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Abstract 

The results of tertiary structure assessment at CASP15 are reported. For the first time, 
recognising the outstanding performance of AlphaFold 2 (AF2) at CASP14, all single chain 
predictions were assessed together, irrespective of whether a template was available. At 
CASP15 there was no single stand-out group, with most of the best-scoring groups - led by 
PEZYFoldings, UM-TBM and Yang Server - employing AF2 in one way or another. Many top 
groups paid special attention to generating deep Multiple Sequence Alignments (MSAs) and 
testing variant MSAs, thereby allowing them to successfully address some of the hardest 
targets. Such difficult targets, as well as lacking templates, were typically proteins with few 
homologues: small size, high α-helical content and monomeric structure were other possible 
aggravating factors. Local divergence between prediction and target correlated with 
localisation at crystal lattice or chain interfaces, and with regions exhibiting high B-factor 
factors in crystal structure targets, and should not necessarily be considered as representing 
error in the prediction. However, analysis of exposed and buried side chain accuracy 
showed room for improvement even in the latter. Nevertheless, a majority of groups 
produced high quality predictions for most targets which are valuable for experimental 
structure determination, functional analysis and many other tasks across biology. These 
include those applying methods similar to those used to generate major resources such as 
the AlphaFold Protein Structure Database and the ESM Metagenomic atlas, where 
confidence estimates were also notably accurate.  



1 | Introduction 
 

For nearly 30 years the Critical Assessment of Structure Prediction (CASP) experiments 
have monitored, assessed and incentivised developments in protein structure prediction 1,2. 
Every two years, predicting groups are invited to model protein sequences in advance of 
their experimental structures - be they determined by X-ray crystallography, cryo-Electron 
Microscopy or Nuclear Magnetic Resonance - becoming publicly available. Independent 
groups then assess performance using standardised metrics and statistical models in order 
to rank groups by performance at each event. More importantly, the exercise also serves to 
publicise progress and stand-out methods to the broader communities who benefit from 
protein modelling, and to point to areas requiring further improvement. 
 
Central to the CASP endeavour since the beginning has been assessment of structural 
modelling of single protein chains. Even in the earliest CASP exercises, simpler targets - 
those for which a homologous structure could be identified in the Protein Data Bank 3 - were 
modelled quite well. In contrast, ab initio modelling (aka de novo or template-independent 
modelling) has seen dramatic progress from very poor performance in the early days 4, via 
increasingly sophisticated fragment assembly methods that made good models of small 
proteins 5 to the modern era of Machine Learning and especially Deep Learning 6. At 
CASP14, AlphaFold 2 (AF2) emerged as the top-performing method, by some distance, in 
both the template-based 7 and ab initio 8 categories. Importantly, the performance on hard 
targets was close to that seen on easier targets 2 rendering unnecessary the twin-track 
assessment. Hence, at CASP15, the organisers united the previous two categories into one 
assessment of modelling of single protein chains.  
 
The results of the CASP15 assessment of single chain modelling are presented here. There 
were submissions from 132 groups for 112 evaluation units deriving from 77 single chain 
targets.  We evaluated the performance of the 118 groups which had submitted models for 
at least 10 of the 112 evaluation units. In contrast to CASP14 there was no single stand-out 
group: many groups performed very well on a majority of targets with the leading groups 
distinguished by their ability to tackle the hardest targets. Most of the best-performing groups 
used AF2 in one way or another. The two submissions using protein Language Model 
(pLMs) suggest that such methods are not yet competitive with those using Multiple 
Sequence Alignments (MSAs), and claimed benefits for targets with no or few homologues 
9,10 were not apparent on the CASP15 targets. Nevertheless, many models, including those 
derived by pLM-based methods can, with appropriate and sometimes essential editing, solve 
most crystal structures.  
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2 | Materials and Methods 

2.1 Target definition 

The procedures for processing full-length CASP15 targets into evaluation units (EUs) are 
described in detail elsewhere 11. Briefly, protein chains were split into compact structural 
units (here referred to simply as domains) using the results of several different analytic 
methods, and also considering similarities to other protein structures. These domains were 
combined into EUs where a majority of groups successfully captured their relative 
orientation. Where, on the other hand, groups predicted the individual structural units well 
but a majority failed to predict their packing, the individual structural domains were retained 
as EUs. Overall, 112 EUs were derived from 77 tertiary structure prediction targets. Three 
EUs - T1114s1-D2, T1157s1-D2 and T1157s1-D3 - were not evaluated because of the low 
resolution of the cryo-EM maps in their local areas.   
 
As in previous CASPs, EUs were assigned to target difficulty categories: TBM (template-
based modelling, easy or hard), FM (free modelling), and the TBM/FM overlap category. 
Unlike previous CASPs, this procedure was done automatically using methods designed to 
recapitulate, as far as possible, previous assignments that had significant manual input 11. 
Ultimately, there were 47 EUs in the TBM-easy class, 15 TBM-hard, 8 TBM/FM, and 39 in 
the FM category. This last number is significantly larger than seen in recent CASPs. 

2.2 Scoring and ranking 

Following the practice established by previous CASPs, the group ranking was done using a 
composite score including metrics relating to global fold correctness, main chain quality, side 
chain accuracy and the accuracy of the confidence estimates. Z-scores were employed to 
make all measures dimensionless and to represent relative, rather than absolute, 
performance across all measures in a uniform way. The CASP15 score was modified from 
the CASP14 predecessor to include reLLG values. The CASP14 score 7 was: 
 

 

Here, the set of metrics in the first parenthesis focuses on local and side chain quality: LDDT 
is the local Difference Distance Test that evaluates the agreement between the all-atom 
distance maps of target and model12 , CADaa is the all atom variant of the CAD score 
looking at residue contact surface areas13 , Sphere-Grinder (SG), measures how well the 
model captures the local atomic environments of each residue14 , and sidechain refers to 
one of the two torsion angle deviation metrics introduced for template-based model 
assessment at CASP1315. The second group focuses more on main chain quality. It includes 
MolPrb-clash, which refers to the number of serious atom clashes detected by MolProbity 16 
(the calculation also involves side chains), backbone, the second, main chain-focused of 
Croll et al’s torsion angle deviation metrics 15 , and DipDiff, which measures interatomic 
distances involving Cα and O atoms between neighbouring residues and compares them 

https://paperpile.com/c/IaeF3U/W2Gx
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between target and model 17. In the third group are GDT_HA, the high-accuracy variant of 
the Global Distance Test - Total Score (GDT_TS) which measures global fold accuracy 18 
and ASE, the Accuracy Self Estimate, measuring the correlation between error estimates 
and actual model errors.  
 
For CASP15, we implemented two modifications to the ranking score. First, the ASE 
measure was calculated on atomic predicted LDDT values (pLDDT) instead of predicted 
coordinate errors in Ångstroms 19, and second, the reLLG measure 20 was added to the 
scoring. The change in the ASE calculation was dictated by the change in the prediction 
requirements for CASP15, where predictors were asked to estimate accuracy of atoms' 
placements in a model in terms of pLDDT and not the distance as in CASP14. The inclusion 
of the reLLG is rationalised by its modest correlation with other elements of the ranking 
score (the highest pairwise correlation coefficient was 0.69 with GDT_HA) and the 
importance of protein modelling for its widely-used downstream application in the 
experimental protein crystallography. Conceptually, the reLLG is a coordinates-only score 
predicting the usefulness of a model for Molecular Replacement (MR)20. We included it in the 
ranking formula with the same weight as GDT_HA and ASE.  
 
The CASP15 score was: 
 

 

We considered changing the assessment of side chain accuracy. However, additional 
potential metrics were found to correlate too strongly to the existing side chain torsion angle 
deviation metric to justify inclusion. For example, the GDC_SC measure, a Global Distance 
Calculation for side chains, had a correlation coefficient of 0.95 with the GDT_HA metric that 
was already part of the composite score. Similarly, the Average Absolute Accuracy (AAA) 
measurement from the SCWRL4 package21 had a correlation coefficient of -0.96 with the 
existing side chain torsion angle score. 
 
As mentioned, z-scores were used instead of raw scores and, as is also customary at CASP, 
the calculations proceeded in two rounds. In the first, models scoring below an initial z-score 
of -2 were considered as outliers and excluded. Z-scores were then recalculated, but only 
positive z-scores included in the ranking calculations. In this way groups who, perhaps 
through more speculative and experimental methods, produced a few dramatically poor 
models were not prevented from having consistently good performance recognised 
elsewhere. Again as previously, the final rankings were based on sums of z-scores in order 
to reward groups performing well across all targets. Finally, it is to be noted that the 
composite scoring addresses previous concerns that models may capture an overall global 
fold correctly, but perform poorly in other regards 15. Nevertheless, since the accuracy of the 
fold is the primary consideration, relative performance of groups on GDT_HA alone was also 
examined.  
 
Calculations were done using a modified version of the code repository created for CASP14 
by Joana Pereira and are available at https://github.com/hlasimpk/CASP15_high_accuracy. 
 

https://paperpile.com/c/IaeF3U/G0JK
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https://paperpile.com/c/IaeF3U/L6e8
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Multiple Sequence Alignment (MSA) depth was measured as Neff/length with data kindly 
provided by Claudio Mirabello from the National Bioinformatics Infrastructure Sweden at 
SciLifeLab (doi.org/10.17044/scilifelab.22769996). Calculations were based on alignments 
that were generated by the public AlphaFold2 server with default parameters and databases  
(https://github.com/clami66/AF_server/). Classification of targets using DSSP 22,23 defined 
them as all-α (100% of regular secondary structure was α-helix), mostly α (>65% α), mixed, 
mostly β (>65%) or all-β (100% of regular secondary structure was β-sheet). 

2.3 Factors affecting local model quality 

In order to determine whether local modelling errors were more likely to be found in the 
vicinity of intermolecular interfaces, predicted models were analysed using the procedure 
described in the CASP14 refinement assessment study 24. Only higher quality  (GDT_TS 
>80) model_1 submissions were included in the analysis so that errors could be considered 
local, rather than as resulting from overall global poor performance. Error was assessed and 
compared to structural context at both residue and ‘region’ levels 
 

- For residue level analysis, the LGA distance (between the predicted model and 
experimental structure superimposed using the sequence-dependent algorithm) was 
compared for residues contributing to crystal, chain or domain interfaces or to none 
of these. Residues were considered at a crystal, chain or domain interface where 
they had at least three < 10Å Cα-Cα contacts with residues in neighbouring 
symmetry mates, chains or domains, respectively.  

 
- Error regions were defined as follows.  A five residue-window rolling average LGA 

distance (defined as above) was calculated for each residue in the predicted models. 
Error regions were then defined as comprising at least three consecutive residues 
with a rolling LGA average of at least 3Å. These error regions were then defined as 
being at a crystal lattice interface, a chain interface or a domain interface if the 
residues within the region had an average of at least 0.5 residues within a radius of 
10Å in a symmetry mate, another chain or a different domain, respectively 24. Again, 
distances were measured between Cα atoms. 

 
To assess the relationship between B-factors and local error, for selected groups, residues 
in higher-quality (GDT_TS >80) model_1 submissions were analysed. Within each target, 
residue B-factors were first normalised. All residues from all targets were then combined and 
residues placed into 10 equally sized bins according to normalised B-factors.  

2.4 Side chain assessment 
 
SCRWL4’s AAA sidechain score 21 measures the percentage of the model’s χ-angles for 
each residue that are within 40° of their corresponding angles in the reference structure.  A 
score was calculated for each residue and then averaged over surface and non-surface side 
chains for the top-scoring model (by GDT_HA) for each target. To define surface and non-
surface residues, the Shrake-Rupley algorithm 25 was used.  Prior to the definition of EUs, 

https://paperpile.com/c/IaeF3U/pbGb+27qR
https://paperpile.com/c/IaeF3U/ySNF
https://paperpile.com/c/IaeF3U/ySNF
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the solvent accessibility of each target residue was calculated, and a residue was 
considered part of the surface if its solvent accessibility was greater than 20 percent 26. 
 
In addition, the torsion angle deviation metrics for side chain and main chain 15 were plotted 
against each other as contour maps in order to assess the dependence of side chain 
placement accuracy on main chain modelling.  
 

2.5 Scoring against X-ray crystallographic data and Molecular 
Replacement 

2.5.1 Assessing the models’ potential for success in Molecular Replacement 
 
Models were tested against the experimental diffraction data, where available, by calculating 
LLGs for ideally placed structures and then, for selected groups, by attempting Molecular 
Replacement (MR). Details for the set of 17 targets with diffraction data are shown in the 
Supp Table 1. The top submitted model by each group, model_1, was first processed to 
remove residues with low pLDDT values. The current version of Slice’N’Dice 27 (SnD) 
removes residues for which the B-factor column, here recording pLDDT values, contains a 
value below 70 for the first atom encountered. Here that means that a few residues may 
have been discarded where their first atomic pLDDT was less than 70 but the mean across 
the residue exceeded that value (or kept where the reverse was true). However, since only 4 
groups - namely Bench, Yang, Yang-Server and Yang-Multimer -  chose to submit atomic, 
rather than per-residue, pLDDTs the impact of this was small. Note that no attempt was 
made here to correct entries from the handful of groups who apparently did not have pLDDT 
on the expected 0-100 scale in the B-factor column. The model was then placed ideally onto 
the target crystal structure using Gesamt 28 to do the structural superposition. Models were 
placed for all copies of the molecule in the asymmetric unit. The positioning of the model(s) 
was further optimised by using Phaser 29 to perform rigid refinement. This step also 
generated a total Log Likelihood Gain (LLG) for the placed model(s). A simple ranking of 
groups was generated by awarding the group responsible for the best model of a target x 
points, where x is the total number of groups having attempted a prediction for 1 or more of 
the 17 targets. The group producing the model with the second-best LLG was awarded x-1 
points and so on. An LLG of 60 or more for the placement of the first component in an MR 
search is considered to be indicative of correct placement 30. Models scoring less than this 
threshold did not receive any points. Groups that did not attempt a prediction for the target 
received no points. The ranking was on the total number of points across the 17 targets for 
which diffraction data were available. 
 
The impact of domain splitting on alignment between models and target and resulting LLG 
values was also explored. Using the slice function of the SnD pipeline in CCP4, models were 
subjected to splitting into 2-4 rigid regions that might separately fit better to corresponding 
regions in the target structure. In order to process models of all origins uniformly, CCTBX’s 31 
PAE-based domain decomposition was not used: instead the purely coordinate-based Birch 
algorithm from SciKit-learn 32  was applied. These domain regions were then placed in the 
same way as described above, producing LLG values for all components matching the 
contents of the asymmetric unit.  

https://paperpile.com/c/IaeF3U/hVGo
https://paperpile.com/c/IaeF3U/L6e8
https://paperpile.com/c/IaeF3U/d6FG
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2.5.2. Full Molecular Replacement  
 
Model 1 from a subset of the top scoring groups from the alignment tests were used in a full 
MR test for each of the 17 targets. The same model from the ESM-single-sequence group 
was also used in these tests to assess how well models produced using the pLM-based 
method would perform in full MR. For this test, the unsplit models were used and subjected 
to B-factor conversion and with residues having a pLDDT below 70 removed. Phaser was 
used to carry out the MR with success measured by the resulting LLG. 
 
The case of T1145 (636 residues) was explored in more detail since the presence of several 
domains made it likely that predicted models would differ from the conformational state 
captured in the crystal structure. Determining the structure using a predicted model is further 
complicated by the presence of two copies in the asymmetric unit. The resolution of the 
diffraction data is 2.2 Angstroms. SnD was used to attempt a structure solution using search 
models generated by splitting the model into 2, 3 and 4 pieces. MR was also attempted 
using the unsplit model. Results were refined with Refmac5 33 before model rebuilding using 
Modelcraft 34.  Success was measured using the Rfactors achieved following the model 
rebuilding step. 

2.6 Function prediction 

Targets were selected based on their interpretability by structure-based methods.  The 
selection was based on information given to the CASP predictors in combination with 
analysis and literature review of the targets. Four enzymes T1146 (a putative peptidoglycan 
hydrolase with a catalytic triad), T1110 (isocyanide hydratase with a catalytic dyad), T1127 
(NATA1 with a catalytic dyad) and T1188 (chitinase with a catalytic triad) were selected to 
determine the accuracy of modelling of catalytic sites. The fit function of PyMOL was used to 
calculate all-atom rmsd values between catalytic sites in predictions and targets. The 
chemical equivalence of side chains for Asp, Gly and Tyr on 180° rotations about their Cβ-
Cγ bonds was taken into account. Only models with GDT_HA >30 were considered in the 
analysis. 
 
Three targets were identified as DNA binding proteins; T1153, T1170 and T1151.  The three 
experimental structures were screened for predicted DNA-binding capability with both 
DNABIND 35 and BindUP 36.  Of the three targets only T1151 was predicted to be a DNA 
binding protein by either method so only models for T1151 were processed.  

https://paperpile.com/c/IaeF3U/2Qjd
https://paperpile.com/c/IaeF3U/7gIk
https://paperpile.com/c/IaeF3U/6PW2
https://paperpile.com/c/IaeF3U/2XHK


3 | Results  

3.1 Overall group rankings 

 

Figure 1. Cumulative group ranking on 109 CASP15 evaluation units. Groups are colour-coded indigo 
for server, i.e. a purely automated modelling protocol, and teal for manual where human intervention 
is allowed. Pure AlphaFold 2 comparison runs based on the original DeepMind protocol or its 
ColabFold version are shown in green. Pink is used for the two groups employing exclusively protein 
Language Model methods. 
 
Fig 1 shows the CASP15 group ranking, expressed as the sum of the per-target SCASP15 
scores, as defined in Methods. Comparison with the rankings according to the previous CASP 
formulae (Supp Fig 1) shows very similar results in the top positions. Several interesting 
conclusions can be drawn. Firstly, automated servers (indigo in Fig 1) are higher in rankings 
and appear better represented at the top of the performance table in CASP15 than in any 
previous CASP. Of the top three places in CASP15, two are occupied by servers, which 
never happened before in any of the prediction categories.  
 
Secondly, it is clear that the ‘control’ runs of AF2, both in the original DeepMind 
implementation as of March 2022 (group names NBIS-AF2-standard and NBIS-AF2-
multimer) 37 and a later ColabFold version (group names ColabFold and colabfold_human) 
38, are a little way off the best performance possible, though each produces many high-

https://paperpile.com/c/IaeF3U/a5Xo
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quality models (see below). Detailed descriptions of the best groups’ methods are to be 
found elsewhere in this issue, but common themes are paying special attention to the MSA 
depth by collecting sequences from different databases, and sampling across models 
resulting from MSAs that differ in their depth, database origin, or sub-clustering. 
 
Thirdly, despite the moderate performance of AF2 controls, most of the best groups used 
AF2 in one way or another: the best performing method that was entirely independent of AF2 
was that of the BAKER group, 28th place, using RoseTTAFold2 39. Among those methods 
using AF2, there was an interesting variety of strategies although many groups placed 
significant emphasis on generating models based on diverse MSAs and selecting the best 
models from the resulting sets. There was also an interesting trend towards creatively 
combining AF2 predictions with alternative predictive methodologies. Thus, the UM-TBM 
group 40 used AF2 predictions to guide replica exchange Monte Carlo simulations within the 
I-TASSER 41 framework, while the Yang-Server group 42 selected from AF2 and trRosettaX2 
results for its submissions. Finally, the pLM-based methods (pink in Fig 1) are not currently 
competitive with MSA-based methods like AF2: the best-placed pLM group, ESM-single-
sequence 43, is placed 74th among 118 evaluated participants. 
 
Looking at the number of times each group produced the absolute best possible model 
(Supp Fig 2) yields a slightly different perspective. PEZYFoldings 44 remains in first place by 
both CASP15 and GDT scores, the top server method UM-TBM is in second place by all 
scores and Yang-Server places third by GDT_HA. However, DFolding (fifth in the overall 
ranking in Fig 1) rises to third by composite CASP15 and GDT_TS scores, while 
ShanghaiTech (31st in the overall ranking) rises to fourth place in the CASP15 table and fifth 
in the GDT_TS ranking.   
 
 

https://paperpile.com/c/IaeF3U/v1DM
https://paperpile.com/c/IaeF3U/LUaq
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3.2 Group performance on different targets 

 

Figure 2. Ward’s clustering applied to GDT_TS values (red good, blue bad, grey no submission) 
achieved by the 118 evaluated groups on the 109 Evaluation Units (EUs) that were considered. EUs 
are additionally annotated on the left with colour codings relating to classification (TBM_easy, 
TBM_hard, FM/TBM or FM) and taxonomy of the original target sequence (Bacteria, Archaea, Virus, 
Eukaryote, Synthetic). Groups are annotated on the top according to whether they were Server 
(indigo) or Human (blue), by broad category of method and according to if AF2 was used by a group. 
Note that the submitted Abstracts from some groups did not always allow confident inference of these 
aspects (grey labels). Three clusters of groups discussed in the text are indicated in magenta. 

 
Fig 2 provides a two-dimensional heat map of CASP15 groups and targets clustered based 
on the GDT_TS score. Groups to the left in cluster 1 focussed solely on multimeric targets. 
Cluster 2 contains a number of groups whose mixed blue and red colouring indicates 



variable performance: notably, these methods tended to not employ AF2 (or it was unclear 
from the submitted abstract whether that was the case). Cluster 3 includes a broad swathe 
of groups, many based one way or another on AF2, that produced largely good to excellent 
models over most of the target EUs. Table 1, for example, shows that selected methods 
(comprising the best-performing MSA-based methods, AF2 controls and the best pLM-based 
method) produce model_1 predictions that have the correct topology (GDT_TS ≥ 45 ) in a 
large majority of cases. Remarkably, the best methods produce up to half of predictions with 
GDT_TS ≥ 90, a rough benchmark of differences between crystal forms of the same protein, 
and hence a reasonable ceiling on expected predictive performance. Again, two server 
groups that provide standardised versions of AF2: the NBIS-af2-standard, implementing a 
version of the original DeepMind AF2 protocol 37, and ColabFold 38 - perform somewhat 
worse than the top groups (Fig 2 and Table 1) 
 
Looking next at the clustering by targets (vertical axis), there is a notable cluster of 18 at the 
top, for which average model quality was clearly lower, with most groups scoring GDT_TS 
<50. Strikingly, 17 out of these 18 EUs were FM targets (the exception being T1125-D3, 
classified as TBM-hard), illustrating how the traditional four-way classification of EUs by 
CASP 11, which is based on sequence and structural similarity of targets to PDB entries, still 
picks out targets which are more likely to prove difficult. However, it is important to note that 
another 22 FM targets were found in the main block of better-predicted targets. Thus, FM 
targets are clearly predisposed to difficulties but may, depending on other characteristics 
(see later), still be well-predicted. The other notable characteristic of the hard group of 18 
was its richness in EUs derived from viral targets. Seven of the 18 are viral in origin, 
whereas the same is true only for six of the remaining 91 targets. This is a significant 
difference by Fisher’s Exact test 45 (P = 0.001; P < 0.05). Inspection of Fig 2 confirms that 
the best-performing groups overall are those who also produced good models for the most 
challenging targets. 
 

3.3 Target difficulty 

3.3.1 What makes a target difficult 
 
Factors possibly explaining the greater difficulty of some targets, even to the best-performing 
groups, were explored. The objective was to identify limitations of current methods and also 
to explain an apparent drop in overall performance by the best groups here compared to the 
best group at CASP14 (DeepMind with AlphaFold 2). The latter issue is also explored in the 
introductory paper of this journal issue  46. 
 
Fig 3a illustrates a number of criteria that seem to link to target difficulty measured as 
median GDT_TS for the top 10 groups overall (Fig 3a). The most obvious characteristic of 
difficult targets is the availability of only a shallow multiple sequence alignment (MSA) when 
homologues are collected from sequence databases. MSA depth here is measured as Neff 
47 normalised by length 48,49. The hardest targets in Fig 3a all have very low Neff/length 
values: T1122, T1131 (the hardest target) and T1130 were all singletons in the principal 
public databases. The same trend persists in a graph calculated using models from all the 
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groups (Supp Fig 3). Evolutionary covariance information extracted from the MSA is used by 
methods such as AF2 to predict contacts and distances between residues, and is particularly 
key for AF2 for the derivation of an initial structure model 37. Where neither high-quality 
covariance information nor a structural template (i.e. for FM targets) is available then even 
the best groups may struggle. This feature can be related to the abundance of virus-derived 
targets in the most difficult group in Fig 2: as previously recognised, the rapid evolution of 
viral protein sequences can hamper the recognition and alignment of homologues in 
sequence databases 8. 
 
Protein Language Models (pLMs) represent a new approach to structure prediction 9,10,43,50. It 
has been asserted 9,10 that they may be less dependent on MSA-derived information and 
hence potentially capable of comparatively better performance than MSA-based methods on 
low Neff/length targets. Fig 3b, in which targets are ordered by their Neff/length, does not 
support this idea. The best pLM-based methods are competitive with, though generally not 
quite as good as, MSA-based methods for high Neff/length targets on the left. However, the 
performance deficit actually increases on the right as available MSAs become shallower.  
 
Beyond low Neff, further analysis pinpoints other potential aggravating factors. For example, 
all of the five hardest targets are relatively small (Fig 3a), ranging in size from 66 to 234 
residues, while no target larger than 300 residues achieved a median GDT_TS of less than 
67. Similarly, the same five targets are either all-α or mainly α by secondary structure 
composition and there seems to be a tendency for the more α-rich targets to extend to lower 
median GDT_TS values among the results of the top 10 groups (Fig 3a). Finally, although 
numbers are small, it is interesting to note that four of the five hardest targets derive from 
crystal structures: the example of T1122 (below), though extreme, illuminates the particular 
complications that X-ray crystallography may sometimes introduce. 
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Figure 3. Analysis of performance versus Neff/length and other characteristics  (a) Scatter plot of 
GDT_TS versus the log10 of target Neff/length + 0.001 for the top ten groups. The scatter points are 
coloured by secondary structure and the size of the points correspond to the size of the target. (b) Plot 
of GDT_TS versus target for the top performing MSA based methods (PEZYFoldings: Dark blue, 
Yang: Light blue) and the pLM methods (ESM-single-sequence: Dark red, EMBER3D: Light red). The 
lines represent a moving average for each method calculated across a ten target window. The targets 
are ordered by Neff/length descending from left to right with Neff/len indicated on the right-hand y-
axis.  

 



3.3.2 Examples of difficult targets 

Target T1169, mosquito salivary protein SGS1, was the longest single chain target yet seen 
at CASP and one of the longest single chains in the PDB. It is a hard modelling target that 
was divided into four assessment units, three FM and one TBM-Hard 11. Despite this 
splitting, indicating that most groups struggled to predict the relative orientation of the 
individual units, some groups produced remarkably accurate predictions of most or even the 
entire structure. Fig 4a shows the top-ranked prediction from the Yang-server group, with a 
GDT_TS of 58 overall. With the exception of the C-terminal 200 residues, the individual 
domains are accurately folded and packed against each other with truly impressive 
accuracy. 
 
Targets T1130 and T1131 are aphid proteins which are, according to the submitting group, 
thought to be distantly homologous. They are both small (159 and 172 residues, 
respectively), largely α-helical, monomeric and were singletons in the main sequence 
databases at the time of CASP. A handful of good quality models of T1130 were submitted 
by groups who apparently discovered additional homologous sequences in the 
Supplementary Material of a paper 51 or in databases not searched by other groups. 
 
Another small (241 residue) largely α-helical monomeric target that proved difficult was 
T1122, a cranefly nudivirus protein with unusual properties related by the experimentalist 
submitters: derived from viral polyhedra, crystals of T1122 obtained in the 1950s have 
proved stable to this day, yet dissolving the crystal denatures the protein. Its crystal structure 
is also unusual in containing only 25% solvent leading to a densely packed protein array. 
Notably the N-terminal 30 residues do not pack against the core of their own subunit, instead 
contacting four symmetry mates. Given its low Neff/length and the absence of this structural 
context as well as other contacting lattice mates numbering no fewer than 16, it is perhaps 
unsurprising that the best model_1, from the QUIC group, achieves a GDT_TS no better 
than 39 and only really authentically captures the packing of the core helices (Fig 4b).  
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Figure 4. Examples of the best predictions produced for different targets. In each case the 
experimental structure is shown on the left and the prediction on the right, each coloured from blue to 
red from the N- to the C-terminus.  a) T1169, at 2735 residues, is modelled with impressive overall 
accuracy by the Yang-server group, with the exception of the C-terminal 200 residues. b) the T1122 
crystal structure with only 25% solvent content has a tightly packed lattice producing abundant 
contacts between one subunit and its neighbours (symmetry mates are shown in grey), likely 
contributing to the poor quality of the best prediction (from the QUIC group). 



3.4 Self-assessment of results 

CASP participants were asked to provide self-assessment of their models at two levels: first, 
by supplying local per-atom confidence values (expressed as pLDDT) in the B-factor column 
of their submissions, and second, by ranking their submitted models (out of five allowed per 
target) in order of confidence. The local confidence estimates are particularly important since 
it is routine to trim off lower-confidence regions for many applications of these models such 
as Molecular Replacement and structure searches of databases, while the model ranking is 
important as most user attention is likely to be focussed on the top-ranked prediction.  
 
Detailed results of the local self-assessment are provided elsewhere in this issue 52. Here we 
provide a summary of the relative group performance according to their median ASE z-
scores across all submissions (Fig 5a). Notably, the confidence estimates produced by the 
control ColabFold and DeepMind AF2 entries are among the most accurate currently 
available, which should be seen as reassuring for users of the ColabFold pages 38 and the 
AlphaFold Protein Structure DataBase 53, respectively. In comparison, the ESMFold quality 
estimates are a little less accurate, something users of the new ESM Metagenomic Atlas 
should bear in mind 43. 
 
Analysing model ranking data, Fig 5b shows that only around two thirds of groups out-
perform the randomly expected 20% threshold of model_1 being the best submission. (Note 
that alternate conformation targets, where numbering of models is irrelevant for the ranking 
purposes, were not considered here). For example, the overall winning group PEZYFoldings 
and the ColabFold group are each a little below 20%. However, AF2-based methods such as 
ColabFold often produce several predictions which are very similar: it is clearly a greater 
challenge to select the best in this situation than to spot the best from among five very 
divergent predictions. 
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Figure 5. Group self-assessment of results (a) groups ranked by median Z_ASE. (b) groups ranked by 
how often model 1 was the best model (expressed as a percentage). This ranking excludes groups 
which attempted less than half of the targets.  

 

3.5 Factors affecting local accuracy 

Where a portion of a target structure does not necessarily capture the only accessible 
conformation then it is unreasonable to expect the prediction to necessarily resemble the 
target. Flexible surface loops are likely to be difficult to predict since there can be multiple 
conformations differing little energetically. Some loops will be tethered by interactions in a 
crystal structure, but others will retain flexibility in the context of the crystal lattice resulting in 
locally smeared out electron density and higher local B-factors. For four selected Deep 
Learning methods and the pLM method ESM-single-sequence, the relationship between 
experimental B-factors and residue LGA error was studied (Fig 6A). Only higher-quality 
(GDT_TS >80) model_1 submissions were considered (numbering from 30 in the case of 
ESM-single-seq to 46 for PEZYFoldings and 47 in the cases of UM-TBM, DFolding and 
Yang-Server). Binning residues in these predictions by normalised B-factors (see Methods) 
and assessing the residue LGA error range in each bin reveals a strong relationship. For all 
methods, mean bin error increases with increasing normalised B-factor (Fig 6A). 
 
 
 
 



 

Figure 6. Factors affecting local accuracy analysed using the results of selected MSA- and pLM-
based approaches. Only high-quality (GDT_TS >80) model_1 submissions are considered. (a) 
Residue LGA error tends to correlate with normalised B-factor: for each method, residue LGA error 
increases from low (light colour) to high (dark colour) bins of normalised B-factors. (b) Distribution of 
LGA error values across residues observed neighbouring a crystal lattice interface (orange), a chain 
interface (green) or neither (blue). c) Error regions (defined in Methods) are classified according to 
their presence at a crystal lattice interface (orange), at a chain interface (green) or neither (blue). 



 
It is understood that the formation of the crystal lattice can lead to local distortion of residues 
away from the most energetically stable conformations. Indeed, it has been argued 
previously that where a high-quality structure prediction differs from the target at a crystal 
lattice, it should not automatically be inferred that the crystal structure is correct and the 
structure prediction in error 24. Another way to view the situation is that the structure 
prediction program lacks the 3D context - the neighbouring crystal symmetry mates - that 
would help it accurately predict crystal lattice structures. A similar logic can be applied to 
interfaces between chains: lack of structural context means they may well prove harder to 
predict where only a single chain is being modelled. These questions were explored here 
first by looking at mean local error among interface residues compared to others; and 
secondly by defining error regions (see Methods) and checking whether there was evidence 
of their over-representation at crystal lattice or chain interfaces. Analysis of domain 
interfaces was also attempted (not shown) but the number of such residues was too small to 
allow meaningful analysis. 
 
Considering first the local LGA errors (Fig 6b), residues at crystal lattice interfaces have 
significantly higher errors than non-interface residues for the results of all five groups 
considered: two sample t-test results gave p-values running from 2.73 x 10-13 to 0.04. 
Although the difference was often less pronounced, localization at a chain interface also 
resulted in significantly higher local errors in the results of all methods except PEZYfoldings. 
Similar results were obtained when considering error regions (see Methods) of at least three 
residues (Fig 6c). As expected, the pLM method ESM-single-sequence that is less accurate 
overall had larger numbers of such regions than the MSA-based methods. However, across 
all methods, a consistent proportion of around 40% of error regions are found at crystal 
lattice or chain interfaces, with the former always significantly outnumbering the latter. Taken 
together these results show that even the best predictive methods can still struggle with 
interface regions, especially crystal lattice contacts. However, the question remains, 
remembering the local forces exerted on proteins as they crystallise, as to whether crystal 
lattice ‘mispredictions’ should be regarded as errors: the model region may represent an 
alternative correct, biologically accessible conformation or even, if the lattice interface is 
distorted, the single biologically relevant conformation. A similar situation applies for high B-
factor flexible loops where model and target, though different, may be equally valid 
snapshots from a biological ensemble. A continued recognition at CASP of these mitigating 
factors around some ‘mispredictions’ is important to define the scope for future improvement 
of the current state of the art. 
 

3.6 Side chain accuracy 

As explained earlier, side chain accuracy is one component of the overall composite score 
but, as global main chain quality has improved, particularly post-AF2, improving side chain 
placement is seen as an important area for future development. Assessing reasonable 
expectations for optimal side chain placement is complicated by the fact that surface-located 
side chains will often have multiple, significantly occupied conformations. These may or may 
not be resolved experimentally, depending largely on the resolution of the data available. 
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To assess if surface side chains were more difficult to model than non-surface side chains, 
the SCWRL4 AAA sidechain scores 21 were calculated for different types of the side chains 
(see Methods) (Fig 7).  Seven targets were classified as all-surface (T1106s1-D1, T1114s1-
D1, T1115-D2, T1119-D1, T1137s1-D2, T1137s3-D2 & T1160-D1). For the remainder, the 
non-surface sidechain score was higher than the surface score in all but seven targets 
(T1173-D1, T1137s1-D1, T1137s4-D2, T1137s4-D3, T1137s5-D2, T1137s6-D1, T1169-D1) 
out of the 109 targets. Remarkably, for two targets (T1161-D1; TBM-easy, and especially 
T1137s2-D2; FM) all non-surface side chains were correct . Fig 7 shows that side chain 
accuracy tends to decline, left to right, as the accuracy of the best model decreases. 
Naturally, the proportions of surface and non-surface residues vary across the set of targets: 
the median ratio of surface:non-surface residues was 2.2:1. 
 

 
Figure 7. Per-target comparison of the mean SCWRL4 AAA sidechain score for surface residues (red) 
and non-surface residues (blue) for the model with the highest GDT_HA for each target. Residues 
were defined as surface residues if their solvent accessibility was ≥ 20% as given by the Shrake-
Rupley algorithm. A line of best fit is shown for both the surface and the non-surface residues in 
corresponding colours. The targets are ordered in descending order by the GDT_HA value of the top 
model.  
 
The side chain (SC) and backbone (BB) dihedral-based accuracy measures were plotted 
against each other to assess their relationship (Fig 8a). In each case, low values indicate 
high accuracy. The result shows a sharp dependency - as expected, high accuracy 
backbone structure is required before highly accurate side chain placement becomes 
possible 37. Nevertheless, even with near-ideal backbones, side chain scores never 
approach 0 (presumably due to the alternate conformation issue mentioned above). Equally 
striking, high-quality backbone structures do not guarantee successful side chain placement, 
illustrating how these are connected but still distinct challenges for predictors. 
 
Fig 8b shows the individual performance of the two best groups using each of the MSA-
based and pLM methods. Notably, the pLM methods, especially EMBER3D, lag behind the 
MSA-based methods in terms of side chain prediction: for models of a given low backbone 
score, reflective of high quality fold prediction, pLM methods give poorer side chain 
placement. Figs 8c and 8d illustrate the progress from CASP14 to CASP15 in this aspect of 
modelling. The dramatic progress seen in Fig 8c is illustrative of the transformation brought 
about by AF2: the much better BB scores seen for the largely AF2-based methods at 
CASP15 allow, in turn, much better SC scores. Perhaps less predictably, the top two 
methods at CASP15, PEZYFoldings and UM-TBM, do seem to out-perform the AF2 entrant 
at CASP14 in terms of side chain scores (Fig 8d). Notably, the abstract from the UM-TBM 
team commented that its refinement element was designed specifically to improve side chain 
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accuracy. The distribution of SC scores shows that it does slightly outperform PEZYFolding 
in the proportion of low SC score models. 
 

 
 
Figure 8.  Contour plots illustrating the relationship between backbone and side chain dihedral scores 
(see Methods), calculated across whole models. Each contour plot is supplemented by a plot on the 
right illustrating the distribution of side chain scores, and one above showing the main chain score 
distribution. (a) shows all groups, all models in CASP15 illustrating how a good (low) backbone (BB) 
score is necessary but not sufficient for a good (low) side chain (SC) score. (b) shows a comparison 
between the models produced by two of the best MSA-based methods - PEZYFoldings and Yang, 
and two pLM methods – EMBER3D and ESM-single-sequence. (c) shows a comparison between all 
groups, all models in CASP14 (indigo) and  CASP15 (teal). (d) shows a comparison between AF2 in 
CASP14 and the two top performing methods in CASP15 (PEZYFoldings and UM-TBM).  



3.7 Molecular Replacement 

Since Molecular Replacement (MR) is an important downstream application of protein 
structure modelling 20,54, submissions were also assessed directly for their suitability to serve 
as MR search models. As mentioned above, the reLLG 20 provides a coordinates-only metric 
for this purpose, and was newly included in the overall CASP15 score. However, where 
diffraction data were available (in 17 cases - see Supp Table 1) they were used for a more 
direct assessment of the CASP15 submissions. This was done first by calculating log-
likelihood-gain values (LLGs) for models ideally placed by superposition on the target crystal 
structure and refined; and secondly by carrying out full MR using CASP submissions as 
search models. 

3.7.1 Assessing the models’ potential for success in Molecular Replacement 
 
Submissions were processed to remove low confidence (pLDDT <70) regions, fit onto the 
target structure with Gesamt 28, and finally refined with Phaser 29 (see Methods for details). 
In this way, an LLG was obtained for model_1 submissions for each target and each group, 
allowing ranking of groups for each target. Converting the ranking into a score (see 
Methods), allowed for a comparison of groups across all targets (Fig 9a). The best scoring 
group was Colabfold_human and, in general, the best groups were those using AF2. Search 
models from pLM methods scored less well but proved to be good enough to exceed the 
LLG=60 threshold for many of the targets, indicating their potential utility in solving the MR 
problem.  
 
In MR, it is common to split a potential search model and place the resulting domains 
separately. This addresses the possibility that the domain orientation in the target may be 
different to that in the available search model(s), whether as a result of inaccurate structure 
prediction or simply because of different biologically relevant inter-domain orientations. For 
each target except T1122 and T1125, several of the search models created from the unsplit 
CASP submission already scored well enough (LLG >60) to indicate potential success in MR  
(Fig 9b). However, when the models were split into three  pieces, LLG scores improved (Fig 
9c), most notably for larger targets such as T1145 (636 residues), T1174 (339 residues) and 
T1181 (689 residues). In addition, some of the split models showed potential for structure 
solution of T1125, scoring an LLG better than 60. 
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Figure 9 (a) Groups ranked by the cumulative LLG derived ranking score described in section 2.5.1. 
(bc)  A comparison between the LLG scores for an ideally placed model b) before splitting and c) after 
splitting three times using the Birch algorithm in Slice’N’Dice. Pink indicates LLG scores below 60, the 
success threshold in MR. The blue to yellow gradient (see the colouring map next to the graph) 
depicts the LLG scores greater than 60 with yellow indicating the largest LLG values. Grey denotes 
instances where groups did not submit models for a target or where Phaser failed to produce a 
solution. Groups are ordered the same in all three panels. 

3.7.2 Full Molecular Replacement 
 
Even a search model with a high LLG after ideal placement may not succeed in full MR 
because of issues such as packing clashes. In order to assess real-world performance, 
model 1 from selected best ranking groups in the alignment tests, including the best scoring 
pLM-based group ESM-single-sequence, was used for full MR. The unsplit models, 
subjected to pLDDT-to-B-factor conversion and removal of residues scoring pLDDT<70, 
were used. Fig 10 shows the results of these tests, displaying the LLG from Phaser for each 
model and each target. No group produced a successful search for targets T1122 and 
T1125. For the remaining targets, many of the groups produced models which could be 
successfully placed in the MR search. The ESM-single-sequence models were the least 
successful, although they were sufficient for use as search models in several cases.  

 

Figure 10 LLG values from full MR tests for unsplit model_1 predictions for 11 selected groups, 
modified to remove residues with pLDDT <70, and placed by Phaser. T1122 and T11225 are not 
shown since no search model produced a solution..  

3.7.3 Molecular Replacement using ESM-Single-Sequence model for T1145 
 
One of the targets where the ESM-Single-Sequence model failed to produce an MR solution 
was T1145. We examined this case in more detail to test whether a predicted model, which 
differs greatly in its overall conformation from the crystallised form, could be successfully 
used in a split form to produce a correct MR solution. Supp Fig 4 shows the results of the 
aligned model test for T1145 for model 1 from all groups. It shows that, when the ESM-
Single-Sequence model is split into 2, 3 or 4 pieces using the SnD application, the resulting 
LLGs from Phaser strongly suggest the possibility of successful MR. Testing this hypothesis 



by full MR, we found that the optimal splitting was divide the predicted model into four 
domains (Fig 11). Target T1145 derives from a crystal structure containing two copies of the 
target in the asymmetric unit cell. Phaser successfully positioned seven of the eight domains 
producing phases and allowing calculation of an initial electron density map. The map was of 
sufficiently good quality for the model building application Modelcraft 34 to successfully build 
most of the two copies of the target structure. Restrained refinement using Refmac5 
achieved an Rfactor/Rfree of 0.26/0.3 after model building, showing good agreement 
between the refined structure and the observed reflection data. These are typical values for 
what can be achieved in the automatic model building of a macromolecular crystal structure. 
Further completion of the structure usually requires manual effort through a graphical 
interface.   
 

 

Figure 11. Using Slice’N’Dice to automatically split the ESM-Single-Sequence predicted model_1 for  
T1145 into four domains (different colours; also retaining only residues with pLDDT>70) and perform 
Molecular replacement using Phaser. Phaser places seven of the eight domain models and further 
completion is achieved using the Modelcraft model building application.    

3.8 Function prediction 

The interpretation and prediction of the functions of proteins based on their modelling is of 
major importance 55. Some function predictions rely on global properties, such as inference 
of nucleic acid binding capability based on electrostatic properties 35, and are therefore 
tolerant of some error. Other methods are acutely dependent on the accurate capturing of 
fine details such as the local conformations of specific residues responsible for ligand 
recognition.  With this in mind, targets were selected based on their interpretability by 
structure-based methods.  Target selection was based on information given to the CASP 
predictors in combination with analysis and literature review of the targets. Four enzymes 
T1146, T1110, T1127 and T1188 with catalytic dyads or triads were selected as well as one 
DNA binding protein (T1151). 
  
The ability to detect the catalytic sites by matching 3D structural motifs depends on their 
accurate local modelling. To assess their predictability given a certain accuracy of global 
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modelling, the value deriving from all atom fitting of the catalytic residues of the active sites 
to templates was plotted against measures of global fold quality and side chain metrics. The 
global accuracy metric (GDT_HA) and side chain metrics (data not shown) are not strongly 
correlated with the RMSD of the catalytic residues, and there are outliers. Fig 12a shows this 
trend for the T1146 target; other targets are shown in Supp Fig 5. For example, model 1 
from the QUIC group for the T1146 target has a high GDT_HA (79.4) but the RMSD for the 
catalytic triad residues is relatively high (2.36 Å).  Inspection of this model reveals that the 
protein has a very accurate fold but one of the catalytic residues (His255) is in the wrong 
conformation (Fig 12c).  Conversely, model 1 from the Agemo group has a low GDT_HA 
(51.3) but the RMSD (0.34 Å) for the catalytic triad residues is  relatively low. Inspection of 
the model demonstrated that the overall fold is poorly modelled in respect of its relative 
domain orientation, yet the catalytic triad residues are correctly placed relative to each other 
(Fig 12c).  
 
For T1151, all models score above the DNABIND default threshold (0.531) and are 
predicted as DNA-binding.  However not all models are predicted as potentially DNA-binding 
by BindUP (Fig 12b). In this regard, overall model quality seems to have little impact on DNA 
binding prediction; there is no general trend between GDT_HA and the DNABIND probability 
score, nor is there a tendency for better models to predict as DNA-binding by BindUP. These 
findings are in line with the known error tolerance of the DNABIND method 35.   

 
 
Figure 12. Function prediction based on submitted models. (a) Global accuracy and the accuracy of 
functional features are only weakly correlated, as exemplified here by the RMSD on catalytic residues 
vs GDT_HA for T1146 (b)  DNABIND probability score against Global accuracy. The colouring of the 
data points indicates BindUP results: blue-positive, orange-negative, green-could not be processed 
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(c) The T1146 catalytic triad (sticks) and overall fold (cartoon) in the experimental structure (green) 
and two outliers; cyan - highly accurate fold, wrong conformation of one catalytic His (model 1 for the 
QUIC group); magenta - fold prediction less accurate, but catalytic site well-modelled (model 1 for the 
Agemo group). 
 

4 | Conclusions 

The first conclusion of single chain assessment at CASP15 must be that AlphaFold 2 
remains the dominant presence in the field: the best-ranking group that did not use it in one 
form or another was the BAKER group in 28th position in the overall rankings. Set against 
this, however, must be placed the observation that groups used AF2 in diverse ways 
including, intriguingly, in combination with previous generations of structure prediction 
software. Thus, the UM-TBM group hybridised AF2 predictions with the I-TASSER 
framework 40 and the Yang-Server group sampled from both AF2 and trRosettaX2 42. 
Nevertheless, the overall winner PEZYFoldings used AF2 in relatively orthodox fashion for 
construction of models: a novel, additional post-prediction refinement step based on a fine-
tuned AF2 turned out, on closer examination, to only modestly improve their already 
excellent models 44.  
 
At CASP14 AF2 was far ahead of other groups  7,8. This time, a large number of groups, 
mostly using AF2 results in one fashion or another, produced excellent models for most 
targets (Fig 2). What differentiated the best groups was their ability to produce good models 
for the most difficult set of Evaluation Units (EUs). Compared to previous CASPs there were 
more FM targets whose absence of templates obviously provides a first element of difficulty. 
Accordingly, further analysis shows that the most obvious characteristic shared by the 
hardest targets was a lack of detectable homologous sequences, leading to shallow MSAs 
and weak or even absent covariance information. This likely relates to the over-
representation of fast-evolving viral sequences in the set of hardest targets. Inferred distance 
information from covariance analysis is known to be crucial for the initial model estimation by 
AF2 where templates are not available 37. The advantages gleaned by the best-performing 
groups seem to partly derive from an ability to scrape hidden sequence information from 
sources not necessarily included in the main databases. In an ideal world, a single, unified 
and comprehensive database would be available to all groups so that performance 
disparities could be related more directly to differences in predictive methods. Aside from the 
number of homologues, there are hints that harder targets may be more likely to be smaller 
and predominantly α-helical in secondary structure. This tentative observation is in complete 
contrast to results in the time of fragment assembly ab initio methods eg 58 when these 
targets were generally the most favourable and is worthy of further study on a larger scale. 
 
Even models that are globally accurate can contain regions that match the target less well. 
These may result straightforwardly from poorer predictive performance but other 
explanations are possible, and analysis supports the relevance of two other factors. First, 
proteins are naturally flexible and such motions can occur in the particles analysed by cryo-
electron microscopy and even in a protein crystal. Such mobile regions have a variety of 
accessible conformations meaning that a failure of the modelling to capture the same local 
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structure seen in the target is not necessarily indicative of erroneous modelling. In-crystal 
movement can result in elevated B-factors for the affected part(s) or even, in extreme cases, 
the complete absence of electron density. The clear trend found between higher B-factors 
and higher local errors (Fig 6a) suggests that in some cases the difference between 
prediction and target cannot necessarily be straightforwardly inferred as wrong, potentially 
instead being a different valid structure.    
 
A second feature affecting interpretation of local accuracy is positioning at an interface, 
either at a crystal lattice interface or with a different chain in an oligomeric structure (Fig 6b). 
Since lattice formation can distort lattice contacts away from conformations accessible in 
solution, a deviation of a prediction from target at the interface may be an alternative valid 
structure, or even conceivably more correct than a potentially distorted conformation in the 
target 24. Inter-chain interface regions are likely to be more difficult to predict than other parts 
of the target because their local conformation may depend on 3D structural context that is 
absent during the modelling process.  
 
While analysis has focussed on difficulties and room for future improvement, it should be 
remembered that the overall picture is one in which many groups produce remarkably good 
models for most targets (Fig 2, Table 1). Furthermore, as also noted elsewhere 20,54, outputs 
from readily available methods like ColabFold 38 and ESMFold 43 (or deposits in databases 
generated by similar protocols 43,53) can solve most crystal structures by Molecular 
Replacement (Figs 10, 11); are similarly valuable in solution of structures determined by 
cryo-Electron Microscopy as starting models for density-guided refinement into experimental 
data 56; and often allow functional annotation by accurately capturing key local features (Fig 
12). In this respect, much credit goes to DeepMind for making AF2 Open Access and 
thereby democratising state-of-the art-modelling and reinvigorating whole areas of research. 
Notably, since human groups have typically out-performed servers at previous competitions, 
and recalling that the stand-out CASP14 winner DeepMind competed as a human group, the 
strong representation of automated servers among the very best groups at CASP15 is a 
welcome development (Fig 1, Supp Figs 1 and 2). In summary, while further methods 
development will proceed apace, addressing issues such as side chain accuracy 57 and 
targets with few homologues, colleagues across biology already have immensely powerful 
tools whose applications will only continue to expand. 
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Tables 

Table 1.  
Overall quality metrics for model_1 submissions by selected methods. The best-performing 
MSA-based methods, the AF2 controls and the best pLM-based method were chosen for the 
comparison. The GDT_TS threshold of 45 corresponds to a prediction of the correct 
topology 8; the 90 threshold is taken as the approximate difference between two crystal 
structures of the same protein 7. 
 

Method GDT_TS ≥ 45  
(total targets) 

GDT_TS ≥ 90  
(total targets) 

Median GDT_TS 

PEZYFoldings 101 (107) = 94.4% 53 (107) = 49.5% 89.65 

UM-TBM 105 (109) = 96.3% 46 (109) = 42.2% 87.36 

Yang 105 (108) = 97.2% 51 (108) = 47.2% 89.26 

ColabFold 93 (109) = 85.3% 42 (109) = 38.5% 86.67 

NBIS-af2-standard 93 (109) = 85.3% 38 (109) = 34.9% 85.88 

ESM-single-sequence 72 (93) = 77.4% 19 (93) = 20.4% 77.71 
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