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Abstract

Cardiac function is tightly regulated by the autonomic nervous system (ANS). Activation of the 

sympathetic nervous system increases cardiac output by increasing heart rate and stroke volume, 

while parasympathetic nerve stimulation instantly slows heart rate. Importantly, imbalance in 

autonomic control of the heart has been implicated in the development of arrhythmias and 

heart failure. Understanding of the mechanisms and effects of autonomic stimulation is a major 

challenge because synapses in different regions of the heart result in multiple changes to 

heart function. For example, nerve synapses on the sinoatrial node (SAN) impact pacemaking, 

while synapses on contractile cells alter contraction and arrhythmia vulnerability. Here, we 

present a multiscale neurocardiac modeling and simulator tool that predicts the effect of efferent 

stimulation of the sympathetic and parasympathetic branches of the ANS on the cardiac SAN and 

ventricular myocardium. The model includes a layered representation of the ANS and reproduces 

firing properties measured experimentally. Model parameters are derived from experiments and 

atomistic simulations. The model is a first protoype of a digital twin that is applied to make 

predictions across all system scales, from subcellular signaling to pacemaker frequency to tissue 

level responses. We predict conditions under which autonomic imbalance induces proarrhythmia 

and can be modified to prevent or inhibit arrhythmia. In summary, the multiscale model constitutes 

a predictive digital twin framework to test and guide high-throughput prediction of novel 

neuromodulatory therapy.
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Graphical Abstract

We present a new multiscale model of autonomic control of cardiac electrophysiology that 

integrates data from the atomistic, subcellular, cellular and systems scale and predicts the effect 

of efferent stimulation of the sympathetic and parasympathetic branches of the autonomic nervous 

system on the cardiac sinoatrial node and ventricular myocardium.

Keywords

sympathetic nervous system; parasympathetic; autonomic nervous system; cardiac 
electrophysiology; computationial model; arrhythmia; Digital twins

Introduction

“Every affection of the mind that is attended with either pain or pleasure, hope or 

fear, is the cause of an agitation whose influence extends to the heart.”

William Harvey (1628)

Modulation of peripheral nerve activity holds great promise for treating, preventing, and 

reversing a host of cardiovascular diseases, including heart failure, hypertension, and heart 

rhythm disorders (Randall & Ardell, 1985; Zuanetti et al., 1987; Grassi et al., 1998; Grassi, 

2007; Grassi et al., 2007; Grassi et al., 2008a; Grassi et al., 2008b; Lahiri et al., 2008; 

Lopshire et al., 2009; Fukuda et al., 2015). Even though the promise of this approach is 

well accepted, successful design and implementation of neuromodulatory therapy is limited 

by the utter paucity of tools that can predict cardiac and vascular responses to peripheral 

nerve activity. To develop such tools, a comprehensive collaborative effort to map and model 

complex spatio-temporal subcellular, cellular, and tissue-level responses was needed. Here, 

we present the first neurocardiac simulator resulting from a collaborative team as part of 

the NIH Common Fund program “Stimulating Peripheral Activity to Relieve Conditions 

(SPARC)”.

This computational model we present was built using multiscale data to both inform and 

validate the model parameters and outputs both within subcellular, cellular and tissue scales 
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as well as across them. To our knowledge, this constitutes the first instance of a digital 

twin for neurocardiac modulation. The tool can be used to reveal how the autonomic 

nervous system regulates cardiac function and to predict neuromodulation to prevent or 

reduce disease. The simulator integrates data from the atomistic (e.g., β-adrenergic receptor 

– norepinephrine interaction affinities and rates), subcellular (e.g., cAMP dynamics), cellular 

(e.g., action potential and calcium transient), tissue (e.g., conduction velocity) and system 

(e.g., pseudo-ECG) scales. The model predicts the effect of efferent stimulation of the 

sympathetic and parasympathetic branches of the autonomic nervous system (ANS) on the 

cardiac sinoatrial node (SAN) and ventricular myocardium and accounts for the coupling 

between them.

Development and application of computational modeling and simulation in the investigation 

of plausible fundamental cardiac mechanisms and to predict cardiac physiology and 

pathophysiology has grown dramatically over the last two decades. Indeed, multiple 

modeling studies have begun to address varying aspects of autonomic cardiac control. As 

experimental and clinical approaches have become increasingly sophisticated, new data has 

revealed multiple physiological processes and mechanisms from the protein to the patient. 

Computational modeling and simulation have kept pace with these developments and a 

number of important models are now available in the literature and in the public domain.

Computational and mathematical models have also been used to demonstrate functional 

mechanisms of heart rate variability (Prokhorov et al., 2021) (Karavaev et al., 2019) 

(von Rosenberg et al., 2019), applied to reveal the dynamics of autonomic control 

during orthostatic adaptation (Ishbulatov et al., 2020) and shown to capture heart rate 

control by sympathetic and parasympathetic discharge (Prokhorov et al., 2021) (Warner & 

Cox, 1962) (Kember et al., 2011) (Kember et al., 2011; Kember et al., 2017). Detailed 

subcellular models have been utilized to predict the mechanisms of postsynaptic receptor 

activation following nerve stimulation and to propose likely mechanisms for feedback and 

feed forward regulation of cardiac electrophysiology and contraction in the SAN and in 

contractile cells respectively (Castellanos & Godinez, 2015) (Yang & Saucerman, 2012) 

(Behar et al., 2016) (O’Hara & Rudy, 2012) (Iancu et al., 2007; Iancu et al., 2008).

There have also been numerous atomistic modeling and simulation studies of β-adrenergic 

receptors (βARs) that link the autonomic nervous system to downstream cellular signaling 

events and function recently reviewed (e.g., (Ribeiro & Filizola, 2019) (Wang & Miao, 

2019; Hilger, 2021)). These studies were enabled in large part by advances in atomic-

resolution structural characterization of adrenergic receptors and their complexes with 

small-molecule ligands as well as regulatory proteins via X-ray crystallography, cryogenic 

electron microscopy, NMR spectroscopy and other experimental techniques (Kobilka, 2011; 

Katritch et al., 2013; Thal et al., 2018; Shimada et al., 2021). Exploring atomistic-resolution 

receptor and ligand conformational dynamics was found to be crucial to provide an 

accurate description of βAR signaling pathways (Hilger, 2021) but accurately determining 

ensuing energetic and kinetic quantities was proven to be challenging and requires usage of 

simplified models, extremely long simulations and/or advanced simulation techniques. This 

is however essential for elucidation of atomistic simulation derived parameters for functional 
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kinetic modeling of subcellular signaling such as those from Iancu-Harvey (Iancu et al., 
2007), Soltis-Saucerman (Soltis & Saucerman, 2010) models as used in our study.

The frequency of activation of pacemaking cells in the SAN, the conduction velocity 

of action potentials, as well as the strength of EC coupling is tightly regulated by the 

autonomic nervous system. However, despite the importance of the fundamental connection 

between the brain and heart, there is still an incomplete understanding of how the autonomic 

nervous system regulates cardiac function in health and disease (Young et al., 1993; Armour, 

2004; Verrier & Antzelevitch, 2004; Olshansky, 2005; Patterson et al., 2007; Tan et al., 
2008; Zhou et al., 2008a; Zhou et al., 2008b). Description and prediction of the mechanisms 

underlying the interaction between nervous system discharge and the resultant emergent 

cardiac events in a digital twin are needed to allow for identification and specific targeting 

to prevent and treat arrhythmia provoking conditions by drugs and by direct electrical 

stimulation (Meng et al., 2017; Hanna et al., 2021).

Methods

Autonomic nervous system (ANS) Network Structure

The structure of the ANS network model is based on the connectivity among various 

intrathoracic neurons and central neurons that are involved in cardiac regulation as described 

by Shivkumar et al (Fukuda et al., 2015; Shivkumar et al., 2016) and the corresponding 

computational models of Kember et al. (Kember et al., 2011; Kember et al., 2017) 

(see Figure 1). The neural circuit consists of the sympathetic pathway (SNS) and the 

parasympathetic pathway (PNS). The SNS is comprised of three layers (subnetworks): the 

central nervous system (CNS), the intrathoracic nervous system (ITNS) and the intrinsic 

cardiac nervous system (ICNS). Efferent pathways connect the CNS to the ITNS, and the 

ITNS to a subpopulation of neurons in the ICNS (i.e., the S-ICNS). Afferent pathways 

connect the S-ICNS with the ITNS. The PNS comprises two layers (subnetworks): the CNS 

and a subpopulation of neurons in the intrinsic cardiac nervous system (i.e., the P-ICNS), 

with efferent connections from the CNS to the P-ICNS. The S-ICNS and the P-ICNS are 

also interconnected. Note that there is no clear delineation between a sympathetic ICNS 

and a parasympathetic ICNS, and the S-ICNS and the P-ICNS in the model are extensively 

connected, effectively forming a single sub-network.

ITNS & ICNS Neuronal Dynamics

The ITNS and ICNS sub-networks each contain 50 model neurons. Individual neurons in 

the ITNS and ICNS are described by a single-compartment conductance-based generalized 

integrate-and-fire (GIF) model (Jolivet et al., 2004). The subthreshold dynamics of the 

neurons include a leakage current, a delayed-rectifier potassium current, an M-current 

(Kwag et al., 2014), and a synaptic current. The equations governing the sub-threshold 

dynamics of the j-th neuron are

Cm
dvj

dt = − gL vj − EL − gKnj
2 vj − EK − gMwj vj − EM − Isyn, j (1)
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τx
dxj

dt = x∞ vj − xj (2)

where t is time (in ms), vj is the transmembrane potential (in mV); xj = nj, wj are 

the activation variables of the delayed rectifier potassium current and the M-current, 

respectively; Isyn, j is the input synaptic current into the j-th neuron; Cm is the membrane 

capacitance, and gL, gK, gM are the maximal conductances of the leakage, delayed-rectifier 

potassium, and M-currents, respectively; EL, EK, EM are the reversal potentials of the leakage 

and delayed-rectifier potassium and M-currents; τk = τn, τw are the time-constants for the 

activation variables, and the function x∞ v  is the subthreshold steady-state activation of the 

activation variable xj, given by the equation

w∞ = 1/ 1 + exp − v + 45
2.4 andn∞ = 0 .

When the transmembrane potential of a model neuron reaches a threshold potential (vT), the 

neuron fires an action potential and the transmembrane potential is “reset”. Note that, in 

the GIF model, action potentials are not explicitly modeled. Each action potential can be 

thought of as an instantaneous spike in membrane potential followed by a brief absolute 

refractory period (tref). Following the absolute refractory period, the transmembrane potential 

is set to a reset potential (vreset), and the sub-threshold dynamics (described above) are 

resumed. To capture the effect of the action potential on the gating variables, n  and w are 

updated to include the increase that would occur during a stereotypical spike. Specifically, 

when vj t = vT, the membrane potential and gating variables are updated to

vj t + tref = vreset,

nj t + tref = nj t + Δn

wj t + tref = wj t + Δw .

To model the saturation of the gating variables (i.e., n and w must be between 0 and 1), the 

update values for the gating variables, Δn and Δw, are scaled by 1 − xj t ,

Δx = 1 − xj t Δx, x = n, w,

whereΔx = 1 − exp − tref
τx

GIF model parameters where set to elicit similar firing properties of autonomic neurons 

(Springer et al., 2015) (see Figure 2) and are provided in Table I. Except for the M-current 
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conductance gM and synaptic conductances, parameters for the neurons were homogeneous; 

gM was chosen from a beta distribution with minimum and maximum values taken to 

approximate values from previous models (Kwag et al., 2014). Synaptic dynamics are 

described below.

CNS Neuronal Dynamics

The sympathetic and parasympathetic CNS sub-networks contain 50 model neurons 

each. Spike times for the individual neurons in the CNS subnetworks are modeled as 

renewal processes. That is, the firing times of the j-th neuron in the sympathetic and the 

parasympathetic branches of the CNS are given by Poisson processes with firing rates λSNS

and λPNS,  and a post-spike absolute refractory period of tref (Gerstner & Kistler, 2002). 

In simulations when the SNS is activated, λSNS = 0.5Hz, and when the PNS is activated, 

λPNS = 0.25Hz; otherwise they are 0.

Synaptic Dynamics

The synaptic dynamics throughout the neural circuit are modeled as alpha function synapses 

(Gerstner & Kistler, 2002; Lewis & Rinzel, 2003). It is assumed that, each time a 

presynaptic neuron fires, there is a stereotypical increase and decrease in the synaptic 

conductance of the post-synaptic neuron of the form

g−syn s t = g−syn
τr + τd

e−t/τd − e−t/τr ,

where g−syn sets the maximal conductance, τr is the rise time constant, and τd is the decay time 

constant. When the presynaptic neuron fires multiple times the stereotypical increases and 

deceases in the post-synaptic conductance adds linearly. Note that s t  is the solution to the 

linear differential equation

d2s
dt2

+ τr + τd
ds
dt + τrτd s = 0 , ds

dt 0 = 1 .

(i.e., the damped harmonic oscillator). Therefore, because the synaptic responses are 

assumed to add linearly, when the j-th neuron fires at times tspike, k, its synaptic output g−syn sj is 

given by

d2sj

dt2
+ τr + τd

dsj
dt + τrτdsj = 0

with update conditions

dsj
dt tspike

+ = dsj
dt tspike

− + 1 .
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Values of the synaptic time constants (τrτd) were set to values estimated in (Selyanko et al., 

1979; Wheeler et al., 2004).

Network Connectivity

Within the ITNS and ICNS sub-networks of the SNS and within the ICNS sub-networks 

of the PNS, random recurrent connections from a presynaptic neuron j to a postsynaptic 

neuron k occur with probability pITNS and pICNS. Neurons are excitatory with probability p
and inhibitory with probability 1 − p. The probability of connection between the S-ICNS and 

P-ICNS neurons is pSP. In the PNS, efferent connections from CNS neurons to ICNS neurons 

occur randomly with probability of connection pPNS. In the SNS, afferent connections from 

the ICNS to the ITNS occur with probability pSNS, aff. In the SNS, neurons in the ITNS 

receive efferent input from CNS neurons with probability pITNS, eff , and ICNS neurons receive 

efferent input from ITNS neurons with probability pICNS, eff . Each neuron in the ITNS that 

receives efferent input receives it from n+1 random pre-synaptic neurons in each preceding 

layer (with n = 3), where the n connections are weak, and the 1 connection is strong. 

This n+1 convergent innervation has been observed in both amphibian sympathetic ganglia 

(Wheeler et al., 2004) and mammalian sympathetic ganglia (Skok & Ivanov, 1983; Hirst & 

McLachlan, 1986; Janig & McLachlan, 1992). The random connectivity in the neural circuit 

inherently generates populations of afferent, efferent, and local circuit neurons (Fukuda et 
al., 2015; Shivkumar et al., 2016).

To model afferent feedback from the cardiovascular system, each neuron in the ICNS and 

ITNS receive independent periodically-modulated stochastic input. The input is described 

by a non-stationary Poisson process with arrival function μ t  that determines the firing 

times of the pre-synaptic neurons, synapsing onto the ITCNS and ICNS neurons. μ t  is a 

piecewise-linear function with a period of 1000 ms that mimics the shape of the arterial 

pressure during the cardiac cycle

μ t =

A 0.02 t , 0 ≤ t < 50
A − 0.002 t + 1 , 50 ≤ t < 250

A − 0.0024 t + 0.6 , 250 ≤ t < 500
0 500 ≤ t < 1000

,

with time t in ms. The amplitude A of the input to ICNS neurons and ITNS neurons is 0.003 

Hz and 0.002 Hz, respectively, so that the subnetworks that are anatomically closer to the 

heart receive stronger cardiac input (Kember et al., 2011). Note that feedback is applied only 

in simulations described in Figure 3.

The synaptic output of the cells is included in the synaptic current of each individual neuron, 

described by

Isyn, j = ∑
k = 1

N
wk, j

k gsyn, f k , f j sk vj − Esyn, f k + ∑
k = 1

N
wk, j

C sk vj − Esyn, C
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where wk, j
k  and wk, j

C  are synaptic weights, and Esyn, f k  and Esyn, C are the reversal potentials for 

the synaptic currents between neurons and the network input, respectively. The function f(k) 
outputs e or i, depending on whether the k-th cell is excitatory or inhibitory. The synaptic 

weights were drawn randomly from a distribution tuned using the model neurons without 

an M-current, so the fraction of phasic neurons in the neuronal network approximates those 

in the experimental data in (Beaumont et al., 2013). These synaptic weights were also used 

to implement the n+1 convergent efferent innervation protocol in the SNS. The reversal 

potentials Esyn, e and Esyn, i were chosen to approximate the values represented by nicotinic 

receptor and GABA receptor activation, respectively.

Functional models of cardiac cells and tissues

Sinoatrial node (SAN) cell model representations: The layered network model of 

the autonomic nervous system generates both sympathetic and parasympathetic nerve 

stimulation (SNS and PNS) outputs, which are used as scaling factor inputs for beta-

adrenergic stimulation and muscarinic stimulation, respectively in the Behar-Yaniv rabbit 

SAN model (Behar et al., 2016) to produce spontaneous action potentials that control rates 

of cardiac pacemaking.

Ventricular cell model representations: We then merged the Iancu-Harvey model of cyclic 

adenosine monophosphate (cAMP) compartmentation (Iancu et al., 2007; Iancu et al., 2008) 

to Soltis-Saucerman ventricular cell electrophysiology model (Soltis & Saucerman, 2010) 

that includes all the relevant components required for a detailed analysis, including accurate 

cellular electrophysiology, Ca2+ handling (Shannon et al., 2004), and the cAMP-dependent 

protein kinase (PKA) (Saucerman et al., 2003) and Ca2+/calmodulin-dependent protein 

kinase (CaMKII) phosphorylation pathways (Soltis & Saucerman, 2010). Pacing frequency 

was set to the heart rate generated by the Behar-Yaniv SAN model.

One-dimensional Cable

One-dimensional (1D) tissue was simulated as a fiber of 165 cells (1.65cm) (Glukhov et 
al., 2010) with reflective boundary conditions. Transmural heterogeneity was incorporated 

into the tissue by a linear decrease to maximal IKr conductance (Myles et al., 2010), 

corresponding to a linear transition from epicardial to endocardial tissue (Fedida & Giles, 

1991). The diffusion coefficient Dx was set to 0.002 cm2/ms to establish a conduction 

velocity of 61–73 cm/s (epicardium-endocardium in wild-type (WT) conditions) (Brugada et 
al., 1990).

Norepinephrine (NE) binding affinity to the β-AR

Structural modeling of type 2 β-adrenergic receptor ( β2AR) was performed with ROSETTA 

software (Yarov-Yarovoy et al., 2006; Bender et al., 2016) using its active-state crystal 

structure in complex with the stimulatory G protein (PDB ID: 3SN6) as a template. 

Intracellular loop 3 (ICL3) region missing in the template structure was replaced by a 

3-residue linker predicted using Rosetta cyclic coordinate descent (CCD) loop modeling 

application (Wang et al., 2007). 10,000 decoy structures were generated with top one 

selected by total score for further simulations. ROSETTALIGAND (Meiler & Baker, 2006; 

Davis & Baker, 2009) was used for β2AR – cationic (+) and neutral (0) norepinephrine 
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(NE) docking calculations. 50,000 structures were generated with top 10% selected by 

total score, out of which one with the lowest interfacial score (interaction energy) was 

chosen. CHARMM-GUI (Jo et al., 2008) was used to prepare β2AR / NE complexes 

embedded in the palmitoyl-oleoyl-phosphatidylcholine (POPC) lipid bilayer solvated by 

a 150 mM NaCl aqueous solution. We used CHARMM36m (Huang et al., 2017) protein 

and C36 lipid (Klauda et al., 2010) force fields, TIP3P water model (Jorgensen et 
al., 1983) and NE(+) and NE(0) parameters based on CHARMM general force field 

(CGENFF) (Vanommeslaeghe et al., 2010). The latter were developed using CGNEFF 

program (Vanommeslaeghe & MacKerell, 2012; Vanommeslaeghe et al., 2012) for initial 

parameter estimates, which were then optimized through their subsequent fitting to quantum 

mechanical (QM) reference data using an established protocol (Vanommeslaeghe et al., 
2010). All-atom molecular dynamics (MD) simulations were run with NAMD (Phillips et 
al., 2005) in the NPT ensemble at 310 K and 1 atm pressure. Initial equilibration MD 

simulations were run for ~52 ns with the first ~2 ns using gradually reduced harmonic 

restraints on the protein and lipid tail carbon atoms followed by unrestrained 50-ns long 

MD simulation runs. They were used to start 200 ns long well-tempered metadynamics 

(Barducci et al., 2008) MD simulations to estimate ligand binding affinities. Distance 

between centers of mass (COM) of protein α-helical core and NE(+) was used as reaction 

coordinate R extending to 50 Å in bulk, whereas angle θ between vectors connecting 

these points and ligand orthosteric binding site was used to restrain sampling within 

θ≤30° cone as was done in (Provasi et al., 2009; Schneider et al., 2015). Affinities in 

the form of dissociation constants, Kd, were computed as was done previously (Provasi 

et al., 2009; Schneider et al., 2015) using equation Kd
−1 = ΩRbulk

2 NA ∫sitedRe− W R
kT , where 

Ω is the solid angle defined by the conical restraint, Rbulk = 50 Å, NA is the Avogadro 

number, W(R) is free energy profile, k is the Boltzmann constant, and T is absolute 

temperature. NE Kd value at pH=7.4 was computed from corresponding estimates for 

NE(+) and NE(0) using Henderson-Hasselbach equation as was done previously (Yang 

et al., 2020). NE(+) dissociation or “off” rate rfLR was estimated using Kramer’s rate 

formalism using equation, rfLR = D Rbarrier
2πkT −W ″ Rbarrier W ″ Rwell

1/2e−ΔW activation/kT  (Dorairaj 

& Allen, 2007). Free energy profile from metadynamics MD simulation of the β2AR – 

NE(+) system was used to estimate activation free energy barrier height (ΔWactivation) and 

corresponding curvatures at free energy maxima(W″(Rbarrier)) and minima (W″(Rwell)). 
Diffusion coefficient at the free energy maximum, D(Rbarrier), was estimated using position 

autocorrelation function from last 20 ns of separate 30 ns long MD simulations with 

harmonic restraints on the NE(+) position as was done previously (Vorobyov et al., 2014). 

z component of a distance between COM of protein α-helical core and NE(+) was used as 

reaction coordinate for diffusion coefficient calculations. NE(+) association or “on” rate was 

then computed as rfLR / Kd.

In our one-dimensional tissue model, the β-AR binding to ligand equation (2) (Yang & 

Saucerman, 2012) was used in the Iancu-Harvey model of cAMP compartmentation (Iancu 

et al., 2007; Iancu et al., 2008). The simulated kinetics kfLRand krLR were obtained from 

molecular dynamics (MD) simulations as described above.
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dLR
dt = kfLR × Stimulus × bAR − krLR × LR + krLRG × LRG − kfLRG × LR

× Gs
(3)

dLRG
dt = kfLRG × LR × Gs − krLRG × LRG − kact2Gs × LRG (4)

dRG
dt = kfRG × bAR × Gs − krRG × Gs − kact1Gs × RG (5)

Current density changes in diseased heart

To simulate diseased heart, we modified the current density changes based on heart failure 

conditions shown in Table III, below. In addition, CaMKII expression is increased in failing 

human myocardium (Hoch et al., 1999). We simulated CaMKII overexpression (CaMKII-

OE) as in Soltis-Saucerman (Soltis & Saucerman, 2010):

In all simulations, we used a second-order Runga-Kutta method with a time-step of 1/128 

ms (~7.5 μ sec) and included a linear interpolation scheme to compute the spike times 

between the time steps in the generalized integrate-and-fire (GIF) model (Shelly and Tao, 

2001). The interpolation scheme ensures that the method is truly second order, despite the 

discontinuities due to the fire-and-reset conditions in the GIF formulation.

Code for simulations and analysis was written in C++ and MATLAB 2018a. Code was run 

on an Apple Mac Pro machine with 2 2.7 GHz 12-Core Intel Xeon processors, and an HP 

ProLiant DL585 G7 server with a 2.7 GHz 28-core AMD Opteron processor. Code was 

compiled with the Intel ICC compiler, version 18.0.3. Numerical results were visualized 

using MATLAB R2018a by The Math Works, Inc. The models used in this paper are 

available on SPACR Portal (https://sparc.science/datasets/322?type=simulation).

Results

In this study, we endeavored to develop a neurocardiac simulator suite containing modeling 

tools that will allow for prediction of a range of autonomic effects on cardiovascular 

function. The model framework is shown schematically in Figure 1 as a modular workflow 

comprising a network layer representation of the sympathetic branch (blue) and the 

parasympathetic branch (green) of the autonomic nervous system (ANS) that both synapse 

onto the cardiac sinoatrial node (SAN) as well as on cardiac ventricular myocardium (purple 

box). The model allows for the prediction of efferent sympathetic and parasympathetic 

signaling and model representations of target-organ responses.

We first set out to develop computational models of single neuron action potentials 

from the three-layer representation of the autonomic nervous system. In Figure 2A, the 

firing dynamics from experimental recordings of neuronal action potentials measured 

from the superior cervical ganglion of adult male rats are shown (Springer et al., 2015). 

An increasing amplitude of current injection applied for 1 s is shown from the top 
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to the bottom panels. Neurons displayed three distinct notable types of firing: tonic, 

accommodating, and phasic. Tonic neurons fired repetitively at frequencies related to 

strength of stimulus. Accommodating neurons adapted and demonstrated reduced firing 

at lower stimulus amplitudes. Phasic neurons fired one to four spikes and then ceased 

firing. In panel B, a computational model demonstrating comparable firing patterns to 

experimental measurements. The integrate- and-fire model representation incorporated a 

range of M-current conductances (gM) in discrete cells (see Table I), which allowed for 

reproduction of the full range of experimentally observed action potential firing dynamics.

The distribution of neuronal firing resulting from simulation in the ANS layered network 

model is shown in Figure 3. In panel A, the blue rectangles represent the sympathetic 

branch (SNS) of the autonomic nervous system with central nervous system input (CNS), 

the intrathoracic network layer (ITNS), and the intracardiac nervous system layer (ICNS). 

The parasympathetic branch (PNS) is shown in green with a CNS input layer connected 

to the ICNS layer, representing the direct vagal connection. Each layer contains a random 

network of model generated integrate-and-fire neurons with delayed rectifier potassium, 

leakage, M-type potassium, and synaptic currents. Synaptic currents constitute and generate 

the intra- and inter-network connections. Inter-network connections are represented by 

arrows. Within each box, the predicted distribution of firing types from the model network is 

shown and was noted after the system reaches steady-state firing, averaged over seven 60-s 

simulations. The distribution of neuronal firing types is classified empirically by comparing 

firing probability over time relative to the cardiac phase relations (onset of left ventricular 

pressure) as shown in panel B. Model generated neuronal firing patterns that did not clearly 

fit into one classification were labelled as “other”. Panel B shows examples of neural firing 

relative to the phase of the cardiac cycle in ICNS neurons recorded from canines (Beaumont 

et al., 2013). Temporal correlation to left ventricular pressure was used to classify firing 

types as follower, phasic, or tonic.

We next set out to model and simulate the impact of sympathetic and parasympathetic 

stimulation on heart rate shown in Figure 4 left panels. We employed the Behar-Yaniv 

model of the rabbit SAN as the model incorporates both adrenergic and muscarinic receptor 

pathways and subcellular signaling events associated with activation of the pathways (Behar 

et al., 2016). In Figure 4, panel A, the simulated effect of application of SNS stimulation 

(time course shown middle panel in blue) resulted in an expected increase in heart rate (pink 

trace in middle panel) over 60 seconds of stimulation. The predicted increase in heart rate 

shows good agreement when compared to experimental data (black symbols) from (Wang et 
al., 2019) (n = 4).

The bar graph in the right panel shows simulated peak heart rate during SNS stimulation 

agrees with experimental data from Ng et. al., 2001 (Ng et al., 2001). In panel B middle, 

the application of PNS stimulation (green) resulted in prediction of a rapid reduction in 

heart rate (pink trace) during 60 s stimulation. The simulated minimum heart rate during 

PNS stimulation was comparable to experimental data from Ng et. al., 2001 (right panel). 

In panel C, the application of SNS stimulation followed by PNS stimulation for 60 s in 

the computational model resulted in a rapid reduction in heart rate upon PNS stimulation, 

indicating the dominance of the parasympathetic branch to control heart rate. Notably, 
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cessation of PNS stimulation results in immediate heart rate increase from continued 

stimulation of the sympathetic branch of the ANS. The firing dynamics of SAN action 

potentials following removal of PNS stimulation are shown in the right panel.

In Figure 5 we show the computational model representation and predicted effects of 

sympathetic and parasympathetic nerve stimulation (SNS and PNS) on ventricular action 

potential duration (APD80) and Ca2+ transient (CaT) in the Soltis-Saucerman rabbit model 

under conditions of constant pacing. To study the impact of the ANS inputs only on the 

ventricular myocytes (without a change in the pacing frequency), we set pacing cycle length 

to 320 ms for all simulations. In panel A, the effect of SNS stimulation at a pacing cycle 

length of 320 ms shows a predicted reduction in the APD80 due to K channel modification 

(Chen et al., 2014; Wang et al., 2019) and marked increase in CaT over the duration of 

the stimulation with increased maximum and minimum calcium transient amplitude (green 

lines in right panels) during the whole stimulation range. The CaT increase is due to 

β-adrenergic stimulation enhanced intracellular Ca2+ uptake and release. Our simulations 

show a reduction in the APD80 and CaT when the SNS stimulation ends and then a return 

to close to baseline. In panel B, the contrasting effect of PNS stimulation at a pacing 

cycle length of 320 ms is shown. The model predicts that both APD80 (middle panel) and 

maximum and minimum calcium transient amplitude (green lines in right panels) with PNS 

stimulation alone was unchanged compared to baseline. Finally, in panel C, we show the 

predicted effect of constant SNS stimulation, and then application and withdrawal of PNS 

stimulation after 20 s (during concomitant SNS application). The predicted APD80 and CaT 

were more complex in this situation, with an initial decrease in both following application of 

SNS stimulation, and then an increase due to transient application of PNS stimulation.

Following the development of the models of sympathetic and parasympathetic branches 

and the effects of stimulating these branches on both the rabbit SAN alone and the rabbit 

ventricular model alone, we next set out to combine these models and allow the Behar-Yaniv 

SAN model to couple to and drive pacing in the Iancu-Soltis-Saucerman ventricular model 

that is also subject to additional cell-based effects of ANS stimulation (Figure 6). In Panel 

A, the first combined model representing the impact of SNS stimulation on the SAN and 

the resulting SAN pacing frequency used to drive ventricular pacing is shown. The time 

course of the effects of SNS stimulation is shown in the blue trace in the middle panels. 

The simulated effect of dynamic SAN pacing combined with direct effects of simulated 

60 s SNS stimulation on the ventricular APD80 and CaT are shown in the red traces. 

Experimental data from the Ripplinger Lab (Wang et al., 2019) is also shown in black 

symbols and demonstrates good agreement with the predicted outputs from the coupled 

model. The maximum and minimum amplitude (green lines) of calcium transients during the 

whole stimulation range are shown in the right panels.

In Figure 6 panel B, a simulated 60 s stimulation of the parasympathetic branch of the ANS 

and its impact on both the SAN pacing frequency and the pacing induced changes combined 

with direct PNS effects on ventricular APD80 and CaT is shown in red. The simulations 

demonstrate a small increase in APD80 but also a notable effect on CaT (in contrast to PNS 

effect on a constantly paced ventricular tissue shown in Figure 5, panel B) and discussed 

above. This suggests that slower pacing from the PNS effect on the SAN leads to a notable 
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increase in ventricular action potential duration and an effect on calcium transient amplitude. 

Again, the maximum and minimum amplitude (green lines) of calcium transients during the 

whole stimulation range are shown in the right panels. In contrast to SNS induced increase 

in the Ca2+ transient, PNS stimulation causes an abrupt decrease in Ca2+ transient amplitude 

due to ICaL reduction. Our simulations also show that PNS stimulation results in reduction 

in IKs and IKr due to inhibition of phosphorylation and slower pacing frequency (reverse rate 

dependence) as shown in Panel D.

Finally, in Figure 6 panel C, SNS stimulation is applied to the SAN resulting in a change in 

heart rate that drives the pacing frequency in the ventricular cells. During SNS stimulation, 

a transient PNS stimulus (60 s) is applied as shown in green. The added effect of PNS 

activation is to slow SAN pacing frequency and consequently the frequency of pacing of 

the ventricular cells. The pacing effect is combined with and interacts with subcellular 

signaling events that occur as a result of postsynaptic receptor activation in the ventricular 

cells. Shown in the middle are predictions where SNS stimulation was applied through 

the whole simulation, and PNS stimulation was transiently applied between 20 s and 80 

s. Model predictions indicate that APD80 was decreased following SNS stimulation, and 

then partially recovered with PNS stimulation. Maximum and minimum amplitude (green 

lines) of calcium transients during the whole stimulation range are shown in the right panel. 

During the SNS stimulation phase that induces a faster pacing rate, a shorter APD ensues 

as well as marked functional upregulation of the L-type Ca2+ channel from phosphorylation 

which leads to enhance Ca2+ transient amplitude and increase SR Ca2+-ATPase (SERCA) 

activity. On the other hand, PNS stimulation was shown to slow rate, increase APD and 

block the phosphorylation mediated changes intracellular calcium. However, the interplay 

between the complex signaling events and rate dependence will need further exploration in 

future studies to identify the parameter spaces that define “imbalance” that may be favorable 

for arrhythmia formation.

In Figure 7, we demonstrate a multiscale model utilizing the “atom to the rhythm” approach 

in our recent study shown schematically in the top left (Yang et al., 2020). In this case, 

molecular dynamics simulations were undertaken using an atomistic structural model of the 

beta-adrenergic receptor (βAR) in order to predict quantitative estimates of norepinephrine 

(NE) binding affinity and association/dissociation (“on”/“off”) rates to the βAR (panel A 

– left). These molecular dynamics simulation derived rates provided us with a reasonable 

estimate of the time course of beta-adrenergic receptor – norepinephrine binding, with 

~97% saturation in a 100 ms range for a nearly saturating ligand concentration of 10 μM. 

Interestingly, using recently published experimental “on” and “off” rates for norepinephrine 

– beta-adrenergic receptor interactions resulted (Xu et al., 2021) in substantially slower 

kinetics and only ~17% receptor saturation at 10 μM ligand concentration in ~1 s and nearly 

complete receptor saturation only on a ~ 1 hour time scale. We did not see appreciable 

receptor binding for lower norepinephrine concentrations on a second-long simulation time 

using that model. On the contrary, using our molecular dynamics simulation derived model 

we observed gradual decrease of receptor saturation with a longer time course for lower 

concentrations as expected.
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The molecular dynamics simulation derived rates were then used to populate the function 

scale model of NE – βAR interaction in the combined Iancu-Soltis-Saucerman ventricular 

cardiomyocyte model. This new function scale model was then used to make predictions of 

electrical activity in a one-dimensional cardiac ventricular tissue (1.65 cm in length) in the 

absence of autonomic input (baseline, middle panel in A) as shown in the computed pseudo-

electrocardiograms (pseudo-ECGs) from the tissue in panel A (right). Pacing frequency was 

set to heart rate generated by Behar-Yaniv SAN model. We then applied a different protocol 

in B, showing the effect of SNS stimulation (blue) on the computed pseudo-ECG followed 

by addition of PNS stimulation (green), which was applied in the model simulation between 

20 and 80 seconds (SNS was applied for the whole simulated time course of 100 seconds). 

Again, the changes in pacing frequency are driven by the autonomically mediated changes 

in the SAN model. The red line indicates the increased amplitude of the T wave during PNS 

stimulation. Computed electrograms at different time points are shown at the bottom with 

the peak of the T wave indicated by the red dots. These simulations indicated that T wave 

amplitude increases during PNS and returns after withdrawal.

In Figure 8, we predict the effect of cessation of SAN input to the ventricular model in 

the merged multiscale Iancu-Soltis-Saucerman model. Pacing frequency was set to the heart 

rate generated by SAN model until 415 seconds and then stopped to simulate a sinus pause. 

In the absence of SNS application and cessation of beating at 415 seconds, the simulated 

non-diseased (A) and diseased hearts (B) are predicted to have expected normal behavior 

with no additional electrical or Ca2+ activity following decoupling of the SAN from the 

ventricular model representation (top row). However, in response to a sympathetic surge as 

shown in panel (C), even a non-diseased heart generates a single spontaneous AP (red peak 

in middle) is triggered by a delayed afterdepolarization, following SNS surge and cessation 

of beating at 415 seconds. In panel (D) simulations in a diseased heart (simulated heart 

failure) with the same protocol as in panel A predict the emergence of multiple triggered 

afterdepolarizations.

In Figure 9, we predict the effects of adding parasympathetic nervous system stimulation to 

the proarrhythmic effects of sympathetic surge shown under the same conditions as in Figure 

8. In the setting of overly active sympathetic stimulation in non-diseased heart (blue bar in 

top of panel A) via the activation of βAR, we applied PNS stimulation (green bar in top of 

panel A). The dynamics of the single-cell AP and CaT is shown. In (A) PNS stimulation 

was applied and eliminates the triggered beat in a non-diseased heart that was predicted in 

Figure 8. In panel (B) a simulation in a diseased heart (simulated heart failure) with the same 

protocol as in panel A resulted in suppression of triggered activity at 422 s compared to 

continues firing in Figure 8 with no PNS stimulation.

Finally, In Figure 10, we employed the atom to tissue model and tested the case in 1D tissue 

that included the predicted rates of NE interaction with βAR from our atomistic structural 

model and simulated the effect of the PNS stimulation on spontaneous beat triggering 

events. The simulations suggest the triggered activity was initiated and maintained for a 

much longer period of time in the diseased heart – for about 20 seconds (panel B - top) 

compared to the observation of a single spontaneous beat in the healthy heart (panel A – 

top). When PNS stimulation was applied back in the model after termination of pacing, the 
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triggered activity in the diseased heart was discontinued within 5 seconds as shown in panel 

D (bottom) and was not initiated in the healthy heart condition (panel C – bottom).

Discussion

The ultimate purpose of our study is to serve as a digital twin for modeling, simulation 

and prediction of neuromodulation to treat, reverse and prevent heart disease. As autonomic 

modulation is increasingly shown to be a powerful tool for cardiac arrhythmia prevention 

and therapy, new tools to allow finer grained prediction of appropriate interventions are 

needed and the tool we present represents a critical step in computational modeling and 

simulation (Kember et al., 2017; Hanna et al., 2018; Liu et al., 2018; Dusi et al., 2021; 

Dacey et al., 2022; Hadaya et al., 2022; Zhu et al., 2022).

In this study, we set out to advance prediction of the effects of stimulation of the autonomic 

nervous system on cardiac electrophysiology. To do so, we developed a multiscale digital 

twin model to capture subcellular, cellular and system scale features of autonomic control of 

the heart. Some key features of the new modeling and simulation approach include a multi-

layered structure of the autonomic nervous system that represents both the sympathetic and 

parasympathetic branches as shown in Figures 1 and 3. The layers include sparse random 

intralayer connectivity, synaptic dynamics and conductance based integrate-and-fire cellular 

dynamics in close agreement with experiment (Springer et al., 2015) as shown in Figure 2.

Another key feature of the neurocardiac computational model is the modeled connection 

between the autonomic nervous system and both the cardiac pacemaker and contractile cells 

as shown in Figures 4–6. The result is a dynamic model where modification to pacemaker 

frequency drives initiation of electrical signals in the contractile cells. Receptor mediated 

signaling on both pacemaker and contractile cells leads to a cascade of subcellular cardiac 

signaling processes occurring on multiple time scales that result in predicted functional 

changes to cardiac electrophysiology in both nodal and contractile cells representations.

We show the predicted effect of application of SNS stimulation resulted in an expected 

increase in heart rate (pink trace in middle panel) over 60 seconds of stimulation in Figure 4. 

The predicted increase in heart rate shows good agreement when compared to experimental 

data (black symbols) from (Wang et al., 2019) (n = 4), but the experimental data shows 

a decrease in the action potential duration following the peak. There are several possible 

mechanisms of the HR reduction following the peak increase in the experiment including 

β1-AR desensitization, depletion of nerve terminals due to persistent high frequency 

stimulation and/or washout of neurotransmitters and precursors during the experiment. We 

have recently developed and published a reduced yet detailed computational model of the 

β1-adrenergic signaling cascade to a system of two differential equations by eliminating 

extraneous variables and applying quasi-steady state approximation (Meyer et al., 2021). 

The structure of the reduced model reveals that the large cAMP transients associated with 

abrupt β1-AR activation are generated by the interplay of production/degradation of cAMP 

and desensitization/resensitization of β1-ARs. The explicit modeling of desensitization of 

β1-ARs by PKA is a likely contributing mechanism of the reduction in rate observed in the 
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experimental data. This model is available as a component that can be used in the simulator, 

but we have not included it in this study.

We demonstrated that we can construct a multimodal model that includes a layered 

autonomic neural representation connected to nodal and contractile cells with cell signaling 

dynamics (Figures 4–6). However, a major challenge of extending the model to other 

receptor mediated signaling events is experimental determination of needed parameters for 

the model. To begin to overcome this challenge, we set out to determine if we could utilize 

atomistic-scale approaches to generate some known model parameters that have already 

been constrained experimentally to allow model validation. A successful example is shown 

in Figure 7, where we present an extension of the multiscale model from the atom to the 

rhythm. Such models were previously used in our studies to predict emergent pro-arrhythmia 

proclivities of small-molecule drugs, blocking cardiac potassium channel encoded by human 

Ether-à-go-go-Related Gene (hERG) (Yang et al., 2020; DeMarco et al., 2021). There 

we used all-atom molecular dynamics simulations to predict association and dissociation 

(“on” and “off”) rates of hERG blocking drugs to the open channel pore. They were 

computed based on free energy and diffusion coefficient profiles from umbrella sampling 

molecular dynamics simulations. Those rates were used as parameters of functional kinetic 

models of state-dependent hERG channel – drug interactions, which were used to reproduce 

experimental dose response curves and incorporated into cardiac cell and tissue models to 

predict emergent pro-arrhythmia outcomes (Yang et al., 2020; DeMarco et al., 2021).

In the model pipeline shown in Figure 7, we utilized atomistic scale molecular 

dynamics simulations to predict the association and dissociation (“on” and “off”) rates 

of norepinephrine interactions with the beta-adrenergic receptor. Since ligand binding to 

the adrenergic receptor and other G protein coupled receptors (GPCR) does not follow 

a linear path (Provasi et al., 2009; Schneider et al., 2015) as a drug binding to the 

hERG channel pore (Yang et al., 2020; DeMarco et al., 2021), we used a different 

enhanced sampling molecular dynamics simulation approach, well-tempered metadynamics 

and estimate dissociation rate using Kramer rate theory formalism based on computed 

free energy profile and diffusion coefficient at the free energy barrier computed from 

a separate restrained molecular dynamics simulation. Calculation of diffusion coefficient 

profiles across an entire reaction coordinate as was done in previous studies (Zhu & 

Hummer, 2010; Berezhkovskii et al., 2011; Zhu & Hummer, 2012; Setny et al., 2013; 

Vorobyov et al., 2014; DeMarco et al., 2018; Yang et al., 2020; DeMarco et al., 2021) 

can help refine computed ligand – receptor “on” and “off” rates and will be explored in 

our subsequent studies along with other rate computation methods (Pang & Zhou, 2017; 

Meral et al., 2018; Palacio-Rodriguez et al., 2022; Wang et al., 2023). This methodological 

shortcoming may contribute to a substantial difference between our MD estimated and 

substantially slower experimental “on” and “off” rates from a recent study (Xu et al., 2021). 

Achieving agreement between computed and experimental protein-ligand rates has proven to 

be a challenging task with results varying by several orders of magnitudes and discrepancies 

attributed to issues with enhanced sampling methodologies, choice of reaction coordinate(s), 

force field accuracy, presence of hidden barriers and other MD simulation related factors 

(Wang et al., 2023) as well as those influencing accuracy of experimental rate measurements 

using e.g., competitive binding assay (Georgi et al., 2019; Sykes et al., 2019; Hoare, 2021).
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Despite these challenges, the molecular dynamics simulation derived rates predicted nearly 

identical time course of cAMP production compared to the original Soltis-Saucerman 

and Iancu-Harvey subcellular signaling cardiac myocyte models, where in the latter quasi-

steady-state approximation (instantaneous binding of norepinephrine to the receptor) was 

assumed. This indicates that beta-adrenergic receptor – norepinephrine interaction is not a 

rate-limiting step for cAMP production in our molecular dynamics informed model. This 

is also in agreement with our recent model sensitivity study (Meyer et al., 2021), which 

indicated that production/degradation of cAMP and desensitization/resensitization of βARs 

are rate-limiting steps for adrenergic stimulation.

Thus, utilizing these predicted rates resulted in what appears to be an effective approach to 

constrain model parameters through simulation. Indeed, our predicted parameters yielded 

nearly identical outputs in the multi-scale model compared to those constrained by 

experimental data alone as shown in Figures 4–6. This gives us some confidence that 

the approach can be extended to consider multiple conformational states and other types 

of G protein coupled receptors in future studies and to potentially pursue quantitative 

investigations into adrenergic receptor binding of different ligands. For example, future 

studies might allow for comparison between biased agonism versus biased antagonism using 

a molecular dynamics informed approach similar to the one we use here.

In healthy individuals, the autonomic nervous system plays a critical role in regulating 

cardiac function, with the parasympathetic nervous system (PNS) primarily responsible 

for controlling heart rate and the sympathetic nervous system (SNS) regulating both 

heart rate and contractility. However, chronic cardiac injury can lead to an exaggerated 

sympathetic response. In Figures 8–10, we explored the potential for activation of the 

parasympathetic nervous system to suppress arrhythmia triggers induced by an overactive 

sympathetic nervous system. The simulation is derived from earlier studies suggesting that 

high sympathetic tone can be combined with muscarinic activation to reduce triggered 

activity in cardiac tissue (Harvey & Belevych, 2003; Silvani et al., 2016; Meijborg et al., 
2020; Mehra et al., 2022). The emergence of arrhythmogenic triggered beats observed in 

the presence of maximal SNS stimulation was more prominent in a diseased heart model 

mimicking heart failure condition as shown in panel B of Figure 8. Although we are not 

able to confirm maximal physiological range of diastolic Ca2+, it is generally accepted 

that maximal adrenergic stimulation is likely to be a key mechanism contributing to Ca2+ 

overload conditions as our study suggests. Notably, we also observed a protective role of 

reapplied parasympathetic stimulation, which substantially reduces triggered beat activity in 

the diseased heart and eliminates it altogether in the healthy heart as shown in Figures 9 and 

10.

Such simulations may be useful to extend and improve understanding underlying molecular 

mechanisms of vagal nerve stimulation therapies, which are emerging techniques for non-

invasive and non-pharmacological arrhythmia treatments (De Ferrari & Schwartz, 2011; 

Zhang & Mazgalev, 2011; Hanna et al., 2018; Liu et al., 2020). The model parameters 

can be tuned to be applied in real cases in the absence of drug therapy, or more likely, in 

combination with therapeutic pharmacology. However, it is important to note that chronic 

cardiac injury can lead to alterations in autonomic regulation of the heart, including a loss 
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of central vagal drive, which may also require consideration (Francis Stuart et al., 2018). 

Overall, incorporating the effects of chronic cardiac injury on the autonomic nervous system 

can be challenging and requires careful consideration of the underlying mechanisms and 

their potential interactions with experimental conditions.

The present results suggest that antagonism of SNS responses occurring at the myocyte 

level is one factor that may contribute to the potential for PNS stimulation to attenuate 

arrhythmogenic responses. However, the interactions between the PNS and SNS are more 

complex than the steady-state responses reflected in the simulations presented here. For 

example, dynamic changes in SNS and PNS tone that occur in disease states such as 

sleep apnea and epilepsy can produce complex temporal responses that may contribute 

the generation of triggered activity (May et al., 2017; Chadda et al., 2018; Geovanini & 

Lorenzi-Filho, 2018; Costagliola et al., 2021; Soh et al., 2022). Furthermore, the current 

models do not account for the changes in presynaptic or postsynaptic signaling mechanisms 

that are known to occur with myocardial infarction and heart failure. One fundamental 

experimental and simulation study from Iancu and Harvey demonstrated complex functional 

responses to activation of the autonomic nervous system arising from the interplay of 

signaling cascades resulting from stimulation of β1-adrenergic receptors (βAR) and M2 

muscarinic receptors (M2R) and resulting compartmentalized cAMP signaling in adult 

cardiac myocytes (Iancu et al., 2007; Iancu et al., 2008). While it is well known that the 

M2R plays an important role in parasympathetic regulation of cardiac myocyte function by 

modulating cAMP production (Harvey & Belevych, 2003) through Gi-dependent inhibition 

of adenylyl cyclase (AC) activity, Harvey’s group showed the effect muscarinic stimulation 

has on ventricular myocytes is more complex because M2R stimulation can also activate a 

stimulatory pathway through stimulation of AC4/7 (Sunahara et al., 1996) (Tang & Gilman, 

1992) (Taussig & Gilman, 1995). Modeling and simulation showed that representing 

cAMP production in different microdomains with different kinetics can account for the 

experimental observations. We have included these domains in the model presented here to 

show how complex subcellular signaling manifests during autonomic imbalance.

Furthermore, we still need to learn how to fine-tune vagal nerve stimulation to provide 

safe and efficacious patient-specific treatment of cardiac arrhythmias resulting from the 

autonomic imbalance associated with various disease states. This would require an accurate 

prediction of time-dependent and autonomic nerve stimulus specific responses on heart rate 

and stroke volume, for which our developed neurocardiac simulator may provide a first 

framework that can be easily extended and improved to include a variety of new details 

relevant to new questions (Mehra et al., 2022; Sridharan et al., 2022).

A very important element that will be included in the future state is the the remodeling 

of the ANS that occurs during a variety of disease states. While we did not address all 

of these issues in the coarse-grained approach we took to “disease” in this first study, we 

do recognize its importance as a current limitation and also an important future direction. 

One important point to emphasize is that the digital twin can be utilized by anyone in the 

public domain and so critical questions such as how does disease induced remodeling of the 

nerves modify the predicted effect of neuromodulation? Incoroporating new experimental 

work by Habecker and others on nerve remodeling will allow the neurocardiac digital 
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twin to predict expected responses to autonomic inputs during disease states based on 

relevant data (Clyburn et al., 2022a; Clyburn et al., 2022b; Mehra et al., 2022; Sepe et al., 
2022). It is important to note that the exact mechanisms underlying some disease induced 

nerve remodeling and other changes are not fully understood but can be continuously 

incorporated as new data become available. A full range of parameter regimes can be 

explored through the digital twin, including the potential effects of changing discharge 

frequencies, neurotransmitter concentrations and neuropeptide release patterns that are 

altered during various disease progressions.

In terms of models of cardiac function, there are several approaches that can be taken 

to incorporate these changes. One approach is to use experimental data to parameterize 

models that account for altered autonomic input. For example, models can be adjusted to 

simulate the effects of reduced PNS input on heart rate and contractility, or increased SNS 

input on contractility. Another approach is to use computational models that incorporate 

physiological data to simulate the effects of chronic cardiac injury on autonomic regulation. 

For example, these models can take into account changes in baroreflex sensitivity, which 

can lead to an exaggerated sympathetic response to changes in blood pressure. It’s important 

to note that the specific approach taken to incorporate changes in autonomic regulation 

into models of cardiac function will depend on the research question being addressed and 

the available data. Overall, however, understanding the effects of chronic cardiac injury 

on autonomic regulation of the heart is an important area of research, as it has important 

implications for the development of new therapies for cardiovascular disease. Indeed, these 

studies comprise the future applications of the digital twin for neurocardiac modulation, 

which can be modified to include specific elements of an individual or group disease state.

In summary, the developed neurocardiac simulator allows us to directly predict the response 

of ANS stimulation on heart rhythm through coupled SAN and ventricular cardiac tissue 

effects in both healthy and disease conditions such as heart failure. It can be used 

to predict, prevent, and reverse resultant cardiac arrhythmia through precisely targeted 

parasympathetic and/or sympathetic nervous system stimulations, which is a major goal 

of our collaborative mutli-scale project supported by NIH Common Fund SPARC initiative. 

In the future, translation of experimental data on ANS stimulation in animal models to 

human cardiac electrophysiology (Morotti et al.) can be applied to supplement more scarce 

human experimental data. Moreover, the digital twin can be made personalized through use 

of patient-specific induced pluriopotent stem cell derived cardiomyocytes (iPSC-CMs) and 

translation of their immature phenotype to mature cardiac myocyte electrophysiology and 

calcium dynamics as we showed recently (Aghasafari et al., 2021).
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Key points summary

• A multi-layered model representation of the autonomic nervous system that 

includes sympathetic and parasympathetic branches, each with sparse random 

intralayer connectivity, synaptic dynamics and conductance based integrate-

and-fire neurons generates firing patterns in close agreement with experiment.

• A key feature of the neurocardiac computational model is the connection 

between the autonomic nervous system and both pacemaker and contractile 

cells, where modification to pacemaker frequency drives initiation of 

electrical signals in the contractile cells.

• We utilized atomistic scale molecular dynamics simulations to predict the 

association and dissociation rates of norepinephrine with the β-adrenergic 

receptor.

• Multiscale predictions demonstrate how autonomic imbalance may increase 

proclivity to arrhythmias or be used to terminate arrhythmias.

• The model serves as a first step towards a digital twin for predicting 

neuromodulation to prevent or reduce disease.
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Figure 1: 
Schematic representation of the connection of sympathetic and parasympathetic nervous 

system branches to sinoatrial nodal cell representations and ventricular myocyte 

computational cells. The modular workflow consists of a network layer representation for 

the sympathetic branch (blue) and the parasympathetic branch (green) of the autonomic 

nervous system (ANS) that both synapse onto the cardiac sinoatrial node (SAN) as well as 

on cardiac ventricular myocardium (purple box). The model allows for prediction of efferent 

sympathetic and parasympathetic signaling and target-organ responses. The model drives 

spontaneous pacemaker action potentials modulated by the ANS that determine the cardiac 

ventricular pacing frequency (indicated by the yellow arrow).
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Figure 2: 
Model generation of three distinct types of neuronal firing dynamics. Shown are examples 

of A) experimentally recorded current-voltage relationships of neurons in the superior 

cervical ganglion of adult male rats (Springer et al., 2015) and B) model predicted neuronal 

firing recorded by using a 1s stimulus with differing stimulus current input amplitude. 

(A) Experimental recordings indicate that neurons generate at least three types of firing 

patterns: tonic, accommodating, and phasic. Tonic neurons fired repetitively at frequencies 

proportional to strength of stimulus. Accommodating neurons adapted and ceased firing at 

lower stimulus levels. Phasic neurons fired one to four spikes and ceased firing. (B) Model 

neurons displayed tonic, accommodating, and phasic firing dynamics. Variations in maximal 

M-current conductance (gM) elicited a change in firing dynamics observed in experiments 

and indicate a plausible mechanism to explain the firing dynamics in panel A.
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Figure 3: 
Predicted distribution of firing types in the ANS Layered Network Model. (A) Schematic 

of the autonomic nervous system layered network model. Each rectangle (CNS, ITNS, 

ICNS) represents a random network of model generated integrate-and-fire neurons with 

delayed rectifier potassium, leak, M-type potassium, and synaptic currents. Synaptic currents 

generate the intra- and inter-network connections. Inter-network connections are represented 

by arrows. Temporal correlation to left ventricular pressure is used to classify firing types as 

follower, phasic, or tonic. Distribution of firing types within each network were predicted at 

steady-state, averaged over seven 60-s simulations. Model generated neuronal firing patters 

that did not clearly fit into one classification were labeled as “other”. (B) Examples of neural 

firing relative to cardiac phase in ICNS neurons measured in canine (Beaumont et al., 2013). 

Probability density of ICNS neuronal firing (i.e., ICNS firing histograms) as a function of 
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the timing within the left ventricular pressure (LVP) cycle (represented as a phase between 0 

and 2π). The LVP is indicated by the gray curve.
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Figure 4: 
Effects of sympathetic and parasympathetic stimulation on heart rate in the rabbit sinoatrial 

node (SAN) computational model from Behar et al. (Behar et al., 2016). (A) SNS 

stimulation (top panel) increased heart rate over 60 seconds of stimulation. Shown in middle 

panel, change in time of simulated heart rates shows agreement with experimental data 

from (Wang et al., 2019) (n = 4). Right panel shows simulated peak heart rate during SNS 

stimulation agrees with experimental data from Ng et. al., 2001. (B) PNS stimulation (top 

panel) was applied for 60 seconds, and heart rate was predicted to decrease to ~140 bpm. 

Simulated minimum heart rate during PNS stimulation comparable to experimental data 

from (Ng et al., 2001) (right panel). (C) Simulation shows effect on heart rate when SNS 

stimulation was applied continuously and PNS stimulation was applied transiently for 60 
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s (top panel in C). Heart rate was reduced to ~200 bpm during PNS and then recovered 

following removal of PNS. AP firing dynamics during removal of PNS are shown in the 

right panel.
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Figure 5: 
Simulated effects of sympathetic and parasympathetic stimulation on action potential 

duration (APD80) and Ca2+ transient (CaT) in the rabbit ventricular computational myocyte 

model during periodic constant pacing. Maximum and minimum amplitude (green lines in 

right panels) of calcium transients during the whole stimulation range are shown for each 

case. (A) SNS stimulation was applied at cycle length of 320 ms, and APD80 was decreased. 

(B) PNS stimulation was applied at cycle length of 320 ms. APD80 was unchanged from 

baseline. (C) Simulated SNS stimulation was applied throughout the simulation, while PNS 

stimulation was transiently applied after 20s. The model was paced at cycle length of 

320ms. APD80 first decreased due to application of SNS stimulation and then increased after 

addition of PNS stimulation.
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Figure 6: 
Simulated effects of sympathetic and parasympathetic stimulation on the full coupled 

cardiac system that includes the autonomic nervous system and sinoatrial node (SAN) cell 

model coupled to the rabbit ventricular cell model. Pacing frequency was determined by 

the rate generated by the SAN model. (A) In response to simulated SNS stimulation in the 

coupled model, predicted effects (red line) on ventricular APD80 agrees with experimental 

data from Wang et. al., 2019 (black open circle symbols) (n = 4). (B) Simulated PNS 

stimulation for 60s resulted in a model prediction showing APD80 slightly increased 

compared to baseline. (C) Shown are predictions where SNS stimulation was applied 

through the whole simulation, and PNS stimulation was transiently applied between 20 s 

and 80 s. Model predictions indicate that APD80 was decreased following SNS, and then 
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partially recovered with PNS stimulation. (D) ICaL, IKs and IKr currents during the whole 

stimulation range for panel C. Maximum and minimum amplitude (green lines) of calcium 

transients during the whole stimulation range are shown in the right panels for each case.
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Figure 7: 
Prediction from atom to the rhythm: A multiscale model to predict effects of sympathetic 

nerve stimulation (SNS) on sinoatrial node (SAN) cells and the coupled rabbit ventricular 

cell model. (A) All-atom enhanced sampling molecular dynamics (MD) simulations were 

used to study cationic norepinephrine (NE) binding (NE progression shown by red to blue 

thin molecules and their position over time as the molecule moves from binding site) to βAR 

(green ribbons) to compute the free energy profile as shown on the left of panel A. Predicted 

affinities and rates of βAR-NE interaction obtained from atomistic MD) simulations were 

used as parameters in the cell signaling cascade in the SAN and ventricular computational 

model. Comparison of kinetics from MD (kon = 6.7 μM−1s−1 and koff = 2.7 s−1) and 

experimental data (kon = 0.0034 μM−1s−1 and koff = 0.0012 s−1, (Xu et al., 2021) for bound 

βAR and cAMP concentration in cells are shown on right panel. (B) Pacing frequency 
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was set to the rate generated by Behar-Yaniv SAN model. One-dimensional tissue (1.65 

cm) simulations in baseline (no SNS or PNS stimulation) for 334 beats. A pseudo-ECG 

generated from the tissue simulation are shown in the left panel. The right panel shows 

predictions where SNS stimulation was applied through the whole simulation (100 seconds) 

along with transient simulated PNS stimulation between 20 s and 80 s. T-wave peaks are 

indicated by red dots. Three model generated electrograms from 20 s, 60 s and 90 s are 

shown in the bottom panel.
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Figure 8: 
The electrical effects of simulation of transient exposure to a surge of SNS activity in both 

healthy (non-diseased) and diseased heart tissue models. The prediction shown was made in 

the ventricular cell model containing the combined Iancu-Soltis-Saucerman model. Pacing 

frequency was set to heart rate generated by Behar-Yaniv sinoatrial node (SAN) model. The 

dynamics of the action potential (Vm) are shown in the top panels, and calcium transient 

(Cai) profiles are shown in the bottom panels. Simulation showing electrical activity in 

non-diseased (A) and diseased ventricular cells (B) with no SNS stimulation and cessation 

of beating at 415 seconds. (C) A single spontaneous AP (red peak in middle) is triggered 

by delayed afterdepolarizations in a non-diseased heart, following SNS surge and cessation 

of beating at 415 seconds. (D) Simulations in a diseased heart (simulated heart failure) with 

the same protocol as in panel A result in prediction of emergence of multiple triggered 

afterdepolarizations.
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Figure 9: 
Stimulation of the parasympathetic nervous system stimulation blocks the proarrhythmic 

effects of sympathetic surge (shown in Figure 8). Shown in a simulation of SNS surge in 

healthy versus diseased ventricular myocytes in response to SNS surge, but now with the 

addition of PNS stimulation at = 415 s. (A) PNS stimulation was predicted by the model to 

eliminate the triggered beat in a non-diseased heart. (B) Simulation of the PNS in a diseased 

heart (simulated heart failure) with the same protocol as in panel A resulted in suppression 

of triggered activity at 422 s.
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Figure 10: 
Effects of transient exposure to PNS and SNS surge in simulated healthy (non-diseased) and 

diseased (simulated heart failure) one-dimensional cardiac tissues using a multiscale model 

that includes autonomic nerve stimulation on rabbit sinoatrial node (SAN) and ventricular 

cell models. Pacing frequency was set to heart rate generated by Behar-Yaniv SAN model, 

and we used predicted rates of βAR – NE interactions obtained from atomic simulations in 

the functional scale models. One-dimensional tissue (1.65 cm) with SNS was simulated for 

1529 beats. For each set of panels, pseudo-ECGs is on top, voltage timecourse and calcium 

transient between t = 415 s and 420 s are on middle and bottom in blue. (A) Top: In the 

setting of overly active SNS in a healthy heart model, we ceased application of pacing 

stimuli at 415 seconds (the 1529th beat). We observed a spontaneous beat (red) that was 
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triggered after cessation of pacing at t = 415 s (top panel). (B) Following the same protocol 

as in panel A, for diseased heart model, the extensive triggered activity was initiated. (C) 

With addition of PNS stimulation applied in the non-diseased model after t = 415 s, the 

triggered beat was suppressed (lower panel in A). (D) With addition of PNS stimulation 

(bottom panel in B), the triggered activity (red) terminated around 418 seconds in diseased 

model. Gray arrows indicate triggered action potentials, and Ca2+ transients on space-time 

representations of one-dimensional tissues.
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Table I:

ANS model parameter values

Cm 0.77μF/cm2

gL 0.1nS/cm2

gK 100nS/cm2

gM, min 10nS/cm2

gM, max 4nS/cm2

gsyn,EE 1nS/cm2

gsyn,EI 5nS/cm2

gsyn,IE 100nS/cm2

gsyn,II 1nS/cm2

EL −70mV
EK −90mV

Esyn, e 0mV
Esyn, i −90mV
Esyn, C 0mV

τn 75ms
τw 165ms
τr 2ms
τd 4ms

vreset −68mV
vT −52mV

pITNS log 50 /49

pICNS log 50 /49

pPNS 1

pSNS,aff log 50 /98
pSP 1/101

pITNS,eff 1
pICNS,eff ½

p ½
tref 1ms
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Table II:

Transition rates for β-AR receptor

Rates Description Value Reference

kf LR β-AR binding to ligand 6.7 (μM−1s−1) MD simulations*

kr LR β-AR binding to ligand 2.7 (s−1) MD simulations*

kf LRG Ligand bound β-AR with G-protein 1000 (μM−1s−1) (Yang & Saucerman, 2012)

kr LRG Ligand bound β-AR with G-protein 62 (s−1) (Yang & Saucerman, 2012)

kf RG Unbound β-AR with G-protein 1000 (μM−1s−1) (Iancu et al., 2008)

kr RG Unbound β-AR with G-protein 8800 (s−1) (Iancu et al., 2008)

k act1Gs Activation rate for RGs 0.1 (s−1) (Iancu et al., 2008)

k act2Gs Activation rate for LRGs 5 (s−1) (Iancu et al., 2008)

*
Our MD rate estimates have a precision of one order of magnitude based on computed error estimates from 3 separate free energy profiles.
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Table III:

Current density changes induced in heart failure

Ionic current Percentage Change Species References

INaL 10x increase (0.1% → 1%) Human (Maltsev & Undrovinas, 2006)

Ito,fast 36% decrease Human (Nabauer et al., 1996)

IK1 25% decrease Human (Beuckelmann et al., 1993; Koumi et al., 1995)

SR Ca2+-ATPase (SERCA) 36% decrease Human (Hasenfuss et al., 1994)

kleak (SR leak) 3.5-fold increase Rabbit (Shannon et al., 2005)

INa, leak 8-fold increase Rabbit (Wagner et al., 2011)

INaK (Na+/K+-ATPase) 10% decrease Human (Shamraj et al., 1993; Bundgaard & Kjeldsen, 1996; Bossuyt et al., 
2005)
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