
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
The logic of guesses: how people communicate probabilistic information

Permalink
https://escholarship.org/uc/item/4sm5s4r4

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 44(44)

Authors
Quillien, Tadeg
Lucas, Chris

Publication Date
2022
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4sm5s4r4
https://escholarship.org
http://www.cdlib.org/


The logic of guesses: how people communicate probabilistic information
Tadeg Quillien, Christopher G. Lucas

School of Informatics, University of Edinburgh

Abstract

How do people respond to a question when they are not cer-
tain of the answer? Probabilistic theories of cognition assume
that the mind represents probability distributions over possi-
ble answers, but in practice people rarely recite these probabil-
ity distributions out loud: instead they make simple guesses.
Consider how you would express your belief about how many
people live in the European Union. You would probably not
say “a Gaussian with mean 300 million and standard deviation
50 million” – you would make a simple guess, such as ”be-
tween 200 and 400 million”. Here we present a simple rational
analysis of these guesses. We assume that communicating the
full probability distribution in one’s head would take too much
time, so people offer simple guesses in order to communicate
a compressed version of this distribution. Drawing on infor-
mation theory, we show that it is possible to measure how well
a guess encodes a given probability distribution, and suggest
that people tend to make guesses that provide the best such en-
coding. Two experiments provide preliminary evidence for the
model. Our theory explains from first principles why guesses
seem to strike a balance between accuracy and informative-
ness.

Keywords: computational modeling; guesses; probability; in-
formation theory; judgment under uncertainty

Introduction
Your friend is about to reach inside the box depicted in Fig-
ure 1, and will randomly draw one ball while blindfolded.
Which ball is going to come out? For a Bayesian, the an-
swer is easy: the ball will be red with probability 5/12, green
with probability 3/12, yellow with probability 3/12, and blue
with probability 1/12. According to a prominent approach to
cognition, the mind is approximately Bayesian (Tenenbaum
et al., 2011; Oaksford & Chater, 2007): in this kind of sim-
ple problem, it should hold a representation of the probability
distribution over possible outcomes. Yet, most people would
not recite the whole probability distribution out loud if they
were asked which ball will come out. Instead, they might say
“it will probably be a red ball”, or “it will be a red, green, or
yellow ball”. How do people make these simple guesses?

Figure 1: A box with colored balls.

Epistemologists have pointed out that guesses seem to have
their own particular phenomenology (Holguin, 2022; Dorst
& Mandelkern, 2021). Intuitively, guesses that are likely to
come true tend to be better. For example “it will be a red ball”
is a better guess than “it will be a blue ball”. But the quality
of a guess is not entirely determined by its probability: for
example “it won’t be a red ball” is more probable than “it will
be a red ball”, but the latter seems like a more natural guess
(Dorst & Mandelkern, 2021). A challenge for a cognitive
theory of guesses is to explain their peculiar logic.

A rational theory of guesses
We suggest that guesses (like “it will be a red, green or yellow
ball”) solve a compression problem. When people answer a
question about an uncertain outcome, it would take too much
time for them to explicitly recite the relevant probability dis-
tribution. Instead, they make a guess, which functions as a
compressed representation of the probability distribution in
their mind. The guess leaves out some information, but is
nonetheless useful for most purposes. If you tell someone
that the ball coming out of the box will be red, green, or yel-
low, they will not be able to infer the exact content of the box,
but they may get a good enough approximation.

Thus, a guess is good to the extent that people hearing the
guess can reconstruct the probability distribution over out-
comes that the speaker had in mind. If you tell someone that
the ball will be “red, green, or yellow”, she can infer that red,
yellow, and green are more probable outcomes than blue, but
she has no reason to think that any of the three colors (red,
yellow, green) is more likely than the others1. So, her best
bet is to construct a probability distribution that looks like the
one in Figure 2c. As another example, if you tell her “it will
be a red ball”, her best bet is to infer a probability distribution
over outcomes that looks like the one in figure 2b.

More formally, guesses can be seen as implicitly encoding
a probability distribution where all outcomes mentioned in
the guess have equal probability, and have higher probability
than outcomes not mentioned in the guess. To construct such
a distribution, one can define the probability of each outcome
x as:

P(X = x) = δ(x,g)∗ 1−λ

ng
+

λ

n

where δ(x,g) is 1 if x is included in the guess, and 0 other-
wise. ng is the size of the guess (the number of possible out-

1We assume that the audience knows that there are 12 balls in
the box, that they can be red, yellow, green and blue, but does not
know in which proportions these colors are represented. Note that
for simplicity here we consider settings where the audience knows
what outcomes are possible, but our approach is compatible with
situations where that is not the case.
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Figure 2: a: Original distribution over possible outcomes, in the speaker’s mind. b: a distribution over possible outcomes
consistent with the guess “it will be a red ball”. c: a distribution over possible outcomes consistent with the guess “it will be a
red, yellow or green ball”.

comes it mentions), and n the number of possible outcomes2.
λ is a free parameter that controls how much probability mass
we want to put on possible outcomes that are not mentioned
in the guess3.

When is a guess good? Intuitively, it is when the prob-
ability distribution that the audience can construct from the
guess is ‘close’ to the original distribution in the speaker’s
mind. For example, on Figure 2, the distribution in 2c looks
‘closer’ to the original distribution (2a) than the distribution
in 2b does.

We can formalize this intuitive notion of ‘closeness’ be-
tween distributions using tools from information theory.
Specifically, we say that a guess G is a good encoding of
the original distribution Q if the Kullback-Leibler divergence
(KL-D) of G from Q is low (see Gagie, 2006). Thus, we de-
fine the quality of a guess as the inverse of the KL-D of G
from Q (we add 1 to the denominator so that guess quality
can range from 0 to 1):

1
1+KL(Q|G)

=
1

1+ΣiQ(i) log
(

Q(i)
G(i)

)
Finally, different people might prefer to make slightly dif-

ferent guesses, or they might make different guesses in dif-
ferent contexts. For instance, if you are in a hurry you might
prefer to make a short guess, like “It will be red”, but if you

2In situations where we don’t know the space of possible out-
comes, we can for example assign probability λ

ng+1 to the general
probability that something not mentioned in the guess occurs.

3We find that the value of λ has little influence on the model’s fit
in the studies we report below. To limit the number of free parame-
ters, we simply set λ = .1

are very cautious you might say “It can be any of the four col-
ors”. It is not clear how to best model this variability, but here
we assume that before making a guess, speakers modulate
their original probability distribution by either concentrating
it in a few peaks, or spreading it out more evenly. That is, the
speaker constructs a modified distribution Q′ by applying the
following transformation to each element i of Q:

Q′(i) =
Q(i)α

Z

where Z is a normalizing constant ensuring that all ele-
ments in Q′ sum to 1, and α is a free parameter which controls
to what extent the distribution gets concentrated or spread out.
For values of α < 1, the probability distribution gets spread
out; for α > 1, it gets concentrated (areas with a lot of proba-
bility mass get even more probability mass to the detriment of
other areas). Low values of α result in guesses that mention
more possible outcomes.

The accuracy-informativeness trade-off model
We also consider an alternative formal model of the psychol-
ogy of guesses. This model (Dorst & Mandelkern, 2021) is
based on the hypothesis that people make guesses that opti-
mize a trade-off between accuracy and informativeness (see
Yaniv & Foster, 1995, 1997). A guess is accurate if it is
likely to be true, and it is informative if it gives information
about which outcomes are particularly likely. For instance,
the guess “the ball will be either Red, Green, Yellow or Blue”
has probability 1, so it is very accurate. But it gives no infor-
mation about whether some colors are more likely to come
out. So, in practice, people might prefer other guesses, that
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are not guaranteed to be correct but that narrow down the
space of plausible outcomes.

According to Dorst & Mandelkern (2021), people select
the guess G that maximizes the following expected utility
function:

E(G) = P(G)∗ JQ(G)

where P(G) is the accuracy of a guess, i.e. the probabil-
ity that the guess is correct, and Q(G) is its informativeness.
The informativeness of a guess is the proportion of possi-
ble answers that it excludes. For example, the guess “red or
blue” has informativeness 1/2 because it excludes two of the
four possible options. The parameter J regulates how sensi-
tive people are to informativeness relative to accuracy (when
J = 1, people are only sensitive to accuracy; when J >> 1
they mostly care about informativeness).

Note that our information-theoretic model is consistent
with the hypothesis that people make guesses that achieve
a trade-off between accuracy and informativeness. The dif-
ference is that our model does not assume that the mind is
explicitly optimizing this trade-off – instead, the tradeoff hap-
pens as a natural byproduct of making guesses that efficiently
encode the probability distribution in the speaker’s mind. We
also note that the two models make very similar predictions,
and our main goal here was not to test which model fits peo-
ple’s intuitions better.

It is easy to see that our model, as well as the trade-off
model, account for qualitative features of our intuitions about
which guesses are good. For instance, our model explains
why we think that ‘it will not be red’ is a worse guess than
‘it will be red’. ‘It will not be red’ assigns a low probability
to Red, which is actually the highest-probability outcome in
the speaker’s mind, and therefore it defines a distribution that
does not look anything like the one in the speaker’s mind.

In the following section, we test whether our account (and
the trade-off model) can account for quantitative patterns in
people’s judgments about what counts as a good guess.

Methods

In two studies, we showed participants urns that were similar
to the one shown in Figure 1, but whose content we system-
atically varied, in a within-subject design.

One natural way to test our hypothesis would be to ask
people to make guesses about which ball will come out from
a given urn. In order to obtain many data points per partic-
ipants, we instead asked them to rate the quality of different
guesses that one could make. We compared their ratings with
the predictions of our information-theoretic model (hence-
forth, KL model), and the predictions of the accuracy / in-
formativeness trade-off model.

Data and R code (for modeling and data analysis) are avail-
able on the OSF at https://osf.io/wfgya/.

Materials and Measures
Each participant saw 13 (in study 1) or 10 (in study 2) dif-
ferent urns, each containing 12 balls of different colors (Red,
Yellow, Blue, Green; there was at least one ball of each color
in each urn). To construct the urns, we defined the ‘profile’
of an urn as a list of four numbers, specifying the number of
balls of the most frequent color, the number of balls of the
second most frequent color, and so on. For example, the urn
in Figure 1 has profile [5,3,3,1]. The content of the urns was
procedurally generated. For each urn and each participant, the
frequency ordering over colors was randomized. The gener-
ation process also randomized the position of the balls in a
given urn, the order of presentation of urns, and the order of
presentation of guesses. All guesses for a given urn were pre-
sented alongside the urn on a single page. Different urns were
presented on different pages.

For each urn, we asked participants to rate the quality of
four guesses, on a Likert scale from 1 (bad guess) to 9 (good
guess). The guesses were of the form “The player will draw
{}”, where {} was a disjunction of possible colors (e.g. “a
red ball or a yellow ball”). We call the number of colors in {}
the size of a guess. For example, “Red or Yellow” is a guess
of size 2. We constructed four guesses, of sizes 1, 2, 3 and 4,
per urn, by first building a guess with the most frequent color,
then a guess with the two most frequent colors, etc. For exam-
ple, for the urn shown in figure 1, we constructed the guesses
{Red}, {Red or Yellow}, {Red, Yellow or Green} and {Red,
Yellow, Green or Blue} (In cases where some colors have
equal frequency we randomly imposed an artificial ordering
on them when constructing guesses).

Procedure
Participants were recruited on Prolific and completed the ex-
periment on a web-based interface. We first asked partici-
pants to familiarize themselves with the setting by randomly
drawing a few times from two different urns. Then they read a
short set of instructions explaining the task. In the main phase
of the study, participants rated the quality of four guesses per
urn – each page featured a picture of a different urn, alongside
four different guesses to rate. Participants then completed a
short set of questions probing whether they understand how
probability works in the current context (we do not analyze
these reports here). Finally, they completed a few demo-
graphic questions and were redirected to Prolific for payment.

Studies 1 and 2 had essentially identical designs, with the
following exceptions. Study 2 was shorter, with 10 instead
of 13 different urns per participant. It also featured slightly
different instructions. While in study 1 we simply told peo-
ple that they were about to rate different possible guesses, in
study 2 we asked them to imagine that they would be commu-
nicating with a friend who cannot see the contents of the box
(but knows that boxes contain red, blue, green and yellow
balls, in unknown proportion). Likert scales were labelled
with ‘bad guess’ and ‘good guess’ in study 1, and ‘bad an-
swer’ and ‘good answer’ in study 2.
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Figure 3: Ratings from two representative participants in Study 2, along with the predictions of the KL (purple) and trade-off
(green) models. The participant on the left has a low best-fitting value of α, while the participant on the right has a high value
of α. Panel labels represent the profile of an urn: for example, an urn labelled [9,1,1,1] has 9 balls of one color, and one ball
each of the other colors. Participant and model ratings are z-scored to facilitate comparison.

Interested readers can walk through the experiments at
https://eco.ppls.ed.ac.uk/˜tquillie/guesses/ and
https://eco.ppls.ed.ac.uk/˜tquillie/guesses-b/.

Participants
We recruited US residents (in study 1, N=38, 24 female, 13
male, 1 other, mean age = 30.8, SD = 9.5; in study 2; N=39,
24 female, 14 male, 1 other, mean age = 30.7, SD = 9.4) from
Prolific. Participants were compensated £1 for their partici-
pation.

Modeling
For each participant, we generate model predictions for the
KL model by finding the value of α that maximized the cor-
relation between model predictions and the participant’s rat-
ings, using the optim function in R (R Core Team, 2022).
We generated model predictions for the tradeoff model in a
similar way (fitting the J parameter individually to each par-
ticipant).

Results
We find very similar results in both studies. Most participants
adopted a simple strategy: they simply rated the quality of a
guess according to its probability. That is, they gave high-
est ratings to guesses of size 4, i.e. guesses that mention all
possible outcomes and therefore have probability 1. Figure
3 (left panel) shows the ratings made by one such participant
(in study 2).

Both models are able to closely reproduce this pattern of
judgments. The trade-off model can trivially explain the pat-

tern: when setting J to 1, the model holds that people are only
sensitive to accuracy – that is, the quality of a guess is just its
probability. The KL model captures the pattern of judgments
by setting α << 1, i.e. by assuming that people compare a
guess to a ‘spread out’ probability distribution which gives
very similar probability to each possible outcome.

There was nonetheless also a substantial number of partic-
ipants (in both studies) who exhibited a more subtle pattern
of judgments – see for example the participant highlighted on
the right of Figure 3. These participants tend to favor long
guesses when colors are equally frequent (as in the urn with
profile [3,3,3,3] which has 3 balls of each color), but they
preferred shorter guesses for urns where one color was pre-
dominant. For example, for an urn with 9 red balls, these
participants would favor the guess “The player will draw a
red ball”. For an urn with 6 yellow balls and 4 blue balls,
many of them would favor the guess “The player will draw a
yellow ball or a blue ball”.

Again, both computational models are able to account for
this pattern of judgments.

For values of α that are not too low, the KL model favors
guesses which put a lot of probability mass on the most likely
outcomes, because such guesses define distributions that are
close to the actual probability distribution over possible out-
comes. Therefore the model naturally favors short guesses
when one or a few colors dominate, and long guesses when
all colors have the same frequency.

The trade-off model accounts for the data because, for J >
1, it values guesses that are both likely and informative. For
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Figure 4: Ratings from all participants in Study 2. To make the trends easier to discern, the ratings of each participant are
z-scored. Panel labels represent the profile of an urn: for example, an urn labelled [9,1,1,1] has 9 balls of one color, and one
ball each of the other colors. A similar figure for Study 1 can be found at https://osf.io/6utsk/.

an urn with 9 red balls of the same color, the guess “it will
be red” is likely enough (it will come out true 75% of the
time), and it is very informative because it rules out 3/4 of the
possible outcomes. By contrast, for an urn where all colors
are present in equal proportion, leaving out one color from the
guess decreases its probability and makes it more informative
– but the gain in informativity is not large enough to be worth
the bargain. Therefore the model favors long guesses, like “it
can be any color”.

We display the fit between individual participant judgments
and model judgments, for both models and both studies, in
Figure 5. We also show the fit of a simple model for which the
quality of a guess is always its probability. The judgments of
all participants are positively correlated with the predictions
of both the KL and trade-off models.4 The simple probability
model, by contrast, provides a very bad account of the judg-
ments of some participants.

Discussion
Probabilistic theories of cognition (Tenenbaum et al., 2011;
Oaksford & Chater, 2007) assume that the mind often rep-
resents probability distributions over possible outcomes, or
over possible states of the world. At first sight this assump-

4Participants with a low best-fitting value of α are well-fit by
both models, but the trade-off model provides a slightly better ac-
count of their judgments. This is not surprising given that the prob-
ability of a guess is a basic building block of the trade-off model:
by setting J = 1, the trade-off model reduces to a model that judges
that more probable guesses are always better. For participants with
higher values of α, there is no clear advantage for one model over
the other.

tion is at odds with the way people express uncertainty when
they talk. If someone asks you how many people you think
live in the European Union, you will probably not say “my
subjective belief is a normal distribution with mean 300 mil-
lion inhabitants and standard deviation 50 million” – instead
you will probably say something like “between 200 and 400
millions”.

Here we have sketched a theory that resolves this tension.5

We assume that when people respond to a question whose an-
swer they are uncertain of, their mind does represent a proba-
bility distribution over possible answers. But it would not be
convenient for them to enumerate this distribution out loud.
Instead, they make a simple guess, which effectively func-
tions as a compressed representation of the probability distri-
bution in their mind. Someone who hears the guess cannot
reconstruct the exact probability distribution that the speaker
had in mind, but can infer a good enough reconstruction.

Our account assumes that speakers choose messages that
optimize the inferences they anticipate the listener will draw,
in the spirit of recent computational models of social cogni-
tion (Goodman & Frank, 2016; Shafto et al., 2014; Franke
& Jäger, 2016). In particular, we assume that the speaker
wants the listener to re-construct a probability distribution
that is close to the speaker’s subjective distribution, as in re-
cent models of how people use words such as “about” (Egré
et al., 2020) and “possibly”, “likely”, or “almost certainly”

5There are other domains where it does not intuitively feel like
the mind represents probability distributions. Perception is one ex-
ample: we do not simultaneously ‘see’ all the possible interpreta-
tions of an ambiguous visual stimulus (like a Necker cube); see Ger-
shman et al. (2012) for one possible explanation.
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Figure 5: Individual model fits, studies 1 and 2. Each point corresponds to the correlation between the judgments of one
participant and the trade-off model (green), the KL model (purple) or the simple probability model (orange). Gray lines
connect points belonging to the same participant. The x-axis represents the best-fitting value of α for a given participant.

(Herbstritt & Franke, 2019) to communicate uncertainty.
In two studies, we show that the theory can account for

people’s judgments about what counts as a good guess in re-
sponse to a question about an uncertain outcome.

Accuracy and informativeness
Our theory is consistent with the hypothesis that people make
guesses that are both informative and likely to be correct
(Yaniv & Foster, 1995, 1997; Dorst & Mandelkern, 2021). In-
deed, our model generally favors guesses that have high prob-
ability, but that also convey some information about which
outcomes are more likely than others. A trade-off between
accuracy and informativeness thus emerges as a byproduct of
making guesses that efficiently communicate the subjective
probability distribution in the speaker’s mind. In other words,
the model explains, from first principles, why good guesses
appear to be sensitive to the accuracy / informativeness trade-
off.

Of course, an alternative explanation is that the mind ac-
tually computes explicit representations of the informative-
ness and accuracy of a guess. Dorst & Mandelkern (2021)
have developed a model based on this assumption, and we
find that it accounts to the present data as well as our theory
does. Both models make quite similar predictions in the task
we used here – critical tests between the two accounts are a
ripe direction for future research.

Our information-theoretic approach can easily be applied
to cases where the relevant probability distribution is contin-

uous (for example, your subjective belief about the number of
people living in the EU). The trade-off model could in prin-
ciple also model such cases, although it might need a slightly
different definition of informativeness in order to do so. Dorst
& Mandelkern (2021) currently define the informativeness of
a guess as the proportion of possible outcomes it does not
mention, which can be ambiguous when the space of possi-
ble outcomes is continuous.

Conclusion

People can form complex representations of the world, and
they face the challenge of efficiently communicating these
representations to others (Grice, 1975; Sperber & Wilson,
1986; Pinker, 2007; Goodman & Frank, 2016). Cognitive
scientists have found that the mind seems well-equipped to
meet this challenge: people can often convey a surprising
amount of information with very few words. For example,
people can transmit a lot of statistical information about the
properties of a category by using generics, such as ‘robins
lay eggs’ (Tessler & Goodman, 2019). They are also able
to communicate the content of their complex causal models
of the world, by making short statements about what could
have been (Lucas & Kemp, 2015), or highlighting one cause
among the many factors that contributed to an event (Kirfel
et al., 2021; Quillien, 2020). Here, we suggested that peo-
ple can also also efficiently express their probabilistic beliefs
about the world in the form of simple guesses.
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