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Semi-Path: An Interactive Semi-supervised Learning
Framework for Gigapixel Pathology Image Analysis

Anonymous Submission

Abstract—The efficacy of supervised deep learning algorithms
in medical image analyses, particularly in pathology, is hindered
by the necessity for extensive manual annotations. Annotating
images at the gigapixel level manually proves to be a highly labor-
intensive and time-consuming task. Semi-supervised learning
(SSL) has emerged as a promising approach that leverages
unlabeled data to reduce labeling efforts. In this work, we
introduce Semi-Path, a practical SSL framework enhanced with
active learning (AL) for gigapixel pathology tasks. Unlike existing
methods that treat SSL and AL as independent components
where AL incurs significant computational complexity to SSL, we
propose a deep fusion of SSL and AL into a unified framework.
Our framework introduces Informative Active Annotation (IAA)
that employs a SSL-AL iterative structure to effectively extract
knowledge from unlabeled pathology data. This structure signif-
icantly minimizes labeling efforts and computational complexity.
Then, we propose Adaptive Pseudo-Labeling (APL) to address
heterogeneity in class distribution, and prediction difficulty that
are often observed in real-world pathology tasks. We evaluate
Semi-Path on pathology image classification and segmentation
tasks over three datasets that include WSIs from breast, colorec-
tal, and brain tissues. The experimental results demonstrate the
consistent superiority of Semi-Path over state-of-the-art methods.

Index Terms—Pathology image analysis, semi-supervised learn-
ing, active learning

I. INTRODUCTION

DEEP learning frameworks have shown exceptional per-
formance on diverse imaging modalities in pathol-

ogy [15], [18], [39]. For example, ResNet-based [20] networks
can achieve superior results in pathology classification prob-
lems [29] while FCN [4] and U-Net [37] are two popular
deep learning frameworks that produce excellent segmentation
results of pathology images. However, the performance of
these supervised deep learning methods heavily relies on
a large-scale and well-curated labeled dataset [15], [18],
[39]. Annotating such a dataset can be a labor-intensive and
time-consuming task considering the heterogeneous nature of
pathology images and their ultra-high spatial resolutions (often
up to 60, 000× 50, 000 pixels [31]).

Semi-supervised learning (SSL) can leverage unlabeled data
to reduce the labeling efforts and has shown promising results
in computer vision tasks [10], [45], [50], [62]. However, the
efforts to deploy them on gigapixel pathology tasks remain
limited [9], [40], [60], [61]. For example, a recent work [40]
found the performance of FixMatch [45] on a pathology
dataset is unsatisfactory and sensitive to patient diversity.
There are two possible reasons why current SSL methods are
ineffective. The first reason is that the learning algorithms may
not fully utilize unlabeled data: pathology images of ultra-high

resolution can be highly similar at the pixel level [63], making
them hard to distinguish, even by trained researchers. This
challenging characteristic harms the performance of the recent
SSL algorithms from computer vision tasks in the early stage
of the training process. Second, these SSL algorithms may
miss informative samples: the samples not selected for pseudo-
labeling (whose prediction confidence is below the pre-defined
threshold [45], [56]) may have extra information useful for
learning, e.g., uncertain samples. Based on these two reasons,
we propose building an interactive SSL framework to deeply
and efficiently extract relevant information from unlabeled data
for gigapixel pathology image tasks.

To deeply exploit the information contained in the unlabeled
data, we propose Adaptive Pseudo-Labeling (APL) to dynam-
ically select the samples of the unlabeled pool for pseudo-
labeling based on the learning status of each class in the SSL
training process. In addition, we incorporate active learning
(AL) to select the informative samples to construct the labeled
set for SSL training. As shown in Fig. 1b, existing works [17],
[31] that combine SSL and AL treat SSL and AL as separate
and independent steps, which will incur heavy computational
complexity from AL on gigapixel pathology images. Different
from these methods, we deeply delve into SSL training and
propose a deep fusion of SSL and AL to avoid additional
computational complexity incurred by AL. To achieve such a
deep fusion, we propose a SSL-AL iterative structure to exploit
the relationship between SSL and AL. We show that the SSL
training can serve a similar function to the inference process in
AL so we adapt SSL training as a pruning selection to identify
a candidate pool for AL without incurring extra computational
cost. Our main contributions are summarized as follows.

• We explore the applicability of SSL on gigapixel-level
pathology images and propose Semi-Path to minimize the
labeling efforts.

• To effectively exploit the unlabeled data, we propose
Adaptive Pseudo-Labeling (APL) to mitigate the hetero-
geneity issue of pathology slides.

• We propose Informative Active Annotation (IAA) to
enhance SSL with AL in a deep fusion achieved by the
proposed SSL-AL iterative structure.

• We show that Semi-Path achieves consistently superior
performance over state-of-the-art SSL approaches across
three datasets and two learning tasks.

II. RELATED WORK

Semi-supervised learning (SSL). Recent SSL methods
utilize pseudo-labeling, consistency regularization, and/or a
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Fig. 1. The difference between Semi-Path and existing methods that combine SSL and AL: instead of treating them as independent components, we propose
deep fusing them with a SSL-AL iterative structure. APL is proposed to exploit the unlabeled data during SSL training further.

combination of them [28], [31] to train deep neural networks
with both labeled and unlabeled data. Pseudo-labeling meth-
ods [2], [32], [51] use the intermediate models to produce
pseudo-labels for some of the unlabeled data, which are then
combined with the labeled set to train the model further.
Consistency-based methods [34], [47] regularize the model
training by encouraging consistent predictions on the same
sample under various perturbations. Recent works [10], [45],
[50], [62] combine these two approaches and achieve better
performance.

Although such methods have also been evaluated on medical
domains [52]–[54] (such as MRI and CT) and have shown
promising results, their applicability on gigapixel pathology
tasks has not been sufficiently explored and verified: Pulido
et al. [40] found that the performance of SSL methods can be
adversely affected by patient diversity; recent works [28], [58],
[59] also observed that there is still a significant performance
gap between fully-supervised learning and SSL. Specifically,
there are two challenges for these SSL methods: 1) poor-
quality pseudo-labels may result in self-reinforcing errors
during the training process [43]; 2) insufficiency in mining
the potential of unlabeled data [31].

Active learning (AL). Most AL methods choose informa-
tive samples by optimizing an acquisition function, which

can be defined based on uncertainty, diversity, change in
model performance, or a combination of these metrics. The
uncertainty-based AL methods use max entropy or max mar-
gin [22] as the selection criteria due to their simplicity and
effectiveness [8]. To reduce the number of AL cycles, batch-
mode AL methods [3], [23], [27], [44] were proposed to select
a batch of data at once instead of a single data point for
labeling. All these AL methods need to perform, for each AL
cycle, inference on each unlabeled sample and optimization of
the target acquisition function, which can be computationally
intensive [64]. The computational challenge can be greatly
exacerbated when applied to gigapixel pathological images.
For example, it took over one hour with one Nvidia Titan Xp
to make the inference on one gigapixel WSI [31].

Semi-supervised active learning (SSAL). Although SSL
and AL have a similar goal of reducing labeling costs, only
a few studies have attempted to combine them into a unified
framework. Drugman et al. combined SSL and AL for speech
understanding under limited speech data [14]. Rhee et al.
combined SSL and AL for a pedestrian detection task [42].
Mahapatra et al. [33] combined SSL and AL for segmenting
MR images. Although these methods attempt to combine
SSL and AL, their selection procedures in AL cycles are
independent of the model training. Specifically, SSL training



IEEE/ACM INTERNATIONAL CONFERENCE ON CONNECTED HEALTH: APPLICATIONS, SYSTEMS AND ENGINEERING TECHNOLOGIES (CHASE) 3

and AL selection are two separate steps in the above methods.
In addition, none of them have been evaluated on the gigapixel
pathology settings.

III. METHODOLOGY

Before presenting our framework, we first introduce the
basic notions and terminologies. In semi-supervision settings,
the training set includes a labeled data pool X with the
corresponding labels Y and an unlabeled data pool U . The
goal is to use both X and U to train the model in a semi-
supervised manner. We denote the predictive probability from
the model as h(x; θ), where θ refers to the model. We use Nl

as the number of images in the labeled pool X . Given labeled
data X = {xi|Nl

i=1} and their labels Y = {yi|
Nl
i=1}, we apply

weak augmentations denoted as Aw(.) (using only flip-and-
shift) and minimize the cross-entropy loss through supervised
label information as L(x, y, θ) = Dce(y, h(Aw(x); θ)), where
Dce(·, ·) denotes the cross-entropy between the predictive
output and the label. Similar to many recent state-of-the-art
SSL algorithms [10], [45], [50], we have supervised and un-
supervised loss together to train the model θ via the following
optimization:

min
θ∈Θ

Ω(U , θ) + α

Nl

∑
x∈X
y∈Y

L(x, y, θ), (1)

where α is a hyperparameter that balances the supervised and
consistency loss, and Ω refers to the unsupervised loss on the
unlabeled data (see in the next section).

A. Adaptive Pseudo-Labeling (APL)

The pseudo-label of an unlabeled image is generated based
on the model’s prediction on the weakly-augmented version
of the image when its confidence exceeds a pre-defined
threshold [45], [54]. The success of the pseudo-labeling with
a fixed threshold relies on a necessary assumption that la-
beled and unlabeled data have similar distributions [30], [57].
This assumption often does not hold in real-life applications,
especially in the pathology domain [40], and thus it could
hurt the original model’s performance [36]. As a result, if the
model generates the wrong pseudo-labels due to the domain
and distribution shift, and utilizes them as the supervision, the
model will be biased and have the prediction error reinforced
during the self-training process [65], [66].

In this work, we propose an adaptive threshold τt based on
learning status and learning difficulty to address mismatched
distributions in real-life applications. The criteria for selecting
an unlabeled sample x for pseudo-labeling is as follows (k
refers to the class index):

max
k

h(Aw(x); θ)k > τt (2)

The pseudo-label is then defined as a one-hot vector p(x) =
argmaxk h(Aw(x); θ)k if x satisfies the above criterion. The
adaptive selection is critical in the semi-supervised settings: if
τt is too high, we may miss some informative samples from
the unlabeled data for the supervision; if τt is too low, we may
incorporate many low-quality pseudo-labels that may hurt the

model’s performance. On the other hand, the learning status is
also different in each training iteration. Hence we propose to
design a dynamic threshold for each class based on its learning
effect.

A recent SSL work [62] argued the learning status of the
SSL model could be reflected by the number of unlabeled
samples with predictions above the threshold. Based on this
observation, we design τt per epoch as:

τt =

{
τt−1 ·min{1, N t

u/N
t−1
u }, if 1 < t ≤ T

τ1, otherwise
(3)

where t indicates the epoch number and N t
u =∑

x∈U 1(maxk h(Aw(x); θ)k > τt−1), with 1(·) being
the indicator function, is to quantify the number of pseudo-
labels from last epoch. T is the number of epoch in SSL
training. We follow FixMatch [45] to set the initial τ1 as
0.95: when there are more samples selected out for pseudo-
labeling, τt will remain at a high level to reserve the most
confident samples; otherwise, τt can be lower to incorporate
more samples for pseudo-labeling to encourage the better
utilization of unlabeled data until it reaches the maximum
iterations. This dynamic mechanism can adjust the potential
bias from the distribution shift: a potential distribution shift
may result in the model’s over-confidence in the majority
class and thus the pseudo-labels on the minority classes
can be under-estimated. With the class-aware self-adaptive
pseudo-labeling, the model will balance its learning status
and generate less biased pseudo-labels.

We now define the unsupervised loss in (1). It is the
augmentation-aware consistency loss [45], where the model
is trained to enforce the consistency between the predictions
on the strongly-augmented unlabeled image As(x) and the
pseudo-labels p(x) derived from the weakly-augmented ver-
sion via a cross-entropy loss:

Ω(U , θ) = 1

N t
u

∑
x∈U

1(max
k

h(Aw(x); θ)k > τt−1)

·Dce(p(x), h(As(x); θ)). (4)

B. Informative Active Annotation (IAA): Deep fusion of SSL
and AL

Existing SSAL methods [17], [31], [64] utilized AL as
an independent step and incurred extra computational cost.
This makes it difficult to be deployed widely in pathology
domains for two reasons: first, the computational burden
can be extremely heavy when the acquisition function is
complicated, e.g., non-linear optimization objective [12], [19],
[25]; second, even with computationally-efficient acquisition
functions, the gigapixel size of WSIs still poses a formidable
computational challenge [21] to make AL inference on them.
To deal with these challenges, we propose a novel method
called Informative Active Annotation (IAA) to deeply fuse
SSL and AL. Fig. 2 illustrates the overall framework of our
proposed IAA module. We design a SSL-AL iterative structure
specifically to fuse SSL and AL to construct an informative
labeled set without incurring additional heavy computational
costs.
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Fig. 2. Architecture of the proposed Informative Active Annotation (IAA) module with a SSL-AL iterative structure. SSL training performs a pruning of the
candidate pool for the AL, then AL Ranking utilizes AL’s acquisition function to select the samples for labeling.

1) SSL training as a construction of candidate pool : Since
the inference stage for the entire unlabeled set in AL involves
extensive computations, especially in the gigapixel-resolution
pathology domain, it is essential to explore the potential
methods for reducing the dataset size for such inference.

The key objective for AL is to determine samples with high
uncertainty. In SSL, we can identify uncertain samples if we
are unable to assign pseudo-labels to them. In other words,
the samples with a maximum predictive probability below the
threshold τ1, which is self-adapted in the last epoch of this
round of SSL training, will remain in the candidate pool Cr.
We define Cr−1 as the candidate pool from the last round of
IAA with C0 = U as the initial candidate pool. For each round
of IAA, we can get

Cr = {x ∈ Cr−1 : max
k

h(Aw(x); θ)k) < τ1}. (5)

Consequently, the pseudo-labeling process employed in SSL
training can serve as an acquisition function in AL. The most
commonly used acquisition function is the entropy of the
predictive probability [16], [35]. As such, it is important to
show that uncertain samples selected with entropy will not
be pruned away during SSL training selection using pseudo-
labeling. Focusing on binary classification, we prove that
minimizing the function used in SSL training is equivalent to
maximizing the entropy thus our SSL pruning will not prune
uncertain and informative samples.

Theorem III.1. In binary classification problems, minimizing
confidence score G = maxk(h(x; θ)) is equivalent to maxi-
mizing entropy among all the samples.

Proof. Suppose we have two different classes, A and B. The
binary entropy function with probability p for class A is given

by H(p) = −p log(p) − (1 − p) log(1 − p), where we define
0 log 0 = 0. Take the derivative of H(p), we get

H ′(p) = − log(
p

1− p
). (6)

In addition, the entropy function shows its symmetry, i.e.,
H(p) = H(1− p). Therefore, H(p) is a monotone decreasing
function for p ∈ [ 12 , 1]. Moreover, we can obtain a neces-
sary and sufficient condition of the monotony property for
H(p): given some samples in the binary classification, the
probabilities are given as {(pi, 1− pi)}, the values of entropy
functions satisfy H(p1) ≤ H(p2) ≤ · · · ≤ H(pn) if only if
| 12 − p1| ≤ | 12 − p2| ≤ · · · ≤ | 12 − pn|. On the other hand, we
try to minimize G(p) = max{p, 1−p}. The subgradient of G
can be calculated as

∇G(p) =


−1, p < 1

2

1, p > 1
2

Any value between -1 and 1, p = 1
2

. (7)

Moreover, G(p) = G(1 − p). Hence H(p) and −G(p) have
the same monotony and symmetry. That is to say, given some
samples in the binary classification, if the probabilities are
given as {(pi, 1 − pi)}, maximizing H(pi) among all these
samples is equivalent to minimizing G(pi),∀i ∈ P.

When we have more classes, both H and G are bounded
functions so the gap is always finite. Therefore, we set a
large enough τ , e.g., 0.95 to make sure the optimal samples
selected by G (with G ≥ τ ) will not be missed. Therefore, we
conclude that the SSL pruning will not discard the uncertain
and informative samples and serves a similar purpose as the
uncertainty-based acquisition functions in binary classification
tasks. In fact, it should be pointed out that others have used



IEEE/ACM INTERNATIONAL CONFERENCE ON CONNECTED HEALTH: APPLICATIONS, SYSTEMS AND ENGINEERING TECHNOLOGIES (CHASE) 5

the maximum of the predictive probability as AL’s acquisition
function and obtained compatible results with entropy [16].

Overall, our proposed SSL module segregates the confident
samples and reconstructs the candidate pool of samples not
selected for pseudo-labeling. Then the AL inference can
be performed solely on this pruned candidate pool, saving
computation time and resources by avoiding inference on the
entire unlabeled set.

2) AL Ranking for selection: We have shown that the SSL
training process can serve as an AL inference. After the
pruning of the candidate pool, we step into the AL Ranking
of IAA, as shown in Fig. 2. Acquisition functions from AL
are introduced in this step to rank samples to fit the labeling
budget. If the labeling budget is larger than the size of the
candidate pool, we will skip the AL Ranking selection but
annotate all samples in the pool with the labeling budget. If
the labeling budget is smaller than the candidate pool, we will
enter the AL selection: for each cycle, we annotate a subset of
the pool until we reach the labeling effort. First, we calculate
the score for each sample in the candidate pool and save them
in a vector v ∈ Rn, where n is the size of the candidate
pool. Based on the labeling budget, we then select m samples
with the lowest confidence among entries of v. However, it is
important to define an AL selection criterion for selecting the
most informative samples. One of the widely used selection
criteria is based on the degree of uncertainty the current model
has on each unlabeled sample.

The gigapixel size of pathology images introduces further
challenges in using the traditional AL methods. AL process
itself requires high-end computational resources to finish the
task in an adequate time frame and when these methods are
used for high-resolution pathology images, it may add more
complexity to the model and time delays to the pathology
image analysis task. In addition, the slow training due to high
computational complexity may lead to additional delays in
synchronizing the annotator availability after each AL itera-
tion. Considering the gigapixel resolution of pathology images,
we evaluate two computationally efficient yet effective meth-
ods in IAA: Max-Entropy [16] and Variation-Ratios [16], [35].
For Max-Entropy [16], samples with high entropy are consid-
ered informative and selected for labeling as higher entropy
indicates higher uncertainty [38]. For Variation-Ratios [16],
[35], we select the highest probability maxk{h(x; θ)k} as the
acquisition function in each patch’s soft label. This value can
describe the degree of confidence and uncertainty.

C. Extension to gigapixel-level segmentation tasks

As pathology images are typically at the gigapixel level,
annotating the entire WSIs can be more labor-intensive and
time-consuming for the segmentation tasks. Here, we show
the capability of extending Semi-Path to weakly-supervised
pathology image segmentation tasks: instead of requesting
pixel-level annotation of an entire WSI, we focus on seeking
the most informative regions within the WSI for the annota-
tion. In [31], they verified a small set of “difficult” regions
may be sufficient to improve the model’s performance since
the visual representations can be similar in gigapixel slides.

Algorithm 1 Semi-Path with the region-based selection for
pathology image segmentation

Input: training dataset D, the number of AL cycles T ,
labeling budget for each cycle m
Pre-training: obtain f via SimCLR [11] among D
Initialize: randomly select two regions for labeling and tile
them into patches to formulate the labeled set X0

Set an unlabeled data by U0 = D \ X0

Fine-tuning: θ0 = argminθ∈Θ L(X0, θ) + Ω(D, θ)
for t = 0 to T do

Update θ : θt+1 = argminθ∈Θ L(Xt, θ) + Ω(D, θ)
SSL pruning: Record coordinates of patches that are not
selected for pseudo labeling
AL ranking: apply acquisition functions on each patch
and save in v, then expand v into region list R
AL selection: Select the regions {Ri}mi=1

Split {Ri}mi=1 into a group of patches Ws

Xt+1 = Xt ∪ (Ws × J(Ws))
Ut+1 = Ut \Ws

end for

Therefore, we aim to seek those informative regions to further
reduce the labeling efforts by avoiding labeling the whole slide
in a weakly-supervised manner.

To enhance the robustness of the uncertainty criterion, we
follow [31] to integrate a region-based selection criterion.
Instead of focusing on only one sample at a time, it focuses
on a region consisting of a batch of neighboring samples
that capture more neighboring information. The regions where
most samples have high uncertainty would be selected for
annotation queries. Here a region R ∈ Rnd×nd can be tiled
into n2 patches. With the region-based selection, the labeled
data set can be quickly expanded as

X = X ∪ (W × J(W)), (8)

where W represents a set of patches from R. J(x) is the
assigned label for x, J(W) is a set of labels {J(x)}x∈W .

Similar to the classification task, the SSL training process
itself constructs the candidate pool by collecting the unlabeled
patches that fail to be selected for pseudo-labeling. Addi-
tionally, we are recording the coordinates of these unlabeled
patches. Based on these coordinates, we tile larger regions
centered on those patches as the candidate pool. The inference
will be processed on the patches contained in these regions. We
get a patch-level metric v based on the AL ranking criterion.
By taking the mean value of the corresponding entries for
each region, v will be transformed into a region-based metric
v̂. Then, we select the corresponding regions the same way as
the one in the classification. The whole process is summarized
in Algorithm 1.

IV. EXPERIMENTS

A. Datasets and training setup

To show the generalizability of our framework under var-
ious pathology image settings, we tested Semi-Path on two
commonly-used staining techniques (H&E and Amyloid-β),
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TABLE I
SUMMARY OF THE HETEROGENEITY OF THREE DATASETS

Dataset Staining Tissue Type Scan Magnification Scanner Slides Annotators Task Disease Focus

PCam [48] H&E Breast 10X Pannoramic, NanoZoomer-XR 399 3-4 Classification Tumor
MHIST [55] H&E Colorectal 40X Leica Aperio AT2 328 7 Classification Polyps

GM/WM [31] Amyloid-β Brain 20X Leica Aperio AT2 30 2 Segmentation Alzheimer’s disease

TABLE II
QUANTITATIVE COMPARISON ON PCAM. ALL SCORES REFER TO THE MACRO-AVERAGED VALUES.

Learning Manner Labeled Ratio Algorithm Accuracy Precision Recall F1-score AUC

Supervised
100% (Full) ResNet-18 [20] 92.8 ± 0.30 92.9 ± 0.20 92.6 ± 0.21 92.8 ± 0.20 0.95 ± 0.01
1.5% (Full) ResNet-18 [20] 62.8 ± 1.31 69.5 ± 0.67 54.1 ± 2.27 60.8 ± 1.68 0.63 ± 0.02
0.5% (Full) ResNet-18 [20] 45.1 ± 2.27 42.0 ± 2.14 33.6 ± 3.30 37.3 ± 2.86 0.51 ± 0.01

Self-supervised 1.5% SimCLR [11] 64.9 ± 1.02 65.2 ± 1.45 60.1 ± 1.70 62.5 ± 1.05 0.64 ± 0.03
0.5% SimCLR [11] 60.4 ± 1.45 63.3 ± 1.90 58.5 ± 2.01 60.8 ± 1.20 0.61 ± 0.04

Semi-supervised 1.5%

Pseudo-Label [32] 67.9 ± 1.85 70.5 ± 1.90 62.2 ± 1.76 66.1 ± 1.42 0.67 ± 0.04
Mean Teacher [47] 68.8 ± 1.05 69.6 ± 1.21 62.2 ± 1.50 65.7 ± 1.05 0.66 ± 0.02

MixMatch [7] 78.9 ± 0.67 78.4 ± 0.99 76.5 ± 0.50 77.4 ± 0.65 0.82 ± 0.03
FixMatch [45] 83.9 ± 1.29 85.1 ± 0.85 84.1 ± 0.95 84.6 ± 0.90 0.87 ± 0.01

Dash [57] 82.8 ± 1.09 83.0 ± 0.55 81.2 ± 0.60 82.1 ± 0.78 0.85 ± 0.03
FlexMatch [62] 84.1 ± 1.02 84.9 ± 0.75 84.4 ± 0.80 84.6 ± 0.75 0.86 ± 0.04

Semi-Path 89.5 ± 1.05 89.9 ± 0.70 89.7 ± 1.02 89.8 ± 0.78 0.92 ± 0.03

Semi-supervised 0.5%

Pseudo-Label [32] 55.7 ± 2.05 59.2 ± 2.23 54.5 ± 1.97 56.8 ± 1.55 0.58 ± 0.03
Mean Teacher [47] 62.3 ± 1.87 63.9 ± 2.92 57.2 ± 2.22 60.3 ± 2.49 0.61 ± 0.05

MixMatch [7] 65.6 ± 0.34 70.2 ± 1.20 69.0 ± 1.45 69.6 ± 0.95 0.75 ± 0.06
FixMatch [45] 73.2 ± 0.76 77.5 ± 0.50 73.7 ± 0.25 75.6 ± 0.37 0.84 ± 0.04

Dash [57] 71.0 ± 0.98 75.3 ± 0.78 70.2 ± 0.45 72.7 ± 0.50 0.82 ± 0.02
FlexMatch [62] 74.0 ± 0.80 78.1 ± 1.15 73.0 ± 0.90 75.5 ± 0.84 0.85 ± 0.03

Semi-Path 81.2 ± 0.98 81.5 ± 0.99 79.9 ± 0.86 80.7 ± 0.93 0.89 ± 0.04

three tissue regions (breast, colorectal, and brain cortex),
collected by three scanners (Pannoramic, NanoZoomer-XR,
and Leica Aperio AT2), and three scanning magnifications
(10X, 20X, and 40X).

Tumor classification task. PCam [48], aiming to classify
the existence of a tumor, is a patch-level dataset derived from
Camelyon16 [5]. PCam is collected from patients with breast
cancer metastasis in the lymph nodes. It contains 327,680
patches at the size of 96 × 96 pixels from 399 Hematoxylin
and Eosin (H&E) stained Formalin-Fixed Paraffin-Embedded
(FFPE) slides and scanned at 10X magnification. We followed
the original split to have 262,144 images (75%) in the training
set, 32,768 (12.5%) in the validation set, and 32,768 (12.5%)
in the hold-out test set [48].

Colorectal polyp classification task. MHIST [55] is a
clinically-important binary classification between sessile ser-
rated adenomas (SSA) and hyperplastic polyps (HP), which
is a challenging problem facing considerable inter-pathologist
variability [1]. It contains 3,152 patches at 224 × 224 pixels
extracted from 328 H&E stained slides of colorectal polyps.
These slides were collected by the Department of Pathology
and Laboratory Medicine at Dartmouth-Hitchcock Medical
Center (DHMC) and were scanned by Aperio AT2 scanner
at 40X magnification. Each image in this dataset has a gold-
standard label determined by the majority voting among seven
board-certified gastrointestinal pathologists [55]. We followed
the setting in [55] to split 2,175 images into the training phase
(training/validation sets) while 977 in the hold-out test set.

GM/WM segmentation task We also evaluated our frame-

work on a GM/WM segmentation dataset [31]. It has 30
Amyloid-β stained slides (4G8, recognizing residues 17–24,
dilution 1:1600, BioLegend catalog number SIG-39200) from
FFPE temporal cortex tissue. The slides were digitized by
Aperio AT2 scanner at 20X magnification. The average size
per slide is around 60, 000 × 50, 000 pixels. The annotations
were provided by a trained researcher and a neuropathologist.
In terms of the variety of this dataset, we have 20 WSIs from
Alzheimer’s disease cases (AD) and 10 from non-Alzheimer’s
disease cases (NAD). AD slides can contain thousands of
plaques in GM [46], which differs from the NAD cases. All
of these 30 WSIs have been de-identified, lacking personal
health information. We followed a previous work [31] to split
20 slides into the training phase (training/validation sets) while
10 (6 AD and 4 NAD) in the hold-out test set.

B. Training details

We use ResNet-18 [20] as the backbone encoder for all
experiments. However, our proposed framework also works
with Transformer architectures in a plug-and-play setting.
We select the current state-of-the-art SSL algorithm, Fix-
Match [45], as our framework’s main baseline and example.
We follow the hyper-parameter settings in [45] and keep
them consistent throughout all of our experiments: the initial
confidence threshold τ is set as 0.95, the unlabeled loss weight
λu as 1, and the ratio of unlabeled data in each mini-batch µ as
2. The hyper-parameters are tuned based on the validation set
in the above three learning tasks. We set the batch size as 32
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TABLE III
QUANTITATIVE COMPARISON ON MHIST. ALL SCORES REFER TO THE MACRO-AVERAGED VALUES.

Learning Manner Labeled Ratio Algorithm Accuracy Precision Recall F1-score AUC

Supervised 100% (Full) ResNet-18 [20] 86.0 ± 0.36 84.8 ± 0.61 83.5 ± 0.55 84.1 ± 0.58 0.89 ± 0.01

Self-supervised 10% SimCLR [11] 63.2 ± 0.95 63.8 ± 1.20 62.2 ± 1.70 63.0 ± 0.85 0.66 ± 0.04
3% SimCLR [11] 58.6 ± 0.20 60.0 ± 0.55 58.5 ± 0.87 59.2 ± 1.20 0.63 ± 0.03

Semi-supervised 10%

Pseudo-Label [32] 65.4 ± 1.04 66.5 ± 0.98 65.9 ± 0.85 66.2 ± 1.42 0.75 ± 0.03
Mean Teacher [47] 70.1 ± 0.80 71.3 ± 1.05 69.9 ± 0.98 70.6 ± 0.58 0.80 ± 0.02

MixMatch [7] 74.1 ± 0.47 75.0 ± 0.75 74.3 ± 0.50 74.6 ± 0.97 0.83 ± 0.03
FixMatch [45] 70.5 ± 1.55 68.8 ± 2.76 69.5 ± 2.97 69.1 ± 2.86 0.79 ± 0.02

Dash [57] 70.2 ± 1.21 70.0 ± 0.85 71.3 ± 0.69 70.6 ± 1.48 0.81 ± 0.04
FlexMatch [62] 73.1 ± 0.84 74.6 ± 1.05 75.1 ± 0.90 74.8 ± 0.89 0.82 ± 0.03

Semi-Path 81.1 ± 0.89 81.0 ± 0.78 81.2 ± 0.90 81.1 ± 0.62 0.87 ± 0.04

Semi-supervised 3%

Pseudo-Label [32] 61.2 ± 1.55 61.3 ± 2.00 62.1 ± 1.94 61.7 ± 1.67 0.68 ± 0.02
Mean Teacher [47] 62.3 ± 1.87 63.9 ± 2.92 57.2 ± 2.22 60.3 ± 2.49 0.66 ± 0.05

MixMatch [7] 66.8 ± 1.04 68.2 ± 0.99 67.9 ± 1.20 68.7 ± 0.45 0.76 ± 0.03
FixMatch [45] 62.6 ± 1.35 63.8 ± 1.15 65.6 ± 1.35 64.7 ± 1.25 0.73 ± 0.03

Dash [57] 64.8 ± 0.65 68.3 ± 0.45 67.9 ± 0.67 68.1 ± 0.98 0.76 ± 0.02
FlexMatch [62] 63.0 ± 1.20 65.8 ± 1.45 64.5 ± 0.96 65.1 ± 0.56 0.73 ± 0.01

Semi-Path 76.1 ± 0.90 75.9 ± 1.23 75.9 ± 1.09 75.9 ± 0.99 0.84 ± 0.02

for both labeled and unlabeled data. We use Adam [26] with
β1 = 0.9 and β2 = 0.999 as our optimizer in all settings. The
learning rate is set as 0.001. For comparison, all computations
are conducted on a single GPU (NVIDIA Titan Xp with 12
GB of VRAM).

C. Main results on pathology image classification and seg-
mentation tasks

We first evaluate Semi-Path on two pathology classification
tasks: tumor classification in breast (PCam [48]) and colorectal
polyp classification (MHIST [55]). We refer to supervised
ResNet-18 [20] as SL. We implement recent popular SSL
algorithms as baselines for comparison: Pseudo-Label [32],
Mean Teacher [47], MixMatch [7], FixMatch [45], Dash [57],
and FlexMatch [62]. We also include a self-supervised learning
algorithm, SimCLR [11], to compare with our proposed Semi-
Path. We select Accuracy (9), Precision (10), Recall (11),
F1-score (12), and AUC as the measuring metrics (TP: True
Positive, TN: True Negative, FP: False Positive, FN: False
Negative).

Accuracy =
TP + TN

Total
=

TP + TN

TP + TN + FP + FN
(9)

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

F1− score = 2× Precision× Recall

Precision + Recall
(12)

Tumor classification. We first set the total labeling budget
of PCam [48] as 1,000 images (around 0.5% of the entire
training set); thus the rest of the images are put into the
unlabeled set. To reach the labeling budget, we set the number
of IAA cycles as 2. The results are summarized in Table II.
We can find the performance of SL is sensitive to the amount

of labeled data: when we use all data for supervised training,
it can achieve competitive results; however, the performance
degrades significantly when we only use 0.5% labeled data.
Then, we fine-tune the self-supervised pre-trained model [11]
and find the performance is still far from satisfactory due
to the large gap between the new pathology task and the
pre-trained domain. For SSL, the methods [45], [57], [62]
that combine pseudo-labeling and consistency regularization
can bring more benefits than SL. Semi-Path can consistently
outperform the recent SSL algorithms [7], [32], [45], [47],
[57], [62], with 8% improvement over FixMatch [45] and 7.2%
over FlexMatch [62] in terms of accuracy. We observed similar
results when we set the labeling budget as 1.5%. This shows
a better utilization of the unlabeled data by Semi-Path.

Colorectal polyp classification. We have discussed the
experiments on a large-scale dataset (PCam [48]) above. To
further stress-test the applicability of Semi-Path, we select
(MHIST [55]) as a more challenging learning task that suffers
from inter-rater disagreement. This dataset only consists of
3,152 patches but involves 328 slides. Hence the variation
of feature representations from each data point in the same
class can be amplified [49]. We follow the same settings in
Section IV-C: run three trials for each setting, and report mean
value and STD for each metric. We first set 60 labeled patches
(around 3% of the training set) as the total labeling budget. We
start with 20 labeled data as the initial set and use two IAA
cycles to reach the labeling budget. The results are summarized
in Table III. We find that Semi-Path can significantly improve
the performance of SSL under this challenging dataset. The
performance gain is larger than 4% in all metrics. Then we
increase the labeling budget to 200 images (10% of the training
set) and achieve similar performance gain. These promising
results show that Semi-Path effectively leverages the unlabeled
data under this small-scale setting.

Pathology image segmentation with weak supervision.
In [31], they collected an in-house GM/WM segmentation
dataset at the gigapixel level and used a weakly semi-
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TABLE IV
PIXEL-WISE IOU SCORES FOR AD, NAD, AND OVERALL TEST SET

Method SL (FCN [4]) SL (U-Net [37]) FixMatch [45] SSAL [31] Semi-Path

Labeled data 2 WSIs All WSIs 2 WSIs All WSIs 0.1% 0.1% 0.1%

AD Back 61.04 ± 5.44 81.13 ± 9.17 59.74 ± 13.9 96.80 ± 1.48 93.15 ± 2.41 95.01 ± 1.17 95.09 ± 1.21

AD GM 46.98 ± 2.78 76.07 ± 8.91 37.16 ± 9.93 89.58 ± 5.12 78.57 ± 3.87 88.80 ± 3.92 88.91 ± 4.05

AD WM 27.75 ± 5.50 62.23 ± 14.0 7.57 ± 6.02 82.53 ± 7.70 56.66 ± 16.4 81.83 ± 5.53 81.95 ± 4.58

NAD Back 66.66 ± 5.17 88.42 ± 1.55 78.46 ± 18.5 97.36 ± 3.15 97.07 ± 0.31 97.26 ± 0.52 97.33 ± 0.78

NAD GM 50.15 ± 0.49 79.37 ± 2.95 59.59 ± 13.6 94.42 ± 3.30 83.97 ± 7.76 93.47 ± 1.60 93.59 ± 1.55

NAD WM 19.72 ± 13.6 49.89 ± 12.8 3.02 ± 3.09 81.25 ± 9.53 22.72 ± 19.0 75.85 ± 11.4 77.95 ± 10.9

Background 63.29 ± 5.81 84.05 ± 9.17 68.28 ± 17.2 97.02 ± 2.15 94.72 ± 2.71 95.91 ± 1.48 95.99 ± 1.33

GM 48.25 ± 2.66 77.39 ± 7.06 46.13 ± 15.8 91.52 ± 4.94 80.73 ± 6.01 90.67 ± 3.90 90.78 ± 3.34

WM 24.54 ± 9.80 57.29 ± 14.3 5.75 ± 5.37 82.02 ± 7.98 43.08 ± 24.0 79.44 ± 8.34 80.35 ± 8.67

Mean 45.36 ± 3.26 72.91 ± 7.56 40.05 ± 10.2 90.19 ± 3.84 72.84 ± 7.18 88.67 ± 3.12 89.04 ± 2.99

The results are from the hold-out test set. AD refers to Alzheimer’s disease cases while NAD refers to Non-Alzheimer’s disease cases. 2 WSIs
refers to 2 WSIs are labeled, equivalent to 10% regions of all WSIs; all WSIs refers to all WSIs are labeled. 0.1% refers to 0.1% regions of
all WSIs are labeled, which can be tiled into 600 patches; so as 0.07% which can be tiled into 400 patches.

Ground Truth
Supervised Learning (U-Net [37]) Semi-supervised Learning

All WSIs Labeled 2 WSIs Labeled FixMatch [31], [45] Semi-Path

Fig. 3. Segmentation masks visualization: GM, WM, and background are indicated by cyan, yellow, and black, respectively. Both SSL results are using
FixMatch [45] as the backbone and only using 0.1% labeled area of 20 WSIs in the training set. All slides are Amyloid-β stained and from brain tissues.

supervised way to tackle the segmentation. We follow their
setting in this work and show the superiority of our proposed
Semi-Path. We select two standard segmentation metrics: IoU
score [41] and DICE coefficient [13]. All results reported in
this section are from the hold-out test set. We first implement
two popular medical image segmentation networks, FCN [4]
and U-Net [37], as the SL baselines for comparisons. As
FixMatch [45] and SSAL [31] have shown their simplicity
with the trade-off between the performance and computational
complexity, we mainly use these two algorithms for the
comparison.

We generate the masks of GM, WM, and background
from different methods for each slide. After that, we overlap
them on pixel-wise ground truth masks to calculate the IoU
score [31], [41]. As these WSIs may contain noticeable
variability due to the heterogeneous nature of the human

brain, we also report standard deviation (STD) to measure
the consistency of different methods across the slides in the
hold-out test set. Both IoU score [41] and STD are summarized
in Table IV. As shown in Table IV, if FCN [4] and U-Net [37]
are trained in a fully-supervised manner (all 20 slides labeled),
they are able to obtain the mean IoU score at 72.91% and
90.19%, respectively. We regard 90.19% as an approximated
upper bound performance of SL in this learning task. However,
if we reduce the labeling budget to only 2 slides (1 AD and 1
NAD), SL suffers from severe performance degradation. Then,
we evaluate FixMatch [45] for the SSL comparison by setting
the total labeling budget as 0.1%. As it shows its advantages
on very scarce labeled data, e.g. 40 labeled images in CIFAR-
10, equivalent to nearly 0.1% of all data in CIFAR-10 [45], we
set our total labeling budget as 0.1%. In this case, 0.1% area
of 20 WSIs is about 600 patches, equivalent to 24 regions at
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TABLE V
ABLATION STUDIES ON GIGAPIXEL PATHOLOGY TASKS.

SSL IAA APL Accuracy F1-score
✓ 73.2 ± 0.76 75.6 ± 0.37
✓ ✓ 76.1 ± 0.91 76.1 ± 0.88
✓ ✓ 78.9 ± 0.43 78.9 ± 0.34
✓ ✓ ✓ 81.2 ± 0.98 80.7 ± 0.93

(a) Tumor classification task with only
0.5% data labeled.

Methods IoU score DICE AL Inference TimeGM WM GM WM

FixMatch [45] 80.73 43.08 91.02 63.19 -
SSAL [31] 90.67 79.44 95.19 88.53 20.7 hours
Semi-Path 90.78 80.35 96.04 90.01 3.80 hours

(b) GM/WM segmentation with 0.1% areas labeled.

TABLE VI
COMPATIBILITY OF IAA WITH DIFFERENT SSL AND ITS SENSITIVITY TO THE NUMBER OF ROUNDS.

SSL Algorithm Selection Accuracy F1-score

Mean Teacher [47] Random 62.3 ± 1.87 60.3 ± 2.49
IAA 68.9 ± 1.50 73.8 ± 1.54

ReMixMatch [6] Random 70.1 ± 2.69 72.2 ± 2.05
IAA 78.7 ± 0.95 78.8 ± 0.55

FixMatch [45] Random 73.2 ± 0.76 75.6 ± 0.37
IAA 80.9 ± 0.86 80.2 ± 0.63

(a) IAA with different SSL

Rounds Accuracy Precision Recall F1-score

Original 73.2 ± 0.76 77.5 ± 0.50 73.7 ± 0.25 75.6 ± 0.37
1 75.8 ± 1.04 79.1 ± 1.01 75.3 ± 0.94 77.2 ± 0.99
2 80.9 ± 0.86 81.0 ± 0.84 79.5 ± 0.45 80.2 ± 0.63
3 81.2 ± 0.45 81.1 ± 0.21 79.9 ± 0.23 80.5 ± 0.34
4 81.2 ± 0.23 81.2 ± 0.12 80.0 ± 0.21 80.6 ± 0.19
5 81.3 ± 0.27 81.1 ± 0.21 79.8 ± 0.45 80.4 ± 0.37

(b) Effects of IAA rounds

1280× 1280 pixels. We first randomly select 24 regions from
two slides. The remaining regions and the other 18 slides are
kept as unlabeled data. It achieves 72.84% of the mean IoU
score, which is superior to both SL algorithms trained on two
WSIs (limited labeled data). However, its performance on WM
of NAD cases remained limited and far from fully-supervised
U-Net [37].

Then, we evaluate our deep fusion framework with region-
based IAA rounds. We follow [31] and set the number of
rounds as three. We find the performance of Semi-Path can
achieve almost 89% of the IoU score, which is comparable
to the fully-supervised U-Net [37]. The major performance
gain comes from the WM regions of NAD cases compared
to the original FixMatch [45]. It also outperforms a recent
semi-supervised active learning framework [31] with 2% on
the NAD WM regions. The overall performance of Semi-Path
is closer to the upper bound performance of this learning task.
However, the computation complexity is significantly reduced
in Semi-Path compared to SSAL [31], where the SSL and AL
components are regarded as independent in the framework.
Specifically, Semi-Path saves almost 80% of inference time in
each IAA round compared to SSAL [31]. Hence Semi-Path
is a computation-efficient framework where SSL and AL are
deeply fused and sharing mutual information with each other.

D. Empirical analysis on Semi-Path

Ablation studies of APL and IAA. we toggle the APL
and IAA modules incrementally in order to show their con-
tributions to Semi-Path’s promising results. The 0.5% labeled
setting for the tumor classification task is used in this ablation
study. As shown in Table Va, APL can improve the original
SSL algorithm (FixMatch [45] used in this study as one
example) with 2.9% increase in accuracy. When we use IAA
first and then apply APL, it also brings improvement. This

shows the effectiveness of APL with/without the proposed
IAA. Therefore, APL improves F1-scores and accuracy, evi-
dence of its effectiveness, especially with correctly classifying
classes that may have been missed due to fixed threshold. Then
we disable APL module and observe the improvement from
IAA. We also find that IAA can improve the original SSL
algorithm and SSL+APL consistently. Then, we conduct the
time analysis on the gigapixel segmentation task. The results
are summarized in Table Vb: Semi-Path can achieve superior
results while significantly reducing the AL inference time due
to the deep fusion design.

Fig. 3 displays the predictive masks from different methods
and the ground truth masks. Both of these two cases are from
the hold-out test set. The masks of U-Net [37] show supervised
learning is sensitive to the amount of labeled data: the results
can be close to the ground truth (as shown in the second
column) when the variety and volume of the labeled dataset are
sufficiently large, but the performance can be greatly degraded
(as shown in the third column) if the labeled dataset is limited.
On the other side, FixMatch [45] is able to predict the rough
boundaries between GM and WM, but the local prediction
details are still far away from the ground truth masks. For
example, there are considerable quantities of noisy pixels in
WM, which means many WM regions are wrongly classified
as GM. The predicted masks of Semi-Path are the closest to
the ground truth masks.

Compatibility of IAA with different SSL algorithms. To
further prove the general benefits of IAA in SSL settings, we
also apply IAA to recent popular SSL algorithms to prove
its general use and compatibility in SSL settings. The SSL
algorithms here include Mean Teacher [47], ReMixMatch [6],
and FixMatch. We summarize the results in Table VIa. When
we only set 0.5% images as the labeling budget, our proposed
IAA module is able to find the informative samples for
labeling and boost the performance of these original SSL
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Fig. 4. Comparison on per class’s performance in MHIST [55] under the
labeling budget as only 60 labeled images. IAA-0: the starting stage (20
labeled images ), IAA-1: Semi-Path after 1 IAA round (40 labeled dat); IAA-
2: Semi-Path after 2 IAA rounds (60 labeled images).

algorithms consistently.
The sensitivity of IAA on the number of rounds. In

Section IV, we use a two-round IAA and show its promising
improvements. In this subsection, we further study the effect
of additional IAA rounds on eventual performance. For a fair
comparison, we set 0.5% of patches in PCam [48] as the
total labeling budget and set APL module active. The results
are summarized in Table VIb: when we use only one-round
IAA to reach the labeling budget, the improvement can be
trivial; however when we use more than three rounds to reach
the budget, the performance gain is also limited. Considering
that each AL round will inevitably incur computation costs
and expert interactions, we choose two-round IAA in our
study for the trade-off between the performance and clinical
interactions.

Data imbalance scenario. To explore the source of perfor-
mance gain, we look deeper into per class’s performance. As
we achieve more than 10% of improvement on MHIST [55],
we report the performance from each IAA round to visualize
the benefits for each class. MHIST [55] is a challenging dataset
due to its limited amount and data imbalance issue [49]. As
shown in Fig. 4, our framework improves the performance (in
terms of Recall and Precision) on sessile serrated adenomas
(SSA), which demonstrates its effectiveness in classifying the
minor class in this dataset. Recent theoretical works [24], [30]
found that the generated pseudo-labels from minor classes
during SSL training can be significantly underestimated, sub-
sequently biasing the model towards the major classes and
degrading the performance eventually. In other words, more
minority samples have never been assigned pseudo-labels
during the training process. These samples will be split into
the candidate pool in our SSL-AL iterative structure of IAA,
subsequently, queried for annotations, and ultimately enter the
labeled set. Therefore, our framework has the potential to
realign the underlying data imbalance in the unlabeled pool

and boost the applicability of SSL in real-world applications.

V. DISCUSSION

We propose Semi-Path, a deployable and active semi-
supervised learning framework for relieving labor efforts for
gigapixel-resolution pathology applications. We first design
class-aware Adaptive Pseudo-Labeling (APL) with dynamic
thresholds to select the unlabeled samples for pseudo-labeling
based on the learning status of SSL and class difficulty. Then
we design and incorporate Informative Active Annotation
(IAA) in our SSL framework to further exploit the infor-
mativeness in the unlabeled pool. We evaluate Semi-Path on
three pathology datasets and show its consistent improvement
over other SSL algorithms. Additionally, Semi-Path reduces
computational complexity for the AL rounds since SSL and
AL are integrated into a unified framework with IAA. We
believe Semi-Path has the potential to enhance the applicability
of SSL in pathology image applications. The limitation of
Semi-Path is that we assume the unlabeled pool has the same
classes as the labeled set. In the future work, we aim to build
a more generalizable framework that can be applied to other
medical domains.
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