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“An overwhelming abundance of connections, associations . . .

How many sentences can one create out of the twenty-four letters of the alphabet?

How many meanings can one glean from hundreds of weeds, clods of dirt, and other trifles?”

– Witold Gombrowicz
Cosmos
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2.2.1 Marčenko–Pastur Theorem . . . . . . . . . . . . . . . . . . . . . . . . 22
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ABSTRACT OF THE DISSERTATION

Spectral Theory of Sample Covariance Matrices from Discretized Lévy Processes

By

Gregory Zitelli

Doctor of Philosophy in Mathematics

University of California, Irvine, 2019

Professor Patrick Guidotti, Chair

Asymptotic spectral techniques have become a powerful tool in estimating statistical prop-

erties of systems that can be well approximated by rectangular matrices with i.i.d. or highly

structured entries. Starting in the mid 2000s, results from Random Matrix Theory were used

along these lines to investigate problems related to financial data, particularly the out-of-

sample risk underestimation of portfolios constructed through mean-variance optimization.

If the returns of assets to be held in a portfolio are assumed independent and stationary,

then these results are universal in that they do not depend on the precise distribution of

returns. This universality has been somewhat misrepresented in the literature, however, as

asymptotic results require that an arbitrarily long time horizon be available before such pre-

dictions necessarily become accurate. This makes these methods ill-suited when moving to

high frequency data, for example, where the number of data-points increases but the overall

time horizon remains the same or even decreases. In order to reconcile these models with the

highly non-Gaussian returns observed in financial data, a new ensemble of random rectan-

gular matrices are introduced, modeled on the observations of independent Lévy processes

over a fixed time horizon. The key mathematical results describe the eigenvalues of these

models’ sample covariance matrices, which exhibit remarkably similar scaling behavior to

what is seen when working with daily and intraday data on the S&P 500 and Nikkei 225.
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Chapter 1

Introduction

Financial datasets have scaled in extreme ways; it is now possible to observe changes in the

price of an asset over the period of a minute, a second, a nanosecond. The motivation for the

work presented in this manuscript was the failure of previous models to accurately describe

the scaling behavior observed in these larger and larger datasets. When considering data of a

fixed size, the mathematical field of Random Matrix Theory has found numerous applications

in finance (Bai et al., 2009; Burda et al., 2011; El Karoui, 2013; Liu et al., 2016; Bun et al.,

2017; Choi et al., 2019, to list only a few), although the results used are usually those based

on the asymptotic behavior of eigenvalues for large rectangular matrices. The flavor of these

theorems is similar to statistical mechanics: the movement of individual air molecules in

a room is chaotic and unpredictable, but the combined motion of all particles results in a

steady concept of “temperature” after a certain amount of time has passed. Similarly, the

Marčenko–Pastur (M–P) law (1967) and its generalization (Silverstein, 1995) describe the

shape of the eigenvalues in a system with large, independent, chaotic fluctuations. In this

scenario, each entry in the matrix ensemble is random, as are individual eigenvalues. In spite

of this, the mass interactions of independent motion causes the percentage of eigenvalues of

a certain size to become predictable as the overall size of the system grows.
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The M–P law is used to describe the non-random behavior of eigenvalues in systems or data

where no signal is present. By “signal” we mean a strong linear relationship; in financial

markets these may be realized as news about changing interest rates, the US equities market

as a whole, the behavior of a particular sector, etc. Like most financial modeling, this news

itself is thought of as random, so it is not a signal in the traditional sense: it is not information

sent by an agent with the intention that it will be observed. Nonetheless, the detection of

such a signal (that is, the detection of strong linear relationships in the movement of the

underlying assets) may help agents in accomplishing specific goals, e.g. portfolio construction

via mean-variance optimization.

The law can be paraphrased in the following way. Consider the scenario whereN observations

about a set of p features are collected, such that the number of observations and the features

are both comparably large. The statement of the law is that the sample covariance of pure

noise, an estimation of a trivial structure, will exhibit a predictable bulk of eigenvalues, which

is a distinctly non-trivial structure. In simpler terms, out of a tremendous amount of noise,

any observer will begin to believe they are recognizing meaningful trends. The strength of

these phantom trends depends on the ratio of the features to observations, λ = p/N . This

interpretation agrees with the idea of performing portfolio optimization using historical stock

data; given noisy measurements, an agent will mistakenly optimize over the noise as well

as the signal. The amount by which noise influences the process of mean-variance portfolio

optimization specifically was investigated as early as Laloux et al. (1999), with a rigorous

proof finally given in Bai et al. (2009).

Like many results in Random Matrix Theory, the M–P law is a statement about the asymp-

totic behavior of random matrices which grow larger and larger. Despite this, it has remained

attractive in applications involving datasets of fixed size due to its universality and speed

of convergence. This universality is typically expressed in the standard presentation of the

law, where the independent rows of the matrix ensemble have i.i.d. entries. Under these cir-
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cumstances, the only assumption necessary for the law to hold is that the variance of these

entries be finite. At the same time, modestly sized matrices with rows and columns of sizes

on the order of only 102 have been used as empirical evidence of fast convergence. What

is fascinating is that these two properties are never shown together, and the eigenvalues

plotted to demonstrate the effectiveness of the law often use matrices with pseudo-random

normal or Rademacher entries (see the figures in Baik and Silverstein, 2006; Burda et al.,

2011; El Karoui, 2013; Yao et al., 2015). Such distributions exhibit small kurtosis, in stark

contrast to the highly leptokurtic distributions which typically appear when observing and

modeling asset returns.

Consider the application of M–P-inspired techniques in modeling a simple financial scenario.

We imagine a large data matrix of size N × p = 2000 × 500, representing the daily linear

returns on a collection of assets such as the S&P 500 over an 8 year window. Eigenvalue

cleaning recipes (see the recent survey of Bun et al., 2017) and mean-variance portfolio bias

estimation techniques such as those suggested by Bai et al. (2009) will implicitly rely on the

limiting measure for the eigenvalues of a M–P type sample covariance matrix with parameter

for λ = 1/4. Indeed, the histogram of eigenvalues of 1
N

Y†Y, where Y is an N×p = 2000×500

matrix Y with N · p i.i.d. standard normal entries, will be strikingly similar to the the

limiting M–P distribution with λ = 1/4 (Figure 1.1a). However, universality of the law is

not a statement about the fixed value N = 2000, and a similar matrix composed of i.i.d.

normalized Lognormal random variables, a distribution with finite moments of arbitrary

order, will instead produce eigenvalues outside of the predicted bulk (Figure 1.1b). Such a

matrix appears at some point in both models, where it is assumed that N is large enough

so that the distribution of the entries is irrelevant.

Methodological problems might also be considered when these models are applied to financial

time series. If each row of the matrix ensemble is taken to be derived from daily returns on

a collection of assets, then N denotes the number of days for which data has been collected.

3
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Figure 1.1: Comparison of the Marčenko–Pastur distribution mpλ (red line) for λ = p/N =
1/4 to the histogram of eigenvalues of (1/N)Y†Y, where Y is taken to be an N × p =
2000 × 500 matrix with i.i.d. entries drawn from (a) standard normal and (b) normalized
Lognormal distributions.

The asymptotic N →∞ therefore implies convergence over an arbitrarily long time horizon.

In essence, although the individual entries of the matrix (representing daily returns) may be

non-Gaussian, the theorem relies on the fact that N can be taken large enough so that the

columns of our matrices closely resemble the fluctuations of standard Brownian motion over

a finite interval. This is consistent with the popular notion that equity price fluctuations

are well modeled by Gaussian only in the long run. On the other hand, the restriction of

financial applications to fixed time horizons would suggest that this assumption is unrealistic

in many scenarios, as portfolio construction may well be employed over periods of time where

the return process is still highly non-Gaussian.

An alternative approach for the purpose of modeling financial data is to design a random

matrix ensemble whose entries describe the fluctuations of a collection of p stochastic pro-

cesses over a fixed horizon [0, T ]. Rather than the asymptotic N →∞ signifying additional

observations beyond the horizon, we suppose that our observations are occurring at finer

and finer discretizations of the interval 0 = t0 < t1 < . . . < tN = T . If the rows of the

matrix are taken to be i.i.d. (for each fixed N), then this corresponds to an equally spaced

net tj = jT/N , and the observations can be thought of as the fluctuations of p independent

4



trajectories of a Lévy process Xt. This coincides with a choice to model the linear or log-price

process of asset returns on a Lévy process, which has been a popular choice for many years

(see selected chapters and discussions in Carr et al., 2002; Voit, 2005; Jondeau et al., 2007;

Jeanblanc et al., 2009; Pascucci, 2011; Fischer, 2014; Maejima, 2015). We propose this as an

alternative type of matrix ensemble, whose entries are i.i.d. but vary as N → ∞ such that

the sum of the entries in each column matches a fixed, infinitely divisible distribution. We

call this new ensemble of random matrices the Sample Lévy Covariance Ensemble (SLCE).

The purpose of this work is to introduce this ensemble and prove the existence of a limiting

eigenvalue distribution, as well as some broad qualitative properties.

Our departure from previous work in Random Matrix Theory can be understood along

a few lines. The classical scenario investigated by Marčenko and Pastur (1967) involves

a large random matrix Y of size N × p, where N and p are both large but comparable,

and considers the deterministic limiting histogram of its singular values as N, p → ∞ with

p/N → λ ∈ (0, 1). Initially, the assumptions on the entries of Y is that they are i.i.d.

and follow some fixed, finite variance distribution for all N . This condition can be relaxed

somewhat; up to rescaling (and observing instead the eigenvalues of Y†Y), we can consider

an ensemble of matrices Y whose entries are i.i.d. following a changing distribution YN whose

variance is O(N−1), with the one additional assumption that the law of the entries satisfies

(Bai and Silverstein, 2010, Theorem 3.10)

N · E
[∣∣YN ∣∣21|YN |≥η] N→∞−−−→ 0

for any η > 0. Any such ensemble falls into the Marčenko–Pastur basin of attraction.

Therefore, in order to escape the M–P universe, we are interested in matrices whose entries

are i.i.d. random variables drawn from changing distributions which become less Gaussian

as N grows. We are strongly motivated by the conclusions in Carr et al. (2002) that the

diffusion components of financial data are likely diversifiable, suggesting that noise and small

5



idiosyncratic factors in the market may be more appropriately modeled by a pure point

process. The SLCE does precisely this, taking the i.i.d. entries of our matrix to follow the

distributions of XT/N , where T > 0 is a fixed horizon parameter and Xt is a Lévy process.

If the right tail of Xt is subexponential, then P[XT/N > η] ∼ T
N

Π((η,∞)) as η → ∞ (Sato,

2013, Remark 25.14) for the Lévy measure Π (see Chapter 3), and we have that

N · E
[∣∣XT/N

∣∣21|XT/N |≥η] ∼ N · T
N

∫ ∞
η

x2dΠ(x) ∼ O(1)

This is assuming the variance of Xt even exists. This is significantly different from the

Gaussian case, where if XT/N ∈ N(0, T/N) then its tails are asymptotically

O
(√

Ne−η
2N/2T

)
, η →∞

Consequently, it is reasonable to expect that for a non-Gaussian Lévy process, the SLCE

has the capacity to behave quite differently from the M–P law.

Similarly, one might compare our results to the theory of heavy-tailed random matrices,

which was rigorously founded on the work of Ben Arous and Guionnet (2008) and Belinschi

et al. (2009a). This began with the study of large square matrices whose entries are heavy-

tailed, lying in the domain of attraction of α-stable distributions. Some such banded matrices

mimic the M–P case for a particular shape parameter λ ∈ (0, 1), leading to a notion of heavy-

tailed (or Lévy) M–P type matrices. Connections with Free Probability were later made in

Politi et al. (2010), where they considered “Free Wishart” matrices of the form

(
1

M

M∑
j=1

UjLjU
†
j

)
Pλ

Here the Lj are N×N matrices with i.i.d. heavy-tailed entries, while the Uj are independent

Haar distributed unitary matrices, and Pλ is a projection onto a subspace of dimension λN .

6
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Figure 1.2: Comparison of the eigenvalues of a Marčenko–Pastur matrix, a Lévy matrix, and
actual S&P returns. All matrices have size N×p = 1258×454, for a ratio of λ = p/N ≈ 0.36.
The Marčenko–Pastur matrix (top) has i.i.d. N(0, 1) entries. The Lévy matrix (middle) has
i.i.d. α = 3/2 entries. The S&P data (bottom) is taken from the 462 stocks that appeared in
the S&P 500 at any time during the years 2011–2015, and for which there is complete data
during that five year period (1258 data points). Neither of the random matrix ensembles
appear to adequately capture the bulk of the S&P eigenvalues.

In both cases, the limiting eigenvalue distributions have unbounded right tails which decay

like 1/|x|α+1 as x→∞. Such a theory is particularly devastating for a model of asset prices,

as it implies that noisy eigenvalues of large size may occur with a heavy-tailed frequency.

Figure 1.2 contrasts the M–P case and heavy-tailed Lévy case with data from the S&P

500 over the years 2011–2015. Neither matrix model looks similar to the empirical bulk

eigenvalues; a very different situation then that implied by Laloux et al. (1999).

In contrast to previous matrix models, the SLCE is parametrized by a Lévy process Xt, which

can have a variety of tail behaviors. This follows the general perspective on asset modeling

established in Mantegna and Stanley (1994, 1995) and explored in texts like Voit (2005) and

Jondeau et al. (2007), where classes of Lévy processes are used in place of Brownian motion.

This bridges the gap between the overly conservative M–P setting, which occurs when Xt

is Brownian motion, and the wild heavy-tailed setting, which can be captured by taking Xt

7



as the standard one-dimensional Lévy flight process. Most importantly, however, the SLCE

appears to match the scaling behavior observed in the S&P 500 and Nikkei 225 universes

when passing from daily to intraday datasets, as discussed in the final sections of this work.

The structure of this work is as follows. Chapter 2 quickly summarizes the necessary math-

ematical framework for the rest of the document. Chapter 3 introduces and classifies Lévy

processes and infinitely divisible distributions. Since our matrix ensembles are intimately

tied together with the study of such distributions, many examples are discussed. Chapter 4

defines the Sample Lévy Covariance Ensemble (SLCE), the main object of study. From here,

the existence and continuity of limiting distributions for SLCE are established, including our

two most significant theorems: Theorem 4.2.1 on the limiting distributions of SLCE’s driven

by essentially bounded Lévy processes, and Theorem 4.0.2 on the limiting distributions of

general SLCE’s. The proofs here involved a significant shift in perspective in order to avoid

techniques involving Stieltjes transforms, and were guided heavily by Benaych-Georges’s

work on Rectangular Free Probability as formulated in the seminal articles 2009a; 2009b.

From here, we move to Chapter 5. This interlude covers the topic of Free Probability using

simple Complex Analytic techniques. Short introductions to Rectangular Free Probability

and its application to sums of rectangular random matrices are discussed. Chapter 6 in-

vestigates the gaps in the proof of the M–P law which allow our ensembles to have distinct

eigenvalue distributions, and how these gaps might be bridged using Free Probability. An

estimation algorithm for the shape of the limiting distributions, whose existence is guaran-

teed by Theorem 4.0.2, are discussed. The final Section 6.3 approaches problems arising in

finance, as established in this introduction.

This work proposes a new type of random matrix model which is distinct from others pop-

ularized over the past few decades in Random Matrix Theory, including those which have

seen applications in industry. In spite of this, it is the goal of this work to convince the

reader that the design of these ensembles is quite natural. It is a fact that increasing the
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observations of a Brownian motion process will decrease the error of the sample variance,

with no lower bound. This is true regardless of whether additional observations are made

by extending the time horizon with discrete points in the future, or by refining the number

of points sampled during the current horizon. Such a statement cannot be true for a non-

Gaussian Lévy process. Despite the generous sufficient conditions for the M–P law, it must

still be understood as a statement about matrices whose asymptotic behavior is Gaussian-

like. More recent proofs and generalizations of the law provide support for this viewpoint

(Yaskov, 2016a,b), where it is framed as a type of concentration phenomenon much like how

large multivariate Gaussian random vectors cluster around the ellipse determined by their

covariance matrices. The use of the M–P law to drive financial models may therefore be

viewed as a first approximation with strong underlying normality assumptions.
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Chapter 2

Preliminary Materials

2.1 Probabilistic Preliminaries

Throughout, we assume the existence of a standard probability space (Ω,F ,P) and a count-

able collection of random variables, sequences, and cádlág processes, as described in Ap-

pendix A.1. The expressions P(R) and P(C) denote the collections of probability measures

on R and C, respectively. The class P(R+) indicates those distributions with support con-

tained in R+ = [0,∞). We adopt the typical convention that the point mass at zero is not

contained in P(R+), formally: µ ∈ P(R+) if and only if supp(µ) ⊆ [0,∞) and supp(µ) 6= {0}.

Capital Latin letters such as X and Y will be used to denote random variables, while Greek

letters like µ and ν denote measures. The expression L(X) refers to the law or distribution of

a random variable. Whenever it is clear from the context, we use random variables and their

distributions interchangeably in the notation, as in ϕX to denote the characteristic function

ϕL(X) in Section 2.1.2. This include the abuse of notation X ∈ Class when the distribu-

tion of a random variable falls in a particular class of probability measures. The expression

X
d
= Y means equality in distribution, which is equivalent to L(X) = L(Y ). Similarly, weak
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convergence (or convergence in distribution) is indicated by Xn
d−→ X for random variables

and µn
d−→ µ for probability measures.

A real-valued random variable X is said to be symmetric if X
d
= −X, and the class of

symmetric distributions is denoted by Ps(R). A complex-valued random variable X is said

to be circularly symmetric if X
d
= eiθX for any θ ∈ [0, 2π), and the class of circularly

symmetric distributions is denoted by Pc(C). The notation µ ∗ ν indicates the convolution

measures, which coincides with the sum of independent random variables. Specifically, if X

and Y are independent, then

L(X + Y ) = L(X) ∗ L(Y )

When µ ∈ P(C) is a probability measure, the notation µ2 refers to the pushforward measure,

such that if µ = L(X) then µ2 = L(X2). If µ ∈ P(R+) is nonnegative, then the notation

√
µ refers explicitly to the symmetric square root measure

√
µ ∈ Ps(R) such that

√
µ2 = µ.

2.1.1 Chernoff bounds

Theorem 2.1.1 (Markov’s Inequality). Suppose X ≥ 0 is a random variable, and let a > 0.

Then

P[X ≥ a] ≤ E[X]

a

where the right hand side is understood to be infinite if E[X] is undefined.

Proof. We have an obvious inequality between the three random variables

a · 1X≥a ≤ X · 1X≥a ≤ X

11



The expectation of the left is a · P[X ≥ a], while the right is E[X], and so the result follows.

�

Theorem 2.1.2 (Chernoff Bound). Let X1, . . . , Xp be i.i.d. random variables, each following

a Bernoulli distribution with probability of success q, and let

X = X1 + . . .+Xp

denote their sum. If δ > 0, then

P[X ≥ (1 + δ)pq] ≤
(

eδ

(1 + δ)1+δ

)pq

Proof. We apply Markov’s inequality to the random variable etX , where t > 0 is some

parameter to be determined later. It follows that

P[X ≥ (1 + δ)pq] = P
[
etX ≥ et(1+δ)pq

]
≤ e−t(1+δ)pq

p∏
j=1

E
[
etXj

]
= e−t(1+δ)pq

(
1− q + qet

)p
Substituting t = log(1 + δ) > 0, we get that

P[X ≥ (1 + δ)pq] ≤ (1 + qδ)p

(1 + δ)(1+δ)pq
≤ eδpq

(1 + δ)(1+δ)pq
=

(
eδ

(1 + δ)1+δ

)pq

�

In particular, choosing δ = 1 in Theorem 2.1.2 leads to the fact that for the sum X of p i.i.d.

Bernoulli random variables with success rate q, we get
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P[X ≥ 2pq] ≤
(e

4

)pq
(2.1)

which will be important in the sequel.

2.1.2 Transformations of real-valued random variables

For real-valued probability measures µ ∈ P(R), we let Fµ(x) , µ((−∞, x]) denote the

cumulative distribution function (CDF) of µ. If some open A ⊆ R exists such that F ′µ(x)

is well defined for all x ∈ A, then we use the notation fµ(x) = F ′µ(x) for the probability

density function (PDF) where it is defined. The characteristic function of µ, denoted by

ϕµ : R→ C, is defined as

ϕµ(z) , E[eizX ] =

∫
R
eixzdµ(x), z ∈ R (2.2)

The process of passing from measures to their characteristic functions inherits a number of

desirable properties from the theory of commutative Banach algebras (see, for instance, Ka-

niuth, 2009). For any probability measure, ϕµ is a bounded continuous function, and the

map

ϕ : P(R)→ Cb(R)

into the set of bounded continuous functions Cb(R) is injective. We say that a distribution

13



is continuous if for any Borel B ⊆ R, we have

µ(B) =

∫
A∩B

fµ(x)dx

for the open set A ⊆ R appearing above. If µ is continuous, then

ϕµ(z) =

∫
R
eixzfµ(x)dx, z ∈ R

Since fµ is integrable, the characteristic function ϕµ can be viewed as the Fourier transform

of an integrable function.

If X and Y are independent random variables, then we have the classic distributive equation

ϕX+Y (z) = ϕX(z)ϕY (z), z ∈ R

In terms of probability measures, this can be written instead using the convolution of mea-

sures,

ϕµ∗ν(z) = ϕµ(z)ϕν(z), z ∈ R

Since ϕ is continuous and ϕX(0) = 1 for any real-valued random variable X, it follows that

there is a neighborhood of the origin OX ⊆ R on which ϕX(OX) ⊆ C\{0}. If ϕX(z) 6= 0 for

any z ∈ R, then we simply take OX = R. On such a set, the multi-valued complex logarithm

of ϕX is well defined and continuous on OX . We call this function the cumulant generating

function (CGF) of X, denoted by

ψX(z) , logϕX(z), z ∈ OX

The distribution property of the CGF is now additive, so that the transform can be said to
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distribute over independent addition of random variables such that

ψX+Y (z) = ψX(z) + ψY (z), z ∈ OX ∩ OY

when X and Y are independent random variables.

If a probability measure µ ∈ P(R+), then it is sometimes more convenient to work with the

Laplace transform of µ, defined in the right half plane as

φµ(s) , E[e−sX ] =

∫
R
e−sxdµ(x), Re(s) ≥ 0

The Laplace transform agrees with the characteristic function for purely imaginary argu-

ments, such that φµ(iy) = ϕµ(−y) for y ∈ R. Since the Laplace transform is analytic on the

interior of its domain, the distribution µ is uniquely determined by the values of φµ on a set

of analytic capacity; a typical set used is (0,∞).

2.1.3 Moments and cumulants

The moments of a real-valued random variable X, if they exist and are finite, are defined as

mn[X] = E[Xn]

If a random variable X has finite moments up to order r ∈ N, then its characteristic function

is r-times continuously differentiable and has Taylor expansion at zero given by

ϕX(z) =
r∑

k=0

mk[X]

k!
(iz)k + o(|z|r)

In such a scenario, the CGF of X is also r-times continuously differentiable, with Taylor

expansion in OX given by
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ψX(z) =
r∑

k=1

κk[X]

k!
(iz)k + o(|z|r) (2.3)

The values κn[X] which appear in this expression are called the cumulants of X. By additiv-

ity of the CGF, we have that κn[X+Y ] = κn[X]+κn[Y ] whenever X and Y are independent

and the later two quantities are well defined. By definition of the CGF, the relation between

the moments and cumulants can be made explicit:

mn[X] =
∑
π

∏
B∈π

κ|B|[X] (2.4)

where the sum runs over all partitions π of the set {1, 2, . . . , n}, and the elements B ∈ π are

subsets of {1, 2, . . . , n}. So, for instance, the third moment can be expressed in terms of the

first three cumulants by considering the five partitions of {1, 2, 3}, and so

m3[X] =
∏

B∈{{1},{2},{3}}

κ|B|[X] +
∏

B∈{{1,2},{3}}

κ|B|[X] +
∏

B∈{{1,3},{2}}

κ|B|[X]

+
∏

B∈{{1},{2,3}}

κ|B|[X] +
∏

B∈{{1,2,3}}

κ|B|[X]

= κ1[X]3 + κ2[X]κ1[X] + κ2[X]κ1[X] + κ1[X]κ2[X] + κ3[X]

= κ1[X]3 + 3κ2[X]κ1[X] + κ3[X]

Moments and cumulants are similarly well defined for complex-valued random variables,

where they are referred to as ∗-moments and ∗-cumulants (Eriksson et al., 2009). These

∗-statistics are computed using conjugate pairs, so that a random variable X has ∗-moments
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defined as

mk:l[X] , E
[
XkX

l
]

The ∗-cumulants κk:l[X] are computed using a formula similar to (2.4). The cumulant

formula for the variance (the 1 : 1 symmetric cumulant) is what one would expect:

var[X] , κ1:1[X] = m1:1[X]−m1:0[X]m0:1[X] = E
[
|X|2

]
− |E[X]|2

The definition of the kurtosis, the normalized 2 : 2 symmetric cumulant, takes a slightly

more complicated form:

kurt[X] ,
κ2:2[X]

κ1:1[X]2

=
(
m2:2[X]−m2:0[X]m0:2[X]

+ 6m1:1[X]m1:0[X]m0:1[X]− 6m1:0[X]2m0:1[X]2

+ 3m1:0[X]2m0:2[X] + 3m0:1[X]2m2:0[X]

− 2m2:1[X]m1:0[X]− 2m1:2m1:0[X]− 2m1:1[X]2
)/

κ1:1[X]2

=
m2:2[X −m1:0[X]]

var[X]2
− |m2:0[X −m1:0[X]]|2

var[X]2
− 2 (2.5)

The kurtosis can be seen as a measure of the tail deviation of a random variable from being

Gaussian. If X is real-valued, then the middle term in (2.5) is equal to 1, and so the

expression reduces to

E
[∣∣X − E[X]

∣∣4]
var[X]2

− 3

Since the fourth moment of a standard real-Gaussian N(0, 1) is equal to 3, this measures
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how far away such a distribution is from being real-Gaussian. On the other hand, if X is

a circularly symmetric complex-valued random variable, then the middle term is equal to 0

and the expression reduces to

E
[∣∣X − E[X]

∣∣4]
var[X]2

− 2

This situation is analogous, as the fourth moment of a standard complex-Gaussian CN(0, 1)

equals 2.

2.2 Random Matrix Preliminaries

The two central objects we will employ in the study of random matrices and their eigenvalues

are the Empirical Spectral Distribution (ESD) of a random matrix and the Stieltjes trans-

form. If S is a p × p Hermitian matrix, then its ESD is defined as the probability measure

µS given explicitly in terms of point masses by

µS ,
1

p

p∑
j=1

δλj ∈ P(R)

where the λj enumerate the eigenvalues of S. This measure can also be described in terms

of the Borel sets on R by considering that

µS([a, b]) =
1

p
(Number of eigenvalues of S in [a, b])

For a finite Borel measure µ on C, we can consider the following integral transform

Sµ(z) =

∫
C

1

w − z
dµ(w)
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This is sometimes called the Cauchy transform or the Cauchy–Stieltjes transform, although

the former is often reserved for the case when the support of µ is contained in the unit circle T.

The transform Sµ(z) is finite for almost all z ∈ C, locally Lebesgue integrable, and analytic

outside of the support of µ as the following lemma shows. When µ is compactly supported,

Sµ(z) can be represented as the derivative of the logarithmic potential of µ (Bøgvad and

Shapiro, 2016).

Lemma 2.2.1. The Stieltjes transform Sµ of a finite Radon measure µ on C is well defined

and holomorphic on the domain of its argument z ∈ C\supp(µ).

Proof. By the definition we have

Sµ(z) =

∫
C

1

x− z
dµ(x) =

∫
supp(µ)

1

x− z
dµ(x)

Since the map x 7→ 1
x−z is in C0(supp(µ)) for z ∈ C\supp(µ), it follows that this integral is

well defined. To see that it is holomorphic, let ∆ be any simple closed piecewise C1 curve

in C\supp(µ), parametrized by arclength using γ : [0, 1] → ∆. Since ∆ and supp(µ) are

disjoint closed sets in C, they have some positive distance

d(∆, supp(µ)) = inf
x∈supp(µ),z∈∆

|x− z| = δ > 0

Then it follows that
∣∣ 1
x−z

∣∣ < 1
δ

for any such z ∈ ∆ and t ∈ supp(µ). By Fubini’s theorem

applied to 1
x−γ(t)

γ′(t) on the space C× [0, 1] under the measure µ×m where m is Lebesgue
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measure on [0, 1],

∮
∆

Sµ(z) dz =

∫ 1

0

Sµ(γ(t))γ′(t) dt

=

∫ 1

0

[∫
C

1

x− γ(t)
dµ(x)

]
γ′(t) dt

=

∫
C

[∫ 1

0

1

x− γ(t)
γ′(t) dt

]
dµ(x)

=

∫
supp(µ)

[∮
∆

1

x− z
dz

]
dµ(x) = 0

Since this can be done for any such curve, by Morera’s theorem Sµ is holomorphic on its

domain. �

When µ ∈ P(R), we recover the classical Stieltjes transform

Sµ(z) =

∫
R

1

x− z
dµ(x)

which is well defined for z in the upper half plane C+. The Stieltjes transform is analytic

outside of the support of µ and maps C+ into its closure. Such analytic functions on C+ with

the property that f : C+ → C+ are called Nevanlinna functions N , and will be important

in Chapter 5.

We can recover a probability measure through its Stieltjes transform with the following

inversion theorem.

Theorem 2.2.2 (Stieltjes Inversion, Yao et al., 2015). Let g : R → R be a continuous and

compactly supported function, then

∫
R
g(x) dµ(x) = lim

y→0+

1

π

∫
R
g(x) Im [Sµ(x+ iy)] dx
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Furthermore, let a < b be continuity points of Fµ. Then it follows that

µ([a, b]) = lim
y→0+

1

π

∫ b

a

Im [Sµ(x+ iy)] dx

This theorem shows that the C+ pointwise convergence of a sequence of Stieltjes transforms

corresponds to the vague convergence of measures. The density of the continuous, compactly

supported functions in the space C0(R) under the supremum norm guarantees that the first

part of the theorem holds for such functions as well. If µ corresponds to a random variable

X with density fX , then

fX(x) = lim
y→0+

1

π
Im[Sµ(x+ iy)]

If the random variable X has finite moments, its Stieltjes transform has a germ at ∞ which

expands as the Laurent series

SX(z) = −1

z
−
∞∑
j=1

mj[X]

zj+1

From this we can see that the (complex) moment generating function for X can be expressed

as

1 +
∞∑
j=1

mj[X](iz)j = − 1

iz
· SX(1/iz)

=

∫
R

1

1− izx
dFX(x) = E

[
1

1− izX

]

where z ∈ C+ is taken in the upper half plane.
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2.2.1 Marčenko–Pastur Theorem

Consider a collection of p assets whose prices {P j
n}

j=1,...,p
n=0,...,N are observed over N + 1 time

periods (e.g. days). Models of equity markets often suppose (Bouchaud and Potters, 2000;

Voit, 2005; Meucci, 2009) that the collection of compounded returns over a unit time interval

[
log

P 1
n

P 1
n−1

. . . log
P p
n

P p
n−1

]

can be represented as independent samples of a p-dimensional random vector, possibly after

accounting for autocorrelation. Often this random vector is assumed to be normally dis-

tributed; at the very least, we would like to suppose that an underlying p × p covariance

matrix ΣΣΣ exists, whose entries encode a robust set of relationships between the returns on

these assets.

Suppose these compounded returns are arranged into an N × p matrix X, whose columns

represent separate assets and whose rows represent dates, such that the entry [X]ij is the

return on the jth asset between day i− 1 and day i. If the columns of X have been centered,

then the sample covariance matrix is given by

S =
1

N
X†X

There are a number of important questions regarding the properties of this matrix S and its

eigenvalues.

I The eigenvalues of S are in correspondence with the singular values of X. Large

eigenvalues separated from the bulk of the spectrum imply that there are significant

relationships between the columns of X. The factor loadings corresponding to these

singular values may be used to identify sectors among the assets, and to measure the

extent of their influence. The bulk eigenvalues are often (Bouchaud and Potters, 2011;
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Paul and Aue, 2014; Bun et al., 2017) product of noisy measurements in the matrix X.

When the large eigenvalues are not clearly separated from the bulk, however, we need

more sophisticated techniques to determine which values should be viewed as carrying

meaningful information.

I According to mathematical formulation of the optimization problems involved, mean-

variance portfolios are constructed using the inverse ΣΣΣ−1 of the underlying covariance

matrix. If S is a poor estimation of ΣΣΣ, this may compromise the construction and

out-of-sample performance of these portfolios (Bai et al., 2009). In particular, the

estimation of coefficients on the optimal portfolios relies heavily on properly estimating

the smallest eigenvalues of ΣΣΣ.

When a large amount of data is available (N � p), we expect that the entries in S will

converge to the entries of ΣΣΣ, along with all meaningful statistics about ΣΣΣ and its eigenvalues.

On the other hand, what happens when N and p are both large, so that p/N = λ ∈

(0, 1)? The simplest case is when the p assets are perfectly uncorrelated and each have unit

variance. Surprisingly, the eigenvalues of S will follow a fixed distribution (when N and p

are both large) which is parametrized only by λ. This is known as the Marčenko–Pastur

(MP) distribution mpλ with shape parameter λ > 0, and is given by

mpλ = max {0, 1− 1/λ} δ0 + mpabs
λ

where δ0 indicates the point mass at zero and mpabs is an absolutely continuous measure

with density given by

dmpabs
λ (x)

dx
=

√
(λ+ − x)(x− λ−)

2πλx
,

x ∈ [λ−, λ+]

λ± = (1±
√
λ)2

(2.6)
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The precise description of the limiting statistics for matrices of the form S is described by

the following theorem, originally proved by Marčenko and Pastur themselves.

Theorem 2.2.3 (Marčenko and Pastur, 1967; Silverstein, 1995). Let Y denote a random

variable with mean zero and var[Y ] = 1. Let λ ∈ (0,∞) be a shape parameter, and suppose

p = p(N) is a function p : N→ N such that p(N)/N → λ as N →∞. Let YN be a sequence

of N × p matrices with i.i.d. entries, whose distributions are given by [YN ]ij
d
= Y for all

N ∈ N. Finally, let

SN =
1

N
Y†NYN

denote the sample covariance matrix of YN . Then as N →∞, almost surely we have

µSN
d−→ mpλ

where convergence is in the weak sense.

The utility of this theorem is that it describes the distribution of the eigenvalues of a matrix

composed entirely of noise. If X has random entries that are all independent, centered, and

have variance equal to some small ε > 0, then their true covariance matrix is simply εIp, with

p eigenvalues all equal to ε. The content of this theorem is that the histogram of eigenvalues

of the sample covariance matrix S will be spread out to an interval [ε(1−
√
λ)2, ε(1 +

√
λ)2].

This is used as evidence in statistical literature (Bickel and Levina, 2008; Paul and Aue,

2014) to support the idea that the estimation of eigenvalues of large sample matrices may

be poor when p/N is not close to zero.
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2.2.2 Generalized Marčenko–Pastur Theorem

If the p assets in question have a complicated covariance structure ΣΣΣ, but are all related to

a family of distributions (e.g. normal), then we might suppose that X = YΣΣΣ1/2 where the

matrix Y has i.i.d. entries drawn from a fixed distribution as in Theorem 2.2.3. The sample

covariance matrix is then of the form

S = ΣΣΣ1/2SΣΣΣ1/2

which has the same eigenvalues as SΣΣΣ. If the eigenvalues of ΣΣΣ are deterministic or follow a

fixed distribution, it may be possible to understand how the product SΣΣΣ distorts them, and

a significant amount of literature has been devoted to this topic (Bai et al., 2014; Yao et al.,

2015). We mention one key result.

Theorem 2.2.4 (Silverstein, 1995). Let YN be as in Theorem 2.2.3, and let TN be a sequence

of p × p independent Hermitian random matrices which are also independent from YN .

Suppose that the ESD of the sequence TN converges in distribution almost surely to some

nonnegative probability measure ν ∈ P(R+). Let
√

TN denote the nonnegative Hermitian

square root of each TN . Then the ESD of the product

1

N

√
TNY†NYN

√
TN ∼

1

N
Y†NYNTN = SNTN

converges in distribution almost surely to a probability measure µλ,ν ∈ P(R+) whose Stieltjes

transform Sλ,ν : C+ → C+ satisfies the implicit equation

Sλ,ν(z) =

∫
R

1

x (1− λ− λzSλ,ν(z))− z
dν(x) (2.7)
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Chapter 3

Lévy Processes

3.1 Lévy–Khintchine Representation

Every distribution µ ∈ P(R) generates a discrete semigroup of distributions µ∗n for n ∈ N

through the additive convolution operation

µ∗n = µ ∗ µ ∗ . . . ∗ µ︸ ︷︷ ︸
n

corresponding to powers of the characteristic function

ϕµ∗n(z) = ϕn(z)

A natural question to ask is whether this semigroup can be made continuous in its parameter,

such that ϕµ(z)t represents the characteristic function of a distribution for all t > 0. This

question is equivalent to asking if, for any n ∈ N, there exists a distribution µ∗1/n ∈ P(R)
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such that

µ =
(
µ∗1/n

)∗n
= µ∗1/n ∗ µ∗1/n ∗ . . . ∗ µ∗1/n︸ ︷︷ ︸

n

By appropriate continuity arguments, this ought to extend to all t > 0. This is possible in the

case of, for instance, the normal or Poisson distributions, as evidenced by their characteristic

functions. If the above condition is satisfied, or rather if ϕµ(z)t represents a characteristic

function for all t > 0, we say that µ is infinitely divisible, or of class ID(∗). In terms of a

random variable X, there exists a random variable X1/n such that

X
d
= Y1 + Y2 + . . .+ Yn

where the random variables Y1, . . . , Yn are i.i.d. and Yj
d
= X1/n. The distribution of X1/n

(or µ∗1/n) is called the nth convolution root of X (of µ). By the Lévy–Khintchine theorem

(see Zolotarev, 1986; Sato, 2013, among many others), there is a bijection between the

collection ID(∗) and the collection of distributions of Lévy processes, which are defined as

those stochastic cádlág processes with the following properties:

I X0
d
= 0

I Xt1 −Xs1 and Xt2 −Xs2 are independent for all 0 ≤ s1 ≤ t1 ≤ s2 ≤ t2.

I Xt −Xs
d
= Xt−s for all 0 ≤ s ≤ t.

This correspondence is precisely that a random variable X is infinitely divisible if it follows

the distribution X
d
= X1 of the unit time distribution of a Lévy process Xt. Under such

circumstances, we say that the distribution of X drives the process Xt.

Some properties of infinitely divisible distributions are clear. For instance, since ϕµ(z)t must

qualify as a characteristic function for all t > 0, it is necessary that ϕµ(z) 6= 0 for every
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z ∈ R. The question of a complete classification of infinitely divisible distributions, and thus

also Lévy processes, is completely solved in the following theorem.

Theorem 3.1.1 (Lévy–Khintchine Decomposition, Sato, 2013). If Xt is a real-valued Lévy

process, then there exists a unique triplet (µ, σ,Π) consisting of µ ∈ R, σ ≥ 0, and a Borel

measure Π on R with the properties

(1) Π({0}) = 0 No mass at zero.

(2) Π((−∞,−1] ∪ [1,∞)) <∞ Integrable tails.

(3)
∫ 1

−1
x2 dΠ(x) <∞ Controlled singularity at the origin.

such that the CGF ψXt(z) can be expressed as

1

t
ψXt(z) = iµz − 1

2
σ2z2 +

∫
R

[
eixz − 1− ixz1[−1,1](x)

]
dΠ(x) (3.1)

The triplet (µ, σ,Π) is called the Lévy triplet of the process Xt.

The term ixz1[−1,1](x) may also be replaced with ixz
1+x2 , leading to a different parametrization

of the Lévy triplets, but uniqueness still holds. This form of the theorem is sometimes called

a soft cutoff of the singular integral.

Corollary 3.1.2. If Xt is a real-valued Lévy process with finite moments up to some order

n ∈ N, then

κk[Xt] = t

∫
R
xkdΠ(x) (3.2)

for 3 ≤ k ≤ n.
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The following corollary follows directly from Theorem 3.1.1 and the uniqueness of the char-

acteristic function.

Corollary 3.1.3. Suppose X
(n)
t is a sequence of real-valued Lévy processes which converges

in distribution to a Lévy process Xt. This is to say, for any (and all) t > 0, we have

X
(n)
t

d−→ Xt. Then if A ⊆ R is any Borel set not containing a neighborhood of the origin,

Π(n)(A)
n→∞−−−→ Π(A)

Example 3.1.4. Brownian motion Bt with drift µ ∈ R and variance σ2 > 0 has a charac-

teristic function given by

ϕBt(z) = eiµtz−σ
2tz2/2

This corresponds to the case where Π(R) = 0.

The preceding theorem is often used to decompose the Lévy process Xt into the independent

sum of other processes with desirable properties. The term iµz corresponds to a deterministic

process X
(1)
t = µt, while the term −1

2
σ2z2 corresponds to a scaled Brownian motion process

X
(2)
t = σBt. The interpretation of Π is more nuanced, and is sometimes accomplished

by considering the restriction of the measure to the sets [−1, 1] and R\[−1, 1] and then

considering a small activity process X
(3)
t and a large jump compound Poisson process X

(4)
t .

Although such a decomposition is possible, Corollary 3.1.7 and Theorem 3.2.5 will provide

alternatives in special circumstances that greatly simplify the problem.

Example 3.1.5. The standard Poisson process (with rate 1) is often denoted by Nt, and

has characteristic function given by

ϕNt(z) = et(e
iz−1)
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From this it is clear that the distribution of Nt is Poisson with rate t. By scaling the

parameter t, other Poisson processes can be created. The distribution of Nt at time t > 0 is

described by a Poisson random variable with rate t, whose support is N with a discrete mass

function given by e−t t
k

k!
for k ∈ N. This immediately demonstrates that a Lévy process can

be both discrete and nonnegative.

Example 3.1.6. A compound Poisson process Xt with rate r > 0 and jump distribution

ν ∈ P(R) is the process given by

Xt
d
=

Nrt∑
j=0

ξj

where Nt is a standard Poisson process, and ξj are i.i.d. random variables (independent from

Nt) following the distribution ν. The characteristic function is given by

ϕXt(z) = ert(ϕν(z)−1)

If ν has moments mn[ν] up to some order, then Xt has cumulants given by κn[Xt] = rtmn[ν].

In particular, any sequence of moments of a distribution corresponds to a sequence of cumu-

lants of a compound Poisson distribution.

Corollary 3.1.7. Let Xt be a real-valued Lévy process, and suppose E[|X1|] < ∞ for some

t > 0. Then the CGF ψXt(z) can be expressed in a modified form of (3.1) given by

1

t
ψXt(z) = iµz − 1

2
σ2z2 +

∫
R

[
eixz − 1− ixz

]
dΠ(x) (3.3)

The parameters σ and Π are identical to those found in Theorem 3.1.1, however the value of

µ may be different. Furthermore, E[Xt] = tµ. Under this decomposition, Xt can be realized
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as the sum of independent processes

Xt
d
= µt+ σBt +X ′t

where Bt is standard Brownian motion, and X ′t is a Lévy process independent from Bt with

zero mean.

3.2 Further Classification of Lévy Processes

3.2.1 Existence of Moments and Cumulants

Definition 3.2.1. A function g : R → R+ is called submultiplicative if there exists a

constant a > 0 such that

g(x+ y) ≤ a · g(x)g(y)

for any x, y ∈ R. We say that g is locally bounded if it is bounded on any compact subset

of R.

Examples of submultiplicative functions include

max{|x|α, 1} ec|x|
β

log(max{|x|, e})

for α, c > 0 and 0 < β ≤ 1. The products of submultiplicative functions remain submulti-

plicative.

Theorem 3.2.2 (Sato, 2013). Let g be submultiplicative, locally bounded, and Lebesgue

measurable, and let Xt be a real-valued Lévy process. Then E[g(Xt)] < ∞ for any t > 0 if
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and only if

∫
R\[−1,1]

g(x) dΠ(x) <∞

This is to say, the tail behavior of Xt is determined by the tail behavior of Π.

Corollary 3.2.3. Let Xt be a real-valued Lévy process. Then Xt has moments and cumulants

up to some order n if and only if

∫
R\[−1,1]

|x|ndΠ(x) <∞

3.2.2 Variation, Activity, and Subordination

Following Sato (2013), we classify Lévy processes in the following way.

Definition 3.2.4. Let Xt be a real-valued Lévy process with generating triple (µ, σ,Π) as

in (3.1). Then we say that Xt is of

type (A), of finite activity if σ = 0 and Π(R) <∞

type (B), of infinite activity if σ = 0, Π(R) =∞, and
∫ 1

−1
|x|dΠ(x) <∞

type (C), of infinity variation if σ > 0 or
∫ 1

−1
|x|dΠ(x) =∞

A process of type (A) is one for which there is a nonzero probability of no activity, or in

other words that P[Xt = 0] > 0 for any t > 0. As we will see shortly, any such process

can be expressed as a compensated compound Poisson process. A process of type (B) has

infinite activity, but is of bounded variation almost surely. The class of subordinators, Lévy

processes whose distributions are nonnegative for some (equivalently all) t > 0 are necessarily

of type (B). Finally, processes of type (C) are almost surely of unbounded variation.

Theorem 3.2.5. Let Xt be a real-valued Lévy process of type (A) or (B). Then the CGF
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ψXt(z) can be expressed in a modified form of (3.1) given by

1

t
ψXt(z) = iµz +

∫
R

[
eixz − 1

]
dΠ(x) (3.4)

The Lévy measure Π is identical to that found in Theorem 3.1.1, however the value of µ may

be different.

Example 3.2.6. Consider the Lévy process Xt with µ = σ = 0 and Lévy measure Π ∈ P(R),

a probability measure such that Π({0}) = 0. Then using form (3.4), the process Xt has

characteristic function given by

ϕXt(z) = et(ϕΠ(z)−1)

and is an example of a compound Poisson process

Xt
d
=

Nt∑
j=0

ξj

where ξj are i.i.d. random variables following the distribution Π, and Nt is an independent

Poisson process with rate 1.

Following Examples 3.1.6 and 3.2.6, and Theorem 3.2.5, we have the following result.

Corollary 3.2.7. If Xt is a real-valued Lévy process of type (A), then it can be expressed as

the sum of a deterministic component µt, called the compensation or drift, and a compound

Poisson process with rate r = Π(R) and jump distribution r−1Π ∈ P(R).

We note that the Poisson process Nt described in Example 3.1.5 is nonnegative for all values

of t > 0. Processes of this type are called subordinators, and have a fairly straightforward
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classification. First, it is necessary for the Lévy measure Π to be concentrated on R+, for

the drift to be nonnegative, and for the process to have finite variation (of type (A) or (B)).

Theorem 3.2.8 (Sato, 2013). Let Xt be a real-valued Lévy process. The following are

equivalent:

I Xt ≥ 0 for some t > 0.

I Xt ≥ 0 for all t > 0.

I Xt is of type (A) or (B), and in the form (3.4) the measure Π is concentrated on R+

and µ ≥ 0.

From here we use the term subordinator to refer to such a nonnegative Lévy process.

Theorem 3.2.9 (Sato, 2013). Suppose Xt is any Lévy process, and τt is a subordinator

independent from Xt. Then Xτt is also a real-valued Lévy process.

The act of performing the composition Xτt is called subordinating the process Xt to τt. If

Brownian motion is subordinated, then the scale invariance of the process implies that

Bτt
d
=
√
τtB1

where B1 follows the distribution for standard normal distribution. Consequently, the class of

subordinated Brownian motion processes corresponds to normal scale mixtures with square

roots of subordinators.

Every Lévy process, being a semi-martingale, has a well defined quadratic variation process

[X]t given by the convergence in probability of the sample quadratic variation process, even

when the process does not have a well defined variance (Pascucci, 2011). The quadratic

variation [B]t of standard Brownian motion Bt, being a continuous semi-martingale, is equal
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to its predictable quadratic variation, namely [B]t = t. On the other hand, the quadratic

variation of a standard Poisson process Nt is known to be itself, that is [N ]t = Nt, owing to

the fact that the the jumps of Nt are almost surely separated in time.

The quadratic variation of a compound Poisson process

Xt
d
=

Nrt∑
j=0

ξj

where L(ξj) = ν can be computed in a similar manner due to the separation of jumps, and

is equal to

[X]t =
Nrt∑
j=0

ξ2
j

which corresponds to a Lévy process with measure r ·ν2. If dΠ(x) is a continuous density for

the Lévy measure of Xt, then it follows that [X]t will have a Lévy measure with continuous

density dΠ̃(x) that is zero for x ≤ 0 and

dΠ̃(x) =
dΠ(
√
x) + dΠ(−

√
x)

2
√
x

for x > 0. The approximation of Lévy processes by compound Poisson processes implies a

bijection between all symmetric Lévy processes and all subordinators given by passing from

Xt to [X]t.

3.2.3 Self-Decomposability

A random variables X is said to be self-decomposable (SD) if for any 0 < b < 1, there exists

some random variable Yb such that, if X and Yb are independent, then
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X
d
= bX + Yb (3.5)

All self-decomposable distributions are infinitely divisible, so we have the nested classes

SD ⊂ ID(∗)

Self-decomposable distributions are precisely those that appear in scaled limits theorems.

If Xj are a sequence of independent (but not necessarily identically distribution) random

variables and aj, bj are normalizing constants, and we have that

aj

(
n∑
j=1

Xj

)
+ bj

d−→ X

then the distribution of X is self-decomposable (Sato, 2013). This makes SD distributions

appropriate for situations where a random variable is composed of a linear combination

of an unknown number of subcomponents, possibly of various sizes. We note that (3.5)

implies that SD distributions are precisely those which appear as marginals in first-order

autoregressive equations of the form

Xn+1 = bXn + εn

where 0 < b < 1 and εn is a sequence of i.i.d. random variables, as observed in Gaver and

Lewis (1980). For these reasons, many applications choose models whose distributions are

explicitly self-decomposable, as opposed to simply infinitely divisible (Carr et al., 2002).
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3.2.4 Generalized Gamma Convolutions and Related Classes

While many distributions, such as Poisson and Gamma, can be seen to be infinitely divisible

directly from the form of their characteristic functions, others have been historically much

more difficult to prove. In 1977, Thorin introduced a class of Lévy processes for the purpose

of proving the infinite divisibility of the Lognormal and other distributions (Thorin, 1977a,b).

We introduce this and related classes by means of continuous Lévy measures Π as follows.

We say that an infinitely differentiable function g : (0,∞) → R is completely monotone

(CM) if (−1)ng(n)(x) ≥ 0 for all x > 0 and n ∈ N. Now suppose a Lévy process Xt has Lévy

measure Π with density dΠ(x) = 1(−∞,0)(x)ρ−(−x) + 1(0,∞)(x)ρ+(x), where ρ± : R+ → R+

is some pair of functions. Then we say that Xt is in the (Andersen et al., 2015)

I type-G class G(R) when ρ±(x) = g±(x2) and g± are completely monotone.

I Aoyama class M(R) when ρ±(x) = |x|−1g±(x2) and g± are completely monotone.

I Thorin class T (R) when ρ±(x) = |x|−1g±(x) and g± are completely monotone.

In each class, if ρ− is identically zero and the process is a subordinator, then we say that it

lies in the subclass G(R+), M(R+), and T (R+), respectively. Elements of the Thorin class

T (R+) are called generalized gamma convolutions, or GGCs. GGC distributions arise as the

weak closure of discrete convolutions of independent Gamma random variables. The larger

class T (R) is similarly called extended generalized gamma convolutions, or EGGCs.

The symmetric elements of EGGC and G(R) have particularly convenient interpretations

in terms of subordinated Brownian motion processes. A process Xt with a distribution in

EGGC∩Ps(R) can be realized asBτt where τt is itself a GGC subordinator (Bondesson, 1992).

Similarly, the distributions in G(R) ∩ Ps(R) can be realized as Bτt where τt is simply any

subordinator. In this way, the wider class G(R) can be imagined as “skewed” subordinated

Brownian motion processes.
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The Aoyama class is of particular interest for the reason that Xt is a process in M(R) if

and only if [X]t is a GGC process. Basic facts about completely monotone functions implies

immediately that

GGC = T (R) ⊂M(R) ⊂ G(R) ∩ SD ⊂ ID(∗)

EGGC = T (R+) ⊂M(R+) ⊂ G(R+) ∩ SD ⊂ ID(∗) ∩ P(R+)

Gaussian, α-stable, log-normal, Student’s-t, Pareto, gamma, χ2, and generalized inverse

Gaussian can all be shown to be GGC or EGGC, thus making them ID(∗). Many popular

distributions suggested for the modeling of asset returns are EGGC, including the variance-

gamma (VG) model of Madan and Seneta (1990), the normal-inverse Gaussian (NIG) model

of Barndorff-Nielsen (1997), and tempered stable distributions and CGMY model of Carr

et al. (2002). Other odd distributions lie in the EGGC class, such as the logarithm of a

Gamma random variable (which shows that the generalized Logistic distribution is also in

the class).

The classes of GGC and EGGC processes were studied extensively in Bondesson (1992),

which remains the definitive text on the subject. The most significant contribution to the

subject since its publication is Bondesson (2015), in which the startling result in Theo-

rem 3.2.14 was proved. Before stating it in full, we motivate the significance of the result by

introducing some additional descriptive characteristics of GGC processes.

Definition 3.2.10. A nonnegative function f : R+ → R+ is called hyperbolically completely

monotone (HCM) if, for each u > 0, the function

h(w) = f(uv)f(u/v)
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is a completely monotone function when viewed as a function of the auxiliary variable w =

v+1/v. A distribution in P(R+) is said to be in the class HCM if it has a continuous density

on (0,∞) which is a HCM function.

Example 3.2.11. The functions xβ, e−γx, and 1
(1+x)γ

for β ∈ R and γ > 0 are HCM, as

is the density of Lognormal distributions with arbitrary parameters. The class of HCM

functions is closed under pointwise multiplication of functions, and with respect to pointwise

limits of functions. It is also closed under the operations f(xα) and fp(x) for |α| ≤ 1 and

p > 0. The following results imply that Lognormal, Beta distributions of the second kind,

and powers of Gamma distributions, and generalized inverse Gaussian distributions are all

HCM and thus also ID(∗). The positive α-stable distributions (as discussed in Section 3.3.1)

were known to be HCM for α = 1/n with n ∈ N and n ≥ 2, and explicitly not HCM for

1/2 < α < 1. Bondesson (1992) conjectured that this would extend to all 0 < α < 1/2, but

was unable to prove it. No significant progress was made until Fourati (2013) showed that

the conjecture is true at least for α ∈ (0, 1/4]∪ [1/3, 1/2]. The issue was finally resolved only

a few years ago in Bosch and Simon (2016), where it was shown that the conjecture is true

for all 0 < α ≤ 1/2.

Theorem 3.2.12 (Bondesson, 1992). The class of GGC distributions are precisely those

nonnegative distributions whose Laplace transforms φµ(s) are HCM as functions on (0,∞).

On the other hand, the distributions in the class HCM are those nonnegative distributions

whose support is [0,∞) and whose Laplace transforms (−1)nφ
(n)
µ (s) are HCM functions on

(0,∞) for all n ∈ N. Consequently,

HCM ⊂ GGC ⊂ SD ⊂ ID(∗)

and the inclusions are strict.

Theorem 3.2.13 (Bondesson, 1992). Suppose X and Y are independent random variables

with HCM distributions. Then Xq, XY , and X/Y have HCM distributions for |q| ≥ 1.
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Furthermore, if W is an independent GGC random variable, then WX and W/X are both

GGC.

The preceding theorems show that the HCM class has many desirable properties, and inter-

acts nicely with the class GGC. However, GGC is closed under convolution and convolution

roots, so that a Lévy process Xt has a GGC density for some t > 0 if and only if the property

holds for all t > 0. In contrast, HCM is not closed under convolution roots, and so the prop-

erty of being in the class is time dependent. The following recent results were therefore quite

shocking when published, as they demonstrate that the GGC class still maintains many of

the properties once only known for HCM distributions.

Theorem 3.2.14 (Bondesson, 2015). Suppose X and Y are independent GGC random

variables. Then XY is a GGC random variables. Consequently,

GGC ⊂ ID(∗) ⊂ P(R+)

makes GGC into a proper subclass of the nonnegative distributions which is closed under

independent sums, products, weak limits, convolution roots, and contains the Gamma distri-

butions.

Corollary 3.2.15 (Bondesson, 2015). Suppose X and Y are independent symmetric EGGC

random variables, then XY is a symmetric EGGC random variables. Consequently

EGGC ∩ Ps(R) ⊂ ID(∗) ∩ Ps(R) ⊂ Ps(R)

is a proper subclass of the symmetric distributions which is closed under independent sums,

products, weak limits, convolution roots, and contains the normal distributions.

As noted by Bondesson, these are actually the only known nontrivial subclasses of the two

collections P(R+) and Ps(R) which are closed under independent sums, products, and weak
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limits.

3.2.5 Mixtures of Exponential Distributions

Mixing models arise frequently in probability, and typically take the form of a independent

product XY or quotient X/Y or random variables. Here, X represents the distribution for

whom a scale parameter is unknown, while Y contains information about the distribution

of this parameter. A natural question to ask is whether or not there exists particular class

of distributions for X such that XY or X/Y is guaranteed to be ID(∗)? Surprisingly, one

such distribution is Exp(1), the exponential distribution. An analogous result exists in the

context of free probability, although the distribution taking on the role of the exponential

distribution is quite surprising. This issue is addressed in Example 5.3.6.

Definition 3.2.16. We say that a distribution is a mixture of exponential distributions, or

in the class MED, if its law can be expressed in the form E/Y where E
d
= Exp(1) follows a

standard exponential and Y ∈ P(R+).

Clearly we can also express such laws as EY rather than E/Y , although classically it has

been written in this form so that the distribution follows Exp(Y ), where Y is the parameter

which appears in the description of the exponential family.

Theorem 3.2.17 (Bondesson, 1992). All MED distributions are in ID(∗), and their convo-

lution roots are also MED. Furthermore, if X has an MED distribution and q ≥ 1, then Xq

and eX − 1 are both MED.

Some connections exist between the classes MED and GGC, although neither class properly

contains the other. One such connection is given below.

Lemma 3.2.18. Suppose E
d
= Exp(1) is exponentially distributed. Then for any q ≥ 2, there
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exists a HCM random variable Fq independent from E such that the Weibull distribution

Eq d
= Weib(1/q) can be written as Eq d

= EFq. Consequently, Eq is GGC.

Proof. The decomposition Eq d
= EFq for some independent random variable Fq ≥ 0 follows

from (Bondesson, 1992, Example 4.3.4), however it is not clear that Fq must be HCM. To

show this, we notice that

log(Eq) = q log(E)
d
= log(E) + log(Fq)

Let these random variables be denoted by Y1
d
= Y2 + Y3. Then the Laplace transforms

of Y1 and Y2 are known explicitly in terms of the gamma function φ1(s) = Γ(1 − qs),

φ2(s) = Γ(1− s), when Im[s] > 0. Therefore, the Laplace transform φ3(s) of Y3, if it exists

for arguments Im[s] > 0, must be equal to

φ3(s) = φ1(s)/φ2(s) =
Γ(1− qs)
Γ(1− s)

If such a function represents the Laplace transform of a distribution Y3 such that eY3 is a

GGC function, then the claim is proved. In fact, this is precisely the Laplace transform of

log(1/Xα), where Xα is a nonnegative α-stable random variable where α = 1/q (Bondesson,

1992, Example 7.2.3). Therefore, we can write

Eq d
=

E

Xα

Since the nonnegative α-stable distributions are HCM for 1/α ≥ 2 (Bosch and Simon, 2016),

the random variable Fq = 1/Xα is HCM, hence GGC. �
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Rα

Rβ

HCM

GGC
MED ID(∗)

P(R+)

Figure 3.1: Diagram representing relationships between the classes of nonnegative distribu-
tions discussed.

3.2.6 Euler Transforms of HCM

Bondesson (1992) also introduced the classes Rβ ⊆ GGC for β > 0 of distributions which

are expressible as independent quotients of the form X/Yβ, where X ∈ GGC and Yβ follows

a Gamma distribution Γβ. It is clear from Theorem 3.2.13 that these are subclasses of GGC.

The classes have the following classification.

Theorem 3.2.19 (Bondesson, 1992). Let 0 < α < β, then Rα ⊆ Rβ. The weak closure of

⋃
β>0

Rβ

is the class GGC. Furthermore, a distribution is in Rβ if and only if it has a continuous

density f whose Euler transform F [β] of order β, defined as

F [β](x) =
1

Γ(β)

∫ x

0

(x− y)β−1f(y)dy
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is an HCM function.

Consequently, the class R1 is the class of densities on [0,∞) whose cumulative distribution

functions F are HCM functions. The following result follows directly from the fact that the

pointwise product f1(x)f2(x) and powers f1(xα) for |α| ≤ 1 of HCM functions are HCM.

Theorem 3.2.20 (Bondesson, 1992). If X, Y ∈ R1 are independent random variables, then

Xq for |q| ≥ 1 and max{X, Y } are also in the class R1.

By the form of its cumulative distribution function, it is clear that if X is exponentially

distributed then it is not in the class R1, but 1/X is. If X follows a Gamma distribution Γt

for 0 < t < 1 (see Section 3.3.2), then X can be written as an MED in the following way

X
d
= E

(
1 +

Y1

Y2

)−1

where Y1
d
= Γ1−t and Y2

d
= Γt are independent from E

d
= Exp(1). Since 1 + Y1

Y2
is GGC, it

follows that 1/X is in the class R1. This also follows directly from Theorem 3.2.19.

3.2.7 Complex Generalized Gamma Convolutions

Although not relevant to financial applications, complex-valued random variables X which

are circularly symmetric appear in similar applications of the M–P law in signal process-

ing. In particular, Multiple-Input Multiple-Output (MIMO) signal processing techniques

employed by Wi-Fi and 4G LTE cellular networks have used underlying random models for

cognitive radio networks in order to estimate spectral statistics. The statistics in question,

such as the instantaneous mutual information and ergodic capacity, can be analyzed through

these models with the help of the M–P law (see Couillet and Debbah, 2011; Bai et al., 2014).

Such random variables can be expressed as mixtures of the type X = |X|eiθ, where |X| ≥ 0
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and θ is an independent random variable which is uniformly distributed on the interval

[0, 2π]. Channel models typically construct random variables in this fashion. Unfortunately,

these mixtures do not preserve the underlying features of the random variable |X|, so X need

not be SD or even ID(∗) even when |X| is. A more convenient class of circularly symmetric

random variables is that of mixtures of complex Gaussian distributions, which take the form

CN(0, Y )
d
=
√
Y Z

where Y is a nonnegative random variable (independent from the Gaussian distribution

considered). As standard complex Gaussian random variables are already of the form Z
d
=

√
Eeiθ for E ∈ Exp(1) and θ as above, it follows that all mixtures of complex Gaussian

distributions can be written as

CN (0, Y )
d
=
√
Y Eeiθ

where Y , E, and θ are independent. It is clear that all mixtures of complex Gaussian distri-

butions are circularly symmetric. Furthermore, it is easy to see that a circularly symmetric

distribution is a mixture of complex-Gaussian distributions if and only if its envelope |X| is

an MED.

Definition 3.2.21. We say that a random variable X is a circular generalized gamma

convolution (CGGC) if its distribution is of the form

X
d
=
√
τZ

d
= CN (0, τ)

where τ ∈ GGC and Z ∈ CN(0, 1) are independent.

Alternatively, if Bt is a complex Brownian motion process with Bt
d
= CN(0, t) for fixed t > 0,

then X is a CGGC if it can be written as Bt subordinated by a GGC process τt at a fixed
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time t = 1, explicitly given as

X
d
= Bτ1

Consequently, every CGGC distribution X is ID(∗).

Lemma 3.2.22. A random variable X is a CGGC if and only if it is circularly symmetric

and |X|2 can be written as the independent product |X|2 d
= Eτ of an exponential random

variable E and a GGC τ .

Proof. This follows immediately from the fact that X is CGGC if and only if it takes the

form

X
d
=
√
τZ

d
=
√
τEeiθ

d
= |X|eiθ

where E
d
= Exp(1), so |X|2 is an independent product of an exponential random variable

and a GGC. �

The class CGGC can be seen as the circularly symmetric analogue to the the (real-valued)

EGGC class. As the following proposition shows, it has the significant advantage of preserv-

ing self-decomposability under the operations of independent addition and multiplication.

Following the recent observations by Bondesson (2015), it is likely the only known nontrivial

class of circularly symmetric ID(∗) distributions which is closed under these operations.

Theorem 3.2.23. Let X and Y be independent CGGC random variables, then

I X ∈ SD ⊂ ID(∗)

I X + Y ∈ CGGC

I XY ∈ CGGC
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Proof. Let X
d
=
√
τ1Z1 and Y

d
=
√
τ2Z2, where τi ∈ GGC and Zi ∈ CN(0, 1), all independent.

Since τ1 ∈ GGC we know that it is also SD. Therefore, for any 0 < b < 1 we can find some

independent Yb2 such that

τ1
d
= b2τ1 + Yb2

Then it follows that

X
d
=
√
τ1Z1

d
= b
√
τ1Z1 +

√
Yb2Z2

d
= bX +

√
Yb2Z2

which shows that X ∈ SD.

By the marginals on τi (Prop. 4.3 and 4.4, Rakvongthai et al., 2010), X + Y follows the

distribution
√
τ1 + τ2Z1. Since GGC is closed under additive convolutions, τ1 + τ2 ∈ GGC,

so X + Y ∈ CGGC.

Now write Z1
d
=
√
Eeiθ where E ∈ Exp(1) and θ is uniform on [0, 2π], with E and θ

independent. Then

XY
d
=
√
τ1τ2Ee

iθZ2
d
=
√
τ1τ2EZ2

By Theorem 3.2.14, τ1τ2E ∈ GGC, and so XY ∈ CGGC. �

Theorem 3.2.24. If X ∈ CGGC, then by Lemma 3.2.22 let |X|2 d
= τE where τ ∈ GGC and

E ∈ Exp(1). Suppose that we additionally have that either τ is equal to a nonzero constant

or τ ∈ HCM. Then for any p, q ∈ N with p 6= q and any r ≥ 2, the random variables

Xp(X∗)q, |X|rei·arg(X) ∈ CGGC

where arg(X) is the complex angle of X.
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Proof. The conditions on p and q ensure that if X
d
= |X|eiθ then

Xp(X∗)q
d
= |X|p+qeiθ

with p+ q ≥ 1. We then have |X|p+q =
√
τ p+qEp+q. If τ is a nonzero constant, then τ p+q is

also a nonzero constant and thus GGC. Otherwise τ ∈ HCM, so it follows by Theorem 3.2.13

that τ p+q ∈ HCM ⊂ GGC. By Lemma 3.2.18, Ep+q d
= EFp+q for an independent GGC

random variable Fp+q (if p+ q = 1, we simply take F1 as δ1). We can then write

|X|p+qeiθ d
=
√
τ p+qFp+qEe

iθ

which is CGGC by Lemma 3.2.22.

Since X is circularly symmetric, arg(X) is uniform on [0, 2π] and so |X|rei·arg(X) is circularly

symmetric as well. Then we can write

|X|r d
=
√
τ rEr d

=
√
τ rFrE ∈ GGC

by Lemma 3.2.18 once again. �

Example 3.2.25. The Weibull distribution Weib(β) for β > 0 is defined as the distribution

governing the shape of E1/β where E ∈ Exp(1) is exponentially distributed. Its density is

given by

f(x) = βxβ−1e−x
β

, x > 0 (3.6)

For 0 < β < 1, the Weibull has heavier tails than the standard exponential distribution while

still having well defined moments of all orders, and has been successful in describing some
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mobile fading scenarios (Parsons, 2000). The circularly symmetric random variable with

Weibull fading envelope |X| d= Weib(2/q) for q = 1 and q ≥ 2 is CGGC, since it can written

in the form

X = |X|eiθ d
=
√
Eqeqiθ

d
= Zq

where Z ∈ CN(0, 1). This includes the case of Rayleigh (q = 1) and exponential (q = 2)

fading. It also includes all powers of normal random variables, since if Z
d
= CN(0, 1), then

|Zn| d= Weib(2/n) for n ∈ N.

Example 3.2.26. The Suzuki (1977) distribution is defined as a mixture of Rayleigh and

Lognormal distributions. Its density does not have a closed form, but can be calculated from

the expression

f(x) =

∫ ∞
0

x

y2
e−x

2/2y2

√
2√
πyσ

e−2(log(y)−µ/2)2/σ2

dy

Here we use a slightly different parametrization for µ and σ in order to make some compu-

tations more convenient. If E
d
= Exp(1) and L

d
= LogN(µ, σ2) are independent, then this

distribution matches that of
√
EL, where

√
E is once again understood to be Rayleigh dis-

tributed. No scale parameter for the Rayleigh distribution is necessary, as it can be included

in the Lognormal parameter µ. A circularly symmetric distribution with Suzuki envelope

|X| is easily seen to be CGGC, since Lognormal distributions and their powers (which are

also Lognormal) are GGC.

3.2.8 Essentially Bounded Processes

In the categorization of Lévy processes, compensated compound Poisson processes as in

Corollary 3.2.7 are described by Lévy measures Π which have a controlled singularity at the
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origin, namely one which is integrable. This includes those measures Π for which there is

some ε > 0 such that Π((−ε, ε)) = 0, so that there are no small jumps appearing along the

path. One might be curious what type of distributions can be generated when the opposite

restriction is imposed, and we instead consider a process Xt where no large jumps are allowed

to occur. This leads to the definition of essentially bounded Lévy processes, or those such

that the support of the measure Π is contained in some compact interval [−B,B] with B > 0.

It turns out, as is shown in Lemma 3.2.28 below, that this is equivalent to the condition that

the cumulants κn[X1] exist and grow no faster than O(Bn). Such a condition guarantees

that essentially bounded processes have exponential moments of all orders, that is

E
[
em|X|

]
<∞, m > 0

This implies that, although essentially bounded Lévy processes do not have bounded tails

(this is impossible for an ID(∗) distribution), their long-term tail behavior is quite dampened.

Essentially bounded processes provide a modeling approach, in the vein of Mantegna and

Stanley, to the problem of “ultraslow” convergence of i.i.d. sums of random variables in the

central limit theorem. In Mantegna and Stanley (1995), it was famously observed that scaling

in the Standard and Poor’s 500 index failed to exhibit heavy-tailed behavior for extreme

outliers. As a example of a distribution with such properties, they defined their truncated

Lévy flight in Mantegna and Stanley (1994) in terms of the α-stable Lévy distribution, whose

density is restricted to a large bounded set, although such a distribution fails to represent

a Lévy process. The phrase “truncated Lévy flight” was later adopted by Koponen (1995),

whose distributions were used as the basis for the CGMY model of Carr et al. (2002). The

class of essentially bounded processes follows a similar modification of Lévy flight, as the

condition that Π has bounded support still produces a Lévy process that can have arbitrarily

large kurtosis, while being more convenient for the purpose of density estimation.

Definition 3.2.27. We say that a real-valued Lévy process Xt is essentially bounded by
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B > 0 if the support of its Lévy measure Π lies inside [−B,B], such that

Π((−∞,−B) ∪ (B,∞)) = 0

Lemma 3.2.28. Xt is essentially bounded by B if and only if then there exists some constant

C > 0 such that for all n ∈ N,

|κn[X1]| ≤ CBn

Proof. For the first direction, suppose Xt is essentially bounded by B. Choose some 0 < ε <

B. By properties of the Lévy measure Π, we have that

∫
[−ε,ε]

x2dΠ(x) = R1 <∞

Let R2 = Π([−B,B]\[−ε, ε]). Since supp(Π) ⊆ [−B,B], we have that for n ≥ 3,

|κn[X1]| =
∣∣∣∣∫ B

−B
xndΠ(x)

∣∣∣∣ ≤ ∫ B

−B
|x|ndΠ(x)

≤
∫

[−ε,ε]
x2|x|n−2dΠ(x) +

∫
[−B,B]\[−ε,ε]

|x|ndΠ(x)

≤ R1ε
n−2 +R2B

n ≤
(
R1/B

2 +R2

)
Bn

Now take C = max{κ1[X1]/B, κ2[X1]/B2, R1/B
2 +R2}, and the result follows.

For the second direction, without loss of generality we will suppose that some of the support

of Π lies in a region [a, b] ⊆ (B,∞), such that Π([a, b]) = R3 > 0. Then

κ2n[X1] =

∫
R
x2ndΠ(x) ≥

∫ b

a

x2ndΠ(x) ≥ R3a
2n

Then if C > 0 is any constant, since a/B > 1 choose some n ∈ N large enough so that
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(a/B)2n > C/R3, then it follows that for such an n,

κ2n[X1] ≥ R3a
2n = R3

( a
B

)2n

B2n > CB2n

which concludes the proof. �

Lemma 3.2.29. If Xt is essentially bounded, then it has finite exponential moments E[ec|Xt|] <

∞ of all orders c > 0 for all t > 0.

Proof. This follows directly from the fact that the Lévy measure Π is compactly supported,

and from Theorem 3.2.2. �

Lemma 3.2.30. If Xt is a real-valued, essentially bounded Lévy process, then the distribu-

tions of Xt for all t > 0 satisfy the Carleman condition

∞∑
n=1

1
2n
√
m2n[Xt]

= +∞

As a result, the distributions of Xt are uniquely defined by their sequence of moments.

Proof. Consider the moments of mn[Xt], which by (2.4) can be written as sums of terms

which, along with coefficients, take the form of products

n∏
j=1

κj[Xt]
kj =

n∏
j=1

tkjκj[X1]kj

with kj ∈ {0, 1, 2, . . . , n} such that
∑n

j=1 j ·kj = n. Note that by this condition,
∑n

j=1 kj ≤ n.

If L = max{t, 1/t}, then we have

∣∣∣∣∣
n∏
j=1

κj[Xt]
kj

∣∣∣∣∣ ≤ Ln
n∏
j=1

|κj[X1]|kj ≤ Ln
n∏
j=1

Bj·kj = LnBn

Now considering the coefficients in the expansion of the moments mn[Xt] in terms of lower
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order cumulants, the sum of the coefficients is the nth Bell number Bn. Following Berend

and Tassa (2010), the Bell numbers Bn are known to satisfy the inequality

Bn <

(
0.792n

log(n+ 1)

)n

So we have that

n
√
|mn[Xt]| ≤ LB n

√
Bn ≤ LB · n

In particular, 1/ 2n
√
m2n[Xt] ≥ 1

2LBn
, which is a divergent series in n, and so the Carleman

condition

∞∑
n=1

1
2n
√
m2n[Xt]

= +∞

is satisfied for all t > 0. �

Lemma 3.2.31. If Xt is a real-valued, essentially bounded Lévy process, then the CGF

ψX(z) (and consequently, the characteristic function ϕX(z)) can be extended to an entire

function of its argument z ∈ C.

Proof. Let B,C > 0 be the bounds given by Lemma 3.2.28, such that

|κn[X1]| ≤ CBn

By (2.3), we get that

ψXt(z) = t

∞∑
k=1

κk[X1]

k!
(iz)k
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Since the coefficients in the power series are bounded by

∣∣∣∣tκk[X1]

k!

∣∣∣∣ ≤ tC
Bk

k!

the radius of convergence is infinite. Since the CGF agrees with its power series expansion

within the radius of convergence (see Lukacs, 1970), we can conclude that ψX(z) extends to

an entire function on C. �

Example 3.2.32. We provide an example of a process which is essentially bounded, but

exhibits infinite variation. We will refer to this process as the Si process, St. This is the

process with Lévy measure given by

dΠ(x)

dx
=

1

2x2
1[−1,1]\{0}(x)

The process is essentially bounded since the support of the Lévy measure is [−1, 1], but has

infinite variation due to the size of the singularity at the origin. The integral (3.3) evaluates

to

1

t
ψSt(z) =

∫ 1

−1

[
eixz − 1− ixz

] 1

2x2
dx = 1− cos(z)− zSi(z)

where Si(z) is the trigonometric sine integral defined by

Si(z) =

∫ z

0

sin(w)

w
dw

The variance and excess kurtosis are easy to calculate given the expression of the Lévy

measure, and are var[Xt] = t and kurt[Xt] = 1/3t. Notice that 1 − cos(z) − zSi(z) is an

entire function, as expected.

The following Lemma is quite powerful, showing that the class of essentially bounded distri-

butions is dense in ID(∗).
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Lemma 3.2.33. Let Xt be a real-valued Lévy process with triplet (µ, σ,Π), and let X
(B)
t for

B > 0 be defined as the Lévy process with triplet (µ, σ,Π(B)) where Π(B) is defined as the

Borel measure such that

Π(B)(A) , Π(A ∩ [−B,B])

for every Borel set A ⊆ R. Then for every t > 0, X
(B)
t

d−→ Xt as B →∞.

Proof. Since |eixz − 1| ≤ 2 for x, z ∈ R, it follows that when B > 1,

∣∣∣ψXt(z)− ψ
X

(B)
t

(z)
∣∣∣ = t ·

∣∣∣∣∫ −B
−∞

[
eixz − 1

]
dΠ(x) +

∫ ∞
B

[
eixz − 1

]
dΠ(x)

∣∣∣∣
≤ 2t · Π((−∞,−B) ∪ (B,∞))

By condition (2) in Theorem 3.1.1, it follows that this converges to zero for B → ∞.

Therefore, ψ
X

(B)
t

converges uniformly to ψXt , and the result follows. �

Corollary 3.2.34. Every real-valued Lévy process can be realized as the independent sum

of a Brownian motion component, an essentially bounded Lévy process, and a compound

Poisson process with arbitrarily small rate r > 0.

Proof. The decomposition is straightforward. Let r > 0 be given. Consider that Π((−∞,−1)∪

(1,∞)) <∞ by condition (2) in Theorem 3.1.1, and so we simply choose B > 0 large enough

that

Π((−∞,−B) ∪ (B,∞)) < r

Then Π can be written as Π|[−B,B] + Π|R\[−B,B]. The first corresponds to an essentially

bounded process Xess
t , and the second corresponds to a Lévy process whose Lévy measure

has total mass r > 0 on the real line. By Corollary 3.2.7, this second process is a compound
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process Pt with rate r. Therefore, we can write

Xt
d
= Xess

t + Pt

where Xess
t is an essentially bounded Lévy process which also includes the drift and Brownian

motion components. �

3.3 Taxonomy of ID(∗) Distributions

Throughout this section, we consider the so called pure-point processes for which µ = σ = 0,

so that the Brownian motion component µt + σBt has been factored from the independent

Lévy process under investigation.

3.3.1 Lévy α-Stable Process

The Lévy α-stable distributions for 0 < α < 2 have a convenient representation whose Lévy

measure Π is given by

dΠ(x)

dx
=

 A+
1

|x|α+1 , x > 0

A−
1

|x|α+1 , x < 0

Here the constants A+, A− ≥ 0 are used to skew the distribution. For our purposes, it will

be most convenient to treat the positive and negative parts separately, so that Π can be

realized as the Lévy measure of the weighted sum of two independent random variables.

The distribution will not have a well defined expectations for 0 < α < 1, but can be expressed

as in (3.4) and will have paths of bounded variation almost surely. If 1 < α < 2, then the

distribution can be expressed as in (3.3), and has paths of unbounded variation almost surely.
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Finally, if α = 1 then neither (3.3) nor (3.4) are appropriate, and a general expression such

as the soft equation (3.1) must be used. In any case, if A+ = A− then the distribution is

symmetric.

Each of these integrals can be expressed compactly in terms of analytic functions in the

complex plane. We will let z 7→ log z denote the principal branch of the complex logarithm,

defined on C\(−∞, 0]. For 0 < α < 2 with α 6= 1, we let z 7→ zα denote the function

z 7→ eα log z on C\(−∞, 0], with the addition that 0α = 0. The integrals then evaluate as

0 < α < 1

∫ ∞
0

[
eixz − 1

] 1

|x|α+1
dx = Γ(−α) · (−iz)α

= − π

Γ(α + 1) sin(απ)
|z|α
[

cos
(απ

2

)
∓ i sin

(απ
2

)]

α = 1

∫ ∞
0

[
eixz − 1− ixz

1 + x2

]
1

|x|2
dx = −iϑ

(
log(−iz)− (1− γ)

)
= −π

2
|z|
[
1± i 2

π

(
log |z| − (1− γ)

)]
1 < α < 2

∫ ∞
0

[
eixz − 1− ixz

] 1

|x|α+1
dx = Γ(−α) · (−iz)α

= − π

Γ(α + 1) sin(π(α + 1))
|z|α
[

cos
(απ

2

)
∓ i sin

(απ
2

)]

Here γ ≈ 0.577 is the Euler–Mascheroni constant, and is a byproduct of the use of the

soft cutoff. The expressions ± and ∓ in the equations represent the functions sign(z) and

−sign(z), respectively. The integrals evaluated from (−∞, 0] are simply the complex con-

jugates of these expressions. When 0 < α < 1, the function (−iz)α is holomorphic in the

upper half-plane, and so by the Paley–Weiner theorem (Strichartz, 2003) the corresponding

distribution will be nonnegative.

Once the general form of the CGF ψα for these distributions have been established, they are

57



often modified by introducing constants in the following way. Let

hα(z) =


−(−iz)α 0 < α < 1

−iz
(

log(−iz)− (1− γ)
)

α = 1

(−iz)α 1 < α < 2

Then the symmetric α-stable distribution with size parameter c > 0 has a CGF ψα given by

ψα(c · z) = k · Re [hα(c · z)] = −cα|z|α

where k > 0 is some constant k = | sec(απ/2)| for α 6= 1 and k = 2
π

for α = 1. The tails of

the densities of the symmetric distributions with size c decay like

Γ(α + 1) sin(απ/2)

π
cα|x|−(α+1)

The non-symmetric α-stable distributions are a mixture of the real and imaginary parts of

hα, so that for the anti-symmetrization parameter β ∈ [−1, 1] we have

ψ(z) = k ·
(

Re[hα(c · z)] + iβIm[hα(c · z)]
)

which leads to the formulas typically used to describe these distributions. The original

parameters can be recovered through β = (A+−A−)/(A++A−) and the dilation t 7→ |Γ(−α)|
k

t.

Note that hα(0) = 0, and when 1 < α < 2 we have ψ′α(z) → 0 as z approaches 0 in the

closed upper half plane. This first condition is necessary in order to make ψ a CGF, while

the second guarantees that a mixture of the real and imaginary parts generates a random

variable with zero mean.

The Lévy α-stable processes have a long history in financial modeling; see, for instance,

Chapter 5 in Voit (2005). The distributions lie in the EGGC class, with the nonnegative
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versions for 0 < α < 1 also being GGC. When α = 1/n for n = 2, 3, 4, . . ., the nonnegative

distribution is also HCM (Bondesson, 1992, Example 5.6.2).

3.3.2 Gamma Process

The Gamma subordinator process Γt is the process given in form (3.4) with µ = σ = 0 and

Lévy measure Π defined as

dΠ(x)

dx
=
e−x

x
1(0,∞)(x)

Its characteristic function can be computed explicitly as

ϕΓt(z) = (1− iz)−t

As its name implies, Γt follows a Gamma distribution with unit scale parameter and shape t,

such that Γ1 ∼ Exp(1) is exponentially distributed. The Gamma process has finite moments

of all orders, and a smooth density given by

f(x) =
1

Γ(t)
xt−1e−x, x > 0

From this we see that Γt is HCM for all t > 0, and MED for small times 0 < t ≤ 1.

3.3.3 Variance Gamma Process

The Variance Gamma (VG) process is produced by subordinating a Brownian motion process

at+bBt to an independent scaled Gamma subordinator vΓt, producing a process avΓt+bBvΓt .

The choice of parameters a ∈ R, b, v > 0 can produce a variety of different distributions,
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however they can all be written in form (3.3) with µ = σ = 0 and Lévy measure Π given by

dΠ(x)

dx
= a1

eb1x

|x|
1(−∞,0)(x) + a2

e−b2x

x
1(0,∞)(x)

for some parameters a1, a2, b1, b2 > 0. Under appropriate scaling when the drift a = 0, this

includes the Laplace distribution (when t = 1) with density

f(x) =
1

2
e−|x|

In this sense, the VG process is a kind of partial symmetrization of the Gamma process.

From the form of the Lévy measure it is clear that the VG process is EGGC.

3.3.4 Inverse Gaussian Process

The Inverse Gaussian (IG) subordinator process Tt is the process given in form (3.4) by

taking µ = σ = 0 and Lévy measure Π given by

dΠ(x)

dx
=
e−x

x3/2
1(0,∞)(x)

The CGF can be computed explicitly as

ψTt(z) = 2
√
πt
(

1−
√

1− iz
)

The Inverse Gaussian process is so named because, for various choices of t > 0 and scaling

parameters, it occurs as the first passage time for a Brownian motion process with positive

drift. The process has a smooth density given by

f(x) =
t

x3/2
e−(x−

√
πt)

2
/x, x > 0
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From the Lévy measure it is clear that the IG subordinator is in GGC.

3.3.5 Normal-Inverse Gaussian Process

The Normal Inverse Gaussian (NIG) process is produced by subordinating a Brownian mo-

tion process at+ bBt to an independent scaled Inverse Gaussian subordinator vTt. The Lévy

measure and density cannot be expressed without the use of modified Bessel functions, but

the CGF is given by

ψ(z) =
1−
√
vb2z2 − 2ivaz + 1

v

As the process is represented as Brownian motion subordinated by a GGC, it is necessarily

EGGC.

3.3.6 Truncated Lévy Process

Truncated Lévy distributions were originally introduced in Mantegna and Stanley (1994) as

true truncations of α-stable distributions. Analytic expressions were subsequently derived in

Koponen (1995) by using an ‘exponential’ truncation, in which form they became established

in the financial literature (Bouchaud and Potters, 2000; Voit, 2005). Although closed form

expressions for their densities are unavailable, they can be understood as modifications of

Lévy α-stable distributions which have an additional decay parameter λ > 0. They can be

most easily constructed as a pure point processes whose Lévy measures are given by

dΠ(x)

dx
=

 A+
1

|x|α+1 e
−λ|x|, x > 0

A−
1

|x|α+1 e
−λ|x|, x < 0
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The smooth exponential decay e−λ|x| confirms that these distributions have moments of all

orders, so they can be expressed in the form of equation (3.3). Splitting the integral according

to its positive and negative parts again, we get

∫ ∞
0

[
eixz − 1− ixz

] e−λ|x|
|x|α+1

dx

= Γ(−α)
[
(λ− iz)α − λα + iαλα−1z

]
(3.7)

for α 6= 1 and

∫ ∞
0

[
eixz − 1− ixz

] e−λ|x|
|x|2

dx

= (λ− iz)
(

log (λ− iz)− 1
)
− λ
(

log λ− 1
)

+ i(log λ)z

for α = 1. This mimics the form of the α-stable CGF, but with additional factors which

normalize the 0th and 1st cumulants because of the use of λ−iz in place of −iz. The integrals

evaluated from (−∞, 0] are the complex conjugates of these expressions.

Unlike the α-stable distributions, equation (3.7) remains valid for any α < 2 with α 6= 0, 1,

including negative values of α (Carr et al., 2002). For the special case of α = 0, we have

∫ ∞
0

[
eixz − 1− ixz

] e−λ|x|
|x|

dx

= log(λ− iz)− log λ+ iλ−1z

A similar change of parameters can be used to simplify the expressions for these distributions.
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Let Hα be the functions

Hα(x) =


1

α(α−1)
[xα − αx+ α− 1] , α ≤ 2, α 6= 0, 1

x [log x− 1] + 1, α = 1

x− log x− 1, α = 0

which are the solutions to the Cauchy–Euler differential equation

x2H ′′′α − (α− 2)xH ′′α = 0,

Hα(1) = H ′α(1) = 0, H ′′α(1) = 1

for α ≤ 2. Now let C > 0 be a size parameter, and consider a stochastic process C ·Xt with

characteristic function

ϕC·Xt(z) = etψα,β(C·z)

where

ψα,β(z) = Re [Hα(1− iz)] + iβIm [Hα(1− iz)]

and β ∈ [−1, 1] denotes the skewness. This stochastic process is driven by a random vari-

able C · X with characteristic function ϕX(z) = eψα,β(C·z), which follows a truncated Lévy

distribution with λ = 1. Furthermore, any truncated Lévy distributed with a specified λ

can be realized this way, since the stochastic process Xt follows a truncated Lévy law with

λ ∼ t1/α, up to rescaling.

Let TL(α, β, C, T ) denote the law according to C ·XT , where X1 ∼ X has CGF ψα,β defined

above. From the definition, it is clear that C · XT has zero mean, variance equal to C2T ,
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and higher order cumulants (for j > 2) given by

κj[C ·XT ] = (−i)jCjT · ψ(j)
α,β(0)

=

 CjT · (2− α) · (3− α) · · · (j − 1− α), j > 2 even

βCjT · (2− α) · (3− α) · · · (j − 1− α), j > 2 odd

In particular, the kurtosis is given by

kurt[C ·XT ] =
κ4[C ·XT ]

κ2[C ·XT ]2
=

(3− α) · (2− α)

T

which is a strictly decreasing function in α, such that we have kurt[C ·XT ]→ 0 as α→ 2−

and kurt[C ·XT ]→∞ when α→ −∞. When β = 0, so that the distribution is symmetric,

the tails of the density decay like

1

2α(α− 1)Γ(−α)
· C

αTe−|x|/C

|x|α+1

for α 6= 0, 1, and like CαTe−|x|/C/2|x|α+1 for α = 0, 1. The expression

1

2α(α− 1)Γ(−α)

is positive for α < 2 and α 6= 0, 1. It approaches 1/2 as α→ 1 and α→ 0, is bounded above

by 0.6, and approaches zero as α → 2− (reflecting the convergence to normal distribution)

and as α→ −∞.

Similar to the α-stable distributions, the stochastic process Xt for some fixed α and β has

paths of bounded variation almost surely when α < 1, and unbounded variation almost

surely when 1 ≤ α ≤ 2. When α > 0 the process Xt has infinite activity, while when α ≤ 0

it has finite activity and can therefore be realized as a compound Poisson process.
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Chapter 4

Sample Lévy Covariance Ensemble

Definition 4.0.1 (SLCE). Let Xt be a fixed Lévy process, T > 0 a finite time horizon,

and λ ∈ (0,∞) a rectangular shape parameter. We consider the following random matrix

ensemble SN parametrized by the triplet (Xt, T, λ), called the Sample Lévy Covariance

Ensemble (SLCE), as follows:

I p = p(N) is a function p : N→ N such that p(N)/N → λ as N →∞.

I X = XN is a sequence of N × p random matrices, such that the entries [XN ]i,j for

N ∈ N, 1 ≤ i ≤ N , 1 ≤ j ≤ p are all i.i.d. and follow the fixed distributions

[XN ]i,j
d
= XT/N

I We define the sequence of p× p matrices SN by

SN = X†NXN

Theorem 4.0.2. Let SN be an SLCE with parameters (Xt, T, λ), and let µN denote the ESD
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of SN . Then there exists a probability distribution µ(Xt,T,λ) ∈ P(R+) such that

µN
d−→ µ(Xt,T,λ)

almost surely. The distribution µ(Xt,T,λ) depends continuously on its parameters T, λ > 0,

and continuously (in the weak sense) on the distribution of Xt. Furthermore, µ(Xt,T,λ) is

independent of all higher order skewness in Xt, such that if Xt and X ′t are two Lévy processes

with [X]t
d
= [X ′]t, then µ(Xt,T,λ)

d
= µ(X′t,T,λ).

4.1 Tools from Random Matrix Theory

Theorem 4.1.1. (Benaych-Georges and Cabanal-Duvillard, 2012, Theorem 3.2) Let YN be

a sequence of N × p random matrices with i.i.d. centered entries whose distribution might

depend on N and p. Suppose p : N→ N is a function of N as above, with p(N)/N → λ > 0

as N →∞, and that there is a nonnegative sequence c = (cn)n≥2 such that c
1/n
n is bounded,

and such that for each fixed n ≥ 2,

E [|[Y]1,1|n]

Nn/2−1
→ cn, as N →∞

Then the ESD of 1
N

Y†NYN converges, as N → ∞, to a probability measure µλ,c ∈ P(R+)

which depends continuously on the pair (λ, c). If cn = 0 for all n ≥ 3, then µλ,c is a scaled

version of the Marčenko–Pastur law with shape λ. Otherwise, µ(λ,c) has unbounded support

but admits exponential moments of all orders.

Lemma 4.1.2. (Benaych-Georges and Cabanal-Duvillard, 2012, Lemma 12.2) For some

increasing sequence of values pN ∈ N, let MN denote a sequence of pN × pN independent

random Hermitian matrices. Suppose that, for any ε > 0, there is a sequence Mε
N of pN ×

pN independent random Hermitian matrices whose empirical spectral distributions converge
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almost surely to a probability measure µε ∈ P(R+). Furthermore, suppose that

rank(MN −Mε
N) ≤ εpN

for N large enough. Then the empirical spectral distribution of MN converges in distribution

almost surely to a deterministic probability distribution, which coincides with limε→0+ µε.

4.2 Limiting Distribution on Essentially Bounded Lévy

Processes

Theorem 4.2.1. Let SN be an SLCE with parameters (Xt, T, λ), and let µN denote the ESD

of SN . Suppose further that Xt is essentially bounded with zero mean. Then almost surely

µN
d−→ µ(Xt,T,λ)

where µ(Xt,T,λ) ∈ P(R+) is a probability measure which depends continuously on the parame-

ters T, λ > 0, and continuously (in the weak sense) on the distribution of Xt. Furthermore,

µ(Xt,T,λ) is independent of the odd cumulants of Xt, such that if Xt and X ′t are essentially

bounded Lévy processes and κ2n[X1] = κ2n[X ′1] for all n ∈ N, then µ(Xt,T,λ)
d
= µ(X′t,T,λ).

Proof. Our goal is to show that the SLCE satisfies the conditions of Theorem 4.1.1 in some

appropriate sense. We define

YN =
√
NXN

where XN is the N × p matrix appearing in the SLCE. Then the distribution of the i.i.d.

entries in YN follow
√
NXT/N . As the proof of Theorem 4.1.1 relies only on Theorem 2.6
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and Proposition 2.7 in Benaych-Georges and Cabanal-Duvillard (2012), which themselves

only make assumptions about the even moments, we note that µ(λ,c) only depends on λ and

c2n for n = 1, 2, 3, . . .. Our goal is then to show that

E [|[Y]1,1|2n]

Nn−1
=

E
[(√

NXT/N

)2n
]

Nn−1
= N · E[X2n

T/N ] = N ·m2n[XT/N ]

converges, as N →∞, to some sequence c2n for which c
1/2n
2n is bounded.

We observe, as in Lemma 3.2.30, that by (2.4) the moments m2n[XT/N ] can be expressed as

sums of products of the form

2n∏
j=1

κj[XT/N ]kj =
2n∏
j=1

(
T

N

)kj
κj[X1]kj

with kj ∈ {0, 1, 2, . . . , 2n} such that
∑2n

j=1 j · kj = 2n, and thus

1 ≤
2n∑
j=1

kj ≤ 2n

Consequently, the expression N ·m2n[XT/N ] can be written as the sum of terms of the form

(
T

N

)∑2n
j=1 kj−1 2n∏

j=1

κj[X1]kj

The highest order term in N corresponds to the single choice k2n = 1 and kj = 0 for

j = 1, . . . , 2n− 1, which occurs once in the expansion for m2n[XT/N ] as the term (with unit

coefficient) κ2n[XT/N ]. Therefore, we can write

N ·m2n[XT/N ] = Tκ2n[X1] +O(N−1) = κ2n[XT ] +O(N−1)
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and it follows that

E [|[Y]1,1|2n]

Nn−1

N→∞−−−→ κ2n[XT ] = c2n

Since Xt is essentially bounded, there exist constants B,C > 0 such that κ2n[XT ] ≤
2n
√
CB2n ≤ (1 + C)B, which shows that 2n

√
c2n is bounded. Since

1

N
Y†NYN = X†NXN

it follows from Theorem 4.1.1 that the ESD for SN has a limiting distribution which depends

only on λ and the even moments κ2n[XT ]. We write this distribution as µ(Xt,T,λ), and note

that it depends continuously on λ, and also continuously on T by virtue of the relationship

between κ2n[XT ] and c2n. Furthermore, if X
(n)
t is a sequence of essentially bounded Lévy

processes which converges weakly to some process Xt, then convergence of the cumulants

implies that µ
(X

(n)
t ,T,λ)

converges weakly to µ(Xt,T,λ). �

4.3 Proof of Theorem 4.0.2

Proof. Let Xt be the driving process of the SLCE. By Corollary 3.2.34, for any r > 0 we can

decompose the process into the sum of two independent processes

Xt
d
= Xess

t + Pt (4.1)

where Xess
t is an essentially bounded process and Pt is a compound Poisson process with rate
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r. Then for each N ∈ N, we can write

XN = X̂N + PN

where X̂N and PN are two independent N × p matrices, whose entries are i.i.d. and follow

the distributions Xess
T/N and PT/N , respectively. Let ŜN = X̂†NX̂N . We note that

rank
(
SN − ŜN

)
≤ 2

p∑
j=1

1Xj
N 6=X̂j

N
= 2

p∑
j=1

1PjN 6=0 (4.2)

where the superscript j indicates the jth column. Since the columns of PN are composed of

N independent copies of the compound Poisson process PT/N , the probability

P
[
1PjN 6=0 = 0

]
= P[PT/N = 0]N = e−rT

Therefore, the right-hand side of (4.2) is a multiple of a Bernoulli distribution with p(N)

trials and probability of success q = 1− e−rT . Therefore, by (2.1), we have that

P
[
rank

(
SN − ŜN

)
≥ 4p(N)(1− e−rT )

]
≤
(e

4

)p(N)(1−e−rT )

Since (e/4)1−e−rT < 1 and p(N)/N → λ > 0 as N →∞, it follows that

∞∑
N=1

(e
4

)p(N)(1−e−rT )

<∞

By Borel–Cantelli, we have almost surely that
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rank
(
SN − ŜN

)
≤ 4p(N)(1− e−rT ) (4.3)

for large enough N . Now if ε > 0 is given, we simply choose r > 0 small enough so that

4(1 − e−rT ) < ε. By Theorem 4.2.1, the sequence ŜN has a limiting spectral distribution

µε. By Lemma 4.1.2, so does SN , given by limε→0+ µε. Continuity of µε in the parameters

T, λ > 0 implies continuity of µ.

Now suppose that X
(n)
t is a sequence of Lévy processes converging in distribution to a Lévy

process Xt. Let µ(n) and µ be the appropriate limiting distributions for the SLCE with

parameters (X
(n)
t , T, λ) and (Xt, T, λ). By Corollary 3.1.3, we have

Π(n)(R\[−B,B])
n→∞−−−→ Π(R\[−B,B])

Therefore, if ε > 0 is given, some B > 0 can be chosen in the decompositions of the form

(4.1) uniformly for all X
(n)
t and Xt. Then the essentially bounded components of each X

(n)
t

have Lévy measures Π(n)
∣∣
[−B,B]

. Then the ESD of each Ŝ
(n)
N converges to some µε,(n), and by

the continuity in Theorem 4.2.1 we have that

µε,(n) n→∞−−−→ µε

By the uniformity in ε > 0 in (4.3), it follows that

µ(n) n→∞−−−→ µ

Therefore, the limiting ESD µ is continuous in its parameters (Xt, T, λ).

Finally, suppose that Xt and X ′t are two Lévy processes with [X]t
d
= [X ′]t. For any ε > 0
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given, choose B > 0 large enough that the rates r, r′ > 0 in both decompositions of the type

(4.1) are small enough. Now if µε and µε
′

are the limiting distributions of ŜN and Ŝ′N , it

follows from Theorem 4.2.1 that µε
d
= µε

′
. Therefore, we get that µ

d
= µ′. �
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Chapter 5

Interlude: Free Probability

5.1 Primer on Free Probability

Free Probability was introduced by Voiculescu in the 1980s as an attempt to solve various

problems in the theory of operator algebras (for an introduction, see Voiculescu et al., 1992).

In brief, it introduced two commutative operations: Free additive convolution µ� ν defined

for any two probability measures µ and ν on R, and Free multiplicative convolution µ � ν

defined for any nonnegative probability measure µ and any general probability measure ν

on R. These operations can be defined through somewhat complicated manipulations of the

Stieltjes transforms of the measures involved, or by translating the measures onto objects in

a large operator algebra.

Connections to Random Matrix Theory were later identified when the following fact was

realized. Suppose AN and BN are independent sequences of Hermitian random matrices,

whose ESD’s converge empirically to µ and ν, respectively. Let UN be a sequence of Haar
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distributed orthogonal matrices, independent from AN and BN . Then the ESD of the sum

UNANU†N + BN

converges empirically to µ� ν. Similarly, if µ is nonnegative, then the ESD of the product

√
ANUNBNU†N

√
AN ∼ ANUNBNU†N

converges empirically to µ� ν. The inclusion of the matrices UN can be omitted if either of

the random matrix ensembles AN or BN are asymptotically unitarily invariant.

Much of the theory of Free Probability mirrors classical probability through the Bercovici–

Pata bijection Λ on the space of probability measures, which takes a measure µ in the

classical setting and produces its free counterpart Λ(µ). For instance, the Λ-image of normal

distribution is Wigner’s famous Semicircle distribution, which occurs as the limit in the Free

central limit theorem. Similarly, the Marčenko–Pastur distribution mpλ, after a rescaling,

occurs as the Λ-image of Poisson distribution with parameter 1/λ.

The bijection also connects classically infinitely divisible distributions to free infinitely di-

visible distributions due to the fact that

ν∗nn → µ ⇐⇒ ν�nn → Λ(µ)

This leads naturally to an idea of Free Lévy processes, which occur as the Λ-image of clas-

sical Lévy processes. One important distinction is that a classical Lévy process Xt is a

subordinator (nonnegative for all t > 0) if and only if it is nonnegative for a single t > 0.

Such a property on the supports of Λ(Xt) does not hold, as it is possible to find a non-

subordinator Xt while Λ(Xt) has strictly positive support for some values of t ≥ t0 and not

for 0 < t < t0. However, if Xt is known to be a subordinator, then it follows that Λ(Xt)
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will have nonnegative support for all t > 0. These Λ-images of subordinators are called Free

Regular probability measures.

In 2008, Benaych-Georges began publishing on techniques to generalize Free Probability to

a setting suitable for the sum of rectangular matrices, with a focus on singular values rather

than eigenvalues. For a parameter λ ∈ (0, 1], he defined a commutative binary operation

�λ on the space of probability measures. If A
(1)
N and A

(2)
N are N × p random matrices with

p/N → λ whose empirical singular distributions converge to µ and ν, respecitvely, and if

UN ,VN are Haar distributed orthogonal matrices of the appropriate sizes with all matrices

independent of one another, then the empirical singular distribution of the sum

UNA
(1)
N V†N + A

(2)
N

converges empirically to µ�λ ν.

The approach to the operations in Free Probability presented here follows along the lines of

Chistyakov and Götze (2011). This avoids the discussion of operator algebras entirely, and

also presents the operations in terms of analytic subordination rather than local inverses.

All major lemmas and theorems are proved therein.

5.1.1 Existence of Free Addition and Multiplication

Definition 5.1.1. The nontangential limit z
]−→ a for a ∈ R ∪ {∞}, is the limit for z ∈ C+

or z ∈ C− (depending on the context) to a, with the condition that |Re(z)|/|Im(z)| remains

bounded.

Definition 5.1.2. An analyic funtion f : C+ → C+ is said to be in the Nevanlinna class N .
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If, additionally, we have that

lim
z
]−→∞

f(z)/z = 1

then we say that f is in the reciprocal Cauchy class F ⊆ N . Alternatively, if f satisfies

arg(f(z)) ∈ [argz, π) for all z ∈ C+ and extends to an analytic function on C\R+ with the

properties that f(z) = f(z), that f is nonpositive on the negative real axis, and that the

limits

lim
z
]−→0

f(z) = 0

lim
x→0−

f(x) = 0

hold, then we say that f is in the modified Krein class K ⊆ N .

Definition 5.1.3. Let µ ∈ P(R) be any probability measure on the real line. We define the

following analytic transformations on C\R:

I The reciprocal Cauchy (or reciprocal Stieltjes) transform Fµ(z) = −1/Sµ(z), where

Sµ(z) is the Stieltjes transform of µ.

I The η-transform ηµ(z) = 1− zFµ(1/z).

We note that the reciprocal Cauchy transform can be extended to all z ∈ C\supp(µ) ⊆ C\R.

The following lemma states that the class of reciprocal Cauchy transforms behaves as its

name implies: each arises precisely from a probability measure on R, and any two such

measures have a particular subordination property that allows us to define an associative,

symmetric binary operation � on P(R).

Lemma 5.1.4. If µ ∈ P(R), then Sµ(z) is a Nevanlinna function. As a result, Fµ(z) is a

Nevanlinna function as well, with Fµ ∈ F . Furthermore, any functions in F can be realized
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as the reciprocal Cauchy transform of some probability measures. Furthermore, if ν ∈ P(R),

then there exist unique Nevanlinna functions Z1, Z2 ∈ F such that

Fµ(Z1(z)) = Fν(Z2(z)) = Z1(z) + Z2(z)− z, z ∈ C+

By the definition of F , the function Fµ(Z1(z)) = Fν(Z2(z)) is in F as well. As a result,

there is a unique probability measure, denoted by µ� ν ∈ P(R), such that

Fµ�ν(z) = Fµ(Z1(z)) = Fν(Z2(z)), z ∈ C+

This defines the operation � as an associative, symmetric binary operation on the space of

probability measures P(R), called Free additive convolution.

As was discussed in Section 3.1, distributions µ ∈ P(R) generate a discrete semigroup µ∗n for

n ∈ N by taking successive classical additive convolutions. The extension of the parameter

to continuous values is the focus in the theory of classical infinite divisibility. In contrast,

the following lemma shows that the Free additive case is completely different: a probability

measure generates a continuous semigroup µ�t, where t is allowed to take values {0}∪ [1,∞)

without any restrictions on the initial distribution µ. The theory of Free infinite divisibility

will therefore be concerned primarily with the extension of t to the range (0, 1).

Lemma 5.1.5. If we consider the n-fold convolution µ�n, there exists a unique Z ∈ F such

that

z = nZ(z)− (n− 1)Fµ(Z(z))

This Z is such that Z(z) = Fµ�n(z). This relation can be relaxed by replacing n ∈ N with

t ≥ 1, so that there is a �-semigroup of probability measures µ�t for t ≥ 1 with µ�1 = µ,
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such that for any t1, t2 ≥ 1,

µ�t1 � µ�t2 = µ�(t1+t2)

Finally, a similar subordination property can be applied to the η-functions to produce a

multiplicative Free operation on nonnegative probability measures.

Lemma 5.1.6 (Arizmendi and Hasebe, 2013). The modified Krein class K is precisely the

class of η-functions of nonnegative measures µ ∈ P(R+). Furthermore, if µ, ν ∈ P(R+),

then there exist two unique members of the modified Krein class K1, K2 ∈ K such that

ηµ(K1(z)) = ην(K2(z)) =
K1(z)K2(z)

z
, z ∈ C+

As a result, there exists a unique probability measure, denoted by µ� ν ∈ P(R+), such that

ηµ�ν(z) = ηµ(K1(z)) = ην(K2(z)), z ∈ C+

This makes � into an associative symmetric binary operation on the space of nonnegative

probability measures P(R+), called the Free multiplicative convolution.

5.1.2 Free Lévy Processes and Infinite Divisibility

Similar to classical infinite divisibility, there exists complete characterizations of infinite

divisibility for Free additive convolution. We denote this class by ID(�).

Theorem 5.1.7 (Voiculescu et al., 1992; Pérez-Abreu and Sakuma, 2012). A measure

µ ∈ ID(�) if and only if it admits a right inverse F−1
µ on a region of the shape

Γη,M = {z ∈ C+ : |Re(z)| < η|Im(z)|, Im(z) > M}
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where F−1
µ is univalent, and furthermore the function Rµ(z) , zF−1

µ (1/z)−1 for 1/z ∈ Γη,M

can be expressed as

Rµ(z) = γz + σ2z2 +

∫
R

(
1

1− xz
− 1− xz1[−1,1](x)

)
dΠ(x)

for a triplet (γ, σ,Π) where γ ∈ R, σ ≥ 0, and Π is a Lévy measure. When this exists, the

triplet uniquely determines the distribution of µ.

Corollary 5.1.8 (Bercovici and Pata, 1999). There exists a well defined bijection between

the space of classically infinitely divisible distributions ID(∗) ⊂ P(R) and the space of

Freely infinitely divisible distributions ID(�) ⊂ P(R), called the Bercovici–Pata bijection

Λ : ID(∗)→ ID(�), which maps the Lévy triplet of one to the other.

Example 5.1.9. The Bercovici–Pata bijection implies that all classical distributions have

some sort of Free analog. The most immediate question is, which distribution is the Free

Gaussian, or rather what is Λ(ggg) where ggg
d
= N(0, 1)? The answer turns out to be the standard

Semicircle distribution sss, which has a continuous, compactly supported density given by

dsss(x)

dx
=

1

2π

√
4− x21[−2,2](x)

Theorem 5.1.10 below shows that limit theorems from classical probability are guaranteed to

have free analogues. For instance, a free central limit theorem must hold, where the limiting

distribution must be sss.

Theorem 5.1.10 (Bercovici and Pata, 1999). Let µj ∈ P(R) be a sequence of distributions,

and aj ∈ R and bj > 0 some sequences of real numbers. Then the sequence of probability

measures converges in distribution

D1/bn (µ1 ∗ µ2 ∗ · · · ∗ µn) ∗ δan
d−→ µ
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if and only if the corresponding free sequence also converges in distribution

D1/bn (µ1 � µ2 � · · ·� µn)� δan
d−→ ν

Furthermore, in this case µ ∈ ID(∗) and ν ∈ ID(�), and ν = Λ(µ).

Example 5.1.11. The free analogue of the Poisson distribution with rate t > 0 can be

calculated by considering that

((
1− t

n

)
δ0 +

t

n
δ1

)�n
d−→ Λ(Nt)

as n → ∞, where Nt is the classical Poisson process with rate t. The corresponding distri-

bution is called the Free Poisson πππ�t, which can be decomposed as

πππ�t = max{0, 1− t}δ0 + πππabs
t

where the absolutely continuous part πππabs
t is given by

dπππabs
t (x)

dx
=

√
(t+ − x)(x− t−)

2πx
1[t−,t+](x) (5.1)

where t± = (1 ±
√
t)2. The distribution consists of a point mass at zero for small times

0 < t < 1, and a bulk with support [t−, t+] of width 4
√
t and center 1 + t. As t → 1−, the

bulk approaches the origin, finally colliding with it and “absorbing” the point mass when

t = 1, after which it moves away from the origin as t > 1 grows. We note that this behavior

is consistent with Theorem 5.1.16 below.

Lemma 5.1.12 (Hasebe, 2012). Suppose µ ∈ ID(�). Then µ�t ∈ P(R+) for all t ≥ 0

if and only if µ = Λ(ν) for some ν ∈ ID(∗) with ν ∈ P(R+), which is to say that ν is

80



the distribution of a subordinator process. We say that such a distribution is Free Regular,

written µ ∈ FR.

5.1.3 Free Regular Distributions

A distribution µ�t whose distribution µ = µ�1 is in P(R+)∩ ID(�) may not necessarily have

nonnegative support for all small times µ�t, 0 < t < 1. Those distributions which have this

property, satisfying the conditions of Lemma 5.1.12, are called Free Regular and denoted

by FR. The Free Regular distributions are in correspondence with classical nonnegative

infinitely divisible distributions, the subordinators, as being nonnegative is a path property

in the classical setting.

Example 5.1.13. Early on in the theory of Free Probability, it was suspected that the Free

multiplication

µ� ν, µ, ν ∈ ID(�)

would remain in ID(�). Unfortunately, this is not the case, as the shifted semicircle distri-

bution µ = sss� δ2 with density

dµ(x)

dx
=

1

2π

√
4− (x− 2)21[0,4](x)

is positive and µ ∈ ID(�), however µ � µ /∈ ID(�). We note that, in spite of the fact that

µ ∈ P(R+), the distributions of µ�t for 0 < t < 1 are no longer nonnegative. In fact, the

support of µ�t is [2t − 2
√
t, 2t + 2

√
t] for all t > 0, and so µ�t /∈ P(R+) for 0 < t < 1. As

a result, µ /∈ FR. The following theorem shows that this issue is resolved when considering

products µ� ν and one of the two distributions is Free Regular.

Lemma 5.1.14 (Arizmendi et al., 2013). Let µ, ν ∈ FR and σ ∈ ID(�). Then
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I µ� ν ∈ FR

I µ� σ ∈ ID(�)

I
√
πππ � µ ∈ ID(�)

I σ2 ∈ FR, and there exists some unique υ ∈ FR such that σ2 = πππ � υ

5.1.4 Regularization of Free Addition

Theorem 5.1.15 (Belinschi, 2008). Let µ, ν ∈ P(R), neither of which are point masses.

Then µ� ν has no singular continuous part, and we have the following properties:

I The discrete part of µ� ν has an atom located at a ∈ R if and only if a can be written

as a = b+c for some (necessarily unique) values b, c ∈ R such that µ({b})+ν({c}) > 1.

Furthermore,

(µ� ν)({a}) = µ({b}) + ν({c})− 1

I The absolutely continuous part of µ � ν can be written with a density f : U → [0,∞)

where U ⊆ R is open and f is analytic on U , such that

(µ� ν)abs(A) =

∫
A

f(x)dx

for any Borel set A ⊆ R.

Theorem 5.1.16 (Belinschi and Bercovici, 2004). Let µ ∈ P(R), and let t > 1. Then the

measure µ�t has no singular continuous part, and we have the following properties:

I If a ∈ R, the discrete part of µ�t includes an atom located at a · t if and only if a is an
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atom of µ with µ({a}) > 1− 1/t, in which case

µ�t({a · t}) = 1− t(1− µ({a}))

Note that if Nt denotes the total number of atoms of µ�t, then this leads to the inequality

Nt <
t
t−1

.

I If µ�t has two distinct atoms a < b, then µ�t((a, b)) > 0.

I The absolutely continuous part of µ�t can be written with a density ft : Ut → [0,∞)

where Ut ⊆ R is open and each ft is analytic on each Ut, such that

(µ�t)abs(A) =

∫
A∩Ut

ft(x)dx

for any Borel set A ⊆ R.

5.2 Rectangular Free Probability

Definition 5.2.1. For λ ∈ [0, 1], we define the U and T function as

U(z) ,
(λ+ 1) +

√
(λ+ 1)2 + 4λz

2λ

T (z) , (λz + 1)(z + 1)

the former of which is analytic for |z| < (λ+ 1)2/4λ. When λ = 0 we simply take U(z) = z.

We note that T (U(z − 1)) = z where U is analytic. If µ ∈ P(R), we define the rectangular

Cauchy transform with ratio λ of µ as the analytic function

Hµ(z) , z · T
(

1

z
Gµ2

(
1

z

)
− 1

)
=
λ

z
Gµ2

(
1

z

)2

+ (1− λ)Gµ2

(
1

z

)
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which is well defined on C\R+.

Lemma 5.2.2 (Benaych-Georges, 2009a). Let λ ∈ [0, 1], and let µ ∈ P(R) be a probability

measure. Then Hµ has a well defined functional inverse on an interval (−ε, 0) for some

ε > 0, and the expression

Cµ(z) , U

(
z

H−1
µ (z)

− 1

)

is well defined on such an interval.

Theorem 5.2.3 (Benaych-Georges, 2009a). Let λ ∈ [0, 1], and let µ, ν ∈ Ps(R) be symmetric

probability measures. Then there exists a unique symmetric probability measure, denoted by

µ�λ ν, such that

Cµ�λν(z) = Cµ(z) + Cν(z)

on the intersection of the intervals where the latter two are defined. This introduces a well

defined symmetric binary operation �λ on the subset of symmetric probability measures in

P(R), called the λ-shaped Rectangular Free additive convolution.

Corollary 5.2.4. If µ, ν ∈ Ps(R) are symmetric probability measures, then

µ�0 ν =
√
µ2 � ν2

µ�1 ν = µ� ν

Theorem 5.2.5 (Benaych-Georges, 2010). If µ, ν ∈ P(R+) are nonnegative probability mea-

sures and λ ∈ (0, 1), then

√
µ�mpλ �λ

√
ν �mpλ =

√
(µ� ν)�mpλ

Theorem 5.2.6 (Belinschi et al., 2009b). If µ, ν ∈ Ps(R) are symmetric probability measures
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and λ ∈ (0, 1), then

(µ�λ ν)({0}) ≥ µ({0}) + ν({0})− 1

On the other hand, if µ({0}) + ν({0}) < 1 then there is some ε > 0 such that

(µ�λ ν)((−ε, ε)) = 0

The following two theorems summarize the theory of Rectangular Free infinite divisibility.

Theorem 5.2.7 (Benaych-Georges, 2010). A measure

µ ∈ Ps(R)

belongs to ID(�λ) if and only if there exists a Freely regular probability measure ν ∈ FR such

that

µ =
√
ν �mpλ

Furthermore, for any t > 0 we have

µ�λt =
√
ν�t �mpλ

Theorem 5.2.8 (Belinschi et al., 2009b). Suppose µ, ν ∈ Ps(R) are symmetric probability

measures with λ ∈ (0, 1), and µ ∈ ID(�λ). If (µ �λ ν)({0}) > 0 then µ({0}) + ν({0}) > 1

and

(µ�λ ν)({0}) = µ({0}) + ν({0})− 1
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5.3 Asymptotics of Large Random Matrices

Theorem 5.3.1 (Voiculescu et al., 1992). Let µ, ν ∈ P(R) be any real-valued probability

measures. Let AN and BN be N × N random Hermitian matrices. Suppose that, almost

surely, the ESD of AN converges in distribution to µ and the ESD of BN converges in

distribution to ν. Finally, let UN denote a sequence of N ×N random orthogonal matrices.

Suppose all matrices are independent from one another and for each N . We take

CN = UNANU†N + BN

Then the ESD of CN converges in distribution almost surely to µ � ν. Furthermore, if

AN and BN are nonnegative definite Hermitian random matrices with
√

BN denoting the

Hermitian square root of BN , and we consider

DN =
√

ANUNBNU†N
√

AN ∼ ANUNBNU†N

then the ESD of DN converges in distribution almost surely to µ� ν.

Theorem 5.3.2 (Benaych-Georges, 2009a). Let µ, ν ∈ Ps(R) be any symmetric probability

measures. Let p = p(N) be a function p : N → N such that p(N) ≤ N for all N ∈ N and

p(N)/N → λ ∈ (0, 1). Let AN and BN be N × p random matrices. Suppose that, almost

surely, the ESD of A†NAN converges in distribution to µ2 and the ESD of B†NBN converges

in distribution to ν2. Finally, let UN and VN denote sequences of N ×N and p× p random

orthogonal matrices. Suppose all matrices described are independent. Take

CN = UNANV†N + BN

Then the ESD of C†NCN converges in distribution almost surely to (µ�λ ν)2.
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Figure 5.1: Comparison of the eigenvalues of a matrix of the type described in Example 5.3.3
with N = 103, and the density of the Arcsine distribution aaa (red line).

In other words, if two N × p random matrix ensembles have limiting (symmetrized) singular

values following distributions µ and ν as N, p → ∞ with p/N → λ ∈ (0, 1), and if they are

bi-unitarily independent, then their sum has limiting singular values following µ�λ ν.

Example 5.3.3. We let rrr = 1
2
δ1 + 1

2
δ−1 denote the Rademacher distribution. It is famously

known that rrr � rrr = rrr�2 = aaa, where aaa is the Arcsine distribution concentrated on the set

[−2, 2], which can be described by the density

daaa(x)

dx
=

1

π
√

4− x2
1[−2,2](x)

From Theorem 5.3.1, we can estimate the eigenvalues of a matrix of the form

CN = UNANU†N + BN

where AN and BN are large N × N diagonal matrices with half of their diagonal entries

equal to +1 and half equal to −1. The resulting eigenvalues of CN will be approximately

distributed like aaa. An example is shown in Figure 5.1.
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5.3.1 Generalized Marčenko–Pastur and free Poisson distributions

Lemma 5.3.4 (Pérez-Abreu and Sakuma, 2012). Let πππ(t, ν) be a free compound Poisson

distribution, which is to say that πππ(t, ν) = Λ(P (t, ν)) where P (t, ν) is the classical com-

pound Poisson distribution with rate t > 0 and jump distribution ν ∈ P(R). If ν is either

nonnegative or symmetric, then

πππ(t, ν)�1/t = πππ � ν

for t > 0. In particular, we also have that for t ≥ 1,

πππ(t, ν) = D1/t

(
πππ�t
)
� ν�t

Example 5.3.5. Comparing (2.6) and (5.1), it is clear that the Marčenko–Pastur distribu-

tion mpλ is a dilation of the Free Poisson πππ�t, explicitly

mpλ = Dλ

(
πππ�1/λ

)
for any λ > 0. Looking at the limiting distribution described by Theorem 2.2.4, where

λ ∈ (0, 1), we can see from Theorem 5.3.1 that µλ,ν = mpλ�ν. If the distribution ν ∈ P(R+)

is Free Regular, so that ν�t is well defined for any t > 0, we can write

µλ,ν = mpλ � ν = Dλ

(
πππ�1/λ

)
� ν = πππ(1/λ, ν�λ)

In this case, by Theorem 5.2.7 we also have that the (symmetrized) distribution
√
µλ,ν of

the singular values of 1√
N

YN

√
TN is a distribution in ID(�λ).

Example 5.3.6. From the preceding discussion, we can also observe that the Free Poisson

distribution πππ plays the role of the exponential distribution Exp(1) as described in Sec-
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tion 3.2.5 in the context of free probability. In particular, if ν ∈ P(R+) is any nonnegative

distribution, then πππ � ν ∈ FR, so Free independent “scale-mixtures” with the Free Poisson

are necessarily Free Regular.
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Chapter 6

Performance of SLCE for EGGC and

CGGC

6.1 Quadratic Variation of a Lévy Process

To motivate this section, we consider the structure of the proof of the Marčenko–Pastur

theorem along the lines of Yao et al. (2015). We take the ensemble of matrices YN described

in Theorem 2.2.3: a random variable Y with mean zero and unit variance is chosen, and the

matrices YN are N × p with i.i.d. entries [YN ]ij
d
= Y for all N ∈ N. For brevity, we omit

N and simply write Y, letting SN(z) denote the Stieltjes transform of Y†Y. Let Yk denote

the N × (p − 1) matrix equal to Y with the kth column removed, and denote that column

vector by yk. Then the resolvent formula can be rewritten in the following form (Yao et al.,

2015, Theorem A.4):

90



SN(z) =
1

p

p∑
k=1

1

y†kyk − z − y†kYk(Y
†
kYk − zIp−1)−1Y†kyk

(6.1)

The goal of the proof is to show that the denominator of the expression converges to its ex-

pectation, and then to compute an expression for that expectation. The final form of the

proof is to show that

SN(z) ≈ 1

p

p∑
k=1

1

1− z − (λ+ λzSN(z))

which simplifies immediately to SN(z) ≈ 1/(1− z − (λ + λzSN(z))). The distribution mpλ

emerges precisely as the one whose Stieltjes transform satisfies this equation.

There are two critical steps in the proof that may be violated by the substitution of an SLCE

type sequence X in place of the MP type Y. Both rely essentially on the behavior of the

denominator in (6.1). We will address the second in Section 6.2. The first relies on the fact

that each y†kyk, converges almost surely to 1. This is true for MP-type matrices, since the

constant distribution of the entries in the growing columns is necessarily Gaussian-like. In

contrast, the sum of the squares of a column in X will converge almost surely to a random

variable following a distribution depending on the driving process Xt.

The structure of the SLCE is such that each of the p independent columns represents the

fluctuations of a Lévy process Xt as it is sampled at N equally spaced points over an interval

[0, T ]. These observations are given by

0 = X0, XT/N , X2·T/N , . . . , XN ·T/N = XT

The i.i.d. entries [X]jk
d
= XT/N are related to the fluctuations over the jth subinterval due to
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the time-invariance of the Lévy process distribution, namely that

[X]jk
d
= Xj·T/N −X(j−1)·T/N

d
= XT/N

Let us consider letting the number of columns p remain fixed and take N → ∞, so that

λ → 0+. In the classical setting, the M–P law converges weakly to the point mass at 1,

reflecting the fact that the sample covariance of any two columns converges to 0, while the

sample variance of each column converges to 1. For a non-Gaussian Lévy process, however,

this will not be the case.

Let Xt be a Lévy process; we will assume a finite fourth moment for the time being. Suppose

that the mean µ of X1 is known, but we are trying to estimate the variance σ2 of X1 from the

N + 1 observations of Xt described above. The corresponding sample variance σ̂2 from these

observations can be expressed by first computing the sample quadratic variation process

Y
(N)
T =

N∑
j=1

Z2
j

where Zj = Xj·T/N −X(j−1)·T/N ∼ XT/N are i.i.d. From here we note that

E
[
Y

(N)
T

]
= N · E

[
X2
T/N

]
= N ·

(
var
[
XT/N

]
+ E

[
XT/N

]2)
= N ·

(
T

N
σ2 +

T 2

N2
E [X]2

)
= T · σ2 +

T 2

N
µ2

so that it is clear that the following expression for the sample variance estimator σ̂2 is
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unbiased:

σ̂2 =
1

T

N∑
j=1

(
Zj −

T

N
µ

)2

=
1

T
Y

(N)
T +

µ

N
(Tµ− 2XT )

To compute the variance of σ̂2, we calculate

var
[
σ̂2
]

= E[
(
σ̂2
)2

]− E
[
σ̂2
]2

= E

( 1

T

N∑
j=1

Z̃2
j

)2
− σ4

=
N

T 2
E
[
Z̃4

1

]
+
N(N − 1)

T 2
E
[
Z̃2

1

]2

− σ4

=
1

T
κ4 +

3

N
σ4 + σ4 − 1

N
σ4 − σ4

=
1

T
κ4 +

2

N
σ4

where Z̃j = Zj − (T/N)µ and κ4 is the fourth cumulant of X.

If X1 is Gaussian and Xt is Brownian motion, then κ4[X1] = 0 and the variance of σ̂2 is given

simply by 2σ4/N . On the other hand, if Xt is any process other than Brownian motion, the

fourth cumulant κ4[X1] > 0 will be positive. Under these circumstances, accuracy of the

sample variance estimator σ̂2 improves as the number of samples N and the horizon T are

increased simultaneously.

Suppose that we fix T > 0 and let N →∞. Then the sample quadratic variation converges

in probability to the true quadratic variation (Pascucci, 2011), which is to say that

Y
(N)
T → [X]T

where the convergence here is in probability. This similarly implies that the variance esti-

mator σ̂2 converges to the normalized quadratic variation process (1/T )[X]T in distribution.
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Therefore, as λ→ 0+ we expect the covariance matrix to converge to a diagonal p×p matrix

whose diagonal entries are i.i.d. with distribution equal to (1/T )[X]T . We will therefore be

concerned with the quadratic variation of an arbitrary Lévy process Xt.

When the true mean µ is unknown, the sample variance estimator can still be constructed

using the sample mean. Although the calculations are much longer, a similar result holds.

Here the sample variance estimator is defined as

σ̂2 =
1

T

N∑
j=1

(
Zj −

1

N

N∑
k=1

Zk

)2

=
N − 2

TN
Y

(N)
T − 4

TN

N∑
j=2

∑
k<j

ZjZk +
1

TN
X2
T

Computing the expectation of σ̂2 in this case, we find that E[σ̂2] = N−1
N
σ2, as expected. The

computation of the variance of σ̂2 is long, eventually leading to

var

[
N

N − 1
σ̂2

]
=

1

T
κ4 +

2

N − 1
σ4

6.2 Approximation by Free Poisson Distributions

The second key step in the proof is that the spectrum of the submatrices Y†kYk are very

close to the the spectrum of Y†Y. This is to say, removing individual columns of Y does

not effect its singular values too much. This may or may not hold for our matrices X. For

instance, if Xt is a Poisson process over an exceptionally short interval [0, T ] then our matrix

X will likely be sparse, and the removal of certain columns may have a large effect on its

singular values. If this problem can be circumvented by restricting ourselves to a particular
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subclass of ID(∗), however, then we can consider the modified form of (6.1), which becomes

SN(z) ≈ 1

p

p∑
k=1

1

Zk − z − Zk(λ+ λzSN(z))

where Zk are i.i.d. random variables following the distribution L([X]T ). In this case, the

limiting distribution would have a Stieltjes transform which satisfies

S(z) =

∫
R

1

x− z − x(λ+ λzS(z))
dν(x)

where ν = L([X]T ). Limiting distributions like this are precisely those occurring in Theo-

rem 2.2.4 when considering matrix products Y
√

T such that T is a p × p diagonal matrix

whose i.i.d. diagonal entries follow the distribution ν. From Example 5.3.5, this has an inter-

pretation in terms of free probability as the distribution arising from the free multiplicative

convolution mpλ� ν. This then becomes a question of which classes of distributions will al-

low such a proof to go through, or rather to which class does the quadratic variation process

[X]t need to belong.

We are interested then in the distributions of Lévy processes Xt such that the quadratic

variation [X]T belongs to ID(∗) ∩ FR. Recent work in this area has suggested that there

is a surprisingly large but complicated overlap (Bożejko and Hasebe, 2013; Hasebe, 2016;

Morishita and Ueda, 2018) between FR and the classes of GGC and HCM distributions. In

particular, Hasebe (2014) showed that many classically infinitely divisible distributions are

also Freely infinitely divisible, although these properties are certainly not path dependent

(and so may change for different choices of T > 0). For instance, the Gamma subordinator

Γt is in ID(�) for t ∈ (0, 1/2] ∪ [3/2,∞), but fails to be in ID(�) for a complicated union

of intervals contained in (1/2, 3/2), including the key case of the exponential distribution

Exp(1) when t = 1. On the other hand, the inverse Gamma distributions are in ID(�) for

all values of t > 0. This scenario is discussed at length in Appendix B.5, where we conclude
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with the following conjecture (see also Figure B.5).

Conjecture 6.2.1. Let Rβ denote the class of distributions which can be written in the form

X/Γβ where X ∈ GGC and Γβ is a Gamma subordinator independent from X, as introduced

in Section 3.2.6. Recall that we have

Rα ⊆ Rβ

for 0 < α < β, and

Rβ → GGC

as β → ∞ (considering the weak closure). Then there is some small 0 < α < 1 such that

Rα ⊂ ID(�).

6.2.1 Monte Carlo Simulations

We consider two examples of non-stable Lévy processes encountered in the financial modeling

of asset returns. The first is the variance-gamma (VG) process XVG
t , which can be realized

as Brownian motion Bt subordinated to a gamma process Γt. This is the process such that

Γ1
d
= Exp(1), as discussed in Section 3.3.2. Consequently, BΓ1

d
= Z
√
E follows a Laplace

distribution, where Z and E are independent with Z
d
= N(0, 1) and E

d
= Exp(1). As a result,

the VG process can be considered the time evolution of a Laplace distribution.

The second process we consider is the normal-inverse Gaussian (NIG) process XNIG
t , which

can be realized as Brownian motion subordinated to an inverse Gaussian process Tt. As

discussed in Section 3.3.5, the Lévy measure for the NIG process can be expressed in terms

of modified Bessel functions, but for the purpose of simulating random variables it is enough
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Figure 6.1: Histograms of aggregate eigenvalues of the VG SLCE when N × p = 2000× 500,
λ = 1/4, and T = 1 (top), T = 10 (middle), and T = 100 (bottom). The process has been
normalized to have unit variance and kurtosis equal to 3/T .

to know that

XNIG
t

d
= Z

√
Tt

where Z
d
= N(0, 1) is independent of Tt.

Both processes are symmetric EGGCs, and so the entries of our matrices can be generated

as the Hadamard product of a matrix with i.i.d. standard normal entries and one whose
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Figure 6.2: Histograms of aggregate eigenvalues of the NIG SLCE when N×p = 2000×500,
λ = 1/4, and T = 1 (top), T = 10 (middle), and T = 100 (bottom). The process has been
normalized to have unit variance and kurtosis equal to 3/T .

entries are taken to be the square root of i.i.d. random variables drawn from a Gamma

distribution or an Inverse Gaussian distribution, respectively. Data on the densities of the

ESDs is collected by sampling matrices of various size (dependent on N), where p = dλNe for

λ = 1/4. Experiments for different choices of λ show similar results; we display only λ = 1/4

for brevity, noting that the support of the MP distributions is the interval [0.25, 2.25]. For

each choice of N , eigenvalues are aggregated from a total of 106/p Monte Carlo simulations

in order to produce one million datapoints. Entries are normalized in order to be comparable

to the M–P distribution mpλ.

98



Table 6.1: Results of Monte Carlo Simulations for VG and NIG Driven SLCE Matrices

Entries N T #{σ : σ < σmin = 0.25} #{σ : σ > σmax = 2.25} dK–S(µN ,mλ) dK–S(µN , µ2000)

VG 20 1 0.418500× 106 0.121512× 106 0.432708 0.003008
200 1 0.419560× 106 0.121549× 106 0.432980 0.000919

2000 1 0.419553× 106 0.122387× 106 0.433081 NA
20 10 0.098902× 106 0.074011× 106 0.129765 0.013368

200 10 0.088608× 106 0.071761× 106 0.121758 0.001301
2000 10 0.088087× 106 0.071791× 106 0.121542 NA

NIG 20 1 0.322939× 106 0.104397× 106 0.362288 0.008482
200 1 0.322989× 106 0.104298× 106 0.362920 0.000984

2000 1 0.322906× 106 0.104413× 106 0.363221 NA
20 10 0.081187× 106 0.070340× 106 0.117020 0.018738

200 10 0.067578× 106 0.067129× 106 0.109260 0.002326
2000 10 0.065810× 106 0.066821× 106 0.107971 NA

Results are displayed in Table 6.1, which shows that the distribution of the eigenvalues

deviates significantly from the M–P distribution mpλ. The VG process leads to sample

covariance matrices which carry a huge portion of their spectrum to the left of the M–P bulk

[0.25, 2.25], as visualized in Figure 6.1. The normalization of both processes was chosen such

that the excess kurtosis of individual entries in the matrices can be computed as 3N/T for

both ensembles, demonstrating that a limiting distribution is affected but not exclusively

determined by the fourth cumulant of Xt. Shrinkage of the spectrum when comparing T = 1

and T = 10 is expected, as the entries necessarily become more Gaussian over longer horizons.

For datasets of equal size 106, the threshold for rejecting the null hypothesis (that the two

distributions are identical) with a confidence of 99% for the K–S test is that dK–S exceeds

√
log

(
2

1− 0.99

)
1

106
≈ 0.002302

Although this is under the assumption of independent samples, the repellent behavior of

eigenvalues should, if anything, increase the accuracy of the test statistic.
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6.2.2 Algorithm for Free Poisson when [X]T is Unknown

Yao et al. (2015) proposes a numerical scheme for approximating densities of the form mpλ�

ν, which involves the computation of a modified form of (2.7) for the companion Stieltjes

transform S(z) = −1−λ
z

+ λS(z),

S(z) =
1

−z + λ
∫
R

w
1+wS(z)

dν(w)
(6.2)

Specifically, (6.2) has a unique fixed point for all z ∈ C+, and 1
λπ

Im[S(x+iε)] converges to the

continuous density of the limiting spectral distribution of µS̃T as ε→ 0+. An approximation

can be produced by fixing some small ε > 0, and iterating the map

s 7→ 1

−(x+ iε) + λ
∫
R

w
1+ws

dν(w)
(6.3)

Under such a scheme, the integral
∫
R

w
1+ws

dν(w) can be evaluated numerically when an an-

alytic description of ν = L([X]T ) is known. Consider, however, the example presented in

Figure 1.1b, where the entries of a large 2000×500 matrix are i.i.d. Suzuki random variables.

As discussed in Section 3.2.7, the Suzuki distribution is CGGC, so it can be realized as the

distribution of a Lévy process at a fixed time. On the other hand, there is no convenient ana-

lytic expression for the distributions of the process for arbitrary t > 0, nor for the associated

quadratic variation process. This is the case for many EGGC and CGGC processes derived

from generalized inverse Gaussian distributions (Bondesson, 1992), such as the Student’s-t

distributions, generalized hyperbolic distributions, and skew generalized hyperbolic secant

distributions (Fischer, 2014), as membership in such classes is not time-invariant.
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We propose the following approach to this problem. First, fix some desired p andN . Consider

the SLCE with parameters λ = p/N , T = 1 (for convenience), and Xt chosen so that

L(X1/N) matches the desired distribution of the entries, such as a Suzuki distribution with

appropriate parameters. Then, although the quadratic variation [X]1 may not have an

analytic description, it will be closely approximately by the sample variance of N i.i.d.

samples following the distribution X1/N if N is large. We can now proceed by fixing some

large M ∈ N and considering a large array of M samples of the sample variance

σ̂2 =
[
σ̂2

1, σ̂
2
2, . . . , σ̂

2
M

]
defined as

N

N − 1
σ̂2
j =

1

N − 1

N∑
k=1

(
yjk −

1

N

N∑
l=1

yjl

)2

where the yjk for 1 ≤ j ≤ M and 1 ≤ k ≤ N are i.i.d. samples of the chosen distribution.

Each σ̂2
j is approximately distributed according to [X]1. The integral in (6.3) can now be

approximated using the discrete measure

ν̂ =
1

M

M∑
j=1

δσ̂2
j

This method is summarized in Algorithm 1.

Algorithm 1 Scheme for Approximating the Limiting Spectral Density

1: procedure ApproxDensity(x, p,N,M,ProbDist, ε, ε′) . Approximate the density f(x)
2: λ← p/N
3: for j = 1, . . . ,M do . Sample the N -sample variance of ProbDist
4: σ̂2[j]← Var (Sample(ProbDist, size = N))

5: s← i
6: slast ← i+ iε′

7: while |s− slast| ≥ ε′ do . Stop when consecutive iterations are close
8: slast ← s

9: s←
(
−x− iε+ λ×M−1 ×

∑M
j=1

[
σ̂2[j]×

(
1 + σ̂2[j]× slast

)−1])−1
10: return Im(s)/λπ . By Stieltjes inversion
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Figure 6.3: Comparison of the histogram of 106 eigenvalues collated from 2000 matrices of
the type described in Figure 1.1b with the estimate given there as well.

We see that those outliers in Figure 1.1b are not anomalous, and the eigenvalues of matrices

of this type lie in a bulk which can be quite accurately predicted by this method. The bulk

no longer exhibits a right edge, as predicted by Theorem 4.2.1, and a few rare eigenvalues

as large as 34, 42, and 60 (approximately) were observed in the random matrices generated.

On the other hand, the smallest eigenvalues observed clustered around a left edge of about

0.22, while the approximated values of f(x) jump from 9.47×10−7 at x = 0.23 to 3.68×10−1

at x = 0.24.

6.3 Applications to Financial Data

We now analyze the empirical structure of asset returns on daily and intraday timescales, and

discuss an example of the similar scaling of covariance noise which occurs under the SLCE

model. We consider the universe of the S&P 500 (SPX) and Nikkei 225 (NKY) indices over

two timeframes: an extended daily period of June 2013 through May 2017, and a shorter

intraday minute-by-minute period from January through May of 2017. The daily timeframe

provides 908 datapoints for the SPX versus 895 for the NKY, while the intraday timeframe

exhibits approximately 40,000 minutes containing price-changing tick data on the SPX asset
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versus 31,000 on those in the NKY. Linear returns are computed from prices and then

standardized by factoring out the cross sectional volatility, acting as a first approximation in

order to isolate stationary behavior. Expected returns are not removed through subtracting

the sample mean or by more sophisticated methods, as they are many orders of magnitude

smaller than the volatility. If rj for j = 1, . . . , N denotes the vector of returns over the jth

period, then the standardized return vector rj is given by

rj =
rj
‖rj‖

An N×p matrix X is then composed of the N row vectors rj, j = 1, . . . , N . Figure 6.4 shows

the histograms corresponding to the logarithms of the eigenvalues of the sample covariance

matrix N−1X†X.

6.3.1 Empirical Deviation from M–P Law

Figures 6.4a and 6.4c are similar to those demonstrated in previous applications of random

matrix theory to such datasets (for recent examples, see Livan et al., 2011; Singh and Xu,

2016; Bun et al., 2017). Although the overlayed M–P distributions do not immediately

coincide with the histograms, it is possible that a rescaling (represented by a horizontal shift

of the solid red lines) might capture a decent portion of the bulk. On the other hand, a

rescaling cannot widen or shrink the densities on a logarithmic plot. The constant width of

the logarithmic M–P distribution is equal to

wλ = log10

((
1 +
√
λ
)2
)
− log10

((
1−
√
λ
)2
)

= 2 log10

1 +
√
λ

1−
√
λ

For Figures 6.4a and 6.4c, the values wλ are approximately 1.5914 and 0.9471, respectively.

Compared to the lengths of the ticks in these figures, this is large enough to contain at

least some of the bulk. For the right Figures 6.4b and 6.4d, however, the values of wλ
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Figure 6.4: Log-plot of the empirical eigenvalues for sample covariance matrices of assets
belonging to the S&P 500 (top row) and Nikkei 225 (bottom row) indices, for the periods
June 2013-May 2017 (daily, left column) and January 2017-May 2017 (minute-by-minute,
right column). Left column figures show the density of the logarithm of the M–P density (red)
for appropriate values of λ. (a) 476 assets belonging to the S&P 500 Index with daily return
data recorded from June 2013-May 2017. N = 908, λ = 476/908 ≈ 0.5242. (b) Assets from
(a) with intraday minute-by-minute data taken from January to May of 2017. N = 40156,
λ = 476/40156 ≈ 0.0119. (c) 221 assets belonging to the Nikkei 225 Index over the same
period as (a), N = 895, λ = 221/895 ≈ 0.2469. (d) Assets from (c) with intraday minute-
by-minute data taken from January to May of 2017. N = 30717, λ = 221/30717 ≈ 0.0072.
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are minuscule (0.1899 and 0.1477), and cannot account for any reasonable subset of the

eigenvalues observed.

6.3.2 Covariance Noise Modeling with SLCE

Modeling using SLCE given a particular Lévy process can be done by selecting appropriate

values of T , N , and p. In the daily dataset, the window is approximately 900 days long

with a total of N = 900 datapoints, while for the second it is around 100 days long with

a total of 31,000 (for NKY) datapoints. As a toy model, we consider the pure noise case

where returns are stationary and independent, following identical NIG processes and their

corresponding ensembles. Scaling is chosen by taking T = 900τ when modeling the first

window and T = 100τ when modeling the second, where τ = 5 × 10−3 is chosen so that

the kurtosis of the entries is of the same order of magnitude as that observed in the NKY

dataset. Figures 6.5c and 6.5d show the eigenvalues of a single sample from each model,

along with the density estimated according to the techniques outlined in Section 6.2.2.

Unlike the M–P case, whose bulk nearly disappears in the intraday parameter range λ ≈

0.0072, the SLCE maintains a shape similar to NKY as scaling occurs. The approximated

density for the ensemble on the minute-scale in Figure 6.5d is much closer to the shape of

the bulk visible in the actual NKY eigenvalues in Figure 6.5b. Under analysis motivated

by the M–P distribution, one would necessarily conclude that nearly all eigenvalues in the

minute-by-minute NKY data represent significant factors if all other assumptions on the

returns held true, while for the SLCE it becomes unclear whether there are any at all.

The similarities between the upper a lower rows of Figure 6.5 are not the result of any com-

plicated modeling or parameter fitting of the underlying asset behavior. The bottom figures

are constructed under the (certainly false) hypothesis that fluctuations in the market are the

result of complete noise, with no underlying covariance structure or factors. One interpre-
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Figure 6.5: Log-plot of the empirical eigenvalues for sample covariance matrices of assets
belonging to the Nikkei 225 (top row) indices, and randomly generated data (bottom row), for
daily-scaled data (June 2013-May 2017, left column) and and minute-scaled data (January
2017-May 2017, right column). (a) 221 assets belonging to the Nikkei 225 Index, N = 895,
λ = 221/895 ≈ 0.2469. (b) Assets from (a) with intraday minute-by-minute data taken
from January to May of 2017. N = 30717, λ = 221/30717 ≈ 0.0072. (c) Eigenvalues from a
matrix drawn from the SLCE with i.i.d. NIG entries, T = 0.005×900, where N and p match
(a), along with the estimated density for the ensemble (solid blue line). (d) Eigenvalues from
a matrix drawn from the SLCE with i.i.d. NIG entries, T = 0.005 × 100, where N and p
match (b), along with the estimated density for the ensemble (solid blue line).
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tation of the remarkable similarities is that there are significantly fewer factors present in

the market than were previously inferred by modeling noisy factors in principal component

analysis on the M–P law. It would be interesting to see figures produced using well fitted

Lévy processes based on higher frequency data, as techniques in this area have become quite

advanced (see Feng and Lin, 2013).
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Appendix A

Additional Probabilistic Topics

A.1 Probabilistic Framework for Random Variables and

Paths

We assume that the reader is familiar with the measure theoretic foundations of probability

theory. Our goal is to establish a simple framework for dealing with countable collections of

random variables, vectors, sequences, and càdlàg (right continuous with left limits) stochastic

processes, which is robust enough to guarantee conditional probability densities. In this

sense, it is sufficient to consider a single probability space (Ω,F ,P), taken to be standard in

the sense of Rohlin (1952). We remind the reader that Ω here is the set of possible outcomes,

F is the collection of measurable events, and P : F → [0, 1] is a probability measure defined

for each event. We take our random objects to be measurable maps X : Ω → F where F

is a Polish space, a topological space homeomorphic to a complete separable metric space,

equipped with its Borel σ-algebra. The interested reader may consult Bogachev (2007, Def.

9.4.6 and Ch. 10) for the precise definition of a standard probability space and its relation to

the existence of conditional probabilities, which we will use throughout. Filtrations on the
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space can be constructed once a stochastic process is given, but will typically be unnecessary.

For a random obect X : Ω → F , the choice of the Polish space F determines the type of

object under consideration. If n = 1, 2, . . . ,∞ and F is taken to be Rn or Cn, equipped with

the topology of componentwise convergence, then X is understood to be a random variable,

vector, or sequence. In order to consider càdlàg stochastic processes, we fix a complete

separable metric space E and let D(R+, E) denote the space of functions from R+ = [0,∞)

into E which are right continuous with left limits at each point t ∈ [0,∞). The space

D(R+, E) is called the Skorokhod space, and can be equipped with a metric under which

it is itself a complete separable metric space. For a definition of the metric and further

details, see Billingsley (1999, Ch. 3). A measurable function X : Ω → D(R+, E) is called a

càdlàg stochastic process with values in E. Under the topology induced on D(R+, E), the

cylindrical projections

Xt(ω) , X(ω)(t)

are measurable, and so for each t ∈ [0,∞) the function Xt : Ω→ E is a random variable. We

mention that the space of continuous functions from R+ into E, denoted by C(R+, E), is a

closed subspace of D(R+, E). Furthermore, the Skorokhod topology on D(R+, E) restricted

to C(R+, E) coincides with the topology of uniform convergence on compact subsets [0, T ] ⊆

[0,∞).

In this framework, all random object throughout the document can be understood to have

been drawn from a single collection {X(j)}j∈I , where I is some countable index set. Each

object is a measurable map X(j) : Ω → Fj, where each codomain Fj is Polish. The Fj

are naturally probability spaces when equipped with their Borel σ-algebras B(Fj) and the

pushforward measures

µj(E) , P[X−1
(j) (E)], E ∈ B(Fj)
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If X(j) is any random object in our collection, then by Bogachev (2007, Cor 10.4.6) there

exists a system of regular conditional measures µyj for y ∈ Fj such that each µyj is a probability

measure on (Ω,F) and

P[A ∩X−1
(j) (Ej)] =

∫
E

µyj (A) dµj(y), A ∈ F , Ej ∈ B(Fj)

Consequently, if X(k) is any other random object, it becomes meaningful to write the condi-

tional probability

P[X(k) ∈ Ek | X(j) = y] , µyj (X
−1
(k)(Ek)), Ek ∈ B(Fk), y ∈ supp(µj) ⊆ Fj

Throughout the text, all uses of the phrase almost surely refer to the underlying probability

space (Ω,F ,P). Many theorems contain statements to the effect that the empirical spec-

tral distribution µMN
∈ P(R) of a p(N) × p(N) Hermitian matrix MN indexed by N ∈ N

converges in distribution to a probability measure µ ∈ P(R) almost surely. Here we under-

stand the entries [MN ]i,j for 1 ≤ i, j ≤ p(N) as random variables on our underlying space

(Ω,F ,P). Since convergence in distribution is metrizable, we can consider some appropriate

metric d : P(R)× P(R)→ R+, and define a sequence of random variables ∆N

∆N = d(µMN
, µ)

The statement that µMN

d−→ µ almost surely is equivalent to

P
[

lim
N→∞

∆N = 0
]

= 1
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A.2 Topologies on the Space of Probability Measures

If F is a Polish space, then we let C(F ) denote the class of continuous functions from F to

C. In order to form a Banach space in a general setting, we can restrict ourselves to the

subclass Cb(F ) ⊆ C(F ) of bounded continuous functions, which can be equipped with the

norm

‖f‖∞ = sup
x∈F
|f(x)|

where f ∈ C(F ). If F is additionally locally compact, then we can consider the further

subclass C0(A) of C-valued continuous functions on F that vanish at infinity, so that for

each f ∈ C0(F ) and any ε > 0 there exists some compact subset Kf,ε ⊆ F such that

sup
x∈F\Kf,ε

|f(x)| < ε

The space C0(F ) is a closed subspace of Cb(F ) under the same norm, coinciding when F

is itself compact. We let C0(F )+ denote the functions whose range is strictly nonnegative

real numbers. We note that, in addition to being a Banach space, C0(F ) is also a C∗-

algebra by taking the algebra multiplication to be pointwise multiplication and involution to

be pointwise conjugation. The positive elements of a C∗-algebra are those elements whose

spectrum is a subset of the nonnegative reals. For C0(F ), this coincides with C0(F )+.

The dual space of C0(F ) can be described in terms of Borel measures on F . We will hence-

forth use the word measure to refer to a C-valued, σ-additive function µ on the Borel subsets

of F which can be expressed as

µ = µ1 − µ2 + i(µ3 − µ4)

where each µi is a finite (positive) Radon measure. The support of a measure µ, denoted
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supp(µ), is the union of the supports of the µi. The total variation of µ is the quantity

|µ|(F ) = sup
∑
j

|µ(Fj)|

where the supremum is taken over all countable collections of disjoint Borel subsets of F . We

denote the vector-space of all such measures as M(F ). The Riesz—Markov theorem states

that the Banach space dual of C0(F ) is isomorphic to M(F ) through the bilinear pairing

〈·, ·〉 : C0(F )× C0(F )∗ → C

〈f, µ〉 =

∫
F

f dµ

The norm on M(F ) as a Banach dual space agrees with the total variation.

Definition A.2.1. Let µn denote a sequence of finite Radon measures on the space F . We

say that µn converges vaguely to some finite Radon measure µ if it converges in the weak-∗

topology induced by C0(F ), which is to say if for any f ∈ C0(F ) we have

∫
F

f dµn →
∫
F

f dµ

Similarly, we say that µn converges weakly (or in distribution) to some finite Radon measure

µ if the same condition holds for all f ∈ Cb(F ). We denote weak convergence by µn
d−→ µ

and vague convergence by µn
v−→ µ.

As C0(F ) ⊆ Cb(F ), weak convergence implies vague convergence, but not conversely.

Definition A.2.2. We say that a measure µ is a

I positive measure or in M(F )+ if 〈f, µ〉 ≥ 0 for any f ∈ C0(F )+.

I sub-probability measure or inM≤1(F ) if it is positive and has total variation less than

or equal to 1.
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I probability measure or in M1(F ) if it is positive and has total variation equal to 1.

Lemma A.2.3. The set of sub-probability measures M≤1(F ) equipped with the vague topol-

ogy is compact and metrizable. In particular, any sequence of sub-probability measures has

a subsequence that converges vaguely to another sub-probability measure.

Proof. The space C0(F ) is a separable Banach space whose dual isM(F ). By the Banach—

Alaoglu theorem, the closed unit ball in M(F ) is compact in the weak-∗ topology and

metrizable.

Now the closed unit ball in M(F ) is the set of all elements whose total variation is less

than or equal to 1, its positive elements being the measures M≤1(F ). Since the vague limit

of positive measures is positive, the set M≤1(F ) is a closed subset of the closed unit ball,

making it compact and metrizable. �

Lemma A.2.4. Suppose a sequence of probability measures µn ∈M1(F ) converges vaguely

to a probability measure µ ∈ M1(F ). Then µn converges to µ weakly, which is to say in

distribution.

Proof. If F is compact then Cb(F ) = C0(F ), so weak convergence and vague convergence

are identical and there is nothing to show. Otherwise, since F is locally compact and

separable, there exists an exhausting sequence of nested compact sets K1 ⊂ K2 ⊂ . . . such

that
⋃
jKj = F .

Fix some ε > 0. Since µ is Radon and thus inner regular, it follows that there exists some

jε such that µ(Kjε) ≥ 1 − ε. By the Tietze extension theorem, for any such ε > 0 there

exists some continuous function fjε taking only values in [0, 1] which is compactly supported

on Kjε+1 and takes the value 1 at all points in Kjε . Since µn converges to µ vaguely and
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fjε ∈ C0(E) it follows that

µn(Kjε+1) =

∫
Kjε+1

dµn ≥
∫
Kjε+1

fjε dµn

→
∫
Kjε+1

fjε dµ ≥
∫
Kjε

dµ = µ(Kjε) ≥ 1− ε

Now fix some g ∈ Cb(F ). If we can show that
∫
F
g d(µn − µ)→ 0 then we have proved the

claim. Then we have

∣∣∣∣∫
F

g d(µn − µ)

∣∣∣∣ =

∣∣∣∣∫
F

(1− fjε+1 + fjε+1)g d(µn − µ)

∣∣∣∣
≤
∣∣∣∣∫
F

(1− fjε+1)g d(µn − µ)

∣∣∣∣+

∣∣∣∣∫
F

fjε+1g d(µn − µ)

∣∣∣∣
=

∣∣∣∣∣
∫
F\Kjε+1

(1− fjε+1)g d(µn − µ)

∣∣∣∣∣+

∣∣∣∣∫
F

fjε+1g d(µn − µ)

∣∣∣∣
≤
(
µn(F\Kjε) + µ(F\Kjε

)∥∥g∥∥∞ +

∣∣∣∣∫
F

fjε+1g d(µn − µ)

∣∣∣∣
≤
(
µn(F\Kjε) + ε

)∥∥g∥∥∞ +

∣∣∣∣∫
F

fjε+1g d(µn − µ)

∣∣∣∣
In the first term 1 − fjε+1 is supported on F\Kjε . Taking large enough n, the measure

µn(F\Kjε) can be made smaller than 2ε by the convergence described above. The second

term is the integral of a C0(F ) function which can be made smaller than ε for large n since

µn converges to µ vaguely. So for large enough n,

∣∣∣∣∫
F

g d(µn − µ)

∣∣∣∣ ≤ (3‖g‖∞ + 1) ε

Since ε > 0 and g ∈ Cb(F ) were arbitrary, this proves the claim. �

Example A.2.5. The importance of the condition that the limiting distribution µ be a

probability measure can be explained by the fact that a sequence of probability measures

µn ∈M1(F ) can converge vaguely to a sub-probability measureM≤1(F ) which is not itself

a probability measure, in which case Lemma A.2.4 need not hold. If µn = δn, a traveling
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point mass, then it is easy to see that µn converges vaguely to the zero measure on R, which

is clearly not a probability measure. On the other hand, µn does not converge to any Radon

measure in the weak sense. Thus, we can understand that the weak and vague notions of

convergence of probability measures coincide if we already know that the limiting measure

in question is itself a probability measure.

A.3 Sampling Random Variables from Characteristic

Functions

For a probability measure µ ∈ P(R), the characteristic function ϕµ is defined in Section 2.1.2

and inherits the properties described therein. For a treatise on the general Lp theory, we refer

the reader to Kaniuth (2009). If µ has a density fµ, then ϕµ is simply the (conjugate) Fourier

transform of µ. Since any fµ is necessarily in L1(R) with respect to Lebesgue measure, the

corresponding ϕµ will be in the class C0(R) of continuous C-valued functions which decay

to zero at infinity. If we additionally have that fµ is in L2(R), then ϕµ will be as well. The

recovery of a law from its characteristic function can be accomplished with the following

inversion theorem.

Theorem A.3.1 (Gil–Pelaez Theorem, Ushakov, 1999). If x ∈ R is a continuity point of

Fµ, then

Fµ(x) =
1

2
− 1

π

∫ ∞
0

Im[e−ixzϕµ(z)]

z
dz (A.1)

By definition, ϕµ(−z) = ϕµ(z), which is to say that ϕµ is Hermitian. If we know that

µ ∈ Ps(R), then ϕµ is necessarily real-valued. In this case, we can make the following
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modification which may be used to speed up numerical computations by avoiding complex

variables.

Corollary A.3.2. If X is symmetric and x is a continuity point of FX , then

Fµ(x) =
1

2
+

1

π

∫ ∞
0

sin(xz)ϕµ(z)

z
dz (A.2)

Now suppose that we have an analytic expression for the characteristic function ϕµ of a

distribution µ, and we want to generate independent samples of µ using a random number

generator. One way to do this is to sample a uniform random variable U on [0, 1], and then

compute F−1
µ (U) ∼ µ. This process can be accomplished with the following algorithm:

I We choose a method to calculate Fµ(x) based on a numerical approximation for either

(A.1) or (A.2). Most numerical packages incorporate sophisticated techniques to per-

form this task quickly and accurately. Since |ϕµ(z)| is often decreasing as |z| → ∞ (for

instance, when µ has a density) and heavily concentrated near the origin, it is recom-

mended against calling a numerical integrator on [0,∞), as this is usually accomplished

by transforming the interval into [0, 1) by passing through the function z 7→ z/(1− z).

Instead, we compute a value θ1 > 0 such that |ϕµ(θ1)| < ε1 for some small ε1 > 0, and

then call a numerical integrator on the interval [0, θ1]. Whatever method is used, we

will denote this approximation by F̃µ(x).

I We now discretize the function Fµ with a long M × 1 vector

F =

[
F̃µ(x1) F̃µ(x2) . . . F̃µ(xM)

]†

where aµ = x1 < x2 < . . . < xM = bµ is some mesh for the interval [aµ, bµ]. Values for
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aµ and bµ should be chosen so that F̃µ(aµ) < ε2 and F̃µ(bµ) > 1 − ε2 for some small

ε2 > 0.

I Fix some granularity level ε3 > 0. If the values F̃µ(xj+1)− F̃µ(xj) > ε3 then the mesh

above should be refined and the additional values of F̃µ need to be computed. Once all

differences are within this threshold ε3, we can proceed with the vector F. Note that

this sequence of steps only needs to be completed once, and the final F can be saved

and used repeatedly.

I Sampling µ is now accomplished by sampling a uniform random U on [0, 1], and then

performing a binary search to determine for which j we have

F̃µ(xj) < U ≤ F̃µ(xj+1)

The algorithm should return the value xj+1.

125



Appendix B

Auxiliary Operations in Free

Probability

This is a companion section to Chapter 5, introducing the operations of Boolean and Mono-

tone additive and multiplicative convolutions. These operations can be used to simplify

some expressions in Free Probability, as they can be calculated in terms of the Stieltjes

transforms Sµ of probability measures rather than the more complicated R-transforms that

appear in the literature. The key point here is that manipulating the Stieltjes transform is

simple numerically due to Stieltjes inversion (Theorem 2.2.2), whereas inverting the Stieltjes

transform in order to find the R-transform may be quite difficult. Some applications to

eigenvalues of random matrices are discussed. We continue with the notation of Sµ, Fµ, and

ηµ from Chapter 5, as well as the spaces N , F , and K. The operations of Free, Boolean,

and Monotone convolutions are often called “noncommutative” due to their origins in the

theory of noncommutative operator algebras. The statement that a particular function is an

η-function simply means that it can be expressed as η(z) = 1− zF (1/z) for z ∈ C\R where

F ∈ F is in the reciprocal Cauchy class.
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B.1 Additive Convolutions on Probability Distributions

Definition B.1.1. Let µ, ν ∈ P(R) be any probability distributions, and let s ≥ 0. Then

by definition of ηµ and ην , the functions

ηµ(z) + ην(z)

sηµ(z)

represent η-functions as well. By Lemma 5.1.4, there exists unique probability measures,

denote by µ ] ν, µ]s ∈ P(R), such that

ηµ]ν(z) = ηµ(z) + ην(z),

ηµ]s(z) = sηµ(z),
z ∈ C\R

This makes ] into an associative, symmetric binary operation on the space of probability

measures P(R), called Boolean additive convolution, and assigns to every probability mea-

sure µ ∈ P(R) a ]-semigroup µ]s ∈ P(R) for s ≥ 0 with µ]0 = δ0 and µ]1 = µ, such that

for any s1, s2 ≥ 0,

µ]s1 ] µ]s2 = µ](s1+s2)

In particular, every probability distribution is infinitely divisible with respect to Boolean

additive convolution, so that we can write P(R) = ID(]).

Definition B.1.2. Let µ, ν ∈ P(R). By the definition of F , the function Fµ(Fν(z)) is in F

as well. By Lemma 5.1.4, there is a unique probability measure, denoted by µB ν ∈ P(R),

such that

FµBν(z) = Fµ(Fν(z)), z ∈ C+
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This makes B into an associative binary operation on the space of probability measures

P(R), called Monotone additive convolution.

Definition B.1.3. Let µ, ν ∈ P(R), and by Lemma 5.1.4 let ζ1, ζ2 ∈ P(R) be the unique

probability measures that correspond to Z1 and Z2. Then by the definition of F , the function

Fµ(Fζ1(z)) = Fν(Fζ2(z)) is in F as well. Furthermore, there is a unique probability measure,

denoted by µ� ν ∈ P(R), such that

Fµ�ν(z) = Fµ(Fζ1(z)) = Fν(Fζ2(z)), z ∈ C+

This makes � into an associative, symmetric binary operation on the space of probability

measures P(R), called Free additive convolution. Furthermore, we have the relationship

µ� ν = µB ζ1 = ν B ζ2 = ζ1 ] ζ2

Lemma B.1.4. Let µ ∈ P(R) and x ∈ R. Then classical, Free, and Monotone additive

convolutions (in the correct order) of µ and δx all agree, such that

µ ∗ δx = µ� δx = µB δx

The preceding lemma is clear from the definitions of the operations. The Boolean case is

slightly different, as is the Monotone additive convolution in the opposite order. Curiously,

these two exceptions coincide.

Lemma B.1.5 (Franz, 2009). Let µ ∈ P(R) and x ∈ R. Then

δx B µ
d
= δx ] µ
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Furthermore, there exists a unique probability distribution ν ∈ P(R), defined explicitly by

ν = δx B µB δ−x

such that

ν � δx = ν B δx = δx B µ

Although we now have two types of convolution with point-mass distributions, the following

lemma shows that they commute with one another.

Lemma B.1.6. Let µ ∈ P(R) and x, y ∈ R. Then we have that

(µ ] δx)� δy = (µ� δy) ] δx

Consequently, we will omit writing the parenthesis when performing multiple operations with

point mass distributions, and instead write δx B µB δy.

Proof. Notice that for z ∈ C+ we have

Sµ]δx(z) =
Sµ(z)

1 + xSµ(z)

and

Sµ�δy = Sµ(z − y)

129



4 2 0 2 40.0

0.5

1.0
1.0
1.5
2.0
5.0

(a)

4 2 0 2 40.0

0.5

1.0
0.0
0.5
1.0
2.0

(b)

Figure B.1: Approximate densities of (a) ggg]s and (b) δx B ggg = ggg ] δx, for various values of
s > 0 and x ≥ 0. Note that D1/

√
s (ggg]s) converges weakly to the Rademacher distribution rrr

as s→∞.

Therefore,

S(µ]δx)�δy(z) = Sµ]δx(z − y) =
Sµ(z − y)

1 + xSµ(z − y)

=
Sµ�δy(z)

1 + xSµ�δy(z)
= S(µ�δy)]δx(z)

�

Example B.1.7. The standard normal distribution ggg
d
= N(0, 1) has Stieltjes transform

Sggg(z) = i

√
π

2
e−z

2/2

(
1 + Erf

(
i
z√
2

))

where Erf is the complex Error function. Figures B.1a and B.1b show the effects of the

Boolean semigroup and Boolean sum involving ggg.
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B.2 Multiplicative Convolutions on Probability Distri-

butions

Lemma B.2.1 (Arizmendi and Hasebe, 2016b). Let µ ∈ P(R+) and ν ∈ P(R) with ν 6= δ0.

Then the function ηµ(ην(z)) is an η-function, and so by Lemma 5.1.6 there exists a unique

probability measure, denoted by µ � ν ∈ P(R), such that

ηµ�ν(z) = ηµ(ην(z)), z ∈ C+

Furthermore, if ν ∈ P(R+) then µ � ν ∈ P(R+) as well, which makes � into an asso-

ciative binary operation on the space of nonnegative probability measures P(R+), called the

Monotone multiplicative convolution.

Definition B.2.2. Suppose µ, ν ∈ P(R+), and that

ηµ(z)ην(z)

z
∈ K

Then there exists a unique probability measure, denoted by µ ∪× ν ∈ P(R), such that

ηµ∪×ν(z) =
ηµ(z)ην(z)

z
, z ∈ C+

This associative symmetric binary operation ∪× , when it is well defined, is called the Boolean

multiplicative convolution.

Lemma B.2.3 (Bercovici, 2006). For any µ ∈ P(R+) and 0 ≤ s ≤ 1, there exists a

unique probability measure µ∪×s ∈ P(R+) which forms a ∪×-semigroup µ∪×s with µ∪×0 d
= δ1 and

µ∪×1 d
= µ, such that if 0 ≤ s1, s2 ≤ 1 with s1 + s2 ≤ 1, then

µ∪×s1 ∪× µ∪×s2 = µ∪× (s1+s2)
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Figure B.2: Approximate densities of πππ∪×s for (a) 0 < s ≤ 1 and (b) s ≥ 1. In (b), note that
we have from Example B.4.6 that πππ∪×2 = πππ ∪× πππ = 1

2
δ0 + 1

2
πππ]2 = 1

2
δ0 + 1

2
(aaa� δ2).

Definition B.2.4. Let µ, ν ∈ P(R+), and let ξ1, ξ2 ∈ P(R+) be the unique probability

measures corresponding to K1 and K2 in Lemma 5.1.6. Then by Lemma B.2.1, there exists

a unique probability measure, denoted by µ� ν ∈ P(R+), such that

ηµ�ν(z) = ηµ(ηξ1(z)) = ην(ηξ2(z)), z ∈ C+

This makes � into an associative symmetric binary operation on the space of nonnegative

probability measures P(R+), called the Free multiplicative convolution. Furthermore, we

have the relationship

µ� ν = µ � ξ1 = ν � ξ2 = ξ1 ∪× ξ2

where the final Boolean multiplicative convolution is always well defined.
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B.3 Belinschi–Nica Semigroup and Free Divisibility In-

dicators

An early question in Free Probability was to address the issue of the proximity of a distri-

bution to the class ID(�), as Free infinitely divisible distributions are highly regular with

analytic densities. Since regularity increases as we consider µ�t for t ≥ 1 larger and larger, a

natural question to ask was how far “backwards” could you wind time: for which 0 < t < 1

does the expression µ�t exist as a distribution for a particular choice of µ? The following

examples show that the situation may be non-trivial.

Example B.3.1. Let rrr = 1
2
δ1 + 1

2
δ−1 be a Rademacher distribution. Like all distributions,

the Free additive convolution semigroup rrr�t exists for all t ≥ 1. Is it possible to extend rrr�t

for 0 < t0 ≤ t ≤ 1? This amounts to showing the existence of some distribution τ ∈ P(R)

with a Free additive convolution semigroup τ�t such that rrr
d
= τ�1/t0 where 1/t0 > 1. If

this were possible, however, it would violate Theorem 5.1.16, as rrr has atoms at ±1 but

rrr((−1, 1)) = 0.

Example B.3.2. From the preceding example, consider aaa
d
= rrr�2, where aaa has an Arcsine

distribution on [−2, 2]. Then it is possible to extend the Free additive convolution semigroup

aaa�t to t ≥ 1/2, but no further. Consequently, we see that every distribution has some minimal

value for which its Free additive convolution semigroup can be extended. For a Free additive

infinitely divisible distribution like πππ, this value is zero.

Definition B.3.3. The Belinschi–Nica semigroup corresponding to a distribution µ ∈ P(R)

is defined as

Bt(µ) =
(
µ�(1+t)

)] 1
1+t

where t ≥ 0 and B0(µ)
d
= µ.
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Theorem B.3.4 (Belinschi and Nica, 2008). The operator Bt(µ) defines an actual semigroup,

in the sense that

Bt(Bs(µ)) = Bt+s(µ)

Furthermore, if µ, ν ∈ P(R+), then Bt is a � homomorphism in the sense that

Bt(µ� ν) = Bt(µ)� Bt(ν)

The Belinschi–Nica semigroup became useful in studying Free regularity through the con-

nection introduced in Lemma B.3.7.

Definition B.3.5. If ~1 and ~2 are two different operations from among {∗,�,]}, then

we let Γ~1→~2 : ID(~1)→ ID(~2) denote the bijection that takes the triplet (γ, σ,Π) in one

collection to the other.

Theorem B.3.6 (Hasebe, 2012). We have that for µ ∈ P(R) = ID(]), there exists γ ∈ R

and a nonnegative, finite Borel measure τ on R such that

ηµ(z) = γz − σ2z2 −
∫
R

(
1

1− xz
− 1− xz1[−1,1](x)

)
dΠ(x)

for a triplet (γ, σ,Π) where γ ∈ R, σ ≥ 0, and Π is a Lévy measure. This uniquely determines

the distribution of µ.

Lemma B.3.7 (Belinschi and Nica, 2008). The t = 1 Belinschi–Nica semigroup operation

is the Boolean-to-Free map, B1 = Γ]→�. In particular, µ ∈ ID(�) if and only if it is in the

image of B1(P(R)), so that there exists a unique ν ∈ P(R) such that

ν � ν = ν B µ = µ ] µ
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As a result, an object called the Free divisibility indicator was introduced. This value, φ�(µ)

was initially defined as

φ�(µ) = sup{t ≥ 0 : µ ∈ Bt(P(R))}

This is to say, φ�(µ) is a measure of the largest class of Belinschi–Nica time evolutions

that µ belongs to. The following connection between Boolean additive convolution and the

divisibility indicator shows the effects of Free and Boolean convolution on regularity of a

distribution. Most notably, the Free additive semigroup µ�t is regularizing as t ≥ 1 grows,

while the Boolean additive semigroup µ] is regularizing as 0 < s ≤ 1 shrinks.

Theorem B.3.8 (Arizmendi and Hasebe, 2013). If µ ∈ P(R) and t > 0, then

φ�(µ]t) =
1

t
φ�(µ)

Consequently, φ�(µ) has two equivalent definitions

φ�(µ) = sup{t ≥ 0 : µ ∈ Bt(P(R))} = sup{t ≥ 0 : µ]t ∈ ID(�)}

Furthermore, µ�t exists for all t ≥ max{1− φ�(µ), 0}, and

φ�(Bt(µ)) = φ�(µ) + t

so that the semigroup draws distributions closer to the class ID(�).

Lemma B.3.9. Let µ ∈ P(R) and x ∈ R. Then

φ�(µ) = φ�(µ� δx) = φ�(µ ] δx)

so that convolution with point masses does not effect the regularity of distributions.
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Lemma B.3.10. Suppose µ ∈ ID(]) for (γ, σ,Π) is its Lévy triplet. Then µ]t ∈ P(R+) for

some t ≥ 0 if and only if Γ]→∗(µ) is the distribution of a classical subordinator. As a result,

µ]t ∈ P(R+) for some t > 0 if and only if µ]t ∈ P(R+) for all t > 0.

B.4 Taxonomy of Distributions in Noncommutative Prob-

ability

We have already introduced the key distributions arising in Free Probability in Chapter 5,

and use this section to discuss some more obscure connections between them. We note

that for any probability distribution µ ∈ P(R), the dilation Da(µ) by a factor a > 0 has a

convenient relationship with the Stieltjes and η transforms

SDa(µ)(z) =
1

a
Sµ(z/a) ηDa(µ)(z) = η(az)

Recall that we use µ2 to denote the measure corresponding to the pushforward of the measure

µ by the squaring process, and
√
µ for the symmetrized pullback. We consequently have that

Sµ2(z) =
1√
z
Sµ
(√

z
)

ηµ2(z) = ηµ
(√

z
)

and for a nonnegative distribution µ ∈ P(R+),

S√µ(z) = zSµ
(
z2
)

η√µ(z) = ηµ
(
z2
)

Lemma B.4.1 (Arizmendi and Hasebe, 2016a). Let µ ∈ P(R), x, y ∈ R, s ≥ 0, and t ≥ 1.

Furthermore, let p ≥ 1 and q > 1− 1/p. Then the following relationships hold:

I (µ� δx)
]s = µ]s ] δ(s−1)x � δx
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I (µ ] δx)�t = µ�t ] δx � δ(t−1)x

I (µ2)
]s

= (µ]s)2

I If p′ = pq/(1− p+ pq) and q′ = 1− p+ pq then

(
µ�p
)]q

=
(
µ]q

′
)�p′

I If µ, ν ∈ P(R+) then

Dt

(
(µ� ν)�t

)
= µ�t � ν�t

Ds

(
(µ� ν)]s

)
= µ]s � ν]s

We recall some of the distributions already discussed: the Semicircle sss (Example 5.1.9)

distribution on [−2, 2], the Free Poisson πππ distribution (Examples 5.1.11 and 5.3.5), and the

Rademacher rrr and Arcsine aaa distributions (Examples 5.3.3, B.3.1 and B.3.2). The standard

Gaussian distribution ggg
d
= N(0, 1) is also mentioned in Example B.1.7. From the forms of

the Stieltjes and η-transforms, we can see that the Semicircle sss, Rademacher rrr and Arcsine

aaa play the role of the Gaussian (2-stable) distributions in the Free, Boolean, and Monotone

additive convolutions. The role of the Poisson distribution in the Boolean case is played by

the Boolean Poisson distributions ρ]s = 1
1+s

δ0 + s
1+s

δ1+s.

The infinite divisibility bijections Γ~1→~2 imply that α-stable distributions exist in the Free,

Boolean, and Monotone additive convolutions. Curiously, the symmetric 1-stable distribu-

tions are the same as in classical probability, and coincide with the Cauchy distributions ccca,b

whose densities are given by

dccca,b(x)

dx
=

1

π

b

(x− a)2 + b2
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As in the classical case, the α-stable densities are hard to describe. In the noncommutative

cases, they are presented with the stability parameter 0 < α < 2 and skewness parameter

ρ = P[X ≥ 0]

with 0 ≤ ρ ≤ 1, where ρ = 1 corresponds to nonnegative distributions when 0 < α < 1.

For the cases 1 ≤ α < 2, the further restrictions on the stability parameters are that

1−1/α ≤ ρ ≤ 1/α. For the Free, Boolean, and Monotone cases, we write these distributions

as fffα,ρ, bbbα,ρ, and mmmα,ρ, respectively.

In the Boolean case, the nonnegative distributions bbbα,1 are absolutely continuous for 0 < α ≤

1/2, and have densities given by

dbbbα,1(x)

dx
=

1

π

sin(απ)xα−1

x2α + 2 cos(απ)xα + 1
1(0,∞)(x)

Based on the properties described in Theorem B.5.1 below, we restrict ourselves to these

parameters.

In the Free case, the only stable density known, apart from the Cauchy and Semicircle

distributions, is the Inverse Beta distribution appearing as

dfff 1/2,1(x)

dx
=

√
4x− 1

2πx2
1[1/4,∞)(x)

We note that if X is a random variable following a Beta distribution Beta(α, β) with param-

eters α = 1/2 and β = 3/2, then 1/(4X)
d
= fff 1/2,1.

Similarly, in the Monotone case, the only additional stable density which is known is the

1/2-stable positive distribution

dmmm1/2,1(x)

dx
=

1

π

√
x

x2 − x+ 1
1(0,∞)(x)
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Table B.1: Table of Noncommutative Probability Transforms for Popular Densities

µ dµabs(x)/dx µdiscrete Sµ(z) ηµ(z) φ�(µ)
rrr 1

2
δ1 + 1

2
δ−1

z
1−z2 z2 0

ρρρ]s 1
1+s

δ0 + s
1+s

δ1+s
1−z

z(z−1−s)
sz

1−z 0

aaa 1
π
√

4−x21[−2,2](x) − 1√
z2−4

1−
√

1− 4z2 1
2

sss 1
2π

√
4− x21[−2,2](x)

√
z2−4−z

2
1− 2z2

1−
√

1−4z2 1

πππ�t
√

(t+−x)(x−t−)

2πx
1[t−,t+](x) max{(1− t), 0}δ0

√
(z−t+)(z−t−)−z−1+t

2z
1

ccca,b
1
π

b
(x−a)2+b2

1
a−ib−z (a− ib)z ∞

ggg 1√
2π
e−x

2/2 i
√

π
2
e−z

2/2
(

1 + Erf
(
i z√

2

))
1

bbbα,1
1
π

sin(απ)xα−1

x2α+2 cos(απ)xα+1
1(0,∞)(x) ∞

fff 1/2,1

√
4x−1

2πx2 1[1/4,∞)(x) 2
1−2z−i

√
4z−1

z−i
√

4z−z2

2
≥ 1

mmm1/2,1
1
π

√
x

x2−x+1
1(0,∞)(x) − 1

(
√
z+i)

2 z − 2i
√
z ≥ 1

The Monotone α-stale distributions are known to be ID(�) for 0 < α ≤ 1/2, however the

nonnegative versions are not FR (Arizmendi and Hasebe, 2013).

Example B.4.2. The distributions sss, rrr, and aaa play the roles of the Gaussian (2-stable)

distribution for the purpose of the noncommutative central limit theorems, in the sense that

they satisfy the scaling relationships

sss�t = D√t(sss) rrr]s = D√s(rrr) aaaBn = D√n(aaa)

where t, s > 0 and n ∈ N.

Example B.4.3. The fact that the square of the Semicircle (Free 2-stable) distribution is

the Free Poisson is unique to the Free case, and has no analog in the classical world. In fact,

each of the noncommutative 2-stable distributions has an interesting squaring rule:

sss2 = πππ rrr2 = δ1 aaa2 = aaa� δ2
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Figure B.3: Approximate densities of (a) rrr�t = D√t−1

(
sss]

t
t−1

)
and (b) δx B sss = sss ] δx, for

various values of t > 1 and x ≥ 0.

They are also related through other powers of 2

sss]2 = aaa rrr�2 = aaa πππ]2 =
(
sss2
)]2

=
(
sss]2
)2

= aaa� δ2

which can easily be seen from the η-transforms of each of the distributions. The first two

relationships further imply that

sss ] sss = rrr � rrr = rrr B sss = aaa (B.1)

Example B.4.4. In Figure B.1b we can see that Boolean convolutions of the form δxBµ =

µ ] δx have the effect of skewing distributions in the direction and magnitude of x ∈ R.

When applied to the Semicircle distribution sss, an interesting shape appears, as seen in

Appendix B.4. For large enough values of x > 0, the compact distribution emits a point

mass. Furthermore, the skewed Semicircle resembles the M–P or Free Poisson laws πππ�t. By
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skewing and rescaling, it is not hard to show from the Stieltjes and η-transforms that

δ−1 B sss
�t B δ1+t = πππ�t

where t > 0. Interestingly, a similar relation exists in the Boolean case:

δs−1 B rrr
]s B δ1 = ρρρ]s

where s > 0. These do not appear to have been noticed or published previously.

Example B.4.5. The Monotone multiplicative convolution � can be used in conjunction

with various η-transforms to express some common measure transforms. For instance, if

µ ∈ Ps(R) is symmetric, then

µ2 � rrr = µ

Since ηδa(z) = az, it is easy to see that µ � δa = Da(µ) for µ ∈ P(R+). The opposite

direction mirrors the additive case: δa � µ = µ∪× δa. However, an even stranger relation also

occurs, which is obvious in retrospect:

δa � µ = µ ∪× δa = µ]a

This holds when µ ∈ P(R) is not necessarily nonnegative (the left and right sides of the

expression always exists), since the expression ∪× makes sense when considering the product

ηµ∪×δa(z) =
ηµ(z)ηδa(z)

z
=
azηµ(z)

z
= aηµ(z) = ηµ]a(z)

Similar manipulations of the transforms shows that

ρρρ]s � µ =
1

1 + s
δ0 +

s

1 + s
µ]1+s
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Example B.4.6. We have the strange observation that

πππ ∪× πππ =
1

2
δ0 +

1

2
(aaa� δ2)

which implies, given the previous example, that πππ∪×2 = 1
2
δ0 + 1

2
πππ]2 = ρρρ]2 � πππ. According to

Definition B.2.4, this means that there exists some distribution ν ∈ P(R+) such that

πππ ∪× πππ = ρρρ]2 � πππ = ν � πππ = ρρρ]2 � ν =
1

2
δ0 +

1

2
(aaa� δ2)

although it is not clear from the right side what the distribution ν should be.

Example B.4.7. Suppose

µ = pδ0 + (1− p)ν

where 0 < p < 1 and ν ∈ P(R) such that ν({0}) = 0. Then we can write

µ = ρρρ]
1−p
p � ν]p

It is well known, for instance, that for 0 < t < 1, we have

πππ�t = ((1− t)δ0 + tδ1)� πππ = D1−t

(
ρρρ]

t
1−t

)
� πππ = ρρρ]

t
1−t �D1−t (πππ)

and

πππ�t = (1− t)δ0 + tDt

(
πππ�1/t

)
Therefore, it follows that

πππ�t = ρρρ]
t

1−t � Dt

(
πππ�1/t

)]1−t

142



4 3 2 1 0 1 2 3 4
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Figure B.4: Comparison of the eigenvalues of a matrix of the type described in Example
B.4.8 with N = 103 and k = 5, with the estimation given by rrr�5 = D2

(
sss]5/4

)
(red line).

According to Definition B.2.4, this implies that there exists some distribution ξ ∈ P(R+)

such that

ρρρ]
t

1−t �D1−t (πππ) = πππ�t = ρρρ]
t

1−t � Dt

(
πππ�1/t

)]1−t

= D1−t (πππ) � ζ = Dt

(
πππ�1/t

)]1−t ∪× ξ

Once again, it is not clear what distribution ξ should have.

Example B.4.8. From (B.1) it is not hard to see that

Bt(rrr) = D√t

(
sss]

1
t

)

from which we get that

rrr�t = D√t−1

(
sss]

t
t−1

)

where t ≥ 1. The distribution rrr�k for k ∈ N is notable because it expresses the eigenvalues

of large random matrices of the form

U1A1U
†
1 + U2A2U

†
2 + . . .+ UkAkU

†
k
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Here the Uj are taken to be independent Haar distributed random orthogonal matrices, and

the Aj are diagonal matrices with half their diagonal entries equal to +1 and the other equal

to −1. All matrices are taken to be size N × N for some particularly large N . This is

the situation discussed in Example 5.3.3 and expressed in Figure 5.1. In the case of k = 2,

rrr�2 = aaa and so the distribution is well understood. In higher order cases, however, there is no

convenient analytic description for these distributions. In particular, trying to compute rrr�k

by inverting the reciprocal Cauchy transform may not be tractable. On the other hand, an

expression involving sss]k/(k−1) is tractable, since it only involves computing the new Stieltjes

transform of the form

Ssss]k/(k−1)(z) =
1

k
(k−1)Ssss(z)

+ k
k−1

z − z

Since the Stieltjes transform for sss is fast to compute, Stieltjes inversion can be used to

approximate the density to these types of distributions. Furthermore, the properties of

noncommutative convolutions tell us immediately that the support of rrr�k will be precisely

[−2
√
k − 1, 2

√
k − 1]. A comparison of such an estimation to the actual eigenvalues observed

in such a matrix for k = 5 is demonstrated in Figure B.4.

B.5 Intersections of Classical and Free Infinite Divisi-

bility

Significant interest has emerged over the last decade in investigating the intersection between

classical and Free infinite divisibility, and whether a satisfying theory could even exist at all.

Common laws in Free Probability, such as the Free Poisson (M–P), Semicircle, and Arcsine

distributions cannot be classically infinitely divisible, as their densities are continuous but

compactly supported. Very surprisingly, the standard Gaussian distribution ggg
d
= N(0, 1) was
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Figure B.5: Conjectured intersection between the classes of nonnegative ID(∗) and ID(�)
distributions, according to Conjecture B.5.3.

shown to be Freely infinitely divisible, and can even be shown to have a Free divisibility

indicator φ�(ggg) = 1. Specifically, we have that ggg]s ∈ ID(�) if and only if 0 ≤ s ≤ 1. On

the other hand, it was also possible to show (Hasebe, 2014) that ggg]s ∈ ID(∗) if and only if

s ∈ {0, 1}, so the interactions between the classical and noncommutative evolutions may be

quite strange.

The first non-trivial family of distributions from the classical world which were shown to live

in ID(∗) ∩ ID(�) appeared in Hasebe (2014). Interestingly, these properties are not path

dependent. For instance, the Gamma subordinator Γt is in ID(�) for t ∈ (0, 1/2]∪ [3/2,∞),

but fails to be in ID(�) for a complicated union of intervals contained in (1/2, 3/2), including

the key case of the exponential distribution Exp(1) when t = 1. On the other hand, the

inverse Gamma distributions, which follow 1/X when X
d
= Γt, are in ID(�) for all values of

t > 0.

A huge family of distributions living in ID(∗) ∩ ID(�) finally appeared in Arizmendi and

Hasebe (2016b), in terms of mixture models of Boolean α-stable distributions.
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Theorem B.5.1 (Arizmendi and Hasebe, 2016b). Let X be any nonnegative random variable

independent from a random variable B, and suppose B follows bbbα,ρ for 0 < α ≤ 1/2 and

0 ≤ ρ ≤ 1, or ρ = 1/2 (the symmetric case) with 0 ≤ α ≤ 2/3. Then the (classical)

independent product XB ∈ ID(∗) ∩ ID(�).

The intersection between ID(�) and the EGGC class has just recently been shown to contain

a rich family of Free α-stable distributions. These distributions are clearly Free infinitely

divisible.The following result shows that many are also classically infinitely divisible.

Theorem B.5.2 (Hasebe et al., 2018). For every 0 < α ≤ 1 and 0 ≤ ρ ≤ 1, the distributions

fffα,ρ ∈ ID(∗). Furthermore, if 0 < α ≤ 3/4, then we have the stronger result that fffα,ρ ∈

EGGC. On the other hand, for every 1 < α < 2, the symmetric distributions fffα,1/2 /∈ ID(∗).

In particular, the distributions fffα,1 for 0 < α ≤ 3/4 are in the intersection FR ∩ GGC.

Given the strange but interesting interactions between the two probabilities, we propose the

following conjecture.

Conjecture B.5.3. Let Rβ denote the class of distributions which can be written in the form

X/Γβ where X ∈ GGC and Γβ is a Gamma subordinator independent from X, as introduced

in Section 3.2.6. Recall that we have

Rα ⊆ Rβ

for 0 < α < β, and

Rβ → GGC

as β → ∞ (considering the weak closure). Then there is some small 0 < α < 1 such that

Rα ⊂ ID(�).
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