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ABSTRACT OF THE THESIS 
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Master of Science in Bioengineering 
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Professor Holden H. Wu, Chair 

 
 

 Magnetic resonance imaging (MRI) is a powerful imaging technique for visualizing soft 

tissues and characterizing tissue properties. It can be used for the assessment of meniscal, 

ligamentous, and cartilaginous lesions in the knee. When the extracellular matrix of articular 

cartilage is compromised, water moves more freely within the cartilage, which leads to prolonged 

T2 relaxation times. Consequently, quantitative T2 maps have been used to understand the 

pathophysiology of osteoarthritis or follow-up monitoring of knee cartilage after surgery. Standard 

T2 quantification techniques usually use spin echo-based sequences which require long acquisition 

times. Three-dimensional (3D) dual echo steady state (DESS) MRI has shown its potential for time-

efficient T2 mapping in the knee. DESS acquires images with distinct contrasts (“FID” and “Echo”). 
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This feature of DESS allows for both morphological T2-weighted (T2w) imaging and quantitative 

T2 mapping in a single scan. Our research group at UCLA has developed a protocol to acquire 3D 

DESS scans with isotropic high-resolution. However, the scan time still needs to be reduced to 

facilitate eventual translation.  

In order to reduce acquisition time in T2 mapping sequences, previous works developed 

methods to reconstruct images using undersampled data. Previous proposals such as compressed 

sensing (CS) reconstruction have been used to reconstruct images from undersampled data while 

mitigating undersampling artifacts. However, CS reconstruction methods are time-consuming and 

the results are sometimes overregularized. Deep learning (DL) based image enhancement or 

reconstruction methods provide a solution to the shortcomings of CS reconstruction by learning the 

mapping between undersampled input data and high-quality output images from large reference 

datasets, and providing rapid inference times. Since the isotropic high-resolution 3D DESS 

acquisition designed by our group at UCLA is relatively recent and has a limited number of 

datasets, strategies such as transfer learning, i.e., pretraining on a larger available reference dataset, 

may be needed to obtain a DL network that can produce high-quality output images from our 

undersampled high-resolution 3D DESS MRI data.  

Another main challenge of DL-based image enhancement or reconstruction methods is that 

it is difficult to understand why/how they work or to predict its performance. In medical image 

enhancement, image fidelity must be prioritized. Obstruction or elimination of image details may 

confound diagnostic decisions. To overcome this problem, recently there are some works on 

developing DL networks with uncertainty estimation to predict error in enhancement tasks.  

Thus, the aim of this work is to shorten the scan time of 3D DESS MRI by reconstructing 

high quality images from undersampled data using DL networks that incorporate uncertainty 

estimation and transfer learning. 
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Chapter 1: Introduction 

 
1.1 Significance and Motivation 
 

Osteoarthritis (OA) is a degenerative joint disease that primarily affects the 

cartilage, which is the protective tissue that covers the ends of bones within a joint. OA 

commonly affects weight-bearing joints such as the knees, hips, and spine, as well as the 

hands and feet. The cartilage gradually wears away, causing the bones to rub against each 

other. This can result in pain, stiffness, swelling, and reduced range of motion in the 

affected joint. OA is one of the major causes of disability and loss of independence among 

middle aged and elderly individuals1-5.  

Treatment for OA focuses on managing symptoms, reducing pain, and improving 

joint function. This can include a combination of non-pharmacological approaches such as 

exercise, physical therapy, weight management, and assistive devices, as well as 

medications for pain relief and inflammation. In severe cases, joint replacement surgery 

may be recommended6-8. Early diagnosis and appropriate management of OA can help 

individuals maintain an active and fulfilling lifestyle while minimizing pain and disability 

associated with the condition. 

Surowiec et al9 discusses the current methods for assessing cartilage health and the 

need for non-invasive imaging tools to track early stages of OA. Clinical evaluation of pain 

symptoms and subjective outcome scoring are commonly used, but more robust methods 

are required. Arthroscopy is the gold standard for diagnosing cartilage degeneration, but it 

is invasive. Radiographs are limited to detecting moderate to severe cartilage loss10-11.  

Magnetic Resonance Imaging (MRI) has shown a strong potential to provide 



 

 2 

reliable and accurate information about soft tissues in the human body12. MRI T2 relaxation 

reflects water molecule interactions at the cellular level and has the potential to detect 

pathological tissue alterations. Conventional MRI methods acquire T2-weighted (T2w) 

images for anatomical assessment, but it is less sensitive to early OA-related biochemical 

changes. Quantitative MRI (qMRI) techniques, such as T2 mapping, have shown sensitivity 

to biochemical changes in cartilage13 and are helpful in assessing cartilage degeneration 

and tissue repair. Conventional T2 mapping methods, such as spin echo (SE)-based 

sequences, acquire images at multiple echo times (TE) which are fitted to an exponential 

model to generate T2 maps. However, SE-based acquisitions are time-consuming and it is 

difficult to achieve high spatial resolution and large 3D coverage. Using a three-

dimensional (3D) dual echo steady state (DESS)14 MRI technique for rapid T2 mapping 

addresses these drawbacks in the context of knee imaging15-28. However, the scan time for 

isotropic high-resolution 3D knee imaging using DESS MRI still needs to be reduced. 

While MRI knee presents opportunities for characterization of OA, the technique 

has its own set of limitations; for example, long scan acquisition times. Undersampling 

data to reduce the scan time would reduce motion artifacts and increase patient comfort. 

However, this would result in poor image quality and aliasing artifacts in the image. 

Advanced methods like compressed sensing (CS)29-31 and deep learning (DL)32 based 

image enhancement or reconstruction can help mitigate the artifacts of accelerated scans.  

In this work, we studied DL-based image enhancement of undersampled knee MRI.  

However, DL networks are complex and it is often difficult to interpret why/how 

the network is performing a certain way. In the context of medical image 

enhancement/reconstruction, this can potentially cause severe problems as elimination of 
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minute details within the image may be misleading and impede diagnostic decisions. To 

combat this drawback of DL networks, uncertainty estimation has been explored in recent 

years. Hence, we tried to quantify the model uncertainty of the DL networks used in this 

work to estimate the error in image enhancement.  

Another drawback of DL networks is the need for large training datasets to perform 

well. As mentioned previously, knee imaging requires high spatial resolution and large, 

homogeneous 3D coverage. To address this, our research group at UCLA has designed a 

3D DESS sequence with isotropic high-resolution34. Since this DESS acquisition method 

was recently designed, only a limited number of scans have been acquired. Hence, we used 

the transfer learning approach to perform DL-based enhancement on the undersampled 3D 

isotropic DESS data by pretraining on a large, publicly available reference dataset and then 

fitting the model to our dataset35-37. 

1.2 Specific Aims 
 

The main objective of this work was to achieve accelerated 3D DESS MRI of the 

knee by training DL network models to enhance undersampled 3D DESS MRI and 

characterizing the DL model uncertainty to estimate error in the enhanced images. This 

objective was achieved via the following specific aims: 

 

Specific Aim 1: Accelerate scan time for 3D DESS knee MRI by training DL networks to 

produce enhanced images from undersampled data and characterize the error in enhanced 

images through uncertainty quantification. 

Approach: DL networks based on the U-Net and the Shifted windows transformer for 

Image Restoration (SwinIR) architectures were trained and tested on the publicly 
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available Stanford Knee Dataset38 with retrospective undersampling. The Structural 

Similarity index (SSIM) and Peak Signal-to-Noise Ratio (PSNR) of the enhanced images 

with respect to the reference images were used to quantify the quality of the enhanced 

images. To estimate the epistemic uncertainty (i.e., model uncertainty), Monte Carlo 

Dropout was applied to the network and the Pearson R correlation scores were reported 

between the enhancement error and the uncertainty map values in the knee cartilage to 

assess the potential of characterizing errors during image enhancement.  

 

Specific Aim 2: Accelerate scan time for a limited set of 3D isotropic high-resolution 

DESS knee MRI by using transfer learning-based deep learning models to produce 

enhanced images from undersampled data. 

Approach: DL network models were pre-trained with a processed version of the Stanford 

Knee DESS dataset, and then fine-tuned for a limited set of 3D isotropic high-resolution 

DESS knee MRI acquired at UCLA. Retrospective undersampling was performed to 

generate input images to the DL networks. The SSIM and PSNR of the enhanced images 

with respect to the reference images were calculated to assess quality of the enhanced 3D 

isotropic high-resolution DESS images.  
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Chapter 2: Background 
 

2.1 Dual Echo Steady State MRI 
 

The authors of Bruder et al14 proposed using a three-dimensional (3D) dual echo 

steady state (DESS) MRI technique for rapid T2 mapping. The DESS sequence acquires 

two steady-state free precession echoes within one repetition time (TR), generating images 

with different contrasts: free-induction decay (FID) and Echo. This sequence provides the 

advantage of obtaining 3D morphological and functional information from the same dataset 

in a relatively short imaging time15-18. A detailed modelling of the DESS FID and Echo 

signals is required to obtain a curve to map Echo/FID signal intensity ratios to T2 values in 

each pixel. The ratio of the Echo signal to the FID signal intensity in each pixel is thus 

fitted to the curve to obtain the T2 map. The sequence diagram for the 3D DESS sequence 

is shown in Figure 2-1. 

DESS MRI offers multiple advantages over spin echo-based methods for T2 

mapping. The 3D DESS sequence benefits from a high SNR efficiency compared to 

conventional 2D multi-slice spin-echo sequences, which leads to improved image quality 

and enhanced visualization of structures within the knee joint. The high SNR enables better 

differentiation of tissues, making it suitable for evaluating cartilage, ligaments, tendons, 

and other structures with fine detail19-25.  

DESS sequences typically have shorter acquisition times compared to multi-echo 

spin echo-based T2 mapping sequences. This is because DESS utilizes a steady-state 

magnetization and allows for rapid imaging. Spin echo-based methods require the 

acquisition of multiple echo times, sometimes necessitating multiple acquisitions, for T2 

mapping. Thus, due to reduced scan times, DESS imaging has less motion artifacts26-28.  
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Figure 2-1: 3D DESS sequence diagram. Two contrasts, FID and Echo, are acquired 
within one TR.  
 

In MRI, a shorter acquisition time would reduce the likelihood of motion artifacts, 

and would also improve patient comfort and feasibility for clinical translation. This can be 

achieved by undersampling the data. However, data undersampling introduces aliasing 

artifacts in the image. These artifacts can degrade image quality and affect the diagnostic 

accuracy of the exam.  

In order to maintain image quality as it would be when the data is fully sampled, 

advanced reconstruction techniques can be applied to reconstruct images from 

undersampled data to shorten the scan acquisition time. MR images often exhibit sparsity 

in an appropriate transform domain. The transform sparsity of MR images and the 

inherently compressible nature of MR acquisition make compressed sensing (CS) a suitable 

method for MRI reconstruction29-30.  

 



 

 7 

2.2 Compressed Sensing Reconstruction for MRI 
 

Due to the compressible nature of the MR image, the effective number of degrees 

of freedom is much lower than the nominal number of samples. The CS framework 

formulates the problem of signal recovery as an optimization problem. The goal is to find 

the sparsest solution that satisfies the given measurements or constraints. The optimization 

problem is typically solved using algorithms such as iterative thresholding, basis pursuit, 

or convex relaxation methods31. As a result, accurate signal reconstruction can be achieved 

with a nonlinear procedure using relatively few measurements. MRI reconstruction as a CS 

optimization problem is illustrated using Equation 2-1. 

Equation 2-1 

𝑥 = 𝑎𝑟𝑔𝑚𝑖𝑛(*|𝐹(𝑥) − 𝑦|*
!
+ 	𝛼 ∗ 𝑇𝑉(𝑥) 	+ 	𝛽 ∗ 𝑊(𝑥)) , 

Where, 𝑥 is the reconstructed image, 𝐹(. ) is the Fourier Transform, 𝑦 is the measured 

signal, *|. |*
!
 is the l2 norm, 𝑇𝑉(. )  is the Total Variation (TV), 𝑊(. ) is the Wavelet 

Transform and 𝛼	and	𝛽 are the TV penalty weight and l1 penalty weight respectively. 

CS reconstruction usually prefers undersampled data with incoherent aliasing 

energy, which can be facilitated by using a pseudo-random undersampling pattern to 

acquire k-space data points. Various k-space sampling schemes can be employed, 

providing flexibility in the trade-off between scan time reduction and image quality. CS 

can also be combined with parallel imaging techniques to further accelerate the acquisition 

and improve image reconstruction quality39-40. This combination allows for even greater 

scan time reduction while maintaining image fidelity.  

Although CS may improve reconstructed image quality, it poses a set of limitations 

in the context of medical image reconstruction41-45. First, it is computationally expensive. 
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The computational requirements for solving the optimization problem can be high, 

especially for high resolution datasets or datasets with a large volumetric coverage, leading 

to increased processing time. Second, CS algorithms often require tuning regularization 

parameters to achieve optimal results. Selecting appropriate values for these parameters 

require expertise or extensive parameter exploration.  

DL-based image enhancement (or reconstruction) has certain advantages over CS 

reconstruction techniques, such as requiring short inference times and not relying on 

assumptions about sparse representation of input data. DL networks learn data 

characteristics from a large reference dataset as opposed to CS algorithms where sparsity 

is assumed in a transform domain and applied separately to each case. 

2.3 DL-Based Image Enhancement 
 

In recent years, there have been many works employing DL-based image 

enhancement for improving quality from undersampled (accelerated) MRI 

acquisitions32,46. The inference time of DL models is generally faster than the iterative 

optimization required by CS. DL models can learn complex patterns and relationships from 

the training data, allowing them to capture the inherent structure and characteristics of MR 

images more effectively. These models, with their ability to learn non-linear mappings, can 

effectively capture and model these non-linear relationships, producing high-quality 

images, similar to CS47-50. DL-based methods can learn to suppress noise and mitigate 

artifacts by exploiting the complex patterns and structures in the training data. They can 

learn without relying on explicit assumptions about the data or the imaging process, and 

effectively produce high-quality images even from highly undersampled or noisy 

measurements51-58. 
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In recent years, Convolutional Neural Networks (CNNs)59-60 have revolutionized 

many computer vision tasks due to their ability to automatically learn and extract 

meaningful features from the images. CNNs are a type of deep learning model specifically 

designed for processing grid-like data, such as images or time series data. 

CNNs are composed of multiple layers, including convolutional layers, pooling 

layers, and fully connected layers. The core operation in a CNN is the convolution 

operation, which includes a mathematical operation of applying a set of filters or kernels 

to the images to extract features. Each filter slides across the input, performing element-

wise multiplications and summations to produce a feature map. These filters learn to 

capture different patterns and features present in the input data. CNNs typically consist of 

multiple convolutional layers.  

One of the key advantages of CNNs is their ability to automatically learn 

hierarchical representations of data. The initial layers capture low-level features such as 

edges and textures, while deeper layers capture more complex and abstract features. This 

hierarchical representation learning makes CNNs highly effective in capturing and 

understanding the visual patterns present in images. 

CNNs are commonly used for image enhancement tasks in MRI. These models 

learn to map the undersampled input data to a high-quality output image. For example, the 

U-Net architecture61 is well suited for medical image enhancement tasks due to its skip 

connections enabling the network to capture fine-grained details and high-level contextual 

information. U-Net has shown robust performance even when training data is limited. The 

architecture can be adapted and customized for various MRI image 

enhancement/reconstruction tasks62-65. 
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Vision Transformers (ViTs)66 are another class of deep learning models that apply 

the transformer architecture, originally developed for natural language processing (NLP), 

to computer vision tasks. Unlike CNNs, which have been the dominant approach in 

computer vision for a long time, ViTs operate on the entire input image as a sequence of 

patches, rather than relying on localized convolutions. The core idea behind ViTs is to 

decompose the input image into a grid of fixed-size patches and linearly transform them 

into a sequence of embeddings. These embeddings are then processed by a transformer 

architecture, which consists of multiple layers of self-attention and feed-forward neural 

networks. One of the advantages of ViTs is their ability to model long-range dependencies 

in the image, which can be challenging for CNNs.  

The Shifted windows transformer for Image Restoration (SwinIR) network67, based 

on vision transformers, has several advantages over CNN structures, while potentially 

providing image enhancement performance comparable to CNNs. SwinIR architecture is 

capable of capturing long-range dependencies and modeling complex relationships in the 

image data, which can be advantageous for MRI image reconstruction tasks that involve 

capturing global context and dependencies. SwinIR adopts a hierarchical structure by 

dividing the input image into patches and processing them hierarchically. This enables the 

model to capture both local and global information, which can be beneficial for preserving 

fine details and spatial relationships in the reconstructed images. SwinIR incorporates self-

attention mechanisms, enabling the model to capture global relationships and dependencies 

between patches, which is important for understanding the context and semantics of the 

image. This is particularly advantageous for image enhancement or reconstruction tasks in 

MRI, where capturing context information and long-range dependencies can be crucial68,69. 
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In spite of the benefits of DL-based image enhancement over other advanced 

reconstruction techniques as mentioned previously, DL methods lack interpretability. DL 

models are sometimes hard to explain, making it challenging to understand the reasoning 

behind their decisions. This can raise ethical and legal concerns in the medical domain, 

where the interpretability of decisions and transparency in the decision-making process are 

critical70-71. Ensuring the robustness and fidelity of deep learning-based reconstruction 

algorithms is very important, but conventional DL-based methods typically do not provide 

explicit uncertainty measures or confidence intervals for the predictions72.  Uncertainty 

quantification is a potential solution as it aims to provide additional information about the 

reliability and confidence of the reconstructed images as well73.  

2.4 Uncertainty Quantification 
 

The inherent complexity and nonlinearity of deep learning models make it 

challenging to assess the uncertainty of the reconstructed images solely based on the 

network architecture. To address this, uncertainty quantification methods have been 

developed to capture and quantify the uncertainty in deep learning-based image 

enhancement. One common approach is to incorporate Bayesian inference into the deep 

learning framework33,74-76. Bayesian deep learning treats the model weights as random 

variables and estimates their posterior distribution given the observed data. This allows for 

the estimation of uncertainty by sampling multiple plausible weight configurations from 

the posterior distribution. Monte Carlo Dropout77 is another popular technique used for 

uncertainty quantification in deep learning.  

Uncertainty quantification methods can potentially provide valuable information in 

MRI enhancement/reconstruction from undersampled data. The estimated uncertainty can 
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be used for various purposes, such as identifying regions of high uncertainty that may 

require further examination, guiding downstream analysis or decision-making, and 

improving the overall reliability and trustworthiness of the reconstructed images78. 
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Chapter 3: Methodology 
 

3.1 DL-Based Image Enhancement for DESS MRI 
 

The U-Net and the SwinIR networks were used to perform image enhancement on 

undersampled 3D knee DESS MRI. Monte Carlo Dropout (MCDO) was used to estimate 

the epistemic uncertainty for both networks. 

3.1.1 Defining Uncertainty 
 

The “epistemic” or “model” uncertainty was explored in this study to estimate the 

error in DL-based image enhancement of undersampled MR images. The MCDO method 

was applied to obtain the uncertainty estimates during inference. The MCDO method 

utilizes a concept called dropout, a technique commonly used for model regularization. 

When dropout is applied, a fraction of the neurons is randomly selected and “dropped out”. 

This is implemented by temporarily ignoring the outputs from those neurons of the given 

layer in the neural network. The fraction of neurons dropped out can be selected as 

hyperparameter. In model regularization, dropout is turned on during training, to prevent 

the model from overfitting the training data. 

In the context of uncertainty estimation, dropout is turned off while training the 

network and all neurons are used. While running model inferencing, dropout is turned on. 

This leads to ignoring the outputs from a stochastically selected group of neurons while 

obtaining an output image. When this process is run again, a different group of neurons is 

stochastically selected to be turned off and another image is obtained at the output. This 

image is slightly differently from the first output image as they were not obtained using the 

exact same networks. When this process is run multiple times, the variance of the output 

images within each pixel is an estimate of how uncertain the model is during inferencing. 
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The pixel-wise variance calculation is given in Equation 3-1. 

Equation 3-1 

𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = 𝑉𝑎𝑟[𝑋] = "
#
∑ (𝑋$ − 𝐸[𝑋])!#
$%"  , 

Where 𝑋$ is the tth network output and 𝐸[. ] is the expectation operator. 

In this study, dropout was only used for uncertainty estimation and not as a 

regularization technique and was thus turned off during training. During inferencing, 50% 

dropout was used, which means that 50% of the neurons within particular layers were 

excluded. The inferencing was run 20 times to generate 20 instances of inference results. 

As dropout selects neurons at random, the 20 inferences were made by 20 slightly different 

networks. The mean of these 20 instances was taken as the final output of the network (i.e., 

the enhanced image). The variance of the 20 instances was used as the epistemic 

uncertainty map for the output enhanced image.  

3.1.2 2D U-Net Architecture with Monte Carlo Dropout 
 

The U-Net architecture61 was originally introduced by Olaf Ronneberger et al. in 

2015. It has a U-shaped design, with a contracting path followed by an expanding path 

(Figure 3-1(A)). 

Contracting Path (Encoder): The contracting path consists of several 

convolutional layers which helps capture the context and high-level features of the input 

image. It is followed by two main operations: a downsampling operation such as max 

pooling to reduce the spatial dimensions and a second operation to increase the number of 

feature channels. Each convolutional layer is typically followed by a rectified linear unit 

(ReLU) activation function, which introduces non-linearity and allows the network to learn 

nonlinear relationships.  
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Expanding Path (Decoder): The expanding path is responsible for integrating 

information from the extracted feature maps into the resultant image that has the same 

dimensions as the input image. It consists of upsampling operations such as transposed 

convolutions or bilinear interpolation to increase the spatial dimensions. Each upsampling 

operation is followed by a concatenation step that combines the feature maps from the 

corresponding contracting path layer. This skip connection allows the network to preserve 

the fine-grained details learned during the contracting path. The concatenated feature maps 

are then processed by a series of convolutional layers to refine the final image.  

The skip connections in the U-Net architecture facilitates the integration of both 

local and global context information. By combining features from different scales, the U-

Net can capture both fine-grained details and high-level semantic information, making it 

particularly effective for image enhancement and reconstruction tasks.  

Training and Inferencing: The U-Net is implemented using a training phase and 

an inference phase. The input to the network is each of the 2D axial slices individually 

passed from the 3D undersampled DESS knee image, with FID and Echo magnitude 

images stacked as 2 channels. During the training phase, the network learns to optimize its 

parameters by minimizing the mean squared error (MSE) loss, which measures the 

discrepancies between the enhanced image and the reference image using Equation 3-2. 

The Adam optimizer79 was used with a learning rate of 0.05. In the inference phase, the 

trained U-Net takes a previously unseen set of 2D undersampled images as input and 

produces a set of enhanced 2D images as output. Figure 3-1(B) shows the inferencing 

process for image enhancement along with generating uncertainty maps. 
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Equation 3-2 

𝑀𝑆𝐸	𝐿𝑜𝑠𝑠 = 𝑉𝑎𝑟[𝑋] = "
&
∑ (𝑦' − 𝑦J')!' , 

Where 𝑦' is the ith reference value, 𝑦J' is the predicted value and 𝑛 is the number of 

observation. 

 

 

Figure 3-1: (A) 2D U-Net architecture implemented with Monte Carlo Dropout, with 
FID and Echo images stacked as two channels for input and output to the network. 
(B) The process of estimating the epistemic uncertainty by running inference 20 times 
on a single input instance 
 
 
3.1.3 2D SwinIR Architecture with Monte Carlo Dropout 

 
The SwinIR architecture, introduced by Huang et al.67, is a deep learning model 

designed for image reconstruction tasks, including MR image reconstruction and 

enhancement (Figure 3-2(A)). It is based on the Swin Transformer, which is a variant of 

the transformer architecture that was developed for natural language processing tasks. The 
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SwinIR architecture incorporates several key components and techniques to achieve 

effective image enhancement: (a) Patch-based hierarchical structure: SwinIR divides the 

input image into smaller patches and processes them hierarchically. This allows the model 

to capture both local and global information. The patches are processed through multiple 

stages or layers, each consisting of a set of Swin blocks. (b) Swin block: The Swin block 

is the basic building block of the SwinIR architecture. It consists of two main components: 

a shifted window-based self-attention mechanism and a feed-forward neural network. The 

self-attention mechanism helps the model capture long-range dependencies and spatial 

relationships within the patches, while the feed-forward network is responsible for feature 

extraction and non-linear mapping. (c) Shifted window-based self-attention: The self-

attention mechanism in the Swin block is designed to handle large images efficiently. It 

employs a shifted window-based approach, where the attention is computed locally within 

a window and then shifted across different positions. This approach reduces the 

computational complexity compared to the standard self-attention mechanism, making it 

more feasible for processing large images. (d) Positional encoding: SwinIR uses positional 

encoding to provide the model with spatial information about the input image. This helps 

the model understand the relative positions of different patches and capture spatial 

dependencies effectively. (e) Skip connections: SwinIR incorporates skip connections 

between different stages or layers of the architecture. These connections allow the model 

to access low-level features and fine details from earlier stages, which can be beneficial for 

preserving important information during the image enhancement process.  

Overall, the SwinIR architecture combines the advantages of the Swin Transformer, 

such as capturing long-range dependencies and hierarchical processing, with specific 
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adaptations for image enhancement tasks. This allows it to achieve high-quality image 

enhancements and reconstructions in MRI. 

 

 

Figure 3-2: (A) 2D SwinIR architecture implemented with Monte Carlo Dropout, 
with FID and Echo images stacked as two channels for input and output to the 
network. (B) The process of estimating the epistemic uncertainty by running 
inference 20 times on a single input instance 

 

Training and Inferencing: The working principle of SwinIR is a supervised 

learning task. The model learns to map the undersampled images to enhanced, clean images 

through the hierarchical processing and self-attention mechanisms. The input to the 

network is each of the 2D axial slices individually passed from the 3D undersampled DESS 

knee image, with FID and Echo magnitude images stacked as 2 channels. Adam optimizer 
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was used to train the network. The network was optimized using the MSE loss function 

(Equation 3-2). The process of estimating the epistemic uncertainty using the 2D SwinIR 

network with MCDO is shown in Figure 3-2(B). 

3.2 Dataset 
 

We evaluated the performance of U-Net and SwinIR image enhancement with 

uncertainty estimation in two different 3D DESS MRI datasets. 

3.2.1 3D DESS Knee Dataset (Public) 
 

The Stanford Knee MRI (SKM) dataset38 was used for training and testing DL 

networks for image enhancement and uncertainty quantification in this study. This dataset 

was also used for pretraining DL networks in a transfer learning approach. Out of 155 

available subjects, 95 were used for this study: 65 subjects for training, 10 for validation, 

and 20 for hold-out testing. 

The 3D DESS MRI datasets in the SKM were acquired at 3 T in the sagittal 

orientation and scan time was 9 minutes 25 seconds with 2-fold parallel imaging. After 

parallel imaging reconstruction (to obtain all k-space data samples), each k-space dataset 

was retrospectively undersampled by factors of 4, 6 and 8 using variable density 

undersampling masks provided within this dataset (see Figure 3-3). The undersampling 

masks were applied in the ky-kz dimensions (corresponding to axial slices), achieving 

equivalent scan acquisition times of 5 minutes, 3 minutes 16 seconds and 2 minutes 26 

seconds respectively. The reference images used as the ground truth for all models using 

this dataset were reconstructed using the SENSE81 method for parallel imaging. Table 3-1 

shows the DESS sequence parameters for this dataset. 
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Figure 3-3: Stanford Knee Dataset38 details showing (A) the raw k-space data 
dimensions; (B) an example undersampling mask showing 6-fold variable density 
undersampling over an elliptical data sampling trajectory; (C) A single axial and 
sagittal slice showing the results of applying the undersampling mask to the entire 
volume. 
 

qDESS Sequence Parameters for Stanford Knee Dataset38 

Matrix (RO x PE) 416 x 512 

Resolution (mm2) 0.38 x 0.31 

Echo Time, TE – Echo 1(ms) 5.7 

Number of Echoes 2 

Repetition Time, TR (ms) 17.9 

Flip Angle (°) 20 

Parallel Imaging 2 x 1 

Scan Time 9 min, 25 sec 

Table 3-1: Sequence parameters used to acquire the 3D knee DESS scans in the SKM 
dataset.  
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3.2.2 3D Isotropic High-Resolution DESS Knee Dataset (UCLA) 
 

Our research group at UCLA has designed a 3D DESS sequence with isotropic 

high-resolution (0.66x0.66x0.66 mm3)34. Development and evaluation of this sequence is 

still in progress and thus very limited knee DESS MRI data is available currently 

(approximately 13 subjects). Thus, a transfer learning approach was adopted to apply DL-

based image enhancement to the UCLA dataset.  

The original 3D isotropic high-resolution DESS MRI datasets were acquired at 3 T 

in the sagittal orientation and scan time was 7 minutes 48 seconds with 2-fold parallel 

imaging. Table 3-2 shows the DESS scan parameters. Each dataset, after parallel imaging 

reconstruction, was retrospectively undersampled in k-space by a factor of 4, with an 

accelerated scan time of 4 minutes 18 seconds. The undersampling was done using a 

variable density undersampling mask that is different from the undersampling mask used 

for the SKM data (see Figure 3-4). The undersampling mask was applied to each 2D axial 

slice within the whole volume. The undersampling mask was applied on the reference data 

and Fourier transformed to obtain the undersampled images. The images used as reference 

for the image enhancement tasks were reconstructed using GRAPPA82 (GeneRalized 

Autocalibrating Partial Parallel Acquisition).  For the image enhancement task, the data 

was split into 9, 1 and 3 subjects for training, validation and testing, respectively. 
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Figure 3-4: 3D isotropic DESS data details showing (A) the raw k-space data 
dimensions; (B) an example undersampling mask showing 4-fold variable density 
undersampling; (C) A single axial and sagittal slice showing the results of applying 
the undersampling mask to the entire volume. 
 

qDESS Sequence Parameters for UCLA Dataset34 

Matrix (RO x PE) 256 x 256 

Resolution (mm2) 0.66 x 0.66 

Slice thickness (mm) 0.66 

Echo Time, TE – Echo 1(ms) 5.2 

Number of Echoes 2 

Repetition Time, TR (ms) 19 

Flip Angle (°) 25 

Parallel Imaging 2 x 1 

Scan Time 7 min, 48 sec 

Table 3-2: Sequence parameters used to acquire the 3D isotropic high-resolution knee 
DESS scans at the UCLA. 
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3.3 Transfer Learning 
 

To enhance undersampled 3D isotropic high-resolution DESS MRI from the UCLA 

dataset, the U-Net and SwinIR transformer networks were trained using the weights from 

pretrained models. The pretraining was done using the SKM Dataset, with a training and 

validation data split of 65 and 10 subjects.  

The SKM datasets had different matrix sizes and acquired resolution compared to 

the UCLA datasets (Figure 3-5). To account for these differences, the k-space data from 

SKM datasets were resized from 512 phase encoding lines to 256 phase encoding lines by 

extracting the central 256 phase encoding lines. The 160 sagittal slices were zero-padded 

in k-space to obtain 176 sagittal slices. Since enhancement was done on each 2D axial slice, 

the number of axial slices in the SKM dataset (512) did not need to be matched to the 

UCLA data dimension (256). The resized k-space dataset was undersampled and then 

transformed to the image domain and passed to the DL network with the FID and Echo 

contrasts stacked as two separate channels.  

After pre-training using SKM data, the models were then fine-tuned for the UCLA 

datasets. While training the model on the UCLA data, 9 subjects were used for training, 1 

for validation and 3 for testing. The data was passed to the network as 2D axial slices with 

FID and Echo stacked as 2 channels. 
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Figure 3-5: Stanford Knee dataset dimensions in (A) are transformed in (B) to make 
it similar to the UCLA DESS data dimensions in (C) to pretrain networks for transfer 
learning. 
 
3.4 Analysis of Results 

 
The peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) index were 

calculated to quantify enhanced image quality with respect to the reference GRAPPA 

reconstructed image. T2 maps were analyzed using a Bland-Altman plot between the T2 

values within the cartilage of the reference image and the T2 values within the cartilage of 

the enhanced image. The average T2 value for the entire cartilage volume was measured 

for each subject, giving 20 data points for the SKM data. 

The uncertainty maps were first visually compared with the difference images. 

Difference images were calculated as the absolute difference between the enhanced images 

and corresponding reference images. For the SKM data, the cartilage segmentation masks 

provided in the SKM dataset was used to extract the cartilage region in each subject and 

the average difference and uncertainty was calculated within the cartilage. This “region of 

interest” (ROI) approach allowed us to obtain a relationship between uncertainty values 
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and the enhancement error in knee cartilage. The Pearson R correlation score was 

calculated between the uncertainty and error values to assess the strength of the correlation. 

For the UCLA dataset, it was difficult to manually perform cartilage segmentations 

over 176 sagittal slices of each subject. Therefore, for each subject, only one slice with 

maximum cartilage was segmented using a cartilage segmentation mask for that slice 

obtained using the OsiriXTM based open-source medical image viewer, Horos (v3.3.6). The 

T2 values within the cartilage (ROI approach) for the enhanced and reference images were 

displayed as boxplots for each of the 3 test subjects individually to assess the accuracy of 

T2 maps.   

Ablation studies were performed to measure the effectiveness of transfer learning. 

Undersampled images from the 3 test subjects in the UCLA dataset were passed through: 

(1) the model trained with transfer learning, (2) the model trained without transfer learning 

(model trained directly on UCLA data without pretrained weights), and (3) the model 

trained only on the Stanford dataset. The visual image quality was compared along with 

the PSNR and SSIM values of the enhanced images with respect to the reference images. 

The boxplots for the T2 values within the cartilage was also shown for these models to 

assess the performance of transfer learning. 

  



 

 26 

Chapter 4: Results and Discussion 
 

4.1 Deep Learning Image Enhancement with Uncertainty Estimation 
 

The total training time was 36 hours for the U-Net and 8 hours for the SwinIR, for 

each undersampling factor, using an NVIDIA A6000 GPU with 48 GB memory. The 

inference time was roughly 8 ms/slice for both networks. Figure 4-1 and Figure 4-2 show 

the U-Net and SwinIR results, respectively, for image enhancement of 4, 6 and 8-fold 

undersampled DESS knee MRI images. These results are from models trained and tested 

on the SKM dataset only. For each network, the orange boxes in the reference image, 

undersampled image and enhanced image show a zoomed-in patch of the sagittal slice with 

fine detail. We can clearly see that details obscured in the undersampled images have been 

recovered in the enhanced images, when compared with the corresponding reference 

images. Table 4-1 shows the PSNR and SSIM values averaged over 20 subjects for each 

model under consideration. The SwinIR network seemed to perform slightly better than the 

U-Net for all 3 acceleration factors. Upon closer inspection of the enhanced image from 

each model in Figures 4-1 and 4-2, 4-fold and 6-fold undersampling results for the U-Net 

and SwinIR are comparable. The statistical difference between the PSNR and SSIM values 

can be analyzed in the future to estimate whether there is really a drop in performance from 

4-fold to 6-fold undersampled image enhancement.  

The drop in performance for the 8-fold undersampling results was expected since 

there is always a tradeoff between image quality and acceleration factor. Consequently, we 

observed a noticeable drop in the SSIM and PSNR values of the images enhanced by 

models trained on 8-fold undersampled images in Table 4-1. 
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Figure 4-1: The image enhancement results using the U-Net with Monte Carlo 
Dropout architecture are shown for undersampling factors of (A) 4x, (B) 6x and (C) 
8x. The corresponding difference image and uncertainty map are also shown. 
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Figure 4-2: The image enhancement results using the SwinIR with Monte Carlo 
Dropout architecture are shown for undersampling factors of (A) 4x, (B) 6x and (C) 
8x. The corresponding difference image and uncertainty map are also shown. 
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The difference images in Figure 4-1 and Figure 4-2 show the absolute difference 

between the enhanced and the reference images, dubbed as “difference image”. These 

differences were small and were scaled 10 times for displaying purposes. Figure 4-1 and 

Figure 4-2 also show the uncertainty image. The uncertainty values were also scaled by 

10 before displaying.   

The difference image helps us visualize the error in enhancement for all the models 

under consideration. The uncertainty image helps us visualize the model (i.e., epistemic) 

uncertainty in different pixels of the enhanced image. It is observed that the areas with 

bright patches in the difference image correspond to bright patches in the same areas in the 

uncertainty image. Examples of these patches are marked by blue boxes in Figure 4-1 and 

Figure 4-2. The elevated brightness in difference images is an indication of relatively 

higher enhancement error in the difference images and high uncertainty in the uncertainty 

image. Therefore, visually, pixels with higher enhancement error seem to have higher 

uncertainty compared to the rest of the image. 

Model 

 

DESS FID DESS Echo 

SSIM PSNR SSIM PSNR 

4x 

Acceleration 

U-Net 0.913 ± 0.033 37.999 ± 2.394 0.922 ± 0.034 41.682 ± 2.291 

SwinIR 0.916 ± 0.031 38.671 ± 2.413 0.925 ± 0.032 42.043 ± 2.374 

6x 

Acceleration 

U-Net 0.888± 0.041 36.646 ± 2.196 0.900 ± 0.045 41.432 ± 2.280 

SwinIR 0.896 ± 0.039 37.292 ± 2.407 0.909 ± 0.039 41.154 ± 2.394 

8x 

Acceleration 

U-Net 0.879 ± 0.046 36.005 ± 2.537 0.895 ± 0.046 40.394 ± 2.382 

SwinIR 0.878 ± 0.042 36.336 ± 2.446 0.895 ± 0.041 40.413 ± 2.432 

Table 4-1: The SSIM and PSNR values of the enhanced images with respect to the 
reference images for all the models 
 

To analyze the relationship between the difference image (enhancement error) and 

the uncertainty maps in more depth, the cartilage region was segmented within each 
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volume and the average difference and uncertainty within the cartilage was compared over 

20 test subjects, as explained previously. These 20 data points were plotted in a scatter plot 

for each model to visualize the trend (Figure 4-3 and Figure 4-4). The Pearson R 

correlation score was calculated between the error and uncertainty values and all models 

showed a strong and significant correlation between enhancement error and epistemic 

uncertainty for DESS FID and Echo contrasts.  

The T2 maps of the reference image and enhanced image were analyzed in the 

cartilage. Figure 4-5 shows an example of the T2 map around the region of the cartilage 

along with the difference between the T2 values in the reference image and enhanced 

image. These difference images are indicative of the error in T2 maps for each model. Using 

the ROI approach with the average T2 value within the cartilage taken for 20 subjects, the 

Bland-Altman plots from all the models are shown in Figure 4-6. We observe that the U-

Net and SwinIR had similar results for 4-fold undersampling. For higher undersampling 

factors, the mean difference of T2 values between the enhanced and reference image was 

around the same for the U-Net. However, for SwinIR, we observed that the bias (mean 

difference) increased as the undersampling factor increased. At higher undersampling 

factors, there are expected to be higher undersampling artifacts. This might lead to more 

errors in estimating the T2 values. Thus, there may be a tradeoff between acceleration factor 

and T2 values.  
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Figure 4-3: Scatter plots showing the correlation between enhancement error and 
epistemic uncertainty over 20 subjects for U-Net with (A) 4x, (B) 6x, (C) 8x 
acceleration. 
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Figure 4-4: Scatter plots showing the correlation between enhancement error and 
epistemic uncertainty over 20 subjects for SwinIR with (A) 4x, (B) 6x, (C) 8x 
acceleration. 
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Figure 4-5: T2 maps of the reference images, enhanced images from all models and 
the difference between the T2 values of the reference and enhanced image in a single 
sagittal slice from the SKM dataset. 
 

 

Figure 4-6: Bland-Altman plots comparing the T2 values in the reference image and 
enhanced image from all models in the cartilage of 20 subjects (testing set) from the 
SKM dataset.   
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4.2 Transfer Learning 
 

The results of the transfer learning approach using the U-Net are shown in Figure 

4-7 and results using the SwinIR are shown in Figure 4-8. The green boxes show regions 

within the FID and Echo images where the differences in the level of detail in each image 

is noticeable. Compared to the reference images, the images enhanced using the transfer 

learned model shows the most amount of detail recovered. The images enhanced by the 

model directly trained on the UCLA dataset without transfer learning capture similar level 

of details compared to the transfer learned model in the marked green patches. The images 

enhanced using the model trained only on the SKM dataset clearly failed to capture the 

minute details. These observations are justified by the SSIM and PSNR values in Table 4-

-2. The U-Net seemed to perform better than the SwinIR. 

 

Figure 4-7: FID and Echo enhanced images from 4x undersampled data using the 
transfer learning model with U-Net architecture. The results were compared with the 
outputs from the model trained on UCLA data without transfer learning and the 
model trained only on the SKM data. 
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Figure 4-8: FID and Echo enhanced images from 4x undersampled data using the 
transfer learning model with U-Net architecture. The results were compared with the 
outputs from the model trained on UCLA data without transfer learning and the 
model trained only on the SKM data. 
 
 

Model DESS FID DESS Echo 

SSIM PSNR SSIM PSNR 

U-Net With Transfer Learning 0.902 ± 0.101 35.55 ± 1.16 0.884 ± 0.010 37.70 ± 0.70 

Without Transfer Learning 0.883 ± 0.008 34.58 ± 1.00 0.873 ± 0.009 37.16 ± 0.67 

Trained on SKM Data 0.687 ± 0.026 22.62 ± 0.95 0.824 ± 0.014 31.24 ± 1.60 

SwinIR With Transfer Learning 0.877 ± 0.004 34.50 ± 0.92 0.848 ± 0.037 35.68 ± 1.84 

Without Transfer Learning 0.857 ± 0.009 35.56 ± 0.43 0.861 ± 0.021 36.41 ± 1.21 

Trained on SKM Data 0.748 ± 0.027 22.67 ± 1.13 0.769 ± 0.03 30.45 ± 1.24 

Table 4-2: Image Quality of the Transfer Learning Results and Ablation Studies 

The networks were trained using 2D axial slices. Comparing the regions circled in 

orange in the reference image, the image enhanced with transfer learning and the image 

enhanced without transfer learning, we can see that there are light horizontal lines present 

(pointed out by orange arrows in Figure 4-7) when transfer learning is not used. This 

means that although there is no inconsistency within a single enhanced axial slice, there 
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is some scaling inconsistency across different slices. Although transfer learning has 

helped overcome this issue for the U-Net, other methods might be more suitable to 

eradicate such errors. One such method might be to use 3D networks instead of 2D 

networks. 3D networks would allow the model to capture information across all slices 

and that may eliminate the inconsistency we observe over different slices. This might 

have also shown up in the model trained without transfer learning due to the limited 

training dataset size. Data augmentation provides a solution to having limited training 

datasets and can be explored in the future. Thus, going forward, incorporating data 

augmentation and the use of a 3D model, the performance of the model trained without 

transfer learning might be at par with the performance of the model trained with transfer 

learning. 

Figure 4-9 shows the T2 maps from the results of the transfer learning approach 

using the U-Net and the SwinIR networks. The images show zoomed-in patches around 

the cartilage as the we want to observe T2 values in the cartilage mainly. For the Bland-

Altman analysis, an ROI approach over the 3 test subjects was done, similar to the 

previous section. However, we did not have segmentation masks for the entire volume 

and thus analyzed the cartilage in the central slice using manual cartilage segmentation 

masks. Figure 4-9(D) shows the boxplots for the T2 values in the cartilage of each subject 

for the models trained with and without transfer learning, compared to the T2 cartilage 

values in the reference image of the respective subject. We observed that the average T2 

value in the cartilage dropped slightly compared to the reference T2 when the images 

were enhanced using the transfer learning approach. The T2 values dropped further 

without transfer learning for the U-Net and was much higher than the reference T2 for 



 

 37 

the SwinIR. There is a significant drop in T2 values for the images enhanced using the 

model trained on the SKM dataset. This shows that the T2 values in the cartilage are 

closest to the reference when the model is trained with transfer learning, compared to the 

models trained without transfer learning. 

Regardless, the transfer learning results can be further improved. Data 

augmentation is a popular technique used to increase the number of datasets, and help 

generalize the model. The uncertainty maps estimated using MCDO in the previous 

section can be incorporated in the model training process during the validation step to 

improve results in the future.  

Overall, for transfer learning, the U-Net performed better than the SwinIR. 

Comparing the image quality of the enhanced images from the two networks, the U-Net 

showed more promise. While training the models, it was observed that the SwinIR 

network is extremely sensitive to slight changes in hyperparameters. This made it 

extremely hard to train the model and find the optimal hyperparameters. Small changes 

in the learning rate and number of epochs specifically, widely changed the enhancement 

results. The enhanced images showed artifacts arising from scaling inconsistencies in the 

axial slices for a set of hyperparameters and showed blurring and elimination of details 

when the hyperparameters were tweaked a little. Going forward, a more extensive search 

of the hyperparameter space might improve the enhancement results using the SwinIR. 

Lastly, the input data used to train and test all models was in the image domain. 

In the future, unrolled networks82 can be considered, where the k-space data is directly 

used as the input to the models for training and testing. Unrolled networks may improve 

the performance compared to the results in this work as they incorporate imaging physics 
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details by iteratively optimizing k-space inconsistencies within each pixel. 

 

 

 

 

Figure 4-9: (A) Region around cartilage zoomed in and the cartilage segmentation 
mask. (B) and (C) are the T2 results from the U-Net and SwinIR respectively. (D) 
Boxplots of T2 values in the cartilage of each subject of U-Net and SwinIR networks 
(with transfer learning and ablation studies) 
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Chapter 5: Summary and Future Directions 
 

5.1 Summary of Main Finding 
 

This study investigated DL-based image enhancement with epistemic uncertainty 

measurements using MCDO. The enhanced images for 4-fold, 6-fold and 8-fold 

retrospectively accelerated scans showed acceptable image quality (SSIM above 0.875 for 

all models and PSNR above 35 for all models). These metrics, paired with the difference 

images, show that the undersampled images were successfully enhanced and recovered a 

certain amount of detail accurately. The Bland-Altman plots showed low bias (mean 

difference) for T2 values within the cartilage of the enhanced images compared to reference 

images.  

The transfer learning approach also showed acceptable image quality for 4-fold 

retrospectively accelerated scans for isotropic high-resolution 3D DESS imaging using U-

Net and SwinIR architectures, with the U-Net model performing better than the SwinIR 

model, for image enhancement and T2 mapping.  

The epistemic, or model, uncertainty, was found to show significant correlation 

with the image enhancement error in the cartilage ROIs using the U-Net with MCDO 

network and the SwinIR with MCDO network, for three acceleration factors. This shows 

that the epistemic uncertainty quantified in this work has the potential to provide model 

confidence in the cartilage of DL-based undersampled knee DESS enhancement. 

Thus, DL-based image enhancement is a promising solution to overcoming the 

challenges of accelerating isotropic high-resolution 3D DESS knee MRI scans. 
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5.2 Future Work 
 

It should be noted that while these results on retrospectively undersampled data are 

promising, translating this work to prospectively undersampled data may have very 

different results and should be investigated separately.  

While the DL-based enhancement of undersampled knee DESS MRI using the U-

Net and SwinIR architectures have promising results as seen in Figure 4-1, Figure 4-2 

and Table 3, implementing DL networks comes with its own set of limitations, some of 

which have not been fully addressed in this work and need to be investigated in the future. 

The U-Net and SwinIR networks may sometimes overfit the training data even though a 

validation set is used to observe the validation loss and choose the best model. Data 

augmentation techniques can help reduce the overfitting problem. Another solution 

would be to use ensembling methods, where the information from multiple networks is 

combined to achieve the best possible results. Going forward, other network architectures 

can be explored and compared to the results obtained using U-Net and SwinIR. 

Although DL methods have advantages over CS reconstruction in terms of 

inference time, supervised DL methods require a large amount of data for training. In this 

case, the convergence process becomes very computationally intensive and memory 

expensive. Model compression and optimization techniques like network pruning, 

quantization, or knowledge distillation can be applied to reduce the model's memory 

requirements and improve its efficiency. These techniques would make it more practical 

to construct and train DL-models. 

All epistemic uncertainty estimates in this work were obtained using Monte Carlo 

Dropout (MCDO) method. Going forward, this can be extended to other, more complex 
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methods of calculating the epistemic uncertainty such as using generative adversarial 

networks (GANs) and variational autoencoders70-71, as MCDO has multiple limitations. 

MCDO comes with a high computational overhead. Applying MCDO involves multiple 

forward passes through the network with dropout activated. This process can be 

computationally expensive, especially for large networks or high-resolution MRI. The 

increased computational overhead can limit the network inferencing time as well. MCDO 

introduces additional hyperparameters that need to be tuned, such as the dropout rate and 

the number of Monte Carlo samples. Selecting appropriate values for these 

hyperparameters can impact the quality and reliability of uncertainty estimation. Finding 

the optimal hyperparameter settings may require extensive experimentation and 

validation. 

This work only explored epistemic uncertainty or model uncertainty. Other types 

of uncertainty, such as “aleatoric” uncertainty or “data” uncertainty should be 

incorporated as well to provide a complete picture of the uncertainty in the deep learning-

based image enhancement results. Further, radiologists’ assessment can be performed for 

the enhanced images as well as the uncertainty maps. Radiologists’ scoring may be 

incorporated in the future to assess how helpful it would be to analyze the uncertainty 

maps to estimate the model’s confidence in enhancement and whether the maps can be 

reliable in a clinical setting. 

The uncertainty maps might also be able to help with the image enhancement task 

in more complex models, leading to developing semi-supervised or unsupervised models 

for MRI image enhancement from undersampled data for protocols with limited datasets. 

This remains to be explored in the future. 
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It can be noted that majority of the analysis for the results presented in this study 

were reported for the cartilage region as the T2 values within the cartilage is monitored 

to estimate the progression of OA in the knee. This analysis can be extended to other 

tissues and body parts as well.  

5.3 Conclusion 
 

The 3D isotropic high-resolution knee DESS MRI scans can be accelerated by 

using undersampled acquisitions and incorporating deep learning-based image 

enhancement to improve the image quality. Transfer learning is a promising solution to 

enhancement tasks for limited datasets.  

The epistemic uncertainty maps show a strong correlation with the error in 

enhancement. Thus, these maps have the potential to convey the level of model 

confidence in the enhanced images.  
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