this situation, (??) is superior. We get

|R′[r, r]|
|R[r, r]|

≤
‖ΠΣ

(
v
0

)
‖2 + σr+1 + σr+1σ

−1
min(X11)

σmin(X11)‖ΠΣ

(
v
0

)
‖2 − 2σr+1σ

−1
min(X11)

≤
1.5‖ΠΣ

(
v
0

)
‖2σ

−1
min(X11)

‖ΠΣ

(
v
0

)
‖2 − 2σr+1σ

−2
min(X11)

≤
1.5‖ΠΣ

(
v
0

)
‖2σ

−1
min(X11)

.5‖ΠΣ

(
v
0

)
‖2

= 3σ−1
min(X11)

The second case is ‖ΠΣ

(
v
0

)
‖2 < 4σr+1σ

−2
min(X11). In this situation we must use (??),

|R′[r, r]|
|R[r, r]|

≤
‖ΠΣ

(
v
0

)
‖2 + σr+1 + σr+1σ

−1
min(X11)

σrσmin(X11)
(3.15)

≤ 6
σr+1

σr
σ−3

min(X11) (3.16)

The bound we have given depends on σmin(X11), therefore satisfying the unitary invari-
ance property we required. To make the statement simple we have added the two bounds
together in the lemma statement.

Stability of RURV

The following appeared in [24] as Lemma 5.4. We include a short proof for completeness,
and also because it is used to prove Theorem ??.

Theorem 38. RURV is backward stable.

Proof. We need two facts: that QR is backward stable (e.g., implemented via Householder
re�ectors) and that, while multiplication by a square matrix is not, in general, backward
stable, multiplication by a square unitary matrix is (this is a simple exercise appearing in
many Numerical Linear Algebra books, which we leave for the reader).

We input a matrix A and output two matrices, U and R, such that (in the absence of
�oating point error) we should have UR = AV H , for some V unitary, with U unitary and R
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upper triangular. For backward stability, we would like to show that in practice the outputs
U and R satisfy (U + dU)R = (A + dA)(V + dV )H , with V + dV unitary, U + dU unitary,
and ||dA||/||A|| = O(εmach). We know ||dV || and ||dU || are O(ε) because QR is stable.

We start with the fact that matrix multiplication by (V + dV )H is backward stable;
recalling the de�nition AV H =: Â with round-o�, then

Â = (A+ (dA)1)(V + dV )H ;

with ||(dA)1||/||A|| = O(εmach); and since QR is also stable, the output [U,R] will have the
property that

(U + dU)R = Â+ (dA)2 ,

with ||(dA)2||/||Â|| = O(εmach). Combining these,

(U+dU)R = A(V +dV )H+(dA)1(V +dV )H+(dA)2 = (A+(dA)1+(dA)2(V +dV ))(V +dV )H .

As (V + dV )H is orthogonal, this means that ||(dA)2(V + dV )||/||A|| = O(εmach), and we
conclude that

(U + dU)R = (A+ dA)(V + dV )H ,

where dA = (dA)1 + (dA)2(V + dV ) has the property that ||dA||/||A|| = O(εmach).

3.5 Analysis of GRURV

In this short section we prove that, given a matrix Mk = Am1
1 · Am2

2 · . . . Amkk , where
m1, . . . ,mk ∈ {−1, 1}, and such that only the matrices Ai may be available, GRURV
can be applied to get the same rank-revealing factorization we would obtain in the case of
applying RURV to the explicitly formed product Mk.

Lemma 39. GRURV (Generalized Randomized URV) computes the rank-revealing decom-
position Mk = UcurrentR

m1
1 . . . Rmk

k V .

Proof. Let us examine the case when k = 2 (k > 2 results immediately through simple
induction).

Let us examine the cases:
In the �rst case, m2 = 1. In this case, M2 = Am1

1 A2; the �rst RURV yields M2 =
Am1

1 UR2V .

• if m1 = 1, M2 = A1UR2V ; performing QR on A1U yields M2 = UcurrentR1R2V .

• if m1 = −1, M2 = A−1
1 UR2V ; performing RQ on UHA1 yields M2 = UcurrentR

−1
1 R2V .

In the second case, m2 = −1. In this case, M2 = Am1
1 A−1

2 ; the �rst RULV yields M2 =
Am1

1 UL−H2 V = Am1
1 UR−1

2 V .
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• if m1 = 1, M2 = A1UL
−H
2 V = A1UR

−1
2 V ; performing QR on A1U yields M2 =

UcurrentR1R
−1
2 V .

• �nally, if m2 = −1, M2 = A−1
1 UL−H2 V = A−1

1 UR−1
2 V ; performing RQ on UHA1 yields

M2 = UcurrentR
−1
1 R−1

2 V .

Note now that in all cases Mk = UcurrentR
m1
1 . . . Rmk

k V . Since the inverse of an upper
triangular matrix is upper triangular, and since the product of two upper triangular matrices
is upper triangular, it follows that R := Rm1

1 . . . Rmk
k is upper triangular. Thus, we have

obtained a rank-revealing decomposition of Mk; the same rank-revealing decomposition as if
we have performed QR on MkV

H .

This allows us to conclude the following important stability result for GRURV. We note
that it was claimed without proof as Theorem 2.3 in the technical report [3].

Theorem 40. In the absence of �oating point error, the result of the algorithm GRURV
is essentially the same as the result of RURV on the (explicitly formed) matrix Mk. This
means that all results of Theorem ?? apply for the product matrix R = Rm1

1 . . . Rmk
k .

Note that we may also return the matrices R1, . . . , Rk, from which the factor R can later
be reassembled, if desired.

Theorem 41. GRURV is backward stable.

Proof. Simple induction once again shows that it is su�cient to consider the case k = 2.
For the case k = 2, we will do the calculations for m1 = 1 and m2 = ±1; the other two

cases can be dealt with in the same fashion.
Note QR, RQ, and QL can be performed in a backward-stable manner, all multiplica-

tions performed are multiplications by unitary matrices (and thus backward stable), and we
have shown that RURV (respectively RULV, as the only di�erence is the application of
QL instead of QR) is also backward stable.

Let now m1 = 1 and let [U2, R2] be the outputs of the �rst QR operation performed
by GRURV, and [U1, R1] be the outputs of the second. Then stability of QR gives (U1 +
dU1)R1 = A1 ·U2 +d(A1 ·U2) for some d(A1 ·U2) satisfying ||d(A1 ·U2)||/||A1 ·U2|| = O(εmach).
However, the stability of RURV ensures the existence of dU ′2 satisfying ||dU ′2||/||U2|| =
O(εmach) such that U2 + dU ′2 is orthogonal. As this establishes U2 has condition number
1 − O(ε), we therefore conclude d(A1 · U2) = (dA1) · U2 for some ||dA1||/||A1|| = O(εmach).
More speci�cally, this is for dA1 = d(A1U2)U−1

2 . Combining these steps, we have shown

(U1 + dU1)R1 = (A1 + dA1) · U2 .

Now we break into cases:
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• m2 = 1. Then a simple consequence of Theorem ?? is U2R2(V +dV ) = A2 +dA2, with
||dA2||/||A2|| = O(εmach).

Putting it all together,

(U1 + dU1)R1R2(V + dV ) = (A1 + dA1) · U2R2(V + dV ) = (A1 + dA1)(A2 + dA2) ,

with ||dA1||/||A1|| = O(εmach) and ||dA2||/||A2|| = O(εmach), so in this case GRURV
is backward stable.

• m2 = −1. Then U2R
H
2 (V + dV ) = (A2 + dA2)H , with ||dA2||/||A2|| = O(εmach), again

becauseRULV is backward stable. By Hermitian transposing and inverting, we obtain
that U2R

−1
2 (V + dV ) = (A2 + dA2)−1.

Putting it all together,

(U1 + dU1)R1R
−1
2 (V + dV ) = (A1 + dA1) ·U2R

−1
2 (V + dV ) = (A1 + dA1)(A2 + dA2)−1 ,

with ||dA1||/||A1|| = O(εmach) and ||dA2||/||A2|| = O(εmach), so again GRURV is
backward stable.

The other two cases are dealt with in the same fashion, and simple induction on k shows
that GRURV is backward stable for any k ≥ 2.

3.6 Numerical Experiments

In this section, we present numerical experiments to test the four bounds of Theorem ??.
Since Theorem ?? utilizes the asymptotic behavior of singular values of submatrices of Haar
matrices, becoming more accurate as the dimensions of the matrix and submatrix increase,
we will perform tests over a range of matrix dimensions.

To test the e�ects of dimension and gap on the e�ectiveness of RURV, we set up problems
with speci�ed singular value distributions and Haar distributed left and right singular vectors.
For our experiments, we consider two types of singular value distributions:

• stair step distribution: σ1 = σr, σr+1 = σn = 1, with a speci�ed gap σr/σr+1;

• logarithmically spaced distribution: σ1 = 1013, σn = 1, σi/σi+1 = σj/σj+1 for all
i, j 6= r, with a speci�ed gap σr/σr+1.

We also perform two types of experiments

• �x the matrix dimension n = 1500, and vary the gap σr/σr+1 ranging from 101 to 1010;

• �x the gap σr/σr+1 = 107, and vary the matrix dimension n ranging from 250 to 2000.
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Across all experiments, we �x r = n/2 and repeat each experiment 1000 times, constructing
matrices with the �xed singular value distribution and Haar-distributed random singular
vectors.

We compare the results of these four experiments against the theoretical bounds of The-
orem ?? in Figures ??, ??, ??, and ??. In each �gure, the top left plot shows the ratio
σ1/σmin(R11) and Inequality (??), the top right plot shows the ratio σmax(R22)/σr+1 and
Inequality (??), the bottom left plot shows ‖R−1

11 R22‖2 and Inequalities (??) and (??), and
the bottom right plot shows an example singular value distribution to illustrate the distri-
bution as a stair step or logarithmically spaced. The experimental results are presented as
box plots, with boxes corresponding to the inter-quartile range (middle 50%) and horizontal
lines corresponding to min, median, and max. In order to compare against the probabilistic
bounds, across all experiments, we specify a �xed failure probability of 3% (δ = 0.03) to
obtain the theoretical bounds, and we plot the 97th percentile of the experimental data as
a black line. The theoretical bounds (??), (??), and (??) appear as blue lines with asterisk
markers; they have values

σr
σmin(R11)

≤ 2.02

δ

√
r(n− r) ,

σmax(R22)

σr+1

≤ 2.02

δ

√
r(n− r) ,

||R−1
11 R12||2 ≤

4.04

δ
·
√
r(n− r) + 1 .

For (??) from Theorem ?? to be valid, σr/σr+1 >
√

2 · 1.01 · n
δ
; we do not plot the bound

when it does not apply (see Figures ?? and ??). Theoretical bound (??) appears as a red
line with circle markers.

Overall, we observe that the probabilistic bounds (??), (??), (??) hold up empirically
and are very tight given that the black line never exceeds the blue line but remains close in
all experiments.

In the experiment varying the gap for the stair step singular value distribution (Figure
??), a deterministic bound governs the behavior of the algorithm for small gaps. The blue
dotted line corresponds to the deterministic upper bounds

σr
σmin(R11)

≤ σr
σn

, (3.17)

σmax(R22)

σr+1

≤ σ1

σr+1

, (3.18)

‖R−1
11 R12‖2 ≤

σ1

σn
. (3.19)

We also plot these bounds in the same experiment for the logarithmically spaced distribution
(Figure ??), but in that case they are very loose.

To get a more detailed view of the distributions of these quantities than the box plots,
we provide histograms for the empirical data for two examples from the experiments, one
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Figure 3.1: Experimental results for test matrices with stair step distribution with dimension
n = 1500 and varying gap σr/σr+1 given on the x-axis. The black line is the 97th percentile.
The solid blue line with markers is the corresponding error bound. The dotted blue line is a
deterministic bound given by (??�??). The example singular value distribution corresponds
to σr/σr+1 = 1010.

for each singular value distribution. In the histogram plots, we also include vertical bars
to show the 97th percentile (black line) and the theoretical bound (blue line with asterisk
marker). Figure ?? shows the logarithms of the quantities σ1/σmin(R11), σmax(R22)/σr+1,
and ‖R−1

11 R22‖2 for dimension n = 1500 and gap σr/σr+1 = 107. Figure ?? shows the same
quantities for the logarithmically space distribution with the same dimension (n = 1500)
and gap (σr/σr+1 = 107).

3.7 Conclusion

We have introduced an algorithm for �nding the QR-factorization of products of matrices
and their inverses, without explicitly computing the products or inverses. This algorithm is
notable for its simplicity, strong theoretical underpinnings, and usefulness as a subroutine
within the divide-and-conquer approach to the generalized eigenvalue problem. Among other
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Figure 3.2: Experimental results for test matrices with stair step distribution with gap
σr/σr+1 = 107 and varying dimension given on the x-axis. The black line is the 97th per-
centile. The solid blue line with markers is the corresponding error bound. The example
singular value distribution corresponds to n = 2000.

important properties,GURV was shown to be strongly rank-revealing, backward stable, and
communication-optimal. Moreover, extensive numerical experiments demonstrate that the
bounds we presented are essentially tight.
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Figure 3.3: Histograms of 1000 trials of the stair step distribution from n = 1500 and
σr/σr+1 = 107. The black line indicates the 97th percentile. The blue line indicates where
our theoretical bounds from (??), (??), and (??) predict the 97% con�dence interval to be.
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Figure 3.4: Experimental results for test matrices with logarithmically spaced distribution
with dimension n = 1500 and varying gap σr/σr+1 given on the x-axis. The black line is
the 97th percentile. The solid blue line with markers is the corresponding error bound. The
dotted blue line is a deterministic bound given by (??�??). The example singular value
distribution corresponds to σr/σr+1 = 1010.



Chapter 3. A Generalized Randomized Rank-Revealing Factorization 52

0 500 1000 1500 2000

dimension

10
0

10
5

10
10

10
15

Singular value distribution

25
0

50
0

75
0

10
00

12
50

15
00

17
50

20
00

dimension

10
2

10
3

10
4

10
5

10
6

r /
 

m
in

(R
1
1
)

Inequality (1) with  = 0.03

25
0

50
0

75
0

10
00

12
50

15
00

17
50

20
00

dimension

10
2

10
3

10
4

10
5

10
6

m
a
x
(R

2
2
)/

r+
1

Inequality (2) with  = 0.03

25
0

50
0

75
0

10
00

12
50

15
00

17
50

20
00

dimension

10
2

10
3

10
4

10
5

10
6

||
R

1
1

-1
R

1
2
|| 2

Inequalities (3-4) with  = 0.03

(3)

(4)

Figure 3.5: Experimental results for test matrices with logarithmically spaced distribution
with gap σr/σr+1 = 107 and varying dimension given on the x-axis. The black line is the
97th percentile. The solid blue line with markers is the corresponding error bound. The
example singular value distribution corresponds to n = 2000.
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Figure 3.6: Histograms of 1000 trials of the logarithmically spaced distribution from n = 1500
and σr/σr+1 = 107. The black line indicates the 97th percentile. The blue line indicates
where our theoretical bounds from (??), (??), and (??) predict the 97% con�dence interval
to be.
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Chapter 4

An improved analysis of low rank matrix

approximations1,2

4.1 Introduction

Many di�erent problem domains produce matrices that can be approximated by a low-
rank matrix. In some cases such as a divide-and-conquer approach to eigenproblems [2],
there may be many large and small singular values separated by a gap. In other cases such
as identifying a low rank subspace from noisy data, we might expect there to be relatively few
large singular values. Perhaps most generically in applied problems, there is no pronounced
gap, but the spectrum still decays fairly quickly, and one might prefer to work with a more
compact representation when computing quantities such as matrix-vector products.

We next de�ne some related properties which can be of interest to these problems. The
following de�nitions have appeared in the rank-revealing literature, such as in [50, 35, 24,
36] in similar forms. Here and later the singular values are sorted in descending order.

De�nition 42. [low-rank approximation] A matrix Ak satisfying ‖A−Ak‖2 ≤ γσk+1(A) for
some γ ≥ 1 will be said to be a (k, γ) low-rank approximation of A.

De�nition 43. [spectrum preserving] If Ak satis�es σj(A) ≥ σj(Ak) ≥ γ−1σj(A) for j ≤ k
and some γ ≥ 1, it is (k, γ) spectrum preserving.

Many results in the rank-revealing literature use a strengthening of De�nition ??,

De�nition 44. [kernel approximation] If Ak satis�es σj+k(A) ≤ σj(A−Ak) ≤ γσk+j(A) for
1 ≤ j ≤ n− k and some γ ≥ 1, it is a (k, γ) kernel approximation of A.

In all of these de�nitions, if we assume Ak is rank k, then γ = 1 is optimal from the
truncated-SVD, so all methods can be compared with this standard. Though we made

1Joint work with James Demmel, Laura Grigori
2Preprint [25]
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the above de�nitions quite strong, we will not prove our results satisfy them exactly. In
particular, we drop the upper bound in De�nition ?? and the lower bound in De�nition
?? from our considerations. One can derive analogs for these dropped quantities using
techniques developed in this paper. For example, one could replace σj(A) with δ · σj(A) in
De�nition ?? and it is not generally di�cult to give a better bound on δ than on γ by using
De�nition ?? and Weyl's inequality. However, the stated complementary bounds in Defs.
?? and ?? do not hold for all the algorithmic variations we consider, and we choose not to
complicate the results with these considerations.

Di�erent algorithms may end up representing Ak in di�erent ways, but generally Ak is
represented as a product of matrices which have at least one dimension much smaller than
those of the original A. Note in this work we do not require Ak to be rank k. Nevertheless,
the dimensions of Ak will be chosen as a function of k in order to compete with the truncated
SVD of rank k, and this motivates the choice of notation. For the choices made in this paper,
it is always the case that rank(Ak) = O (k · polylog(n)).

This paper has two main goals, both motivated by the history of low-rank factoriza-
tions. First, we show that many important low-rank factorizations can be viewed as an
LU-factorization followed by deleting the Schur-complement. We call this prototype algo-
rithm GLU. Second, older research into low-rank factorizations bounded more quantities
than recent results on randomized algorithms. In particular, De�nitions ?? and ?? do not
receive much discussion in randomized algorithms. We will provide bounds on all of De�-
nitions ??, ??, ?? for GLU. In doing this, we �rst derive sharp deterministic bounds for
approximate LU and QR factorizations in Sections ?? and ??, and then in section ?? we
complete the bounds by using properties of random matrix ensembles.

GLU is essentially an LU-factorization that allows the leading block to be rectangular
instead of square. Allowing the leading block to be rectangular enables much better low-rank
approximation properties. Let A be an m× n matrix, A11 be the leading l

′ × l block which
is assumed to have full column rank so that l′ ≥ l, and U and V be invertible matrices.
First we have an exact factorization of matrix A that is the natural generalization of a full
LU-factorization,

A =

(
A11 A12

A21 A22

)
=

(
I

A21A
+
11 I

)(
A11 A12

S(A11)

)
,

where S(A11) = A22 − A21A
+
11A12 denotes what we call the generalized Schur-complement.

By applying the sketching matrices U and V and deleting the Schur complement, we get a
low-rank factorization that can have remarkably good properties. De�ning Ā = UAV ,

Ak := U−1

(
I

Ā21Ā
+
11

)(
Ā11 Ā12

)
V −1 (4.1)

is a complete description of our proposed GLU approximation. The inverses may look
daunting at �rst because they are large matrices, but we will see that they are only tools to
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facilitate the analysis; actually the leading rows of U and leading columns of V are the only
parts required.

We have emphasized that GLU factorization uni�es many factorizations through appro-
priate choices of the settings of U ,V . We believe it is also important that other choices are
novel and practical, as we illustrate in main results Theorem ?? and Theorem ??. That
said, this paper will not argue that these novel instantiations of GLU should necessarily
be adopted over similar methods like the low-rank factorization described in [21]. On the
contrary, we �nd that the factorization underlying [21], which we term CW, can be viewed
as an abridged version of GLU. Thus while our bounds are tighter in the case of De�nition
??, we brie�y sketch in Remark ?? that the improved bounds on De�nitions ?? and ?? under
the SRHT ensemble as in Theorem ?? also apply to CW.

The remainder of the introduction is divided into four sections for clarity. The �rst and
second aim to highlight our contributions. The third provides references to related work.
The fourth gives notation we adopt.

Unifying Approach

GLU generalizes past low-rank LU factorizations in two ways. First, it allows pre- and
post-multiplication by matrices other than permutations. Second, it allows for rectangular
Schur complements. Even without generalizing to rectangular Schur complements, GLU
encompasses several well-known procedures. We provide examples to illustrate this in section
??. We refer the reader to Table 1 in the preprint version of this paper for a summary of
several deterministic and randomized approximation algorithms. It displays separately the
case when k ≤ l = l′ and the more general case when k ≤ l ≤ l′, and cites existing as well
as new bounds on the spectral and kernel approximation provided by these algorithms. We
discuss a novel and practical instance when l < l′ in section ??. Here we focus on k ≤ l = l′

and identify the equivalence between existing deterministic and randomized algorithms. In
this case, the rank-k approximation Ak can be written as

Ak = U−1

(
Il

Ā21Ā
−1
11

)(
Ā11 Ā12

)
V −1

= AV1(U1AV1)−1U1A, (4.2)

where V1 contains the leading l columns of V , U1 contains the leading l rows of U , and
Ā = UAV . See (??) for more details. Now we de�ne some notation we will use later. Let
Q1 be the orthogonal factor obtained from the thin QR-decomposition of AV1, so Q1 is of
dimensions m× l. In the case when U1 contains the leading l rows of a permutation matrix
U , we denote UQ1 =

(
Q̄11

Q̄21

)
, where Q̄11 is l× l. While l ≥ k is always the case, in applications

l varies from being exactly k, as for deterministic algorithms, to being a polylog-factor larger
than k for randomized algorithms.

Deterministic algorithms are typically based on rank revealing QR and LU factorizations.
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Both factorizations select k columns from the matrix A, that is V1 represents a column per-
mutation and AV1 are the selected columns. In the case of a rank revealing QR factorization,
U1 = QT

1 and the approximation becomes Ak = Q1Q
T
1A. See (??) for a detailed derivation.

Let QT
1A = (R11 R12). The strong rank-revealing QR-factorization [36] chooses the column

permutation V1 such that ||R−1
11 R12||max is bounded by a small constant and the approxima-

tion Ak is spectrum preserving and a kernel approximation of A: γ in De�nitions ?? and
?? is a low degree polynomial in n and k. The rank revealing LU factorization selects k
columns and k rows from the matrix A, that is both U1 and V1 are permutation matrices.
For example in [34] the columns are selected by using a pivoting strategy referred to as
tournament pivoting and based on rank revealing QR, while the rows are selected such that
||Q̄21Q̄

−1
11 ||max is bounded. The obtained approximation

Ak = AV1(U1AV1)−1U1A

is again spectrum preserving and a kernel approximation of A, with γ in De�nitions ?? and
?? being a low degree polynomial in n and k.

For randomized algorithms, V1 is a random matrix, typically based on JL transforms or
fast JL transforms, such as the sub-sampled randomized Hadamard transform (SRHT) of
De�nition ?? introduced originally in [58]. The randomized SVD (see e.g. [37]) is obtained
by choosing U1 = QT

1 and corresponds to computing l steps of the QR factorization of UAV .
We refer to this factorization as a randomized QR factorization. The randomized SVD via
row extraction is obtained by choosing U1 a row permutation such that ||Q̄21Q̄

−1
11 ||max is

bounded. In other words, this factorization corresponds to computing l steps of the LU
factorization of UAV , and we refer to this as randomized LU with row selection. Notably in
the case of the approximations based on LU factorization, both deterministic and randomized
algorithms bound ||Q̄21Q̄

−1
11 ||max [36, 34] to obtain guarantees on the approximation.

Detailed Bounds

In the context we consider, GLU satis�es bounds at least as sharp as in the literature,
and many are new.

Given k ≤ l ≤ l′, the clean formulation of Ak described in eq. (??) becomes a bit more
complicated,

Ak = [U+
1 (I − (U1AV1)(U1AV1)+) + (AV1)(U1AV1)+][U1A], (4.3)

where U1 and (U1AV1) are of dimensions l′ × m and l′ × l respectively. However, the al-
gorithmic implementation is still straightforward and inexpensive. See (??) for a detailed
derivation. Proposition ?? gives the precursor bounds for the spectral and the kernel ap-
proximation provided by Ak for general U1 and V1, and as in Section ?? properties of U1

and V1 speci�c to the algorithm are used to complete the bound. Both Propositions ?? and
?? provide new deterministic bounds not found in the literature. For example, Proposi-
tion ?? generalizes Theorem 9.1 of [37] to include values j > 1. This generalization proves
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useful when analyzing De�nition ?? for randomized algorithms, which we observe to be an
advantage of GLU over CW.

Section ?? contains our new results after suitable random ensembles are chosen, that is
when V1 and U1 are random matrices. Extra attention is given to the SRHT ensemble of
De�nition ??, because the especially good bounds it can provide were not fully exploited in
past literature. Using this ensemble, from Algorithm ?? for computing GLU we can see the
number of arithmetic operations is O(nm log(l′) +mll′). Plugging in l′ and l from Theorem
??, we can produce a low-rank approximation in Õ(nm+ k2mε−3) time that relative to the
squared error of the truncated SVD of rank k, Aopt,k,

• approximates A with only 1 +O(ε) times the squared Frobenius norm error .

• approximates A with only O
(

1 + log(m/δ)ε
k log(k/δ)

‖A−Aopt,k‖2F
‖A−Aopt,k‖22

)
times the squared spectral norm

error.

This holds with probability 1− 5δ, and l, l′ grow poly-logarithmically with δ, as in Remark
??. In other words, the algorithm we propose attains γ = O(1) in De�nition ?? for many
families of A matrices encountered in practice with modest spectral decay (which makes
the Frobenius norm not too much larger than the spectral norm). The same Theorem ??
shows this γ = O(1) bound carries over to De�nition ??. Further, Theorem ?? shows that
De�nition ?? is satis�ed with γ = O( k

n
). To our knowledge, no other work has found such

a representation of A in time less than Ω(nmk) satisfying any of these properties. Instead,
randomized low-rank approximation literature on algorithms running in Ω(nmk) time do not
typically discuss the spectral norm of the residual (De�nition ??), choosing to focus on the
Frobenius norm. Moreover, the fast linear algebra community has typically not considered
properties like spectrum preserving and kernel approximation (De�nitions ??, ??).

Our bounds have interesting implications for the growth factor of pre/post-conditioned
Gaussian Elimination. Corollary ?? is a step towards a theoretical understanding of condi-
tioning Gaussian Elimination to avoid pivoting. Besides this, it expands the classes of distri-
butions for which pivoting is provably unnecessary, to a class including Gaussian-distributed
matrices. We pose an open question at the end, motivated by this analysis.

Related Work

Low-rank matrix approximations have been extensively studied, hence this work is related
to a large body of literature. Because of our emphasis on the LU-factorization viewpoint, we
should mention some work related to LU factorizations. Such papers providing information
regarding De�nitions ??, ??, ?? are few, notably including perhaps the �rst [50], as well as
later more e�cient versions like [34]. These papers do not exploit randomness, however.

Exploiting randomness for low-rank factorizations has led to major speedups. Some
literature in recent years has exploited this for LU factorizations, including perhaps most
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relevantly [59]. Their work has somewhat di�erent goals, in that it seeks to �nd left and
right permutation matrices, which makes it in some ways more like [34]. Also, their paper
only discusses spectral norm bounds on the residual. Interestingly, the fast version of their
procedure (their Algorithm 4.4) uses an ensemble equivalent to the SRHT ensemble. The
bounds we have in Theorem ?? are better for the spectral norm of the residual. Comparing
our Theorem ?? with their Theorem 4.12, our approximation is always a factor on the order
of
√
n more accurate, and a factor n more accurate when the spectrum decays su�ciently

quickly. Our results utilizing the SRHT ensemble build on [12], which proved the SRHT
ensemble has geometry preserving properties beyond those of the Johnson-Lindenstrauss
transform properties. They used this fact to provide sharper spectral norm bounds on the
residual for the randomized QR decomposition approach to low-rank matrix approximation.

Outside of research into LU factorizations, many papers have focused on studying JL
embeddings. This has culminated in algorithms considered to run in nnz(A) time for many
problems related to and including low-rank approximations. Notable such papers include
[21] and [52]. This body of literature has focused more on the properties of the random
ensemble, and little on the properties of the factorization itself. For example, [52] uses the
same factorization as [21], whose technical report we believe to be the �rst paper to use
sketching from the left and right to speed up the algorithm. Few of these papers for nnz(A)
algorithms study any error bounds beyond the Frobenius norm of the residual.

To date, procedures for the residual being within an ε factor as accurrate as the truncated
SVD with respect to the spectral norm do not gain any speed advantage by using fast
Johnson-Lindenstrauss ensembles. This is because a repeated-squaring must be used, and
therefore structured sketching matrices have no advantage. Important work in this area
includes [35] and [51].

The list is far from complete, and many di�erent takes on the problem have been proposed
which tangentially touch this paper, [37] and [65] are useful for �nding more pointers into
the literature.

Notations

As this paper is notation heavy, we �rst take a moment to collect some conventions we
will use.

• A is m× n.

• Aopt,k will be the truncated rank-k SVD.

• Assume m ≥ n. [Q,R] = tQR(A) will be the thin QR-decomposition of A, so Q is
m× n

• [Q,R] = QR(A) will be the square QR-decomposition of A, so Q is m×m.
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• Assume m ≤ n. [L,Q] = tLQ(A) will be the thin LQ-decomposition of A, so Q is
m× n

• [L,Q] = LQ(A) will be the square LQ-decomposition of A, so Q is n× n.

• [U,Σ, V ] = tSVD(A) will be the thin variant (square Σ) and with decreasing singular
values. So given m ≥ n, A = UΣV T , singular values are σ1 ≥ . . . ,≥ σn and U is
m× n.

• A+ is the n×m Moore-Penrose pseudo-inverse.

• [U,Σ, V ] = SVD(A) will be the full variant (m × n Σ) and with decreasing singular
values. So U is m×m, V is n× n.

• S(A11) = A22 − A21A
+
11A12 is the Schur complement of A11; if the dimension of A11 is

′ × l, then S(A11) is (m− l′)× (n− l). Here A =

(
A11 A12

A21 A22

)
.

• Matlab-like notation to select submatrices, e.g. A[: k, : k] is the leading k× k minor of
A.

• To simplify notation, we denote (X11)+ as X+
11.

4.2 Generalized LU-factorization

Classically as in [50] and [34], the rank-revealing LU factorization �nds permutations
Pr, Pc (usually iteratively over the procedure), forming Ā = PrAPc, and LU-factors Ā but
deletes the Schur-complement after k-steps. Thus,

Ā =

(
I 0

Ā21Ā
−1
11 I

)(
Ā11 Ā12

0 S(Ā11)

)
≈
(

I
Ā21Ā

−1
11

)(
Ā11 Ā12

)
=: Āk.

This naturally suggests the approximation A ≈ Ak := P T
r ĀkP

T
c . Letting Pc1 be the �rst

k columns of Pc and Pr1 be the �rst k rows of Pr, some algebra (see Remark ?? for the more
general case) shows the approximation to be A ≈ APc1(Pr1APc1)−1Pr1A.

This paper generalizes the rank-revealing LU-factorization in two directions. First, we
include other matrices on the left and right besides permutations. This allows for speedups
through matrix sketching. Second, we generalize one step further by using rectangular Schur
complements. This can greatly improve the quality of the low-rank approximation, as we
will see in Proposition ?? and Theorem ??.

We describe this second modi�cation in greater detail now. For the sake of analysis it
will be convenient to let U, V be square matrices in the following discussion and subsequent
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Proposition ??. The relevant matrices are them×n matrix A which we wish to approximate,
the invertible m×m matrix U , and the invertible n× n matrix V . Now de�ne

Ā := UAV =

(
Il′ 0

Ā21Ā
+
11 Im−l′

)(
Ā11 Ā12

0 S(Ā11)

)
,

where this is valid when the l′ × l block Ā11 has full column rank so that Ā+
11Ā11 = I. In

particular we are assuming l′ ≥ l. To help visualize the construction, the following depicts
the block sizes.

Ā =

(
l′, l l′, n− l

m− l′, l m− l′, n− l

)
=

(
l′, l′ l′,m− l′

m− l′, l′ m− l′,m− l′
)(

l′, l l′, n− l
m− l′, l m− l′, n− l

)
.

Deleting the (m− l′)× (n− l) Schur complement and undoing the U, V factors gives the
approximation we use as a de�nition,

A ≈ Ak := U−1

(
Il′

Ā21Ā
+
11

)(
Ā11 Ā12

)
V −1. (4.4)

In (??), U and V are square, but for low-rank approximations this would be expensive.
Only the leading l′ rows and l columns respectively of U and V respectively are actually
required, but we �nd the square form helpful for the analysis. Accordingly for U , we assume
that we may express

U =

(
U1

U2

)
=

(
L′11U

′
1

U ′2

)
=

(
L′11 0
0 Im−l′

)(
U ′1
U ′2

)
= L′U ′, (4.5)

where U ′ =

(
U ′1
U ′2

)
is an orthogonal matrix, U1 and U ′1 are l′ ×m, and L11 is l′ × l′ lower-

triangular. Note by assumption, L′21 and L
′
12 are 0 matrices, and L′22 = Im−l′ . Conceptually

this means the �rst l′ rows of U are arbitrary full-rank and the other rows are the orthogonal
complement. We also assume L′ is invertible, so that U is invertible as well. Any reasonable
sketching matrix U1 satis�es this property with probability 1. Similarly, we assume V may
be expressed as

V =
(
V1 V2

)
=
(
V ′1R

′
11 V ′2

)
= V ′

(
R′11 0
0 In−l

)
= V ′R′, (4.6)

where V ′ is orthogonal, V1 and V ′1 are n × l, and R′11 is l × l upper-triangular. Again note
the assumption R′21 and R

′
12 and both 0 matrices, and R′22 = In−l. We will again assume R′

is invertible so that V is as well. That R′22 and L
′
22 are identity matrices will be used several

times in our algebra, so we emphasize this fact.

Schur complements of rectangular blocks do not appear to be commonly used. The
following derives a few useful identities for them in the context of LU-factorization.
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Lemma 45. We continue to assume l′ ≥ l and that Ā11 has full column rank so that Ā+
11Ā11 =

I. Further introduce matrices U = L′U ′ and V = V ′R′ structured as explained in (??) and
(??). Set [Q,R] = QR(AV ) so that R is m× n. Block R so that R11 is l × l and X := UQ
so so that X11 is l′ × l. Then the following identities hold for Ā = UAV ,

S(Ā11) = S(X11)R22 (4.7)

Ā11 = X11R11 (4.8)

Ā21Ā
+
11 = X21X

+
11. (4.9)

Proof. There is a factorization through a generalized LU-factorization of Ā, in which the
lower-triangular factor is the identity on the diagonal and the lower left factor is Ā21Ā

+
11,

Ā =

(
Il′

Ā21Ā
+
11 Im−l′

)(
Ā11 Ā12

S(Ā11)

)
. (4.10)

However we could alternatively �rst use a QR-factorization of AV followed by a generalized
LU-factorization of X (so that X11 is l

′ × l),

Ā = UAV

= XR

=

(
Il′

X21X
+
11 Im−l′

)(
X11 X12

S(X11)

)(
R11 R12

R22

)
=

(
Il′

X21X
+
11 Im−l′

)(
X11R11 . . .

S(X11)R22

)
. (4.11)

The proof amounts to equating the blocks now between (??) and (??), but we provide a justi-
�cation which essentially argues that the lower left block of the generalized LU factorization
makes it unique. (??) follows �rst because Il′X11R11 = Ā11.

Second, by de�nition

(
Ā11

Ā21

)
=

(
X11R11

X21R11

)
. We assumed Ā11 has full column rank

and we continually assume U, V are invertible; thereforeX11 has full column rank and R11 has
full row rank (it is invertible). Consequently we may compute the pseudo-inverse Ā21Ā

+
11 =

X21R11(X11R11)+ = X21X
+
11. This gives (??).

Finally, (??) follows by equating the corresponding lower-right block of the upper-triangular
factors, and is justi�ed because we have shown the left-triangular factors in (??) and (??)
are identical (and invertible).

Singular values of a matrix product obey a well-known bound called the multiplicative
Weyl inequality. We make use of this and its less known reverse version. Therefore we state
the inequality with a reference, and prove its reverse version.
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Lemma 46. Say A is m× n, B is n× p. For 1 ≤ k ≤ j,

σj(AB) ≤ σj−k+1(A)σk(B). (4.12)

Now assume for simplicity that n ≥ m ≥ p, both A,B are full rank, and im(B) ⊂ ker(A)⊥.
In other words, A is short-wide and B is tall-skinny, and the image of B is orthogonal to
the kernel of A. Then for 1 ≤ k ≤ m− j and j ≤ p, an inequality in the other direction is

σm−k+1(A)σj+k−1(B) ≤ σj(AB). (4.13)

Besides these multiplicative inequalities, the additive Weyl inequality holds for any matrices
A,B and 1 ≤ k, j ≤ n where n is the smaller of the row and column numbers, and says

σj(A+B) ≤ σj−k+1(A) + σk(B). (4.14)

Proof. (??) and (??) are well-known. For example, section 7.3, exercise 18 from [38].

We next prove (??). Let Σ1,Σ2 be the square singular value matrices of A,B respectively.
Then AB is spectrally equivalent to Σ1UΣ2 for some m × p orthogonal matrix U = V T

1 U2,
with U2 being the left singular matrix of B and V1 being the right singular matrix of A. This
U has orthonormal columns because it is norm preserving; im(U2) ⊂ im(V1) = ker(V T

1 )⊥ so
if we let V extend V1 to a square orthogonal matrix, then ‖V T

1 U2x‖2 = ‖V TU2x‖2 = ‖x‖2.
Σ1 is invertible based on the full rank assumption, and UΣ2 is m× p with full column rank.
Note that (UΣ2)+Σ−1

1 is a left inverse for Σ1UΣ2. Therefore (Σ1UΣ2)+ = (UΣ2)+Σ−1
1 P

where P orthogonally projects onto im(Σ1UΣ2). Apply (??) to conclude σj((Σ1UΣ2)+) ≤
σj((UΣ2)+Σ−1

1 ). Combine this with another application of (??),

σ−1
p−j+1(AB) = σj((AB)+) ≤ σj((UΣ2)+Σ−1

1 ) ≤ σj−k+1((UΣ2)+)σk(Σ
−1
1 )

= σ−1
p−(j−k+1)+1(V T

1 U2Σ2)σ−1
m−k+1(A)

= σ−1
p−(j−k+1)+1(Σ2)σ−1

m−k+1(A) (4.15)

= σ−1
p−(j−k+1)+1(B)σ−1

m−k+1(A).

We used that V T
1 U2 is an orthogonal matrix to advance to line (??). Finally, reassign

j = p− j + 1 to get the claimed (??).

The next Proposition is critical for understanding the rank-revealing properties forGLU.
It will combine with Proposition ?? to culminate in Theorem ??.

Proposition 47. Let A be an m× n matrix, U = L′U ′ and V = V ′R′ as in (??) and (??),
[Q,R] = QR(AV ), and �nally Ā = UAV . Block Q,R,A, Ā as in Lemma ??; in particular
Q11 is l′ × l and R11 is l × l. Then the low-rank approximation suggested in (??), namely

Ak := U−1

(
I

Ā21Ā
+
11

)(
Ā11 Ā12

)
V −1,
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satis�es

‖A− Ak‖2
F ≤ ‖R22‖2

F + ‖(UQ)+
11(UQ)12R22‖2

F (4.16)

‖(A− Ak)− (A− Ak)opt,j−1‖2
F ≤ ‖R22 −R22opt,j−1‖2

F + ‖(UQ)+
11(UQ)12(R22 −R22opt,j−1)‖2

F

(4.17)

‖A− Ak‖2
2 ≤ ‖R22‖2

2 + ‖(UQ)+
11(UQ)12R22‖2

2 (4.18)

σ2
j (A− Ak) ≤ ‖R22 −R22opt,j−1‖2

2 + ‖(UQ)+
11(UQ)12(R22 −R22opt,j−1)‖2

2

(4.19)

σi(Ak) ≥ σi(Ak[:, : l
′]) = σi(R11R

′−1
11 ). (4.20)

In the above, the relations for σj hold for 1 ≤ j ≤ min(m,n) − k. The relation for σi
holds for 1 ≤ i ≤ k. Also note that σj(R11R

′−1
11 ) could be thought of as the singular values of

A restricted to im(AV1).

Proof. The approximation loss in Ak is exactly the Schur complement S(Ā11). To establish
this, we �rst do some matrix algebra. In this algebra we will again recall the simplifying
notation X := UQ from Lemma ??. Now to start, we have

Ak = U−1

(
I

Ā21Ā
+
11

)(
Ā11 Ā12

)
V −1

= U−1

(
Ā11 Ā12

Ā21 Ā21Ā
+
11Ā12

)
V −1. (4.21)

Next apply (??) from Lemma ?? to get S(Ā11) = S(X11)R22. From this and the fact that
U−1ĀV −1 = A,

A− Ak = U−1

(
0

S(Ā11)

)
V −1

= U ′−1L′−1

(
0

S(X11)R22

)
R′−1V ′−1

= U ′T
(

0
S(X11)R22

)
V ′T . (4.22)

Now to get (??), recalling U = L′U ′ with L′22 = I,

‖Ak − A‖2
F = ‖S(X11)R22‖2

F

= ‖
[
(UQ)22 − (UQ)21((UQ)11)+(UQ)12

]
R22‖2

F

= ‖
(

(U ′Q)21 (U ′Q)22

)( −((UQ)11)+((UQ)12)R22

R22

)
‖2
F

≤ ‖R22‖2
F + ‖X+

11X12R22‖2
F .



Chapter 4. An improved analysis low rank matrix approximations 65

And for (??), similar steps produce

‖Ak − A‖2
2 ≤ ‖

(
X+

11X12R22

R22

)
‖2

2 ≤ ‖X+
11X12R22‖2

2 + ‖R22‖2
2.

Even more generally, from the multiplicative Weyl inequality,

σj(Ak − A) ≤ σj(

(
−((UQ)11)+((UQ)12)R22

R22

)
).

Using this, and the additive Weyl inequality [38] in the second inequality,

σ2
j+s−1(A− Ak) ≤ σ2

j+s−1(

(
−((UQ)11)+((UQ)12)(R22 −R22opt,j−1 +R22opt,j−1)

R22 −R22opt,j−1 +R22opt,j−1

)
)

≤ σ2
s(

(
X+

11X12(R22 −R22opt,j−1)
R22 −R22opt,j−1

)
).

In particular, this establishes

σ2
j (A− Ak) ≤ σ2

1(

(
X+

11X12(R22 −R22opt,j−1)
R22 −R22opt,j−1

)
)

≤ ‖X+
11X12(R22 −R22opt,j−1)‖2

2 + ‖R22 −R22opt,j−1‖2
2,

and also by noting that the trailing min(m,n) − j singular values of A − Ak are bound in
this manner,

‖A− Ak − (A− Ak)opt,j−1‖2
F ≤ ‖

(
X+

11X12(R22 −R22opt,j−1)
R22 −R22opt,j−1

)
‖2
F

= ‖X+
11X12(R22 −R22opt,j−1)‖2

F + ‖R22 −R22opt,j−1‖2
F .

This completes (??)- (??). We proceed to the lower bound on σi(Ak) claimed in (??). If we
let Āk for the moment denote the middle matrix in (??), then

σi(Ak) = σi(L
′−1ĀkR

′−1) ≥ σi(

(
(L′−1ĀkR

′−1)11

(L′−1ĀkR
′−1)21

)
)

= σi(

(
L′−1

11 Ā11R
′−1
11

Ā21R
′−1
11

)
)

= σi(

(
L′−1

11 [L′11(U ′Q)11R11]R′−1
11

Ā21R
′−1
11

)
)

= σi(

(
(U ′Q)11R11R

′−1
11

[X21X
+
11X11R11]R′−1

11

)
) (4.23)

= σi(

(
(U ′Q)11R11R

′−1
11

[(U ′Q)21R11]R′−1
11

)
)

= σi(R11R
′−1
11 ).
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Here we have used the identities of Lemma ??. For (??) in particular, we used Ā21 =
(Ā21Ā

+
11)(Ā11) and then used (??) and (??) on the quantities in parentheses.

Remark 48. Recall the sizes V1 = V [:, : l], U1 = U [: l′, :]. When l′ = l, the factorization in
(??) can readily be rewritten in the more elegant form

Ak = AV1(U1AV1)−1U1A (4.24)

One nice feature of this is that only U1, V1 are actually needed to compute Ak. We will later
see that the residual bounds in Proposition ?? can be computed with only U1, V1 so it makes
sense that we can �nd an analog of (??) for l′ > l. However, we actually need to set the rows
U2 = U [l′ + 1 :, :] to be a basis for the orthogonal complement of the rows of U1 in order to
achieve this. Then U−1 = [U+

1 , U
+
2 ], and we get a di�erent form of (??) that is often faster

to compute,

Ak = U−1

(
I

Ā21Ā
+
11

)(
Ā11 Ā12

)
V −1

=
(
U+

1 U+
2

)( I
Ā21Ā

+
11

)
U1A

= (U+
1 + U+

2 U2AV1(U1AV1)+)U1A

=
[
U+

1 + (I − U+
1 U1)AV1(U1AV1)+

]
[U1A]

= [U+
1 (I − (U1AV1)(U1AV1)+) + (AV1)(U1AV1)+][U1A] (4.25)

This �nal form should be viewed as a generalized LU-factorization. The left factor is m× l′
and the right factor (U1A) is l′ × n. Also recall U1 is l′ × m so the pseudo-inverse can be
cheaply computed.

We summarize the factorization discussed above in (only partially speci�ed because of
U, V and the oversampling parameters l, l′) Algorithm GLU and Algorithm RLU. Recall
that using square U, V was only to help with the theoretical guarantees. Therefore, in order
to simplify notation, we now let U, V denote what were up until now labeled as U1, V1. We
also emphasize Algorithm RLU is the special case of Algorithm GLU when the latter sets
l = l′.

The bounds in Proposition ?? are not fully developed in that neither R22 nor R11R
′−1
11

have been examined yet, and also the choice of U greatly in�uences X. In Section ?? the
R22 factor will be studied; it will be bound in terms of STV where S is the right singular
matrix of A. See Proposition ?? and the resulting Theorem ??. Section ?? describes how
choosing suitable random ensembles for U, V allows for the Frobenius norm of the residual
to be arbitrarily close to that of the truncated SVD, as well as many other bounds. We
therefore present what we consider to be our main results in Section ??.
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Algorithm 5 [T, S] = GLU(A, k). Generalized LU approximation computes a low-rank
approximation A ≈ Ak = TS, where T is a tall-skinny matrix and S is a short-wide matrix.

1: Input: target rank k, matrix A ∈ Rm×n

2: Output: T ∈ Rm×l′ , S ∈ Rl′×n, where
3: Ensure: T = U+(I − (UAV )(UAV )+) + (AV )(UAV )+, S = UA
4: Select oversampling parameters l′ ≥ l ≥ k.
5: Generate full-rank n× l matrix V and full-rank l′ ×m matrix U .
6: Â = UAV
7: T1 = U+(I − ÂÂ+)
8: T2 = AV
9: T2 = T2Â

+

10: T = T1 + T2

11: S = UA

Algorithm 6 [T, Â, S] = RLU(A). Rank-revealing LU computes a low-rank approximation
A ≈ Ak = TÂ−1S, where T is a tall-skinny matrix, S is a short-wide matrix, and Â is a
small dense matrix.
1: Input: target rank k, matrix A ∈ Rm×n

2: Output: T ∈ Rm×l, S ∈ Rl×n, Â ∈ Rl×l

3: Ensure: T = AV , S = UA, Â = UAV
4: Select oversampling parameter l ≥ k.
5: Generate a full-rank n× l matrix V and a full-rank l ×m matrix U .
6: T = AV
7: S = UA
8: Â = UT

4.3 Relationship to other Approaches

In this section we illustrate how GLU provides a general framework by proving the
equivalence with Algorithm PRR_RLU and Algorithm RQR below. We will also see a
close connection to the popular approach Algorithm CW, from Clarkson and Woodru� [21].
We show show our approach is strictly more accurate when l′ > l, and the same when l′ = l.

This version of the randomized SVD is described in section 5.2 of [37]. It additionally
extracts rows from A based on the product AV , leading to a speedup in many settings but
at the cost of approximation quality. See discussion in [37] around (5.3).
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Algorithm 7 [T, S] = RQR(A, k). Randomized QR approximation computes a low-rank
approximation A ≈ Ak = TS where T is a tall-skinny matrix with orthonormal columns,
and S is a short-wide matrix
1: Input: target rank k, matrix A ∈ Rm×n

2: Output: orthogonal matrix T ∈ Rm×l, matrix S ∈ l × n
3: Ensure: T has orthonormal columns, S = T TA
4: Select the oversampling parameter l ≥ k.
5: Generate a full rank n× l matrix V .
6: Â = AV .
7: [T,_] = tQR(Â).
8: S = T TA

Algorithm 8 [T, S] = PRR_RLU(A, k). Randomized LU with row selection approxi-
mation based on Panel Rank-Revealing computes a randomized LU-factorization Ak = TS,
performing sketching on the columns and a panel rank-revealing QR to select rows

1: Input: target rank k, matrix A ∈ Rm×n

2: Output: T ∈ Rm×l and S ∈ Rl×n

3: Ensure: T = AV (P1AV )−1 = Q(P1Q)−1, S = P1A ∈ Rl×n where P is a permutation
matrix and P1 = P [: l, :] and Q ∈ Rm×l has orthonormal columns

4: Select oversampling parameter l ≥ k
5: Generate a full-rank n× l random matrix V
6: [Q,R] = tQR(AV ).

7: Permutation P is selected so that PQ = Q̄ =

(
Q̄11

Q̄21

)
results in ||Q̄21Q̄

−1
11 ||max being

bounded by a small constant (see [47]). Here P1 = P [: l, :] and Q̄11 = P1Q.

8: T = P T

(
I

Q̄21Q̄
−1
11

)
, also note then T = AV (P1AV )−1.

9: S = P1A

We show how these algorithms �t into the LU-framework. The fact is simple, but it
appears to have been overlooked in the literature. Therefore it has its own proposition:

Proposition 49. PRR_RLU is equivalent to RLU when the latter chooses the same V
and U := P1.

RQR is equivalent to RLU when the latter chooses the same V and U := T T .

Proof. The proof is mainly to recall the various de�nitions. First, Algorithm PRR_RLU
produces Ak = Q(P1Q)−1P1A. As claimed within the algorithm, because QR = AV it
follows that AV (P1AV )−1P1A = QR(P1QR)−1P1A = Ak. As AV (P1AV )−1P1A is the output
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factorization of Algorithm RLU, the factorizations agree.

We move on to the other equivalence. Recall [T,R] = tQR(AV ). Selecting the same V
and U = T T , the random LU-approximation given by Algorithm RLU would be

AV (T TAV )−1T TA = TR(T TTR)−1T TA = TT TA (4.26)

which agrees with Algorithm RQR.

The most popular approach involving sketching from the left and right is perhaps the
method �rst introduced in [21], and also described in the overview [65]. It is not equivalent
to GLU, but it is still closely related as we point out now. As seen in Theorem 47 of [65],
the output of what we call Algorithm CW after Clarkson, Woodru� is

A ≈ A′k = AV1(U1AV1)+U1A (4.27)

where we take U, V in the expanded form as below (??). We now show that this procedure
is strictly less accurate than GLU when l′ > l, and the same when l′ = l.

Proposition 50. Let Ā = UAV with U = L′U ′ and V = V ′R′ as in Proposition ??.
Additionally set Ã = U1A, and let B be the projection of Ã onto the orthogonal complement
of ÃV1. Finally let Ak be the output of Algorithm GLU and A′k be the output (??) of
Algorithm CW. Then

‖A− A′k‖2
F = ‖A− Ak‖2

F + ‖Ak − A′k‖2
F

‖Ak − A′k‖2
F = ‖U+

1 B‖2
F

‖A− A′k‖2
2 ≤ ‖A− Ak‖2

2 + ‖U+
1 B‖2

2

Proof. Similar to Remark ??,

A′k = AV1(U1AV1)+U1A = U−1

(
Ā11

Ā21

)
Ā+

11

(
Ā11 Ā12

)
V −1

= U−1

(
Ā11 Ā11Ā

+
11Ā12

Ā21 Ā22 − S(Ā11)

)
V −1

From this calculation and the calculation leading to (??), it follows that

‖A− A′k‖2
F = ‖U−1

[
Ā−

(
Ā11 Ā11Ā

+
11Ā12

Ā21 Ā22 − S(Ā11)

)]
V −1‖2

F

= ‖
(

0 U+
1 (I − Ā11Ā

+
11)Ā12

0 S(Ā11)

)
‖2
F

= ‖A− Ak‖2
F + ‖U+

1 (I − Ā11Ā
+
11)Ā12‖2

F

= ‖A− Ak‖2
F + ‖U+

1 (I − ÃV1(ÃV1)+)ÃV2‖2
F

= ‖A− Ak‖2
F + ‖U+

1 (I − ÃV1(ÃV1)+)
(
ÃV ′1 ÃV ′2

)
‖2
F

= ‖A− Ak‖2
F + ‖U+

1 (I − ÃV1(ÃV1)+)Ã‖2
F

= ‖A− Ak‖2
F + ‖U+

1 B‖2
F
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This gives the Frobenius norm claims. Compare this with the similar (??). Repeating
the similar steps gives the spectral norm claim. The only di�erence comes from an inequality
instead of an equality in one step; for any unit vector x,

‖
(
U+

1 (I − Ā11Ā
+
11)Ā12

S(Ā11)

)
x‖2

2 = ‖
(
U+

1 (I − Ā11Ā
+
11)Ā12x

S(Ā11)x

)
‖2

2

= ‖U+
1 (I − Ā11Ā

+
11)Ā12x‖2

2 + ‖S(Ā11)x‖2
2

≤ ‖S(Ā11)‖2
2 + ‖U+

1 (I − Ā11Ā
+
11)Ā12‖2

2

The work in [21] only considered the properties of the factorization (??) in the context of
Johnson-Lindenstrauss transforms, speci�cally when l′ is a poly-log factor larger than l, and
not focusing on deterministic bounds. If we compare the factorizations directly, perhaps the

most obvious di�erence is that the output of Algorithm GLU is typically rank l′ whereas the
output of CW is rank l. Related to this, the factorization in CW may be slightly cheaper to
perform, although in typical settings (k is relatively small) the same term dominants the cost
of both algorithms. Specializing to the SRHT ensemble for which our results are strongest,
in Remark ?? we will see that the same bounds in De�nition ?? and De�nition ?? apply to
both CW and to GLU. However, it does not appear the case that Theorem ?? 's strong
bound on Def. ?? can be carried over.

4.4 QR Deterministic Bounds

The following lemma is important in randomized low rank approximation results. Our
proof is novel, and (??), (??) signi�cantly generalize past versions.

Proposition 51. Let A be an m× n matrix with [P,Σ, S] = SVD(A). As with Proposition
??, it is again convenient to suppose V is n × n with V = V ′R′ as described in (??). Also
let [Q,R] = QR(AV ). Then block Q,R, STV,Σ using Q1 := Q[:, : l], R11 = R[: l, : l],
(STV )11 = (STV )[: k, : l], and Σ1 = Σ[: k, : k], Σ2 = Σ[k + 1 :, k + 1 :]. Then the singular
values of Q1Q

T
1A− A are identical to those of R22, i.e. for any 1 ≤ j ≤ min(m,n)− l

σj(Q1Q
T
1A− A) = σj(R22).

Moreover, assuming (STV )11 has full row-rank (and therefore k ≤ l), we have that

‖Q1Q
T
1A− A‖2

F ≤ ‖Σ2‖2
F + ‖Σ2(STV )21(STV )+

11‖2
F (4.28)

‖Q1Q
T
1A− A‖2

2 ≤ σ2
k+1 + ‖Σ2(STV )21(STV )+

11‖2
2. (4.29)

We may generalize this last equation with the goal of covering De�nition ??. For any 1 ≤
j ≤ min(m,n) − l, there exists an n × (n − j + 1) orthogonal matrix S̃ independent of V ,
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satisfying

σj(Q1Q
T
1A− A)2

2 ≤ σ2
j+k + ‖Σj,2(S̃TV )21(S̃TV )+

11‖2
2 (4.30)

‖(Q1Q
T
1A− A)− (Q1Q

T
1A− A)opt,j−1‖2

F ≤ ‖Σj,2‖2
F + ‖Σj,2(S̃TV )21(S̃TV )+

11‖2
F (4.31)

with (S̃TV )11 being k × l as before, and Σj,2 := diag(σk+j, . . . , σmin(m,n), 0, . . . , 0) is of di-
mension (m− k)× (n− k), where diag denotes the diagonal matrix.

Proof. We �rst observe by direct computation,

σj(Q1Q
T
1A− A) = σj(Q2Q

T
2A) = σj(Q2

(
0 R22

)
R′−1V ′T ) = σj(R22),

to establish the �rst claim. Next we invoke the common fact that for the spectral and
Frobenius norms, Q1Q

T
1A is the best approximation to A whose columns are in im(Q1). For

example, one can check that Q1Q
T
1 satis�es the orthogonal projection properties with respect

to these norms. Set Ā = P TAV . Then we explicitly propose an approximation Ãk whose
columns are contained in im(Q1) = im(AV1), namely

Ãk := P

(
Ā11

Ā12

)(
I Ā+

11Ā12

)
V −1 = AV1

(
I Ā+

11Ā12

)
V −1

In contrast to before, Ā11 is k × l, making it short and wide. Repeating the algebra around
(??) in the �rst step,

‖A− Ãk‖2
F = ‖S((P TAV )11)‖2

F = ‖S(Σ1(STV )11)‖2
F

= ‖Σ2(STV )22 − Σ2(STV )21(Σ1(STV )11)+Σ1(STV )12‖2
F

= ‖Σ2(STV )22 − Σ2(STV )21(STV )+
11(STV )12‖2

F (4.32)

≤ ‖
(

Σ2 −Σ2(STV )21(STV )+
11

)
‖2
F

= ‖Σ2‖2
F + ‖Σ2(STV )21(STV )+

11‖2
F .

To be clear, STV was blocked so that (STV )11 is k × l. Note we were able to distribute the
pseudo-inverse in (Σ1(STV )11)+. In the generic case this follows from (STV )11 having full
row rank (this will be with probability 1 for suitably random V ) and Σ1 being invertible. If
Σ1 has trailing 0 values, the assumption of full row rank of (STV )11 ensures im(AV1) = im(A)
and therefore we can instead use Ãk := A to get the bound of 0.

For the spectral norm bound, the steps are the same, except as in the proof in Proposition
??, the �nal equality becomes an inequality.

We actually are interested in the lower singular values as well though, so we extend the
proof. In the following, PY and PAV1 project onto the complements of the images of Y and
AV1 respectively, Y is rank j − 1, and AV1 is rank l. The same projection notation applies
to the other projections. Using the additive Weyl inequality in the inequality step, similar
to the use within Prop ??, for s ≤ min(m,n)− j,
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Additionally, in the third equality, Y + AV1 is used to refer to direct sum of the images
of Y and AV1, and the equality holds under the assumption these spaces are orthogonal.
The fourth (last) equality holds when im(Y ′) ⊕ im(Ỹ ) = im(Y ) ⊕ im(AV1), and im(Y ′) is
orthogonal to im(Ỹ ).

Now we make our choice of Y + AV1. First let P1 = P [:, : j − 1], the leading j − 1 left
singular vectors of A. Noting that im(P1)⊕ im((P1P

T
1 A−A)V1) is rank l+j−1 and contains

im(Q1) = im(AV1), and that P1 is orthogonal to (A− P1P
T
1 A)V1, these are valid choices of

Y ′ and Ỹ respectively. In summary,

im(Y )⊕ im(AV1) = im(P1)⊕ im((P1P
T
1 A− A)V1) = im(P1)⊕ im(AV1) (4.33)

Y = trailing j-1 columns of Q factor of tQR(
(
AV1 P1

)
)

Y ′ = P1

Ỹ = PP1AV1

We emphasize in (??) that the �rst two are orthogonal direct sums. This puts us essentially
back into the situation surrounding (??). Indeed,

σj+s−1(Q1Q
T
1A− A) ≤ σs(PỸ PY ′A) = σs(PBV1B) = σs(B − Q̃1Q̃

T
1B),

where B = PP1A = A − P1P
T
1 A = A − Aopt,j−1, and Q̃1 is an orthogonal matrix such that

im(Q̃1) = im(BV1) = im((A− Aopt,j−1)V1). In particular with s = 1,

σj(Q1Q
T
1A− A) ≤ σ1(Q̃1Q̃

T
1 (A− Aopt,j−1)− (A− Aopt,j−1)),

as well as by comparing the singular values individually by varying s,

‖(Q1Q
T
1A− A)− (Q1Q

T
1A− A)opt,j−1‖2

F ≤ ‖Q̃1Q̃
T
1 (A− Aopt,j−1)− (A− Aopt,j−1)‖2

F .

As a result, the RHS's we need to bound are the same as those bound when we established
(??), and we may carry out the same steps as those around (??). The only change is A is
replaced with B = A−Aopt,j−1, and accordingly Q1 changes to have the same image as BV1.
The e�ect of this is the order of right singular vector matrix S changes; the leading j − 1
singular values and singular vectors removed. To capture this change, we may notationally
let S̃ be the permutation of the columns of S, moving the leading j − 1 columns to the end.
Then in the spectral case with s = 1,

σ2
j (Q1Q

T
1A− A) ≤ σ2

j+k + ‖Σj,2(S̃TV )21(S̃TV )+
11‖2

2.

The Frobenius norm version follows similarly.

In (??) and (??), one could factor out the σ part to make the equations immediately
take the form of De�nitions ?? and ??. However, as in Theorem ??, the unfactored form
can have advantages.
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Lemma 52. Continue in the situation of Proposition ??. For j ≤ k,

σj(Q1Q
T
1A) ≥ σj(R11R

′−1
11 ) ≥ σj(A)σmin((STV ′)11))

Proof. As in the previous proof, we see that the result is the same as if we right multiplied
by V ′ rather than V . That is, we seek to bound from below the j-th singular value of

QT
1A =

(
R11 R12

)
R′−1V ′T .

Using this expression, we see that

σj(Q1Q
T
1A) ≥ σj(R11R

′−1
11 ) = σj(Σ(STV ′)[:, : l]) ≥ σj(A)σmin((STV ′)11),

where the reversed Weyl inequality was used in the last step.

We state the following mainly to collect the results of the section into a single statement
which resembles the de�nitions of strong QR factorizations from the literature.

Proposition 53. Let A be an m× n matrix with SVD A = PΣST . Set [Q,R] = QR(AV ),
where V = V ′R′ is an n × n matrix. Then the singular values of Q1Q

T
1A − A are identical

to those of (m− l)× (n− l) matrix R22. Moreover,

‖R22‖2
F ≤ ‖Σ2‖2

F + ‖Σ2(STV )21(STV )+
11‖2

F

Also for j ≤ k,

σj(A) ≥ σj(Q1Q
T
1A) ≥ σj(R11R

′−1
11 ) ≥ σj(A)σmin((STV ′)11) (4.34)

as well as for any given j ≤ min(m,n) − k, there is an orthogonal n × (n − j) matrix S̃
independent of V such that

σ2
j (R22) ≤ σ2

j+k + ‖Σj,2(S̃TV )21(S̃TV )+
11‖2

2 (4.35)

‖(R22)− (R22)opt,j−1‖2
F ≤ ‖Σj,2‖2

F + ‖Σj,2(S̃TV )21(S̃TV )+
11‖2

F , (4.36)

with (S̃TV )11 being k × l as before, and Σj,2 := diag(σk+j, . . . , σn, 0, . . . , 0) is of dimension
(m− k)× (n− k), where diag denotes the diagonal matrix.

Proof. Excluding the upper bound in (??), the bounds are restatements of facts in Proposi-
tion ?? and Lemma ??. The upper bound is a consequence of the Weyl inequality,

σj(Q1Q
T
1A) ≤ σ1(Q1Q

T
1 )σj(A) = σj(A)
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4.5 Application of Randomness

In this section, we combine our deterministic bounds with the past literature on sketching
matrices. There are three applications. We �rst note that ensembles U and V used in
AlgorithmGLU's guarantees in Proposition ?? can be viewed through the oblivious subspace
embedding property commonly used in literature. Second, we specialize the random ensemble
to the subsampled randomized Hadamard transform (SRHT) introduced in [58] but whose
analysis was strengthened in [12]. Our approach �ts nicely with their work to give particularly
strong operator norm bounds, but in asymptotically less time. Third, we specialize to
the Gaussian ensemble to see an application to analyzing the growth factor in Gaussian
Elimination.

We begin by recalling a property associated with Johnson-Lindenstrauss embeddings.
Di�erent authors establish it in di�erent ways, as in [58], [12], [21], but they all have found
it necessary in providing sharp Frobenius bounds.

De�nition 54. We say U from Rn to Rs is (ε, δ, n) multiplication approximating if for any
A,B having n rows, then

‖ATUTUB − ATB‖2
F ≤ ε‖A‖2

F‖B‖2
F ,

with probability 1− δ.

We also include a de�nition used consistently in the literature,

De�nition 55. An (k, ε, δ) oblivious subspace embedding (OSE) from Rn to Rs is a distri-
bution U ∼ D over s× n matrices. It must with probability 1− δ succeed in making

1− ε ≤ σ2
min(UQ) ≤ σ2

max(UQ) ≤ 1 + ε

hold for any given orthogonal n× k matrix Q. We will assume l ≥ k and ε < 1/6.

For De�nition ??, there is a consequence we require. The �rst part is essentially Lemma
4.1 of [12] but we need to state it more generally.

Lemma 56. Let U be an s × n matrix that is a (k, ε, δ) OSE from Rn to Rs, and Q be an
(n×k) orthogonal matrix. Provided ε < 1/6, then with probability 1− δ both of the following
hold,

‖(UQ)+ − (UQ)T‖2 ≤ 3ε

‖U‖2
2 = O

(n
k

)
,

where in the second of these we require the additional assumption δ > 2e−k/5.
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Proof. Let A = UQ. Then from De�nition ?? and power series expansion, the singular
values of A lie within [

√
1− ε,

√
1 + ε] and hence for simplicity we may say they lie within

[1− ε, 1+ ε] with probability 1−δ. Let l×k diagonal matrix Σ contain these singular values.
Therefore

‖A+ − AT‖2 = ‖ΣT − Σ+‖2 = max
i≤k
|λi − λ−1

i |

≤ |1− ε− 1

1− ε
| ≤ 3ε,

where we have chosen to write the small extreme of σi; the large extreme is identical.

For the second fact, let V ≤ Rn be a uniformly distributed k-dimensional subspace with
dim(V ) = k independent of U , i.e. V is spanned by the �rst k columns of a Haar distributed
matrix on Rn independent of U . A consequence of De�nition ?? is that ‖Uv‖2 ≤ 2 with
probability 1− δ holding uniformly for unit vectors v contained in V . Otherwise some �xed
subspace V0 would also fail to have this property with probability δ, violating De�nition ??.

Now let x be the maximal right singular vector of U . The subsequent Lemma ?? gives

sup
v∈V,‖v‖2=1

|〈x, v〉| = Ω(
√

k
n
) with probability 1−δ. Next choose v ∈ argmaxv∈V,‖v‖2=1|〈x, v〉| to

be a unit-vector with smallest angle with respect to x, and observe ‖Uv‖2 = Ω(
√

k
n
)‖Ux‖2.

We conclude ‖U‖2
2 = O

(
n
k

)
with probability 1−δ. Otherwise this would contradict ‖Uv‖2 ≤

2 holding with probability 1− δ.

Lemma 57. Let V be a k-dimensional uniformly distributed subspace of Rn, and x ∈ Rn be

a unit vector drawn from a distribution independent of V . Then sup
v∈V,‖v‖2=1

|〈x, v〉| = Ω(
√

k
n
)

with probability 1− 2e−k/5.

Proof. We may assume V = span(e1, . . . , ek), and represent x as (X1,...,Xn)T√
X2

1+···+X2
n

where Xi are

i.i.d. variance 1
n
Gaussians. Indeed, V can be taken to be the �rst k columns of Haar

distributed orthogonal matrix Ṽ , and the WLOG assumption is equivalent to changing to
the coordinates of Ṽ . As a result, we are interested in

sup
v∈V,‖v‖2=1

|〈x, v〉| = (X1, . . . , Xn)√
X2

1 + · · ·+X2
n

· (X1, . . . Xk, 0, . . . )
T√

X2
1 + · · ·+X2

k

=

√
X2

1 + · · ·+X2
k√

X2
1 + · · ·+X2

n

.

Standard large-deviation bounds for chi-squared distribution, which is a sub-exponential
random variable, can be used to lower bound this. We take bounds from [44] (4.3), (4.4).
The right tail bound is

P[X2
1 + · · ·+X2

n > 1 + 2

√
δ√
n

+ 2
δ

n
] ≤ e−δ,
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and the left tail bound is

P[X2
1 + · · ·+X2

k <
k

n
− 2

√
kδ

n
] ≤ e−δ.

From these and setting δ = k/5, we conclude

sup
v∈V,‖v‖2=1

|〈x, v〉| ≥

 k
n
− 2 k√

5n

1 + 2
√
k√

5n
+ 2 k

5n

.5

≥ 1

25

√
k

n

holds with probability 1− 2e−k/5.

The following lemma largely follows the steps of [12] but we have tried to abstract out
the key probabilistic properties responsible in order to be more general. Another di�erence
is that we also treat the spectral norm. It is a natural consequence of the prior lemmas, and
will bridge the gap between deterministic Proposition ?? and randomized Theorem ??. We
do not attempt to tightly bound the constant coe�cients.

Lemma 58. Assume l ×m matrix U is drawn from a distribution that is a (k,
√
ε, δ) OSE

from Rm to Rl. Let B be a �xed (m− k)× n matrix, and Q = [Q1, Q2] be a �xed orthogonal
m×m matrix blocked so that Q1 is m× k. Then provided δ > 2e−k/5, with probability 1− δ

‖(UQ1)+(UQ2)A‖2 = O
(m
k

)
.

Further assume U is ( ε
k
, δ, n) multiplication approximating, then with probability at least

1− 2δ,
‖(UQ1)+(UQ2)B‖2

F = O (ε) ‖B‖2
F .

Proof. For the Frobenius bound, apply Lemma ?? in (??), and De�nition ?? in (??) by
noting QT

2Q1 = 0,

‖(UQ1)+(UQ2)B‖2
F ≤ 2‖(UQ1)T (UQ2)B‖2

F + 2‖((UQ1)+ − (UQ1)T )(UQ2)B‖2
F

≤ 2‖QT
1U

TUQ2B‖2
F + 6ε‖UQ2B‖2

F (4.37)

≤ 2‖QT
1U

TUQ2B‖2
F + 12ε‖Q2B‖2

F (4.38)

≤ 2‖QT
1U

TUQ2B‖2
F + 12ε‖B‖2

F

≤ 2
ε

k
‖Q2B‖2

F‖QT
1 ‖2

F + 12ε‖B‖2
F (4.39)

≤ 2ε‖B‖2
F + 12ε‖B‖2

F = 14ε‖B‖2
F .

In the above, the step to (??) used De�nition ??, noting

‖Q2BU‖2
F = ‖Q2BU(Q2BU)T‖F ≤ (1 + ε)‖Q2B‖2

F ≤≤ 2‖Q2B‖2
F ,
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with probability 1− δ.

For the spectral bound, we may argue

‖(UQ1)+(UQ2)A‖2
2 ≤ ‖(UQ1)+(UQ2)‖2

2 · ‖A‖2
2

≤ ‖(UQ1)T (UQ2)‖2
2 · ‖A‖2

2 + ‖((UQ1)+ − (UQ1)T )(UQ2)‖2
2 · ‖A‖2

2

≤ 7

6
‖UQ2‖2

2 · ‖A‖2
2 + 3ε‖(UQ2)‖2

2 · ‖A‖2
2 (4.40)

=
7

6
‖U‖2

2 · ‖Q2‖2
2 · ‖A‖2

2 (4.41)

= O(
m

k
)‖A‖2

2 .

In the former steps, we note in particular that (??) follows from De�nition ??, and ?? from
Lemma ??.

In the following, one of our main results, we continue with the notation of Propositions
?? and ??. We provide a bound on De�nitions ?? and ??. While these bounds do appear
quite weak (often weaker than a naive Frobenius norm adaptation), we note that they match
the guarantees of past literature for algorithms running in o(nmk) time, e.g. [34], [37], [59].
On the other hand, in Theorem ?? we notably achieve very sharp bounds on De�nitions ??
and ??, by exploiting a special property of the SRHT ensemble.

Theorem 59. Assume U1 is drawn from a distribution that is an (l, ε, δ) OSE from Rm into
Rl′. Similarly assume V T

1 is drawn from a distribution that is a (k, ε, δ) OSE from Rn into
Rl. Then provided δ > 2e−k/5, with probability 1− 2δ for j ≤ k,

σj(Ak) = Ω

(√
k

n

)
σj(A) .

Fixing a given 1 ≤ j ≤ min(m,n)− k, with probability 1− 4δ we also have

σj(A− Ak) = O

(√
mn

kl

)
σk+j(A).

If we additionally assume U1 is drawn from a (
√

ε
l
, δ,m) multiplication approximating and

similarly V T
1 is drawn from a (

√
ε
k
, δ, n) multiplication approximating, then for a given 1 ≤

j ≤ min(m,n)− k,
‖A− Ak‖2

F = (1 +O(ε)) ‖A− Aopt,k‖2
F

holds with probability 1− 4δ.

Proof. We start with the Frobenius norm bound. The starting point is Proposition ??, which
includes

‖R22 −R22opt,j−1‖2
F ≤ ‖Σj,2‖2

F + ‖Σj,2(S̃TV )21(S̃TV )+
11‖2

F .
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Then as V T
1 satis�es the JL properties, apply Lemma ?? with B = ΣT

j,2, Q1 = S̃1, Q2 = S̃2,
and U = V T

1 , to conclude that for a given 1 ≤ j ≤ min(m,n) − k, ‖R22 − R22opt,j−1‖2
F =

(1 + O(ε))‖Σj,2‖2
F with probability 1 − 2δ. To complete the Frobenius bound, recall from

Proposition ?? that

‖(A−Ak)− (A−Ak)opt,j−1‖2
F ≤ ‖R22 −R22opt,j−1‖2

F + ‖(UQ)+
11(UQ)12(R22 −R22opt,j−1)‖2

F ,

and again apply Lemma ??, this time with B = R22 − R22opt,j−1, to get ‖(A − Ak) − (A −
Ak)opt,j−1‖2

F = (1 +O(ε))‖Σj,2‖2
F with probability 1− 4δ.

The spectral bound proceeds similarly, but using the spectral bounds of Proposition ??,
Proposition ??, and ?? instead. Thus

‖R22 −R22opt,j−1‖2
2 ≤ ‖Σj,2‖2

2 + ‖Σj,2(S̃TV )21(S̃TV )+
11‖2

2 = O

(√
m

l′

)
σ2
j+k.

And then using (??) of Proposition ??,

σ2
j (A− Ak) ≤ ‖R22 −R22opt,j−1‖2

2 + ‖(UQ)+
11(UQ)12(R22 −R22opt,j−1)‖2

2 = O
(mn
l′l

)
σ2
j+k,

which proves the spectral claim.

For the multiplicative lower bound on the singular values of A11, from (??) and (??) in
Proposition ?? and Proposition ?? respectively, it follows that for j ≤ k,

σj(Ak) ≥ σj(R11R
′−1
11 ) ≥ σmin((ST1 V

′
1))σj(A) = Ω

(√
k

n

)
σj(A).

This last step requires additional explanation. First,

σmin(ST1 V
′

1) = σmin(ST1 V1R
′−1
11 ) ≥ σmin(ST1 V1)σmin(R′

−1
11 )) ≥ 5

6
σmin(R′

−1
11 ) =

5

6

1

‖R′11‖2

,

where we used σmin(ST1 V1) ≥ 5
6
holds by De�nition ?? with probability 1− δ. It remains to

upper bound ‖R′11‖2. We know V1 = V ′
(
R′11

0

)
, so ‖R′11‖2 = ‖V1‖2. But ‖V1‖2 = O

(√
n
k

)
due

to Lemma ??, with probability 1− δ. This completes the proof of the lower bound.

Next, we specialize to the SRHT ensemble in order to see a case where the bounds of
De�nition ?? and De�nition ?? are stronger than in ??.

De�nition 60. The SRHT ensemble embedding Rn into Rs is de�ned by generating√
n

s
PHD,

where P is s × n selecting s rows, H is the normalized Hadamard transform, and D is a
n× n diagonal matrix of uniformly random signs.
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The key special additional property of the SRHT ensemble is from Lemma 4.8 of [12].

Lemma 61. Let V T be drawn from an SRHT of dimension l × n. Then for m × n matrix
A with rank ρ, with probability 1− 2δ,

‖AV ‖2
2 ≤ 5‖A‖2

2 +
log(ρ/δ)

l
(‖A‖F +

√
8 log(n/δ)‖A‖2)2

The SRHT with 10ε−1(
√
k +

√
8 log(m/δ))2) log(k/δ) rows is a (k,

√
ε, δ) OSE (by sub-

stituting δ = δ/3 into Lemma 4.1 of [12]). For the multiplication approximating property,
it is straightforward to plug this setting of r into Lemma 4.11 of [12] (along with setting
R =

√
4 ln(3δ−1) and δ = δ/3). Thus it satis�es the multiplication approximating prop-

erty with parameters ( ε
k
, δ, n). We may substitute these parameters into Theorem ??, but

numerous other ensembles could also be used. We have singled out the SRHT because it
enjoys a remarkably good bound for the spectral norm approximation quality due to the
prior lemma, but past work has not exploited this property fully. In particular, when the
spectral norm and Frobenius norm are comparable (i.e. quickly decaying singular values),
the quality is constant in the dimension rather than polynomial. Loosely speaking, as long as
‖A−Ak‖F
‖A−Ak‖2

= O(
√
k), then ‖A−Ak‖2 is around a constant factor from that of the k-truncated

SVD. The theorem further strengthens this by proving the generalization to the lower sin-
gular values of A− Ak.

Theorem 62. Let U1, V
T

1 be drawn from SRHT ensembles with dimensions l′ × m, n × l.
We set

l ≥ 10ε−1(
√
k +

√
8 log(n/δ))2 log(k/δ),

as well as
l′ ≥ 10ε−1(

√
l +
√

8 log(m/δ))2 log(k/δ).

Letting ρ be the rank of A, for simplicity assume
l′ ≥ log(m/δ) log(ρ/δ) and l ≥ log(n/δ) log(ρ/δ). Then for any �xed 1 ≤ j ≤ min(m,n)− k,
with probability 1− 5δ the approximation of A using GLU, Ak, satis�es

σ2
j (A− Ak) = O(1)σ2

k+j +O

(
log(ρ/δ)

l

)
‖A− Aopt,k+j−1‖2

F

= O

(
1 +

ε log(min(m,n)/δ)

k log(k/δ)

‖A− Aopt,k+j−1‖2
F

σ2
k+j

)

)
σ2
k+j .

Proof. It su�ces to prove the �rst claim. Begin by using Proposition ?? and Lemma ??,

σ2
j (R22) ≤ ‖Σj,2‖2

2 + ‖Σj,2(S̃TV )21(S̃TV )+
11‖2

2 ≤ ‖Σj,2‖2
2 + 2‖Σj,2(S̃TV )21‖2

2,

with probability 1− δ. Next apply Lemma ?? to the second term to get

σ2
j (R22) = O

(
1 +

log(ρ/δ) log(n/δ)

l

)
‖Σj,2‖2

2 +O

(
log(ρ/δ)

l

)
‖Σj,2‖2

F

= O(1)‖Σj,2‖2
2 +O

(
log(ρ/δ)

l

)
‖Σj,2‖2

F , (4.42)
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where ρ is the rank of A, with probability 1 − 2δ. Continue from the result of Proposition
??,

σ2
j (A− Ak) ≤ ‖R22 −R22opt,j−1‖2

2 + ‖(U1Q1)+(U1Q2)(R22 −R22opt,j−1)‖2
2

≤ ‖R22 −R22opt,j−1‖2
2 + 2‖(U1Q2)(R22 −R22opt,j−1)‖2

2.

From Theorem ?? we also know ‖(R22−R22opt,j−1)‖2
F ≤ (1+O(ε))‖Σj,2‖2

F ≤ 2‖Σj,2‖2
F because

the SRHT with the parameter settings speci�ed for l and l′ satis�es the multiplication
approximatin and OSE properties. Thus repeating the same steps using Lemma ?? and
Lemma ?? to complete the proof for the �rst bound,

σ2
j (A− Ak) ≤ ‖R22 −R22opt,j−1‖2

2 + 2‖(U1Q2)(R22 −R22opt,j−1)‖2
2

≤ C1
log(ρ/δ) log(m/δ)

l′
‖R22 −R22opt,j−1‖2

2 + C2
log(ρ/δ)

l′
‖R22 −R22opt,j−1‖2

F

= O(1)‖R22 −R22opt,j−1‖2
2 +O

(
log(ρ/δ)

l′

)
‖R22 −R22opt,j−1‖2

F .

By using the bounds on σj(R22) from (??) and the fact that ‖R22 − R22opt,j−1‖2 = σj(R22),
we further obtain

σ2
j (A− Ak) ≤ C1σ

2
k+j + C2

log(ρ/δ)

l
‖Σj,2‖2

F .

A few remarks are in order.

Remark 63. First, the SRHT ensemble is only de�ned for powers of 2. This is not a
theoretical issue because matrices can be padded. However, as discussed in [12] there are
orthogonal ensembles related to the SRHT, namely the discrete cosine transform and Hartley
transform, for which the key probabilistic requirement in Lemma ?? carries over, so this
corollary also carries over.

Remark 64. Second, we consider much of the work in this section as adapting [12] to al-
gorithm GLU which sketches A's columns and rows and proves a spectral norm bound com-
parable to the above. Their work does not specify how to proceed after �nding A ≈ Q1Q

T
1A,

and therefore follows RQR. Therefore if one follows their approach, creating a compressed
representation of A would still require O(nmk) time because QT

1A must be computed. We
state the relevant part of their theorem here to provide context:

Theorem 65 ([12], Thm 2.1). Let A ∈ Rm×n have rank ρ and n a power of 2. Fix an integer
k satisfying 2 ≤ k < ρ. Let 0 < ε < 1/3 and 0 < δ < 1. Let Y = AV T where V ∈ Rr×n

is drawn from the SRHT ensemble with r = 6ε−1(
√
k+

√
8 log(n/δ))2) log(k/δ)). Then with

probability 1− 5δ

‖A− Y Y +A‖2 ≤ (4 +

√
3 log(n/δ) log(ρ/δ)

r
)‖A− Ak‖2 +

√
3 log(ρ/δ)

r
‖A− Ak‖F
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From this we see our Theorem ?? has qualitatively the same accuracy guarantee on the
residual error. For many types matrices A, in particular for those with fast spectral decay,
Theorem ?? will be within a constant factor of the rank k truncated-SVD's spectral approxi-
mation error.

Remark 66. In comparing CW with the outcomes of Theorems ?? and Theorem ??, many
results carry over, and we brie�y sketch this here. Given U1 is from an SRHT ensemble,
it is not di�cult to see in Proposition ?? that l√

m
Ã has smaller singular values than A.

Moreover, the singular values of B are bound through those of Ã, using Proposition ??, as
B is the projection of Ã onto the sketch generated by ÃV1. Then U+

1 is orthogonal besides
undoing the scaling of Ã, by multiplying the singular values by l√

m
. This sketch describes

why the Frobenius norm and Spectral norm bounds on the residual still apply, i.e. De�nition
??.

The bound on De�nition ?? we use is from Theorem ??, as it is not strengthened by

using an SRHT ensemble. In particular it gave σj(Ak) = Ω(
√

k
n
)σj(A). Recall that the

deterministic identity behind the result is from ??, using the relations around (??). Intuitively
because only the leading l columns of Ā are used in proving this bound, the same argument
applies.

In contrast to the above, De�nition ?? does not �t very naturally with CW. This is
because, though U+

1 B in Proposition ?? by itself can easily be bound, it does not necessarily
interact nicely with S(Ā11). Thus we are unable to extend the result of Theorem ?? for j > 1.

Remark 67. Let us consider the computational cost of computing the GLU approximation
of A through Theorem ??, storing the result in the form of (??), following Algorithm ??.

Simply by following the algorithmic description, we see the largest cost
terms are O(nm log(l′) +mll′). We present a short table tabulating this.

Â = U1(AV1) O(nm log(l))

T1 = U+
1 (I − ÂÂ+) O(ml′ log(m) + ll′2) because up to a factor U1 has

orthonormal columns, thus U+
1 =

√
l′

m
(PHD)T =

√
l′

m
DHP T

T2 = AV1 Stored from �rst step

T2 = T2Â
+ O(mll′)

T = T1 + T2 O(ml′)
S = U1A O(mn log(l′))

Specializing as in the theorem, we additionally required
l ≥ 10ε−1(

√
k +

√
8 log(n/δ))2 log(k/δ)

and l′ ≥ 10ε−1(
√
l +
√

8 log(m/δ))2 log(k/δ).
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Using these bounds on l and l′, we say the runtime is Õ(nm + k2mε−3). Various poly-log
factors are hidden here, involving n,m, k, δ. In more detail, plugging in l and l′ into the
prior complexity bound and assuming m < n so that l′ = O(lε−1 log(k/δ)), we get Big-Oh of

nm log
(
ε−2(k + log(n/δ)) log2(k/δ)

)
+mε−3(k2 + log2(n/δ)) log3(k/δ)).

Note that in the runtime bound, because there is asymmetry between m and n, it turns out
to be faster if m < n and thus A is short-wide. If this is not the case for A, then one could
simply run the algorithm on AT .

Remark 68. As stated, Theorem ?? provides bounds for the GLU with sketching from the
left and right. We noted in the prior remark how this retains the performance of [12] while
increasing the speed. We could stop the analysis at (??), and also borrow the bounds already
found in Theorem ?? and Proposition ??. Then we obtain new bounds for the randomized
QR factorization,

Corollary 69. Let n × l matrix V T
1 be drawn from an SHRT ensemble, l ≥ 10ε−1(

√
k +√

8 log(n/δ))2 log(k/δ), and for simplicity assume l ≥ log(n/δ) log(ρ/δ). Then we have

‖R22 −R22opt,j−1‖2
F ≤ (1 +O(ε))‖A− Aopt,k+j−1‖2

F ,

with probability 1− 2δ, as well as

σ2
j (R22) ≤ O(σ2

k+j) +O(
log(ρ/δ)

l
)‖A− Aopt,k+j−1‖2

F ,

for 1 ≤ j ≤ min(m,n)− k with probability 1− 3δ for a particular j. We also have upper and
lower bounds on the largest singular values, as for 1 ≤ j ≤ k,

σj(A) ≥ σj(Q1Q
T
1A) = Ω(

√
k

n
)σj(A)

holds with probability 1−2 max(δ, e−k/5). Actually, borrowing the deterministic bound of [35]
found in equation (4.7),

σj(A) ≥ σj(Q1Q
T
1A) ≥ σj

1 +O(
√

n
k
)σk+1

σj

holds with probability 1− δ.

We move on to the third application, controlling the growth factor during Gaussian
elimination by right and left multiplication by square random matrices. The theoretical
result we establish is that the growth factor is well behaved if we multiply by square Gaussian
random matrices. Note the bounds in Propositions ?? and ?? will in this case be the same
for Gaussian random matrices as for Haar random matrices, because they di�er by lower and
upper triangular factors and U1, V1 are now square. We make use of bounds proven for the
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Haar ensemble. The work [24], which viewed the problem in terms of the Haar ensemble,
required a randomized QR-factorization as a subroutine to compute the generalized Schur-
decomposition of the matrix by a divide-and-conquer approach. This required a bound on
the smallest singular value of the k×k minors. Eventually a tight bound on these was given
in [23] by means of the exact probability distribution, which we will use.

As pointed out in [7], Theorem 3.2 and Lemma 3.5 of [23] give an exact density of the
smallest singular value of a Haar minor. Analyzing this formula gives the following bound,

which is sharp up to a constant in the primary range of interest, σmin = O

(
1√

k(n−k)

)
.

Lemma 70. Let δ > 0, k, (n− k) > 30; then P
[
σmin ≤ δ√

k(n−k)

]
≤ 2.02δ.

We will de�ne the `2 growth factors of Ā as ρU(Ā) := max
p
‖Sp(Ā)‖2/‖Ā‖2 and ρL(Ā) :=

max
p
‖Ā21Ā

−1
11 ‖2 where Sp is the Schur complement of the top p× p block. From Proposition

??,(??), and Proposition ?? it is not di�cult to see that both are bounded as

ρU(Ā), ρL(Ā) ≤ max
j

[
‖X[: j, : j]−1‖2‖R[j + 1 :, j + 1 :]‖2/‖Ā‖2

]
≤ max

j

[
‖(UQ)[: j, : j]−1‖2‖(STV )[j + 1 :, j + 1 :]−1‖2

]
= max

j

[
σ−1

min((UQ)[: j, : j])σ−1
min((STV )[: j, : j])

]
.

Note that ρU and ρL control what is typically called the growth factor of Ā. The growth
factor is the largest magnitude entry appearing in the matrices L,U returned by Gaussian
Elimination. This is because of norm equivalence, with the operator and max-element norm
di�ering by at most a factor of

√
n. Therefore our `2 growth factors are equivalent for the

purpose of proving stability.

Corollary 71. Suppose we want to solve Ax = b by Gaussian Elimination, and we precon-
dition, postcondition A by Haar distributed matrices U, V . That is, we solve UAV x′ = Ub
and output V Tx′. Then the U and L `2-growth factors introduced above satisfy

E[log(max(ρU(Ā), ρL(Ā)))] = O(log(n))

Proof. Because U and V are Haar, the matrices UQ and STV in Propositions ?? and ??
are Haar distributed. Apply Lemma ?? to the minors (call them generically M) of UQ and
STV with size in the range [30, n− 30],

P[σ−1
min(M) > n2+a] < 2.02n−1−a

To control all minors in this range, simply perform a union bound over all < 2n minors
being considered. Let B1 be the inverse of the smallest singular value of the minors in range
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[30, n − 30] of UQ and STV . Then P[B1 ≥ n2+a] ≤ 4.04n−a. Setting a = x − 2, this is
P[logn(B1) ≥ x] ≤ 4.04n2−x.

To deal with the minors in range [0, 30], we cite a result in random matrix theory which
says that these minors scaled by

√
n approach a matrix of i.i.d. N(0, 1) random variables.

The convergence is with respect to total variation distance, see [41]. Let B2 be the inverse
of the smallest singular value of these 60 minors. For the claimed result, what matters is
E[logn(B2)] = C ′1 for some constant C ′1, due to the 1√

n
scaling. This is apparent from work

similar to [23] but for Gaussian matrices, see for example the bound on the condition number
in [17].

Combining the bounds for B1 and B2,

E[logn(max(ρU(Ā), ρL(Ā)))] ≤ E[logn(max
j

[
σ−1

min((UQ)[: j, : j])σ−1
min((STV )[: j, : j])))

]
≤ E[logn(B1)] + E[logn(B2)]

≤ C ′1 +

∫ 2

0

1dx+ 4.04

∫ ∞
2

n2−xdx

= C1 + 4.04 log(n)

∫ ∞
0

e−xdx

≤ C log(n)

Of course, it is impractical to use a Gaussian or Haar matrix to condition a matrix in this
context. We might as well then solve the system by means of QR-factorization. However,
this sheds light on the strategy of using conditioners to avoid pivoting during Gaussian
Elimination. This has been popularized in work such as [8]. The theoretical support of such
work has been lacking. Corollary ?? is the �rst theoretical result we are aware of that shows
a random conditioners can be used to provably avoid the need to pivot.

It also could be considered a generalization of the well-known fact that Gaussian random
matrices have low pivot growth during Gaussian elimination. Indeed, we have shown that
this is the case for any distribution of singular values not just that of the Gaussian random
matrix. The most interesting question still remains if faster conditioners can be used to make
the approach both theoretically and practically sound for all matrices A. More concretely
we pose the question,

Remark 72. Is there a random matrix ensemble S such that SA can be computed quickly,

but also σmin((SA)[: k, : k]) = O
(

1
poly(n)

)
when A is an orthogonal matrix?
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4.6 Conclusion

We have provided a thorough analysis of a new low-rank approximation procedure GLU.
Along the way, we have seen it is closely related to many di�erent past approaches. Our
procedure is as fast as past approaches to within a log factor, and comes with spectral and
frobenius norm bounds on the residual, as well as multiplicative bounds for the other singular
values.

For future work, Remark ?? seems useful and interesting. Finding applications which
particularly bene�t from the speed and accuracy guarantees of our procedure is also of
interest.
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Appendix A

Appendix One

A.1 Lebesgue Case

For simplicity's sake, we will now use | · | for the Lebesgue case, just as we used this
notation for the counting measure in the discrete case. The dual is almost the same as in the
discrete case, and can be read o� from Theorem ??. The di�erence is that the dual variable
associated to Rd is allowed to be negative.

maximize
y

yTdim(E)

subject to yTdim(φi(E)) ≤ αi, ∀φi
yV ≥ 0, ∀ V 6= Rd

(A.1)

We require an analog construction to replace De�nition ?? and Proposition ??.

De�nition 73 (Product Parallelepiped). Consider independent subspaces Yi, as well as real
valued scaling parameters yi. Also �x unit vectors eij providing a basis for Yi. Then de�ne
the set

S := {x ∈ Rd |x =
∑
i,j

aijeij with 0 ≤ aij < Mki} (A.2)

Note the above �ts the classical de�nition of a parallelepiped. We also emphasize that we
will only use the construction when the ⊕Yi = Rd; that is, we only create full dimensional
parallelepipeds.

Proposition 74. Suppose we are given a dual vector y, whose non-zero values are attached
to a list of independent subspaces Y = (Y1, . . . , Yt). If ⊕iYi 6= Rd, then augment Y with a
complementary space Yt+1, leaving yYt+1 = 0. Now form the product parallelepiped S of Def.
??, which is full dimensional due to the additional complementary space Yt+1.

Then |S| = Θ(MyT rank(Y)). If in addition y is dual feasible, then |φi(S)| = O(Mαi) holds
for each φj.
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Proof. Since S is a parallelepiped, its volume can be calculated by the determinant of its
axis. Hence, letting E be the matrix with columns the vectors eij, we use multilinearity of
determinants in the �rst equality to get

|S| = MyT rank(Y)det(E) = Θ(MyT rank(Y))

It remains to consider the images of this set under the φi in the case y is feasible. This
requires a bound on |φi(S)|. Again using multilinearity of determinants in the �rst equality
below, and feasibility property (??) of y in the third equality,

|φi(S)| =
∏
j

M rank(φi(Yj))yYjdet(φi(E)) = O(MCi(y)) = O(Mαi)

The algorithm that moves the support to a �ag is identical, as the possibility yRd < 0
does not a�ect it. We now can make the assumption that the dual is supported on a �ag.
The consequence of this is the main technical lemma in the Lebesgue case,

Lemma 75. Consider independent subspaces Y1, . . . , Yt with corresponding dual values yYi.
Follow the construction of Proposition ??. Assume the subspaces are ordered so that yYi
monotonically decreases with i. In keeping with Def. ?? have Ui := Y1 + · · · + Yi for
i = 1, . . . , t, and for convenience U0 := {0}. For any linear map L, set

di := dim(L(Ui))− dim(L(Ui−1))

Then we have the bound

|L(S)| = O

(
t∏
i=1

MyYi ·di

)
In particular, this holds for L chosen to be any of the φj.

The proof is similar to before, so we omit it. So in the Lebesgue case, we have now con-
structed a solid, full-dimensional parallelepiped. Such a shape clearly tiles. As before, this
lemma yields the Lebesgue version of Theorem ?? and subsequently Theorem ?? as conse-
quences. In fact, one may remove the requirement that α ≥ 0 because the new construction
in Proposition ?? makes sense for y < 0.

A.2 Exactly Optimal Tilings

Technical De�nition

This paper has shown how to construct tilings that provably have the best polynomial
dependence onM . For example, the methods have established tiles of volumeO(M3/2) for the
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matrix multiplication problem. However, so far we have not discussed the hidden constant.
This section makes a brief attempt to shed light on the hidden constant, while acknowledging
that its behavior is complicated in general. In particular, we provide a technical de�nition
of exact optimality and describe two useful settings in which it applies.

Let us �x α = ~1 under the discrete case, and also use the more precise requirement for
the tile S, ∑

|φi(S)| =
∑

ciM ≤M

The weights ci enforce that the total memory we can use is M ; but also, it is necessary
that ciM ≥ 1 for the tile to be nonempty. While h∗(~1) still uniformly upper bounds the
asymptotic behavior of inequality (??) for every c one might choose, the inequality still di�ers
by a constant factor. Choice of c could be regarded as strategic use of memory. Incorporating
the c into inequality (??), we are led to consider the following inequality:

|S| ≤Mh∗(~1) max
~1T c=1
c≥ 1

M

min
s∈P

~1T s=h∗(~1)

∏
i

csii

This expression is rather unwieldy. The remainder of the section aims to show that as
M →∞, the complicated max min term reduces to a more elegant function of the polytope
P . We will make this more elegant formulation our de�nition of exact asymptotic optimality.

We will need the following standard result from the reference [56] as Corollary 37.3.2

Proposition 76. Let C,D be convex, compact subsets of Rn,Rm respectively. Also assume
that the real function f(x, y) is concave in x ∈ C and convex in y ∈ D, as well as jointly
continuous.

Then the weak duality of the min, max relation is actually strong duality, meaning

max
x∈C

min
y∈D

f(x, y) = min
y∈D

max
x∈C

f(x, y)

With this tool, we state and then prove the following

Proposition 77.

lim
M→∞

max
~1T c=1
c≥ 1

M

min
s∈P

~1T s=h∗(~1)

∏
i

csii =
1

h∗(~1)h∗(~1)
min
s∈P

~1T s=h∗(~1)

∏
i

ssii

Relaxing to ~1T c = 1 + o(1) for convenience, the optimal ci can be taken to be ci =
max( 1

M
, si
h∗(~1)

) where si solve the optimization problem

min
s∈P

~1T s=h∗(~1)

∑
i

si log(si)
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We note that this is a convex optimization problem, after taking the log. Consequently,
for the cases in which the polytope P is computable, this quantity is as well.

Proof. We start by applying the previous duality theorem to the max min relation bounding
|S|. The theorem applies once we replace csii with si log(ci). The relevant quantity becomes

min
s∈P

~1T s=h∗(~1)

max
~1T c=1
c≥ 1

M

∑
i

si log(ci)

If we assume each si ≥ h∗(~1)
M

, it is straightforward to eliminate ci in the inside optimization
problem by using Lagrange multipliers, giving

(1, . . . , 1) = λ(
s1

c1

, . . . ,
sn
cn

)

The solution to this is ci = si
h∗(~1)

. We now argue that asymptotically this formula applies

when some si = 0, provided we adopt the continuous extension of x log(x). To do this we

construct s′ close to s, setting s′i = h∗(~1)
M

for those values si <
h∗(~1)
M

, and s′i = si otherwise.
From elementary calculus applied to x log(x), we see that asymptotically with respect to M ,

∀ci ≥
1

M
, si log(ci)− s′i log(ci) = o(1)

which implies

max
~1T c=1
c≥ 1

M

∑
i

si log(ci)− max
~1T c=1
c≥ 1

M

∑
i

s′i log(ci) = o(1)

And now use the clean exact solution for s′ ≥ 1
M
,

max
~1T c=1
c≥ 1

M

∑
i

si log(ci) = si log(si)− h∗(~1) log(h∗(~1)) + o(1)

Critically, the decay of o(1) has no dependence on s; recall it comes from the function
x log(x). Therefore,

lim
M→∞

max
~1T c=1
c≥ 1

M

min
s∈P

~1T s=h∗(~1)

∑
i

si log(ci) = lim
M→∞

min
s∈P

~1T s=h∗(~1)

max
~1T c=1
c≥ 1

M

si log(si)− h∗(~1) log(h∗(~1)) + o(1)

This implies the �rst claim, because taking the log of the original function can now be undone
by applying exp, both of which are monotone. The claim concerning the form of the ci was
derived during the proof.

This leads to a de�nition of exact optimality:
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De�nition 78. De�ne the value

γ :=
1

h∗(1)h∗(1)
min
s∈P

~1T s=h∗(~1)

∏
i

ssii

The family of sets S(M), parametrized by integer M , are exactly optimal tilings if trans-
lations of S(M) can tile Zd and S(M) satis�es

|S(M)| = (1− o(1)) · γMh∗(~1) (A.3)

as well as ∑
i

|φi(S(M))| = (1 + o(1))M (A.4)

The o(1) term in ?? is required for any reasonable goal because one cannot allocate room
for fractions of entries from arrays. Conceptually, we are requiring the ratio of |S(M)| and
the theoretical optimum to tend to one, i.e. the relative di�erence is going to 0.

As a way to conclude and summarize this technical section, we wish to note the factor γ
can be understood as �nding the max entropy s ∈ P that additionally lies on the optimal
hyperplane ~1T s = h∗(~1)

Rank One Maps

This could be regarded as a generalized n-body problem. Detailed work on the commu-
nication patterns and bounds for the n-body problem was examined in [28] and [42]. This
corresponds to arrays with single indices. First, we demonstrate what h∗(~1) is for this case
and a method for obtaining asymptotic optimality.

Proposition 79. Assume the maps φi are rank 1 with i ∈ J and |J | = n, and the lattice
is Zd. If ∩i ker(φi) = {0}, then h∗(~1) = d. Then a d dimensional cube with sides O(M) is
asymptotically optimal. Otherwise, the Primal LP of Def. ?? is infeasible.

Proof. First, suppose that ∩i ker(φi) 6= {0}. Then take E1 to be a non-zero element of
this intersection; as kernels are subspaces, the 〈E1〉 is also in the kernel. This implies the
corresponding constraint in Def. ?? is

~0T s ≥ 1

which can't be satis�ed. So the LP is infeasible, meaning one could get �in�nite� data
re-use.

Now suppose ∩ker(φi) = {0}. One subgroup you could use is Zd itself. By the rank 1
assumption, the inequality constraint in Def. ?? corresponding to this subgroup is
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~1T s ≥ d

This implies h∗(~1) ≥ d. Now we exhibit a feasible primal vector s for which 1T s = d to
complete the proof. One may select a subset J ′ ⊂ J with |J ′| = d such that ∩i∈J ′ker(φi) =
{0}. This follows by induction; start with H0 = Zd. Then recurse by Hi = Hi−1 ∩ ker(φi).
If rank(Hi) = rank(Hi−1) − 1 then include i in J ′. Because belonging to ker(φi) amounts
to satisfying a single linear equation, the rank may only decrease by 1. Choose the primal
variable s to be 1J ′ .

It remains to establish the feasibility of this s. The argument may proceed recursively
as above. This time label the elements of J ′ to be i1, . . . , id, and let T denote any subgroup.
Set Hi0 = T and Hij = Hij−1

∩ ker(φi) recursively. Again, ranks of the Hij decrease by 1 or
stay the same, compared to the rank of Hij−1

. The end result is {0}; this implies T is not a
strict subset of at least rank(T ) of the kernels associated with J ′. Consequently s satis�es
the constraint of Def. ?? for the subgroup T :

sT rank(φ(T )) ≥ rank(T )

This implies the feasibility of s and establishes h∗(~1) = d. Observe the dual variable
indicating the space Zd achieves the value h∗(~1) as well. By Lemma ??, a cube with sides
O(M) is asymptotically optimal.

This establishes that the running Algorithm ?? on Zd produces an asymptotically optimal
tiling. For exact optimality, we must restrict to the case where there are d rank-one maps
with trivial kernel intersection.

Lemma 80 (Basis Lemma). The subgroup ∩j 6=iker(φj) is rank 1; take ei to be a non-zero
element of smallest Euclidean norm from this subgroup. Then each subgroup ker(φi) contains
the independent elements e1, . . . , ei−1, ei+1, . . . , ed.

Proof. We must check the ei are well de�ned, and that they are linearly independent.

Every time we intersect with one of the kernels, the rank reduces by 1. The trivial
intersection property of the d kernels implies this; every intersection adds a linear constraint,
and if one of the linear constraints turned out to be redundant then d intersections would
not result in the set {0}.

Lastly, we make sure that the ei are independent. If not, then some ei is in the span of
the other ei′ ; however, the other ei′ are contained in ker(φi). This means ei ∈ ker(φi) is as
well. Then ei lies in the intersection of all the kernels, which by assumption is the trivial set
{0}.

This basis is critical in the following;
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Proposition 81. Let ei be as in Lemma ??. Then the sets S := {
∑
aiei|ai ∈ Z, 0 ≤ ai ≤

bM/dc−1} are exactly optimal. That is, the output of Algorithm 1 on independent elements
e1, . . . , ed of Zd meets the requirements of Eq. ?? and ??.

Proof. The �rst part of this section established that the optimal h∗(~1) is d and comes from
each si = 1. This is in fact the unique solution to the primal LP of Def. ?? so it is by default
the minimizer of γ in Eq. ??. Alternatively, evenly distributed values si maximize entropy
and consequently would minimize γ. Plugging this in, ci = 1

d
and γ = 1

dd
.

It remains to con�rm that |S| = (M/d)d +O(1) and
∑

i |φi(S)| ≤M . First, by indepen-

dence of the ei, there are bM/dcd lattice points enclosed. Now if M = a · d+ r,

(M/d)d = ad · (1 +
r

M
)d = bM/dcd · (1 +

r

M
)d ≤ bM/dcder/M = bM/dcd(1 + o(1))

This establishes Eq. ??. For the memory bound constraint, consider φi(S). Applied to
any point z ∈ S, it outputs ai ·ei. As ai only varies between bM/dc values, the result follows.

We may summarize the approach to tiling in Proposition ?? in the the following algo-
rithm.

Algorithm 9 Exactly Optimal Tiling, Rank One Maps

1: Input: rank one maps {φi}di=1 with coordinate representations ai ∈ Zd, satisfying
∩ker(φi) = {0}, memory size M

2: Output: tile S and translations by T that tile Zd
3: Initialize e1, . . . , ed ∈ Zd
4: for i = 1 to d do
5: A← (a1, . . . , ai−1, ai+1, . . . , ad)

T

6: U, D, V ← Smith Normal Form(A)
7: ei ← column 1 of V
8: end for
9: S, T ← Algorithm ?? on input subgroup U1 = Zd, its independent elements e1, . . . , ed,

memory size M , and scaling yZd = 1
10: return S and T

The new component of the algorithm is calculating the independent elements ei. With
this in mind, we examine the calculation of the ei. Recall ei ∈ ∩j 6=iker(φj) of smallest
Euclidean norm are used in Proposition ??. The implies ei is in the kernel of matrix
Ai := (a1, . . . , ai−1, ai+1, . . . , ad)

T . Decompose this matrix by Smith Normal Form, giv-
ing the representation UDV −1. Because the rank of Ai is d− 1, only the �rst diagonal entry
of D is 0. This means the kernel of the matrix is exactly what V −1 maps to (1, 0, . . . , 0)T ,
meaning multiples of the �rst column of V . As V is unimodular, this column is also the
shortest integer valued multiple of itself.
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Rank d-1 Maps

This section follows the rank 1 case very closely, and consequently is kept brief. As an
example, this setting includes the case of matrix multiplication and therefore much of linear
algebra. We again discuss asymptotic optimality, followed by exact optimality.

Proposition 82. In the case where all maps are rank d − 1, the optimal dual vector y can
be taken to have the subspace generated by the kernels of all the maps as its only nonzero
coordinate. Call this subspace H and let k = rank(H). Then yW = 1/(k − 1) is optimal for
the dual LP of Def. ??. In addition, h∗(~1) = k/(k − 1).

Proof. As H is sent to a rank k − 1 space by each of the φi, y is indeed dual feasible with
objective value k/(k − 1).

We must show that that this matches the HBL lower bound, as then by strong duality
y is dual optimal. Propose the primal value s = 1/(k − 1) · 1A, where 1A indicates any k
maps whose (one-dimensional) kernels generate the rank k space. Essentially, this is saying
the kernels of these maps are independent.

Then consider any rank l subgroup T , and its images under the maps in A. By indepen-
dence of kernels in the construction of A, only l of the maps might send this to a rank l− 1
group, the others send it to a l dimensional space. As there are k non-zero si, the LHS of
the constraint given by subgroup T in the primal LP of Def. ?? is

rank(φ(T ))T s =
∑
φi∈A

si · rank(φi(T ))

=
1

k − 1

∑
φi∈A

rank(φi(T ))

=
1

k − 1
[(l − 1)|{φ ∈ A|ker(φ) ∩ T 6= {0}}|+ l|{φ ∈ A|ker(φ) ∩ T = {0}}|]

≥ 1

k − 1
[(l − 1) · l + l · (k − l)]

= (l2 − l + lk − l2)/(k − 1) = l · (k − 1)/(k − 1) = l

Meanwhile, the RHS is l, so the constraint is satis�ed.

Similar to the rank 1 case, for exact optimality, restrict to when the kernels of the φi
are independent. Again let ei denote a non-zero smallest Euclidean norm representative of
ker(φi), and let E be the subgroup they span.

Proposition 83. Suppose the number of maps is equal to k and the kernels are independent.

Form the set S := {
∑
ai · ei|ai ∈ Z, 0 ≤ ai ≤ bMk c

1
k−1 − 1}. That is, apply Algorithm ??

to the independent elements ei of subgroup E, with scaling yE = 1/(k − 1) and memory size
M/k. Then S meets the criteria of Eq. ?? and ?? for exact optimality.
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Proof. (Sketch). We established that si = 1/(k− 1) has 1T s = h∗(~1). Moreover, because the
values are evenly distributed, it minimizes γ. Plugging this in, ci = 1/k, γ = ( 1

k
)k/(k−1).

The remainder follows analagously the argument of rank one maps: show that M/d

being rounded induces 1 + o(1) relative di�erence between γ ·Mh∗(~1) and |S| for Eq. ?? to
be satis�ed, and then quickly con�rm Eq. ?? holds.

A.3 Example

Consider Z2 and maps
φ1(x, y) = 3x− y

φ2(x, y) = x− 2y

The kernels are respectively 〈e1 + 3e2〉 and 〈2e1 + e2〉.

Figure ?? depicts a tile shape S that would be produced by Algorithm ?? when M = 5.

This example can be used to demonstrate the use of the T1 and T3 in Algorithm ??. T2 is
{0} for this example, because 〈e1 +3e2, 2e2 +e3〉 has the same rank as Z2. Using T3 produces
images like Figure ??.

Using an element of T3 would change Figure ?? to one like Figure ??.

Figure A.1: translations from T3
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Figure A.2: basic shape

Figure A.3: translations from T3
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Appendix B

Appendix Two

B.1 Riemannian Overview

We will be working in the setting of Riemannian geometry, but will not use much ma-
chinery. We provide an informal overview. The de�nitions we introduce here are generally
standard and formalized in introductory texts, one such being [46].

An n-dimensional (smooth) manifold M can be understood as a space that is locally
di�eomorphic to Rn, so we identify these subsets of M with coordinates (x1, . . . , xn). This
allows us to de�ne smooth curves γ : R→M , by requiring their coordinate representations
(x1(t), . . . , xn(t)) to be smooth. We may de�ne velocities γ′(t) by associating them with
(x′1(t), . . . , x′n(t)), leading to the notion of the tangent spaces TxM ∼= Rn.

Riemannian manifolds additionally specify a metric for measuring the size of these ve-
locities, by de�ning an inner product 〈· , · 〉x on the tangent space of each x ∈ M . This
immediately enables the de�nition of curve length, as

∫
|γ′(t)|γ(t)dt. It also gives a method

of measuring volume; if gij is the bilinear form for the metric in a local coordinate choice,

then
√
|g|dx1 ∧ · · · ∧ dxn is the Riemannian volume form.

It also turns out to be helpful to compute directional derivatives for vector �elds (or
acceleration along curves). Requiring a few natural conditions leads to a unique Riemannian
connection∇ : TxM×TxM → TxM determined by the metric. It is known as the Levi-Civita
connection. In the coordinates of a local frame E = (~e1, . . . , ~en), which provides a basis for
the tangent spaces of a neighborhood, the Riemannian connection is given by

∇~ei~ej = Γkji~ek

for the Christo�el symbols Γkij. When the acceleration of a curve is 0, i.e. ∇γ′(t)γ
′(t) ≡ 0,

we say that curve is a geodesic. This is a second order non-linear ODE system for γ(t) =
(x1(t), . . . , xn(t)),

ẍk(t) + ẋiẋjΓkij(x(t)) = 0.
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A unique solution will exist locally provided we specify the initial position and velocity. The
exponential map is de�ned by expp(v) = γ(1). For Hadamard manifolds, the exponential
map is well-de�ned for any values of p and v.

At any any x ∈ M we may consider the image of a tangent plane σx spanned by v, w ∈
TxM . Locally around x the image is a surface. The sectional curvature of the 2-plane σx is
de�ned to be the Gaussian curvature of the image surface at x. Lower and upper bounds of
the sectional curvature enable generalizations of Euclidean tools like ball volume and triangle
trigonometry estimates. The Bishop-Gromov volume comparison theorem is one important
result along these lines. Although usually stated for its volume upper bound by assuming
just a lower bound on curvature, it is understood that the proof also provides a lower volume
bound [55]. Here we state a specialization of this theorem that su�ces for our application,

Theorem 84 (Bishop-Gromov). Suppose M is a Hadamard manifold. Let volg denote the
Riemannian volume and Bg(x, r) denote the open ball of radius r around x. Then

volg(Bg(x, r)) ≤
π
n
2

Γ(n
2

+ 1)
rn.

The right side of this inequality is the volume of a Euclidean ball of radius r.

Hadamard manifolds are simply connected manifolds of non-positive sectional curvature.
They have been extensively studied in mathematical literature. We collect a few commonly
used facts which we made use of or provide intuition. For Hadamard manifolds,

• The exponential maps expx(·) are di�eomorphisms from TxM toM (Cartan-Hadamard
theorem).

• The distance to a point, d(x, ·), is strictly convex. The distance to a closed, convex set
is convex.

• Geodesics between points are unique and distance minimizing.

• Projection onto closed, convex sets is well de�ned and continuous.

All of these properties can be found in [8].

In the proof of Theorem ??, we made use of the separating hyperplane theorem of convex
geometry. Here we brie�y state and prove a version su�cient for this application.

Lemma 85. Suppose M is a Hadamard manifold, S ⊂M is a closed, convex set, and p /∈ S.
Then there is a halfspace based at p satisfying Hp(v) ∩ S = ∅

Proof. Consider the function f(x) = d(x, S). By [8] this function is convex and hence for
any p /∈ S there exists a subgradient v ∈ ∂fp (see De�nition ??). Then Hp(v) is such a
separating hyperplane, by Lemma ??.
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In the introduction, we mentioned that the gradient of a di�erentiable convex function
is a subgradient. We provide a short justi�cation for this simple fact, as it is an important
source of subgradients. In Riemannian geometry, the gradient is de�ned by duality using
the metric; that is, ∇ satis�es 〈∇f, ·〉 = df(·).

Lemma 86. Let f(x) : M → R be convex along geodesics as well as di�erentiable. Then

f(y) ≥ f(x) + 〈∇f(x), exp−1
x (y)〉x

Proof. Let y = expx(t0v). That f is convex on geodesics means f(expx(tv)) is convex in t,
so

f(y) ≥ f(x) + t0
d

dt
f(expx(tv))|0 .

But using the chain rule and that d(expx)|0 = I (see [46]),

d

dt
f(expx(tv))|0 = df(d expx |~0(v)) = df(v) = 〈∇f(x), v〉x .
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