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Abstract

Automated theorem proving based on proof planning is
a new and promising paradigm in the field of automated
deduction. The idea is to use methods and heuristics as
they are used by human mathematicians and encode this
knowledge into so-called methods. Naturally, the ques-
tion arises whether these methods can be beneficially
used in learning mathematics too. This paper investigates
and compares the effect of different instruction materials
(textbook-based, example-based, and method-based) on
problem solving performance. The results indicate that
the performance for the method-based instruction derived
from automated proof planning in the ΩMEGA system is
superior to that of the other instructions that were de-
rived from a textbook and an example-based classroom
lesson. These results provide a first support for introduc-
ing proof planning based on methodological knowledge
into the school curriculum for mathematics.

Introduction
Recent developments in automated deduction, one of the
areas of Artificial Intelligence (AI), have shown the ad-
vantage of employing methods and heuristics used by hu-
man mathematicians. Naturally, the question is whether
they can be beneficially used in teaching mathematics,
for instance in interactive e-courses such as ACTIVE-
MATH (Melis et al., 2001).

The goal of the research reported in this paper has been
to gather empirical evidence for the hypothesis that the
knowledge we made explicit in proof planning methods
for a restricted area of mathematics, namely limit prob-
lems, is indeed useful for learning to prove theorems in
this area. A positive answer in this and other areas of
mathematics can serve as a basis for the long-term goal
to acquire methods to solve mathematical problems and
then to use them to gradually change the teaching of
mathematics.

To understand the interdisciplinary context, we will
have a quick look at automated theorem proving.

Automated and Human Theorem Proving Tradi-
tional automated theorem proving systems such as OT-
TER have attained a remarkable strength in deductive
search. They are, however, weak when it comes to non-
trivial mathematical theorems where long range planning
or other global search control is needed. Moreover, long
proofs generated by these systems are almost incompre-
hensible. Therefore, techniques like proof planning that

more closely follow the reasoning patterns observed in
humans became more prominent.

The goal of automated proof planning (Bundy, 1988;
Melis & Siekmann, 1999) is to identify and to employ
human-like strategies and methods for theorem prov-
ing in order to avoid the almost exhaustive search in
super-exponential search spaces that makes traditional
automated theorem proving infeasible for most non-
trivial mathematical conjectures. We investigated reports
and mathematical textbooks (Melis, 1994) to make such
strategies and methods explicit and then available for the
ΩMEGA proof planner. Essentially, these methods are
(generalized) macro-steps. This is in accordance with
Koedinger and Anderson (1990) who investigated human
theorem proving in geometry and found that humans em-
ploy macro-steps when proving theorems.

The identification and design of methods and con-
trol knowledge is very laborious as this kind of knowl-
edge is not explicit in mathematical texts. However,
some progress has now been made in the identification
of mathematical methods and control knowledge (Melis,
1998). Based on these achievements we focus on ques-
tions such as

Is the knowledge that was made explicit for automated
proof planning useful for supporting human learning of

mathematical problem solving?

We are inclined to say yes. One reason is the ex-
plicit availability of this knowledge that can be used for
proof presentation. An automated proof planner pro-
duces proof plans which in turn can be presented in a
more comprehensible way. We investigated how proof
presentation for teaching and learning can be generated
from proof plans, see Melis and Leron (1999). More-
over, we investigated how such a presentation of proof
plans can meet pedagogically and cognitively motivated
requirements for presenting mathematical problem solu-
tions and proofs, in particular the requirement for a hier-
archically structured presentation originating from em-
pirical results in Leron (1983) and Catrambone (1994).

A second reason is that this knowledge is needed for
problem solving but not always present in textbooks
(VanLehn, Jones, & Chi, 1992). Indeed, interviews
with teachers of mathematics indicate a need for teach-
ing methodological knowledge as captured in methods.
Some even claim this is the essence of good teaching and



a source of improved learning and thus de-mystifying
mathematics to some extent. As opposed to merely
checking the correctness of single proof steps as in learn-
ing with traditional mathematical instruction, learning of
methods should help in understanding the discovery of
a proof. This leads to an improved performance based
on understanding. The methodological knowledge in-
cludes the systematic construction of mathematical ob-
jects which is needed in many proofs.

The idea of making an expert’s tacit problem solv-
ing knowledge explicit to learners is in accordance with
some well known approaches in instructional psychol-
ogy such as cognitive apprenticeship (Collins, Brown, &
Newman, 1989) or the provision of instructional expla-
nations (Chi, 1996).

Certainly, the success largely depends on the actual
proof planning methods made explicit and encoded and
therefore another direction of research, see Melis and
Pollet (2000), aims at describing methods for interac-
tive proof planning most appropriately. In addition to
the evaluation of the concrete methods there is the more
general question on whether the explicit teaching of re-
latively abstract methods helps in learning mathematics.

Although there are reasons to believe in instructional
benefits, empirical evidence is required to substantiate
the yes, and this is the focus of this report.

In this paper we present first empirical results. To be-
gin with, proof planning is briefly reviewed, in particular
proof planning of limit theorems which is the object of
the described experiment.

Proof Planning Basics
Proof planning is based on classic AI-planning (Fikes &
Nilsson, 1971) which reduces a goal to subgoals by in-
troducing operators until all open subgoals match one of
the initial state descriptions. When the sequence of oper-
ators is applied (in forward direction), the initial state is
transformed into a state in which the goals hold. In proof
planning, the goal is the theorem to be proved and the
initial state consists of the proof assumptions.

For instance, for proving the theorem LIM+ which
states that the limit of the sum of two real-valued func-
tions f and g for a real number a is the sum of their limits
L1 and L2, the conjecture to be proven is

lim
x a

( f (x) g(x)) = L1 L2

and the proof assumptions are

lim
x a

f (x) = L1 and lim
x a

g(x) = L2.

A proof plan is a sequence of operators whose ap-
plication realizes an inference from the proof assump-
tions to the theorem. In proof planning, the oper-
ators are called methods. They are frequently de-
signed in a way corresponding to typical mathemati-
cal techniques such as proof by induction, proof
by refutation, and proof by diagonalization, to
quote some of the best-known methods. There are,
however, less well-known methods which do not have

a distinct name in mathematics. For instance, cer-
tain estimation methods for inequalities are typically
not explicitly mentioned although they encode a fre-
quently used trick. One of these estimation methods
(ComplexEstimate) and another method (TellCS).
These have been used in our experiments and are ex-
plained below.

Those non-name methods are often used only implic-
itly in course materials. This implicit treatment of proof
methods is one reason why textbooks do not provide
enough explanation of how to find a proof.

Proof Planning in the Limit Domain
In this section we describe a class of theorems, the way
their proofs can be discovered mathematically, and the
way proof planning in the ΩMEGA system implements
this with methods.

The Theorems Limit theorems are taught at German
high schools. Limit theorems claim something about the
limit lim

x a
f (x) for a function f or about the continuity of

a function f .1

The definition of lim
x a

f (x) = l describes formally that

if x converges to a, then f (x) converges to the limit l.
The convergence x a means that the distance x− a
of x and a becomes arbitrary small. The definition of
the limit describes that if x−a becomes arbitrary small,
then f (x)− l becomes arbitrary small too. Put formally,
for every arbitrary small real number ε exists a real num-
ber δ such that if x−a < δ, 2 then f (x)− l < ε.3

Example Take the linear function f (x) = 2 x 3.
When x converges to 0, then f (x) converges to 3, i.e., for
any arbitrary small ε, there is always a δ-environment
Uδ(0) of a = 0 such that for any x in that environment
f (x) is in the ε-environment.

Counter Example Take as a counter example the func-
tion

f (x) =
2 : x > 0

−2 : x < 0

in Figure 1 which does not converge at point x = 0.
If ε is smaller than 2, there is always an x close to 0

for which f (x) is not in the ε-environment of l = 2 or
of l = −2.

The Proofs The proofs of limit theorems have to sug-
gest a δ, in relation to the given ε, such that the limit
inequalities, e.g. f (x)− l < ε, hold. That is, a relation
between ε and δ has to be determined such that for each
x from the δ-environment of a the value f (x) is in the ε-
environment of l. Therefore, the standard proofs of these
theorems are often called ε–δ–proofs.

Typically, textbooks postulate an appropriate relation
between ε and δ out of the blue. Then they show

1or about the limit of a sequence which is a special case of
a function.

2i.e., x is in the δ-environment Uδ(a) of a
3i.e., f (x) is in the ε-environment Uε(l) of l
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Figure 1: A function that does not converge at point x = 0

that the stipulated δ which is dependent on ε make the
(inequality)-conjectures true. In contrast, proof discov-
ery reveals the relation either by intuition or by sys-
tematically detecting conditions/constraints under which
f (x)− l becomes arbitrary small given that x− a be-

comes arbitrary small. Those constraints result from
analyzing the inequalities to be proven. This analy-
sis often includes an abduction of new simpler inequal-
ities/constraints sufficient to not invalidate the original
ones.

These constraints may restrict the relation between ε
and δ. For instance, if the constraints are 0 < δ and δ < ε,
then δ = 2 ε would be an invalid relation but δ = ε

2 would
be a valid one. When all possible constraints have been
collected, then it is more transparent how to choose the
relation between ε and δ. For instance, if the collected
constraints are 0 < δ and δ < ε, then it is easy to see that
the relation δ = ε

2 satisfies the constraints. In particular,
for complicated problems the systematicity is indispens-
able because ad hoc guesses and trial and error do not
help much.

Proof Planning Proof planning for ε–δ–proofs (in a
backward fashion) introduces a sequence of methods
transforming x−a < δ to f (x)−a < ε:

f (x)− l < ε
= . . . < ε
= x−a < δ.

Each of the methods may yield restrictions on the rela-
tion of ε and δ. Therefore, proof planning systematically
restricts the relation of ε and δ by uncovering constraints
sufficient for making the inequalities true which are re-
quired in the theorem.

If a subgoal is a primitive inequality such as 0 < 1 or
δ < ε, then TellCS4 just collects it as a new constraint. If
the constraints are not as immediate/primitive, then they
can only be shown via a reduction to less complicated,
primitive inequalities. For instance, to show x2 −a2 < ε
one might reduce the goal to the subgoals x a < r and

4for ”Tell the Constraint Solver”.

x−a < ε
r for a number r to be determined and then con-

clude x2 −a2 = (x a) (x−a) < r ε
r = ε and therefore

x2 − a2 < ε. In proof planning such reductions are re-
alized by estimation methods. One of those methods is
ComplexEstimate whose simplified version is used in
one of the instruction materials and described below.

Simplified ComplexEstimate The simplified Com-
plexEstimate method delivers the first reduction step
in the following plan.

f (x)− l < ε
= k x−a < ε
= x−a < ε

k

= x−a < δ

It rewrites f (x)− l to k x−a , determines the k which
can be a number but also, in more complicated cases, a
term like x 1 (see the Binomial computation above),
and conjectures the subgoal that k has an upper bound (a
real number r). The latter subgoal k < r is a constraint
and gives rise to establishing the relation δ = ε

r in order
to guarantee δ < ε

k which implies the last proof step.
ComplexEstimate’s general procedure to determine

k is polynomial division but manual computation may
use simpler procedures in simpler cases, e.g. a Binomial
formula.

This general ComplexEstimate (not used in the in-
struction materials) reduces an inequality goal to three
subgoals (rather than two in the simplified version) by
means of decomposing a term t into a linear combina-
tion t = k a m for which an estimation of a is already
known. It justifies the original goal by the three subgoals
and the Triangle Inequality.5 For difficult decomposi-
tions the method can call a polynomial division function
without any problems.

The general ComplexEstimate as used in the auto-
matic proof planner ΩMEGA covers the simpler cases for
k = 1 and m = 0. Its generality allows for proving pretty
complicated theorems that are beyond the range of our
experiments. All test problems in the experiment require
the special case m = 0 only. In the first, second, third,
fourth, and fifth test problem, k is a real number, whereas
in the sixth test problem k is the term (x−1).

Hypotheses
The overall goal of the study presented in this paper is
an empirical validation of the assumption that the in-
structional presentation based on methods leads to an
improved problem solving performance in mathematics.
This differs from typical textbooks or classroom lessons
where the methodological knowledge is currently not ex-
plicitly used.

The first hypothesis states that instructional material
that includes information about proof-generation meth-
ods improves the overall problem solving performance.

5 A B < A B



The second hypothesis postulates that the method-
based instruction is especially helpful in solving far-
transfer test problems that presuppose the generation of
new solution paths.

To test the first hypothesis instructional material based
on ΩMEGA’s proof plan methods was designed. The
method-based instructions were contrasted with conven-
tional instruction materials: textbook-based instruction
and example-based instruction.

To test the second hypothesis test problems of different
transfer distance were used6 .

Experiment

Method

Participants The subjects were 38 students of Saar-
land University, Germany who either participated for
course credit or payment. Average age was 24.1 years.

Materials and procedure Each student was provided
with the following material in a booklet: (1) An introduc-
tion that described the nature and purpose of limits. Ad-
ditionally, the introduction presented a definition of the
notion of an environment as a prerequisite for the formal
definition of limit. (2) A formal definition of the notion
limit together with an illustrating graph. (3) One worked-
out example that illustrated how the limit lim

x a
f (x) for a

given function f and a given value a can be proven. De-
pending on the experimental conditions different solu-
tion approaches were selected in the worked-out exam-
ples.

Subjects were advised to study the instructional mate-
rial carefully. After reading the booklet subjects had to
solve six test problems that differed in their transfer dis-
tance with respect to the instructional example. The six
text problems were of increasing difficulty and decreas-
ing structural similarity to the example explained in the
instruction.

Design and dependent measures Four different in-
structional materials were designed as independent vari-
ables: Textbook-based instruction, example-based in-
struction, and two types of method-based instruction
(only differing in the sequence of the parts of in-
structional materials). The instructional conditions dif-
fered only with respect to the solution approach for the
worked-out example and with respect to the sequence of
the instructional materials.

In the textbook-based instruction the introductory page
was immediately followed by a short formal definition of
the notion limit and an illustrating graph. Subsequently,
one example of a worked-out ε-δ-proof for a linear func-
tion ( f (x) = x 2, with x being undefined at x = 1)
was presented. The example solution was taken from an
university-level textbook. The textbook-based instruc-
tion merely postulated the pivotal relation between ε and
δ without derivation from more general principles. The

6Transfer distance is a measure for structural similarity.

mere stipulation of pivotal assumptions is a frequent fea-
ture of example proofs in textbooks.

The example-based instruction differed from the
textbook-instruction in that the example problem was
presented immediately after the introductory page. To
establish a general relation between ε and δ, suitable val-
ues for δ are introduced for several concrete ε values of
decreasing size. This approach allowed for an induc-
tive derivation of a general relation between these two
parameters. Additionally, the example-based instruction
differed from the textbook-instruction in the sequence of
the instructional materials: The example proof was pre-
sented before the formal definition of the notion limit and
the respective illustrating graph were introduced.

The method-based instruction took the methods sim-
plified ComplexEstimate and TellCS from ΩMEGA’s
proof planner and described an example solution explic-
itly using ComplexEstimate and TellCS (the collection
of constraints). It shows how ComplexEstimate reduces
a complicated estimation to several simpler ones. As
a general approach it also employs the collected con-
straints for defining a relation between ε and δ. The
methods are applied to prove the example problem and
an abstract description of the method is provided.

Two versions of this method-based instruction were
designed that differ with respect to the sequence of in-
structional materials. In version A the definition of the
notion limit was followed by an abstract description of
ComplexEstimate and an illustrating example applying
this method. In version B the worked-out example was
presented before the notion limit was defined and the
ComplexEstimate method was described in a more ab-
stract way.

As dependent variables problem-solving time and
problem solving performance for the six test problems
were registered. The test problems differed in transfer
distance. The first two test problems were isomorphic to
the example used in the instructional material (proving
a limit for a linear function of the form f (x) = x b).
The next three test problems were near-transfer prob-
lems (proving a limit for a linear function of the form
f (x) = ax b). Finally, a far-transfer test problem had to
be solved (proving a limit for a quadratic function of the
form f (x) = ax2 bx c). After the experiment, data
were collected by means of a questionnaire, in partic-
ular, the subjects’ last maths grade in school, the sub-
jects’ interest in mathematics, sociodemographic data,
and whether they were taught anything about limit the-
orems in (past) school lessons.

Results
The six test-problem solutions were scored as follows.
For a totally correct answer a score of 1 for isomorphic
problems, a score of 2 for near-transfer problems, and a
score of 4 for far-transfer problems was assigned. Hence,
the maximum total score is 12. 50% of the full score
were assigned to a solution, if the answer was correct
except for minor, nonconceptual mistakes (e.g. numeri-
cal calculation errors, mixing up δ and ε in the solution



Figure 2: Mean performance scores (in percentage of possible
maximum score) as a function of instructional condition and
transfer distance between test problems and example problems

equation). 75% of the full score were assigned in case of
incorrect solution of the polynomial in the last test prob-
lem.

Nonparametric tests were used in all performance
analysis because of distorted distributions. In a first step,
we compared the two method-based instructions with
respect to performance differences. Mann-Whitney U-
tests revealed that there were no differences in the to-
tal problem-solving score (U(9, 9) = 36; p(two-tailed) =
.69) or in problem-solving time (U(9, 9) = 39; p(two-
tailed) = .89). Thus, both method-based instructions
were collapsed for further analysis. An overall com-
parison of the method-based, the example-based and the
textbook-based instruction with Kruskal-Wallis H-test
revealed that there were significant differences in the to-
tal problem-solving score (χ2(2, N = 38) = 5.87; p =
.05) but not in problem-solving time (χ2(2, N = 38) =
2.45; p = .29). The instructional conditions did not dif-
fer with respect to the last math grade in school, domain-
specific knowledge they were taught in school, interest in
mathematics, sex, and age. Figure 2 provides the mean
performance scores (in percentage of possible maximum
score) for all three instructional conditions and all levels
of transfer distance.

Paired one-tailed comparisons with Mann-Whitney U-
tests (see Table 1) yielded that the method-based in-
struction outperformed the textbook-based instruction
(marginally) as well as the example-based instruction
with respect to the total problem-solving score. The
textbook-based instruction and the example-based in-
struction did not differ in total problem-solving score.

A more detailed analysis revealed that the method-
based instruction and the textbook-based instruction dif-
fered marginally with respect to isomorphic problems
and to far-transfer problems but not with respect to
near-transfer problems. The method-based instruction
and the example-based instruction differed with respect
to all performance measures, at least marginally. The
textbook-based instruction and the example-based in-

Table 1: Comparison between all instructional conditions
with respect to all levels of transfer distance (one-tailed Mann-
Whitney U-tests)

struction did not differ with respect to isomorphic prob-
lems and far-transfer problems. However, there was
a marginal significant difference with respect to near-
transfer problems.

Discussion
As postulated in our first hypothesis the method-based
instructional material based on ΩMEGA’s proof plan pre-
sentation has a significant beneficial effect on learners’
subsequent problem-solving performance. Compared to
more conventional instructional formats usually found
in textbooks and highschool lessons the method-based
instruction improves learners’ problem-solving perfor-
mance without requiring more time to be invested.

Contrary to the expectation expressed in our second
hypothesis, the performance improvements due to the
method-based instructional format are not larger for far-
transfer test problems than for isomorphic and near-
transfer test problems. An explanation for this unex-
pected result might be that the far-transfer test problem
has been chosen as a too-far one that requires an ad-
ditional computation (polynomial division) the subjects
might have been not capable to carry out or did not even
try.

To conclude, the results indicate that the method-based
instruction that originated from proof planning methods
implemented in ΩMEGA is superior to the two other in-
structions in terms of subsequent problem solving per-
formance. These results provide first evidence that proof
planning based on mathematical knowledge may also be
used and introduced into highschool curricula for math-
ematics.

Conclusion
Is the methodological knowledge used in proof planning
useful for human learning of maths problem solving?
The results of our experiments indicate that the method-
based instruction that originated from automated proof
planning is, indeed, superior to the two other instructions
in terms of subsequent performance. These results pro-
vide first support for introducing proof planning based on



methodological knowledge into the highschool curricula
for mathematics.

It is not necessary to restrict this methodological
knowledge to methods which have been acquired for and
used in automated proof planning. We can, however,
re-use these results. Then the advantage is that those
methods are formalized and implemented and, there-
fore, can be employed by a system supporting interactive
problem solving.

The presented empirical results are limited, however,
to only one area of highschool mathematics. Future work
will try to provide similar evidence in other areas as well.

Interestingly, we met many committed mathematics
teachers in Germany who have been engaged in activi-
ties targeting a similar idea without knowing, of course,
about automated theorem proving and proof planning.
Their concern is a reshaping of mathematics lessons that
aims at learning problem solving methods, heuristics,
and structuring problems and solutions rather than at
memorizing facts and procedures.

Future Work
In the future we will replicate the experiment reported
here with several augmentations. First, we will obtain
think-aloud protocols to get more detailed insights into
the learning and problem-solving processes elicited by
different instructional materials. Second, we will try to
shed more light on the results with respect to second hy-
pothesis by adjusting the difficulty of the far transfer test
problems. Third, we will additionally consider certain
features of instructional situations like domain-specific
prior knowledge or degree of time pressure that have
been shown to influence the profitability of different in-
structional materials (Gerjets, Scheiter, & Tack, 2000).

Another line of research will pertain to the fact that
the provision of profitable instructional materials does
not ensure that learners indeed use these materials ap-
propriately. This is especially true for computer-based
learning environments that allow learners to control for
many aspects of the learning process, e.g. the selec-
tion of instructional materials (Gerjets, Scheiter, & Tack,
2001). Therefore, we will examine whether learners se-
lect method-based instructional materials when they are
allowed to choose between different types of informa-
tion in electronic learning environments. Finally, we
will design experiments investigating the influence of ex-
plicitely teaching control knowledge (i.e. knowledge on
when to choose which method) in addition to the teach-
ing of method knowldege.
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