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ABSTRACT OF THE DISSERTATION

A Characterization of Bounded Convex Domains in Cn with Non-Compact
Automorphism Group

by

Gabrielle Tsai

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, March 2024

Dr. Bun Wong, Chairperson

In the field of several complex variables, the Greene-Krantz Conjecture has been

of interest for decades.

Conjecture 0.0.1 (Greene-Krantz Conjecture) Let � be a smoothly bounded domain

in Cn. Suppose there exists {„j} µ Aut(�) such that {„j(p)} accumulates at a boundary

point q œ ˆ� for some p œ �. Then ˆ� is of finite type at q.

Proof of the conjecture would allow us to start classifying bounded domains in Cn.

We already have classification for bounded domains in one dimension.

The Riemann Mapping Theorem states that there are only two simply connected

domains. Specifically, every proper, simply connected open subset in C that is not all of C

is biholomorphic to the disc. While it would be nice to generalize this to higher dimensions,

in C2, the ball and bidisc are not biholomorphic to each other. To be one step closer in

classifying all bounded domains in Cn, we will add some restrictions, like studying bounded

domains with non-compact automorphism group.
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In this paper, we will do that and prove a special case of the Greene-Krantz

Conjecture in C2, which can be extended to the case where we have a domain with smooth

boundary in Cn.

Theorem 0.0.2 Let � be a bounded convex domain in C2 with C2 boundary. Suppose

there is a sequence {„j} µ Aut(�) such that {„j(p)} accumulates at a boundary point for

some p œ �. If q œ ˆ� is an orbit accumulation point, then q is of finite type.
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Chapter 1:

Introduction

1.1 Motivation

Conjecture 1.1.1 (Greene-Krantz Conjecture). Let � be a smoothly bounded domain

in Cn. Suppose there exists {„j} µ Aut(�) such that {„j(p)} accumulates at a boundary

point q œ ˆ� for some p œ �. Then ˆ� is of finite type at q.

The following result, a special case of the Greene-Krantz Conjecture, was proved by Kaylee

Hamann and Bun Wong.

Theorem 1.1.2 (Hamann, Wong [8]) Let � be a bounded, convex domain in C2 with C2

boundary. Suppose that there is a sequence {„k} µ Aut(�) such that {„j(p)} accumulates

at a boundary point for some p œ �. If q œ ˆ� is an orbit accumulation point, then ˆ�

contains no non-trivial analytic variety at q.

Although finite type implies that the boundary does not contain a non-trivial analytic disc,

the converse does not hold in general. The following theorem which Dylan Noack proved
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shows that with the addition of non-tangential convergence of the sequence that accumulates

at a boundary point, the boundary point is of finite type.

Theorem 1.1.3 (Noack [16]) Let � be a bounded, convex domain with smooth boundary

in Cn. Suppose there exists p œ � and {„j} µ Aut(�) such that {„j(p)} accumulates and

approaches non-tangentially to a boundary point q. Then q is of finite type.

The goal of this paper is to drop the non-tangential convergence condition from Theorem

1.1.3 to give the following result.

Theorem 1.1.4 Let � be a bounded, convex domain in C2 with C2 boundary. Suppose

there is a sequence {„j} µ Aut(�) such that {„j(p)} accumulates at a boundary point for

some p œ �. If q œ ˆ� is an orbit accumulation point, then q is of finite type.

In this paper, we give a proof of Theorem 1.1.4, in which the bigger picture of the proof

will be similar to that of Theorem 1.1.2 and 1.1.3.

2



Chapter 2:

Background

2.1 Holomorphic Functions

This chapter will present key definitions, examples, and results that will build the foundation

of the main result.

Definition 2.1.1 Let � ™ Cn be an open, connected set. A function f : � æ C is

holomorphic if for each j = 1, ..., n and each fixed z1, ..., zj≠1, zj+1, ..., zn, the function

’ ‘æ f(z1, ..., zj≠1, ’, zj+1, ..., zn)

is holomorphic in the classic one-variable sense on the set

{’ œ C : (z1, ..., zj≠1, ’, zj+1, ..., zn) œ �}

Another way to interpret the definiton of holomorphic functions in several variables is that

it must be holomorphic in each variable separately. Those familiar with single-variable com-
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plex analysis may be familiar with the following theorem which gives equivalent definitions

of a holomorphic function.

Theorem 2.1.2 Let Dn(z0, r) = {(z1, ..., zn) œ Cn : |zj ≠ z0| < r, 1 Æ j Æ n}, � ™ Cn be

an open, connected set and f : � æ C be continuous in each variable separately. Then the

following are equivalent.

1) f is holomorphic

2) f satsifies the Cauchy-Riemann equations in each variable separately

3) For each z0 œ � there exists an r = r(z0) > 0 such that Dn(z0, r) ™ � and f can be

written as an absolutely and uniformly convergent power series

f(z) =
ÿ

–

a–(z ≠ z0)– for all z œ Dn(z0, r)

4) For each w œ � there exists r = r(w) > 0 such that Dn(w, r) µ � and

f(z) = 1
(2fii)n

⁄

|›n≠wn|=r
...

⁄

|›1≠w1|=r

f(›1, ..., ›n)
(›1 ≠ z1)...(›n ≠ zn)d›1...d›n for all z œ Dn(w, r)

For the proof of Theorem 2.1.2, we refer the reader to [11].

Definition 2.1.3 Let �, �Õ ™ Cn be open, connected sets and f : � æ �Õ a holomorphic

function. If f is a bijection then we refer to f as a biholomorphism. We refer to � and �Õ

being biholomorphic. If � = �Õ, we refer to f as an automorphism.
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Definition 2.1.4 � ™ Cn is a domain of holomorphy if there do not exist non-empty

open sets U1, U2 with U2 connected, U2 ( �, U1 ™ U2 fl � such that for every holomorphic

function f on �, there is a holomorphic function g on U2 such that f = g on U1.

To put the definition using other terms, a domain of holomorphy is a domain that cannot

be extended to some larger domain under every holomorphism. This allows us to study

maximal domains for some holomorphic function, which make them more interesting as

they cannot be extended. The definition for domain of holomorphy is not usually brought

up in a single variable complex context because in one variable every domain is a domain

of holomorphy. One well-known example that a domain � can be extended to some larger

domain under every holomorphic function f : � æ C is the following example of Hartogs.

Example 2.1.5 Consider the domain

� = {(z1, z2) œ C2 : |z1| < 3, |z2| < 3} ≠ {(z1, z2) œ C2 : |z1| Æ 1, |z2| Æ 1}

We will show that every holomorphic function f : � æ C extends to the domain

{(z1, z2) œ C2 : |z1| < 3, |z2| < 3}

For z1 fixed, |z1| < 3 we write

fz1(z2) = f(z1, z2) =
Œÿ

j=≠Œ
aj(z1)zj

2
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where the co�cients of the Laurent expansion are given by

aj(z1) = 1
2fii

⁄

|›|=2

f(z1, ›)
›j+1 d›.

Specifically, aj(z1) depends holomorphically on z1 by Morera’s theorem. But aj(z1) = 0 for

j < 0 and 1 < |z1| < 3. Thus by analytic continuation, aj is identially zero for j < 0. But

then the series expansion becomes
Œÿ

j=0
aj(z1)zj

2

and this series defines a holomorphic function f̂ on {(z1, z2) œ C2 : |z1| < 3, |z2| < 3} such

that f̂ |� = f . Because f was was arbitrary, all holomorphic functions on � can be continued

to a larger domain, and thus � is not a domain of holomorphy.

In several complex variables, not every domain is a domain of holomorphy.

2.2 Convexity and Pseudoconvexity

In this section we give the definitions and some important properties of convex and pseu-

doconvex domains.

Definition 2.2.1 A bounded domain � µ Cn is convex if � contains the entire line

segment joining any pair of its points.
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Holomorphic mappings do not preserve convexity. One example is the unit disc � µ C,

which is convex, but the image under the mapping f(z) = (4 + z)4 is not convex. Thus we

will need some less rigid geometric condition to characterize bounded domains, preferably

one where convexity is biholomorphically invariant.

Definition 2.2.2 Let � ™ Rn be an open set with Ck boundary. A function fl : Rn æ R

is said to be a defining function for � if fl is Ck and

1) fl(x) < 0 for all x œ �

2) fl(x) > 0 for all x /œ � and

3) Òfl(x) ”= 0 for all x œ ˆ�.

Definition 2.2.3 Let � µ Rn have C1 defining function fl. Let p œ ˆ�. We consider the

vector w = (w1, ..., wn) to be tangent to ˆ� at p if

nÿ

j=1

ˆfl

ˆxj

----
p

wj = 0

In this case we write w œ Tpˆ�.

Definition 2.2.4 Let � µ Rn have C2 defining function fl. Let p œ ˆ�. We say that ˆ�

is convex at p if
nÿ

j,k=1

ˆ2p

ˆxjˆxk

----
p

wjwk Ø 0

7



for all w = (w1, ..., wn) œ Tpˆ�. If the inequality is strict we refer to p as a point of strong

convexity.

The following are a few convex domains and their defining functions.

1) The unit disk in C is given by � = {z œ C : |z| ≠ 1 < 0}.

2) The half plane in C given by H = {z œ C : Imz > 0}.

3) The unit polydisk in Cn given by �n = {(z1, ..., zn) œ Cn : |zj | < 1 for all j œ Z}.

4) The ball in Cn centered at z0 of radius r given by Br(z0) = {(z1, ..., zn) œ Cn :

qn
j=1 |zj |2 ≠ 1 < 0}.

Definition 2.2.5 Let � µ Cn be a bounded domain with a C2 boundary (i.e. the defining

function fl for the boundary is C2). Then ˆ� is pseudoconvex at q if

nÿ

j,k=1

ˆ2fl

ˆzjˆz̄k
(q)wjw̄k Ø 0 for all w œ T 1,0

q (ˆ�), where

T 1,0
q (ˆ�) :=

;
w œ Cn :

nÿ

j=1

ˆfl

ˆzj
(q)wj = 0

<

If we have a strict inequality, then q is a point of strong pseudoconvexity. T 1,0
q is the complex

tangent space to the boundary ˆ� at q. Note that
qn

j,k=1
ˆ2fl

ˆzjˆz̄k
can be referenced as the

complex Hessian, or Levi form. If every point in the boundary is strongly pseudoconvex,

then the domain itself is strongly pseudoconvex.
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The following are a few important properties of pseudoconvex domains:

1) Pseudoconvexity is independent of the choice of defining function.

Proof: Let fl and fl̃ be two defining functions of ˆ� in a neighborhood U of q, for

q œ ˆ�. Then there exists a C1 function h defined in U such that fl̃ = hfl, where

h(z) > 0 for all z œ U . Hence,

ˆ2fl̃

ˆzjˆz̄k
(q) = ˆ2(flh)

ˆzjˆz̄k
(q)

= ˆ

ˆzj

3
ˆ(flh)
ˆz̄k

(q)
4

= ˆ

ˆzj

3
ˆfl

ˆz̄k
(q) · h(q) + fl(q) · ˆh

ˆz̄k

4

= ˆ2fl

ˆzjˆz̄k
(q) · h(q) + ˆfl

ˆz̄k
(q) · ˆh

ˆzj
(q) + ˆfl

ˆzj
(q) · ˆflh

ˆz̄k
(q) + fl(q) · ˆ2h

ˆzjˆz̄k
(q)

= ˆ2fl

ˆzjˆz̄k
(q) · h(q) + ˆfl

ˆz̄k
(q) · ˆh

ˆzj
(q) + ˆfl

ˆzj
(q) · ˆh

ˆz̄k
(q)

where the last equality follows from fl(q) = 0. Therefore

nÿ

j,k=1

ˆ2fl̃

ˆzjˆz̄k
(q)wjw̄k = h(q)

nÿ

j,k=1

ˆ2fl

ˆzjˆz̄k
(q)wjw̄k

+
nÿ

j,k=1

3
ˆfl

ˆz̄k
(q) · ˆh

ˆzj
(q) + ˆfl

ˆzj
(q) · ˆh

ˆz̄k
(q)

4
wjw̄k

= h(q)
nÿ

j,k=1

ˆ2fl

ˆzjˆz̄k
(q)wjw̄k

+ 2Re
nÿ

j,k=1

3
ˆfl

ˆzj
(q) · ˆh

ˆz̄k
(q)wjw̄k

4

= h(q)
nÿ

j,k=1

ˆ2fl

ˆzjˆz̄k
(q)wjw̄k if w œ Tq(ˆ�).

9



Therefore, since h(q) > 0, q œ ˆ� is a pseudoconvex point with respect to fl if and

only if it is a pseudoconvex point with respect to fl̃. Therefore the pseudoconvexity

of a boundary point is not dependent on the choice of defining function.

2) Pseudoconvexity is preserved under biholomorphic mappings.

Proof: Let � : � æ Cn be biholomorphic onto its image, and let �Õ denote the

image �(�). Further, assume that � is biholomorphic in a neighborhood of q œ ˆ�.

Then �(z) = �(z1, ..., zn) = (�(z1), ..., �(zn)) = (zÕ
1, ..., zÕ

n). Let fl : U æ R be a

local defining function for ˆ�, for U an open set. Then fl̃ := fl ¶ �≠1 is a local

defining function for ˆ�Õ. Choose q œ ˆ� and w œ Tq(ˆ�). Then �(q) œ ˆ�Õ and

wÕ œ T�(q)(ˆ�Õ), where

wÕ =

Q

ccccccca

w
Õ
1

...

w
Õ
n

R

dddddddb

=

Q

ccccccca

ˆ�1
ˆz1

(q) . . . ˆ�1
ˆzn

(q)
... . . . ...

ˆ�n
ˆz1

(q) . . . ˆ�n
ˆzn

(q)

R

dddddddb

Q

ccccccca

w1

...

wn

R

dddddddb

=

Q

ccccccca

q ˆ�1
ˆzj

(q)wj

...

q ˆ�n
ˆzj

(q)wj

R

dddddddb

Now, since fl̃ := fl ¶ �≠1, one can see that fl = fl̃ ¶ �, implying that

ˆ2fl

ˆzjˆz̄k
(q) = ˆ2(fl̃ ¶ �)

ˆzjˆz̄k
(q)

= ˆ

ˆzj

3
ˆ(fl̃ ¶ �)

ˆz̄k
(q)

4

=
nÿ

t,m=1

ˆ2fl̃

ˆzÕ
mˆz̄Õ

t

(�(q)) · ˆ�m

ˆzj
(q) · ˆ�̄t

ˆz̄k
(q)

10



by the chain rule. Hence,

nÿ

j,k=1

ˆ2fl

ˆzjˆz̄k
(q)wjw̄k =

nÿ

j,k=1

3 nÿ

t,m=1

ˆ2fl̃

ˆzÕ
mˆz̄Õ

t

(�(q)) · ˆ�m

ˆzj
(q) · ˆ�̄t

ˆz̄k
(q)

4
wjw̄k

=
nÿ

j,k=1

3 nÿ

t,m=1

ˆ2fl̃

ˆzÕ
mˆz̄Õ

t

(�(q)) · ˆ�m

ˆzj
(q)wj · ˆ�̄t

ˆz̄k
(q)w̄k

4

=
nÿ

t,m=1

ˆ2fl̃

ˆzÕ
mˆz̄Õ

t

(�(q))wÕ
mw̄Õ

t,

which implies that the Levi form is preserved under biholomorphic mappings. In other

words, pseudoconvexity is preserved under biholomorphism.

3) If q œ ˆ� is a strongly pseudoconvex point, then there exists a neighborhood U

containing q such that for all p œ ˆ� fl U, p is strongly pseudoconvex.

Proof: First we will need the following technical lemma from Chapter 3 of Krantz.

Lemma 2.2.6 If � is strongly pseudoconvex, then � has a defining function fl̃ such

that
nÿ

j,k=1

ˆ2fl̃

ˆzjˆz̄k
(q)wjw̄k Ø C|w|2

for all q œ ˆ� and w œ Cn, where C > 0.

By lemma 2.2.6, there exists a defining function fl̃ for � such that

nÿ

j,k=1

ˆ2fl̃

ˆzjˆz̄k
(q)wjw̄k Ø C|w|2

for all w œ Cn. In particular,

nÿ

j,k=1

ˆ2fl̃

ˆzjˆz̄k
(q)wjw̄k Ø 0

11



for all w ”= 0, w œ Cn. Since fl̃ is C2, the function

� : p ‘æ
nÿ

j,k=1

ˆ2fl̃

ˆzjˆz̄k
(p)wjw̄k Ø C|w|2

is continuous in a neighbhorhood U of q, which implies that for all p œ U fl ˆ�,

nÿ

j,k=1

ˆ2fl̃

ˆzjˆz̄k
(q)wjw̄k > 0

for all w ”= 0, w œ Cn by the continuity of �. This implies that p œ U fl ˆ� is strongly

pseudoconvex.

4) Every domain in C with a C2 boundary is vacuously pseudoconvex.

Proof: Let � be a domain in C with C2 boundary. That is, the defining function fl is

C2. Then for all q œ ˆ�,

Òfl(q) = ˆfl

dz
(q) ”= 0,

which implies that w œ Tq(ˆ�) if and only if w = 0. This implies that Tq(ˆ�) =

{0}, giving that � is pseudoconvex, since the condition for pseudoconvexity in one

dimension,

ˆ2fl̃

ˆzˆz̄
(q)ww̄ Ø 0,

is always satisfied.

Remark 2.2.7 A small perturbation of the ball remains convex, but in general may no

longer be biholomorphic to a ball. If the small perturbation is made in the radial direction,

12



then the domain will be biholomorphic to a ball. A general perturbation of the domain will

not remain biholomorphic to the ball.

Remark 2.2.8 Convexity is not preserved under biholomorphism. For example the unit

disk in C can be mapped to a non-convex domain.

Remark 2.2.9 Since any geometrically convex domain in Cn is pseudoconvex and pseudo-

convex domains are domains of holomorphy, all convex domains are domains of holomorphy.

2.3 Finite Type

Definition 2.3.1 Let � := {z : fl(z) < 0} be a smoothly bounded domain in C2, and let

q œ ˆ�. Then the analytic disc „ : � æ C2 is called a non-singular disc tangent to ˆ� at q

if „(0) = q, „Õ(0) ”= 0, and (fl ¶ „)Õ(0) = 0.

Definition 2.3.2 If we have a holomorphic function f : C æ C, then the multiplicity of

f at P , ‹P (f), is defined to be the least positive integer k such that the kth derivative does

not vanish at P . If f is not di�erentiable then the multiplicity of f at c is k if and only if

k is the smallest integer such that limzæc
f(z)

|z≠c|k ”= 0.

Definition 2.3.3 Let � µ Cn be a smooth domain and q œ ˆ�. Let fl be a defining

function for � in a neighborhood of q. We say that q is of finite type C in the sense of

13



D’Angelo if

sup
f

I
‹(fl ¶ f)

‹(f)

J

= C < Œ

where f ranges through non-constant holomorphic curves with f(0) = q. Otherwise we

refer to q as being infinite type. If every point q œ ˆ� is of finite type we say � is a finite

type domain.

The type of a boundary point measures the maximum order of contact of an analytic disc

with said point. A couple of important properties of type:

1) The definition of type is independent of the choice of defining function.

Proof: Let � µ C2 be smooth, with defining function fl. Let q œ ˆ� and fl̃ be a

second defining function for �. Then there exists a function h, non-vanishing in a

neighborhood of ˆ�, such that fl̃ = hfl, and hence fl = 1
h fl̃. Thus, for any non-singular

analytic disc „ that is tangent to ˆ� at q,

|fl(„(’))| =
----

3
fl̃

h

4
(„(’))

---- =
----
fl̃(„(’))
h(„(’))

----.

Let q œ ˆ� be a point of finite type m with respect to fl. That is, suppose there exists

a non-singular disc „ tangent to ˆ� at q such that for small |’|,

|fl ¶ „(’)| Æ C|’|m.

14



Then for small |’| one sees that

----
fl̃(„(’))
h(„(’))

---- Æ C|’|m,

i.e.

|fl̃(„(’))| Æ C|h(„(’))||’|m Æ CM |’|m

for small |’|, where

M := sup
small |’|

|h(„(’))|.

Thus for small |’|,

|fl̃(„(’))| Æ C1|’|m.

Now suppose there exists a non-singular disc Â tangent to ˆ� at q such that |fl̃(Â(’))| Æ

C|’|m+1 for small |’|. Then,

|fl(Â(’))| Æ |fl̃(Â(’))|
|h(Â(’))| Æ C|’|m+1

|h(Â(’))| Æ C

M
|’|m+1,

where

M := inf
small |’|

|h(Â(’))|.

Therefore,

|fl(Â(’))| Æ C1|’|m+1

for small |’|.

15



This contradicts the fact that q is of finite type m with respect to fl. Therefore, q is

a point of finite type m with respect to fl̃, which completes the proof.

2) The condition of finite type is preserved under biholomorphism.

Remark 2.3.4 A strongly pseudoconvex boundary point is always of type 2. For example,

every boundary point on the unit ball is of finite type 2.

Consider the boundary point q = (1, 0) on the unit ball B2. Observe that

Òfl =

Q

ccca

z̄1

z̄2

R

dddb =∆ Òfl(q) =

Q

ccca

1

0

R

dddb ,

which implies that any curve tangent to ˆB2 at q must be of the form

„(’) = (1 + O(’2), ’ + O(’2)),

after a re-parametrization.

Consider the disc „(’) = (1, ’). It has order of contact 2 with the boundary of B2 at q

because

fl(„(’)) = fl(1, ’) = |’|2.

So what is the maximum order of contact when „ is of the form „(’) = (1+O(’2), ’+O(’2))?
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Observe the following computation:

fl(„(’)) = |1 + O(’2)|2 + |’ + O(’2)|2 ≠ 1

= |1 + O(’2)|2 + |’|2 · |1 + O(’)|2 ≠ 1

Æ C|’|2

for small |’|, since

|1 + O(’2)|2 æ 1 as |’| æ 0

and |1 + O(’)|2 æ 1 as |’| æ 0.

Therefore q = (1, 0) œ ˆB2 is a point of finite type 2. In general, it can be shown that a

strongly pseudoconvex boundary point is always of type 2.

Remark 2.3.5 Finite type implies there does not exist a non-trivial analytic disc in the

boundary.

Example 2.3.6 The analytic ellipsoid, or also known as the egg domain, Em = {(z1, z2) œ

C2 : fl(z1, z2) = |z1|2 + |z2|2m ≠ 1 < 0} has the boundary point (1, 0) which is of finite type

2m.

Consider the boundary point q = (1, 0). In order to calculate the type at q, notice that

Òfl =

Q

ccca

z̄1

mzm≠1
2 z̄m≠1

2

R

dddb =∆ Òfl(q) =

Q

ccca

1

0

R

dddb ,
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which implies that, after a re-parametrization, a non-singular analytic disc „ that intersects

ˆEm at q is of the form

„(’) = (1 + O(’2), ’ + O(’2)).

What is the maximum order of contact of such a curve with the boundary? First, consider

the simple case wherein „(’) = (1, ’). This curve has order of contact 2m at the boundary

point q, because

„(fl(’)) = |’|2m.

One must now ask, can the order of contact improve? For an arbitrary curve „ as described

above,

fl(„(’)) = |1 + O(’2)|2 + |’ + O(’2)|2m ≠ 1

= |1 + O(’2)|2 + |’|2m · |1 + O(’)|2m ≠ 1

Æ C|’|2m

for small |’|, since

|1 + O(’2)|2 æ 1 as |’| æ 0

and |1 + O(’)|2m æ 1 as |’| æ 0.

Therefore, the maximum order of contact of any non-singular analytic disc tangent to ˆEm

at q = (1, 0) is 2m, which implies that q is a point of finite type 2m.
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We will now look at a few examples of domains in C2 that have boundary points of infinite

type.

Example 2.3.7 An exponentially flat domain EŒ = {(z1, z2) œ C2 : fl(z1, z2) = |z1|2 +

2exp(≠|z2|≠2) ≠ 1 < 0} is of infinite type at the point (1, 0).

Consider the point q = (1, 0) œ ˆEŒ. Then

Òfl =

Q

ccca

z̄1

2e≠1/|z2|2

z2
2 z̄2

R

dddb =∆ Òfl(q) =

Q

ccca

1

0

R

dddb .

And regarding the curve „(’) = (1, ’) which is tangent to ˆEŒ at q, one sees that

fl(„(’)) = 2e≠1/|’|2 ,

which implies that

|fl(„(’))|
|’|m = 2e≠1/|’|2

|’|m æ 0 as ’ æ 0

by l’Hopital’s rule, since

dk

d’k
(2e≠1/|’|2)|’=0 = 0 ’k œ Z+.

Since this is true for any m œ Z+,

|fl(„(’)) Æ C|’|m

as |’| æ 0 for all m œ Z+, implying that q = (1, 0) is a point of infinite type.
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Example 2.3.8 The bidisc �2 = {(z1, z2) œ C2 : fl1(z1, z2) = |z1|2≠1 < 0 and fl2(z1, z2) =

|z2|2 ≠ 1 < 0} µ C2 is of infinite type at (1, 0).

Consider the point q = (1, 0) œ ˆ�2. In a neighborhood U of q, let fl(z) = |z1| ≠ 1 be a

local defining function for the boundary defined inside U fl ˆ�2. Then

Òfl =

Q

ccca

z̄1

0

R

dddb =∆ Òfl(q) =

Q

ccca

1

0

R

dddb

and hence the non-singular analytic disc „(’) = (1, ’) is tangent to ˆ�2 at q. Thus

fl(„(’)) = fl(1, ’) = |1| ≠ 1 = 0 ’’ œ �2,

which implies that

|fl(„(’))| Æ C|’|m

as |’| æ 0 for all m œ Z+. Therefore q = (1, 0) œ ˆ�2 is a point of infinite type.

The previous examples illustrate the greater the type at a boundary point, the flatter the

boundary is in a neighborhood of that point.

If there is an analytic variety in the boundary of some domain � µ Cn passing through

q œ ˆ�, then q is a point of infinite type. Observe that this is the contrapositive of Remark

2.3.5.
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The converse, "if a boundary point is of infinite type, then there is an analytic variety in

the boundary," is not true. When � µ Cn is a convex domain that contains a boundary

point q of infinite type, it does not necessarily mean that ˆ� contains a disc. For example,

EŒ = {(z1, z2) œ C2 : fl(z1, z2) = |z1|2 + 2exp(≠|z2|≠2) ≠ 1 < 0} is of infinite type at the

point (1, 0), but the ˆEŒ does not contain a disc.

Definition 2.3.9 Suppose that � = {z œ Cn : fl(z) < 0} where fl is a defining function.

We say a point x œ ˆ� has finite line type L if

sup{‹(fl ¶ t)|t : C æ Cn is a non-trivial a�ne map and t(0) = x} = L

where L < Œ. If L = Œ we say that x has infinite line type.

Theorem 2.3.10 (McNeal [13]) If a convex domain has finite line type, then it is of finite

type in the sense of D’Angelo.

Remark 2.3.11 The converse of 2.3.10 says that if we have a point on the boundary of a

convex domain that is of infinite type, then the line type is infinite. This will be used later

in the proof of Lemma 5.2.1.

Lemma 2.3.12 [21] Let � ™ Cn be bounded, convex domain with smooth boundary such

that 0 œ ˆ�, the positive imaginary z1-axis points normally inward with all other directions

tangent. Let f : R ◊ Cn≠1 æ R be a smooth, non-negative and convex function and U be
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a neighborhood of 0. � is described locally around 0 by:

� fl U = {(z1, ..., zn) œ U : f(Rez1, z2, ..., zn≠1, zn) < Imz1}

If 0 œ ˆ� is a point of infinite line type then there exists a change of coordinates so for all

k > 0,

lim
wæ0

f(0, w, ..., 0, 0)
|w|k = 0

Proof: By definition of infinite line type and the converse of Theorem 2.3.10 McNeal [13],

there exists a sequence of linear maps tk such that ‹(f ¶ tk) Ø k. By compactness of the

sphere, tk æ t in subsequence after choosing the correct parametrizations. By continuity

of the defining function f , ‹(f ¶ t) = Œ. Let us choose our coordinates so t is the z2 axis.

Then the conclusion follows.

Definition 2.3.16 For a domain � ™ Cn with C1 boundary, a sequence {qj} µ � and a

point q œ ˆ�, we say that qj æ q non-tangentially if for all j > 0,

qj œ �–(q) = {z œ � : ||z ≠ q|| Æ –dist(ˆ�, z)}

for some – > 1. We say that qj æ q normally if the qj ’s approach q along the real normal

line to ˆ� at q.
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We can visualize a sequence in the domain converging to the boundary non-tangentially as

a conical-shaped region where points in the region cannot approach the boundary along a

tangential curve.
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Chapter 3:

Automorphism Groups

3.1 Domains with non-compact automorphism groups

Throughout this dissertation, a bounded domain in C2 will be denoted by �, and the

automorphism group will be denoted by Aut(�). An element „ œ Aut(�) is a biholomorphic

map from � onto itself. Aut(�) is a topological group, the topology being given by the

compact-open topology. Furthermore, Henri Cartan showed that Aut(�) is a Lie group.

Theorem 3.1.1 (H. Cartan) [14] Let � µ Cn be a bounded domain. Then Aut(�) is a

Lie group.

Our focus will be on domains whose automorphism groups are non-compact.

Definition 3.1.2 Let G be a topological group and X a topological Hausdor� space.

G acts on X if there exists a continuous map ‡ : G ◊ X æ X, ‡(g, x) = gx, such that

‡(e, x) = ex = x for all x œ X and ‡(ggÕ, x) = ‡(g, ‡(gÕ, x)) for all g, gÕ œ G and x œ X.
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Definition 3.1.3 Let G and X be as in the previous definition. The orbit of x œ X

under the action of G is the set {‡(g, x) : g œ G} µ X.

Definition 3.1.4 A map f : � æ �̄, where � µ Cn and �̄ µ Cm, is called proper if for

any compact set K̄ µ �̄, the set f≠1(K̄) is compact in �.

Definition 3.1.5 If G is a topological group and X is a topological Hausdor� space

where G acts on X and both are locally compact, then the action of G on X is proper if

the map G ◊ X æ X ◊ X, defined by (g, x) ‘æ (‡(g, x), x), is proper.

Definition 3.1.6 We say q œ ˆ� is a boundary accumulation point for the action of

Aut(�) on � if there exists a point p œ � and a sequence {„j} µ Aut(�) such that

„j(p) æ q as j æ Œ.

Claim 3.1.7 If ˆ� contains a boundary accumulation point q, then Aut(�) is non-

compact.

Proof: Assume towards a contradiction that Aut(�) is compact. Then for any sequence

{„j} µ Aut(�), there exists a subsequence {„jv } µ {„j} such that „jv æ „ œ Aut(�).

Consider the sequence {gjv } µ Aut(�). By assumption, there exists {gjv } µ {gj} such that

gjv æ g œ Aut(�) as v æ Œ. In particular g(p) = q œ � for some p œ �, which implies

that q œ � fl ˆ�, contradicting that � is open. Therefore Aut(�) must be non-compact.
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Example 3.1.8 Aut(Em), where Em := {(z1, z2) œ C2 : fl(z1, z2) = |z1|2 + |z2|2m ≠1 < 0}

is the polynomial ellipsoid, is non-compact.

Aut(Em) =
;

(z1, z2) ‘æ
3

z1 ≠ a

1 ≠ āz1
,
3

1 ≠ |a|2
1 ≠ āz1

41/m

z2

4
: |a| < 1

<

The point (1, 0) œ ˆEm is a boundary orbit accumulation point for the action of Aut(Em)

on Em, and thus non-compact.

Proof: Choose aj , 0 Æ aj Æ 1, such that as j æ Œ, aj æ 1. Let z = (z1, z2) œ Em and

„aj œ Aut(Em). Then (1, 0) is a boundary orbit accumulation point of the action of Aut(Em)

on Em, since „aj (z) æ (1, 0) as j æ Œ. This implies that Aut(Em) is non-compact.

Proposition 3.1.9 Let � ™ Cn be a bounded domain with a transitive automorphism

group, i.e. let � be homogeneous. Then Aut(�) is non-compact.

Proof: Let � be a bounded domain in Cn with a transitive automorphism group. That is,

given any two points x, y œ �, there exists „ œ Aut(�) such that „(x) = y. Let z œ �. By

the transitivity of Aut(�), the orbit of z is

{w œ � : w = „(z), for some „ œ Aut(�)} = �

Since � is open, it is not compact, hence the orbit of z is non-compact, and hence Aut(�)

is non-compact.
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Proposition 3.1.9 can now be used to show that Aut(�) is non-compact because it is known

that Aut(�) is transitive.

Example 3.1.10 Aut(�) where � := {z œ C : |z| < 1} is the unit disc in C is non-

compact. Then

Aut(�) =
)
ei◊ z ≠ a

1 ≠ āz
: a œ �, ◊ œ [0, 2fi]

*

Specifically, given any two points a, b œ �, let

„a(z) := z ≠ a

1 ≠ āz
and „≠b(z) := z + b

1 + b̄z

Then both „a and „≠b are in Aut(�). Furthermore, „≠b ¶„a(a) = „≠b(0) = b, which implies

that Aut(�) is transitive. Thus, by Proposition 3.1.9, Aut(�) is non-compact.

Remark 3.1.11 Since Aut(�n) and Aut(Bn) are transitive, the automorphism groups

are non-compact.

Claim 3.1.12 Aut(�n) is transitive and thus non-compact.

Proof: Let a = (a1, ..., an), b = (b1, ..., bn) œ �n. Consider the following automorphisms of

�n:

„≠b(z) =
3

z1 + b1
1 + b̄1z1

, ...,
zn + bn

1 + b̄nzn

4
and „a(z) =

3
z1 ≠ a1
1 ≠ ā1z1

, ...,
zn ≠ an

1 ≠ ānzn

4
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Then („≠b ¶ „a)(a) = „≠b(0) = b, which implies that Aut(�n) is transitive. Thus by

Proposition 3.1.9, Aut(�n) is non-compact.

Claim 3.1.13 Aut(Bn) is transitive and thus non-compact.

Proof: Choose a = (a1, ..., an), b = (b1, ..., bn) œ Bn. Then there exists �a œ U(n) such that

�a(a) = (a1, 0, ..., 0), i.e. �a rotates the a onto the z1-axis. Choose �≠b œ U(n) such that

�≠b(b1, 0, ..., 0) = b, i.e. �≠b is the inverse of �b. We define automorphisms of the ball to

be „a(z1, ..., zn) :=
3

z1≠a
1≠āz1

,
Ô

1≠|a|2
1≠āz1

z2, ...,
Ô

1≠|a|2
1≠āz1

zn

4
. Let „a1 , „≠b1 be the automorphisms

of the ball as described. Note that „≠b1 = („b1)≠1. Then (�≠b ¶ „≠b ¶ „a ¶ �a)(a) =

�≠b(„≠b(„a(�a(a)))) = �≠b(„≠b(„a(a1, 0, ..., 0))) = �≠b(„≠b(0)) = �≠b(b1, 0, ..., 0) = b.

Hence Aut(Bn) is transitive. Therefore by Proposition 3.1.9, Aut(Bn) is non-compact.

Example 3.1.14 Aut(�n) where �n := {z = (z1, ..., zn) : |zj | < 1 for all 1 Æ j Æ n}

denotes the unit polydisc in Cn, is non-compact.

Aut(�n) =
;

Â(z) = Â(z1, ..., zn) :=
3

ei◊1
z‡(1) ≠ a1
1 ≠ ā1z‡(1)

, ..., ei◊n
z‡(n) ≠ an

1 ≠ ānz‡(n)

4<

where Â œ Aut(�) such that Â(z1) = z2 given any two points z1, z2 œ �, a œ �n, 0 Æ ◊k Æ

2fi, and ‡ œ Sn, where Sn is the symmetric group on n letters.

Example 3.1.15 Aut(Bn) where Bn := {z = (z1, ..., zn) œ Cn : ||z|| :=
qn

j=1 |zj |2 < 1}

is the unit ball in Cn, is non-compact. Aut(Bn) is the group generated by U(n) := {A œ

Mn(C) : AĀt = ĀtA = I}, the Lie group under matrix multiplication of unitary matrices,
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and {„a(z1, ..., zn) :=
3

z1≠a
1≠āz1

,
Ô

1≠|a|2z2
1≠āz1

, ...,
Ô

1≠|a|2zn

1≠āz1

4
, for |a| < 1}, a collection of maps.

That is, every automorphism of the ball is a composition of elements from U(n) or {„a}.

After examining these examples, you may wonder if any of these domains are biholomorphic.

Could there be a higher-dimensional Riemann Mapping theorem for the set of bounded

domains with non-compact automorphism group? Unfortunately without consideration of

additional conditions upon the domains, no result holds. The following Poincare theorem

demonstrates this.

3.2 Automorphism groups in Cn

Theorem 3.2.1 (Poincare’s Theorem) The ball Bn is not biholomorphic to the polydisc

�n for n Ø 2.

Definition 3.2.2 For a bounded domain �, Aut(�) becomes a topological group by

defining a distance between the two automorphisms, for z œ �, as

d(„1, „2) := sup|„1(z) ≠ „2(z)|.

Then let AutId(�) denote the subgroup of all automorphisms in the connected component

of the identity. Further, given a œ �, let Auta(�) denote the subgroup of automorphisms

which leave a invariant.
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Lemma 3.2.3 (Poincare) If �1 is biholomorphic to �2, then the respective automorphism

groups Aut(�1) and Aut(�2) are isomorphic groups. Furthermore, if there are a1 œ �1 and

a2 œ �2 for which there exists a biholomorphic map f : �1 æ �2 with f(a1) = a2, then

Auta1(�1) and Auta2(�2) are isomorphic groups. In addition, AutId(�1) and AutId(�2) are

isomorphic groups, as are AutId
a1(�1) and AutId

a2(�2).

Proof: Let „ : �1 æ �2 be a biholomorphic map from �1 to �2. Then

„ ‘æ f ¶ „ ¶ f≠1

is a group homomorphism from Aut(�1) to Aut(�2). Because the map is invertible, it is a

group isomorphism.

Proposition 3.2.4 AutId
0 (Bn) is non-abelian.

Proof: Consider the non-abelian special unitary group SU(n) of all n◊n matrices A such

that AAú = Idn and det(A) = 1. SU(n) is a subgroup of AutId
0 (Bn), because A œ SU(n)

defines a biholomorphism z ‘æ Az on Bn which leaves 0 invariant.

Proposition 3.2.5 For every a œ �n, AutId
a (�n) is abelian.

The proof of the previous Proposition follows directly from the following results due to

Cartan:
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Proposition 3.2.6 (Cartan Uniqueness Theorem) Let � ™ Cn be a bounded domain

and let a œ �. If f œ Auta(�) satisfies f Õ(a) = 1, then f(z) = z for all z œ �.

Proof: It can be assumed that a = 0 after a change of coordinates, replacing � with � ≠ a,

if necessary. Then since � is bounded, �̄ µ �n(0, R) for some R > 0. Recall that every

f œ Aut0(�) has a Taylor expansion centered at the origin, f(z) =
q

n anzn. Cauchy’s

estimate gives that |an| Æ Mr≠n, where r is such that �n(0, r) µ � and M = supzœ�̄ |f(z)|.

Then by assumption, f has a Taylor expansion

f(z) = z + fN (z) + ...

where fk are n-tuples of homogeneous polynomials of degree k, and where N is chosen to

be the smallest possible. Then the kth iterate fk = f ¶ ... ¶ f of f has Taylor expansion

fk(z) = z + kḟN (z)

which violates the Cauchy estimate for large k unless fN = 0. But if f(z) = z in �n(0, r),

then f(z) = z in � by the principle of analytic continuation.

Definition 3.2.7 A bounded domain � ™ Cn is called a circular domain if z œ � implies

that k◊(z) = ei◊ for all z œ � and all ◊ œ R.

Corollary 3.2.8 (Cartan) Let � be a bounded circular domain in Cn and assume that

0 œ � and f œ Aut0(�). Then f is linear.
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Proof: Assuming � is a circular domain and 0 œ �, one has that k◊ œ Aut0(�). Define

g = k≠◊ ¶ f≠1 ¶ k◊ ¶ f.

Then gÕ(0) = kÕ
≠◊(0) ¶ (f≠1)Õ(0) ¶ kÕ

◊(0) ¶ f Õ(0) = Id, so that by the previous proposition

g(z) = z. This implies that k◊ ¶ f = f ¶ k◊. If f = (f1, f2, ..., fn), then fj(ei◊z) = ei◊fj(z).

Let fj(z) =
q

k akzk. Then ei◊ak = ei|k|◊ak, implying that ak = 0 for all |k| Ø 1.

Corollary 3.2.9 Every f = (f1, f2, ..., fn) œ Aut(�n) has the form

fj(z) = ei◊j
zp(j) ≠ aj

1 ≠ ājzp(j)
,

where ◊j œ R, a œ �n, and p is a permutation of the multi-index j = (j1, j2, ..., jn).

Proof: The map fj(z) is an automorphism. Denote fj by ‡a if ◊j = 0 and p = Id. Then

given f œ Aut(�n), the automorphism ‡a ¶ f leaves 0 invariant. One can therefore assume

that f œ Aut0(�n). Because f(�n) µ �n, we have
qn

k=1 |Akj | Æ 1. However, by choosing

sequences z(n) = (0, ..., 0, 1 ≠ 1
n , 0, ..., 0) converging to the distinguished boundary Tn of �n,

one sees that the sequence

f(z(n)) = (1 ≠ 1
n

)(A1j , ..., A2j)

converges to the distinguished boundary of �n. Therefore

|Aq(j)j | := maxk=1,...,n|Akj | = 1
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Then since
qn

k=1 |Akj | Æ 1, one has that Ajk is a permutation matrix which has non-

vanishing entries of norm 1 only at entries Aq(j)j . If p is the inverse permutation of q, then

fk(z) = Ak,p(k)zp(k) with |Ak,p(k)| = 1.

Theorem 3.2.10 (Poincare) The ball Bn is not biholomorphic to the polydisc �n for

n Ø 2.

Proof (of Poincare’s Theorem): Assume by contradiction that f is a bihomorphic map

between Bn(0, 1) and �n(0, 1). From Lemma and transitivity of Aut(�n(0, 1)), we can con-

clude that AutId
0 (Bn(0, 1)) and AutId

f(0)(�n(0, 1)) are isomorphic. But by Proposition 3.2.4,

we have AutId
0 (Bn(0, 1)) is non-abelian, while AutId

f(0)(�n(0, 1)) is abelian by Proposition

3.2.5, which results in a contradiction.

Theorem 3.2.11 Let � ™ Cn be a bounded domain. Aut(�) admits a boundary orbit

accumulation point if and only if Aut(�) is non-compact.

Proof: We refer the reader to the proof of Claim 3.1.7 for the forward direction, that if

Aut(�) admits a boundary accumulation point, the automorphism group is non-compact.

For the reverse direction, suppose Aut(�) is non-compact. Then there exists a sequence {„j}

such that „j æ „ /œ Aut(�). It is a theorem of Cartan that either „ œ Aut(�) or „(�) ™ ˆ�.

See Narasimhan for more details. Therefore, for any z œ �, limjæŒ „j(z) = „(z) œ ˆ�.

So far we have been working with bounded domains in Cn with non-compact automorphism

group. Next we will consider adding the constraint of pseudoconvexity upon the domain to
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obtain classification. The following theorems classify the set of bounded domains with the

restriction of strong pseudoconvexity and suggest the Greene-Krantz conjecture to be true.

Theorem 3.2.12 (Wong [19]) Let � be a strongly pseudoconvex, bounded domain with

smooth boundary in Cn with non-compact automorphism group. Then � is biholomorphic

to the unit ball Bn.

Theorem 3.2.13 Let � µ Cn be any bounded domain with a strongly pseudoconvex

boundary point q œ ˆ�. Suppose further that there exist K µ �, {zj} œ K, and {„j} œ

Aut(�) such that {„j(zj)} æ p. Then � is biholomorphic to the unit ball Bn µ Cn.

Theorem 3.2.14 (Wong [20]) Let � ™ C2 be a bounded domain and {„j} µ Aut(�) be

such that

1) W = {limjæŒ „j(�)} is a complex variety of positive dimension contained in ˆ�

2) W is contained in an open subset U ™ ˆ� such that ˆU is C1 and there is an open

set N µ C2 such that N fl ˆ� = U and N fl � is convex

3) There exists a point x œ � such that {„j(x)} converges to q œ W ™ ˆ� non-

tangentially.

Then � is biholomorphic to �2.
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Theorem 3.2.15 (Kim [9]) Suppose that � µ C2 is a bounded, convex domain with

piecewise-smooth Levi flat boundary. If Aut(�) is non-compact then � is biholomorphic to

�2.

Could we obtain any classification if the case of strong pseudoconvexity is relaxed to pseu-

doconvexity? Under the addition of further conditions upon the domain, yes. This classifi-

cation is given in the following result from Bedford and Pinchuk [2] for a higher dimensional

cases:

Theorem 3.2.16 Let � be a smoothly bounded, pseudoconvex domain in Cn+1 of finite

type with non-compact automorphism group such that the Levi form of ˆ� has no more

than one zero eigenvalue at any point. Then � is biholomorphic to the ellipsoid Em µ Cn+1

for some integer m > 1.

We have another useful classification from Bedford and Pinchuk [1]:

Theorem 3.2.17 Suppose � is a bounded, convex domain with smooth boundary and

finite type in the sense of D’Angelo. Then Aut(�) is non-compact if and only if � is

biholomorphic to a polynomial ellipsoid.
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Chapter 4:

Invariant Metrics and Measures

Definition 4.1.1 The Kobayashi and Caratheodory metrics on � ™ Cn at x œ � in the

direction of › œ Cn, denoted by F �
K(x, ›) and F �

C (x, ›), respectively, are defined by

F �
K(x, ›) = inf

) 1
–

: „ œ H(�, �) such that „Õ(0) = –›, – > 0
*

F �
C (x, ›) = sup

)--
nÿ

j=1

ˆf(x)
ˆzj

›j

-- : ÷f œ H(�, �) such that f(x) = 0
*

If z, w œ �, then the Kobayashi and Caratheodory pseudo-distances on � between z and

w, denoted by d�
K(z, w) and d�

C(z, w), respectively, are given by

d�
K(z, w) = inf

“

⁄ 1

0
F �

K(“(t), “Õ(t))dt and d�
C(z, w) = sup

f
fl(f(z), f(w)),

where “ : [0, 1] æ � is a piecewise C1 curve connecting z and w, and where fl(p, q) is the

Poincare distance on � between p, q œ �. The supremum in the Caratheodory pseudo-

distance is taken over all holomorphic mappings f : � æ �.

The Kobayashi and Caratheodory metrics satisfy the following non-increasing property

under holomorphism.
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Lemma 4.1.2 Let � ™ Cn and ‚� ™ Cm, and suppose there exists a holomorphism

between them � : � æ ‚�. Then for p œ � and › œ Cn,

F �
K(p, ›) Ø F ‚�

K(�(p), �ú(p)›) and F �
C (p, ›) Ø F ‚�

C (�(p), �ú(p)›)

Proof: Beginning with the Kobayashi case, let „ œ Hol(�, �) such that „(0) = p and

„Õ(0) = –›. Then consider � ¶ „ œ Hol(�, ‚�). (� ¶ „)(0) = �(p) and (� ¶ „)Õ(0) =

�ú(„(0))„Õ(0) = �ú(p)–› = –�ú(p)›. Thus

F ‚�
K(�(p), �ú(p)›) Æ 1

–

Now taking the infimum over all possible „ yields

F �
K(p, ›) Ø F ‚�

K(�(p), �ú(p)›)

For the Caratheodory case, let „ œ Hol(‚�, �) such that „(�(p)) = 0. Then consider „¶� œ

Hol(�, �). („ ¶ �)(p) = „(�(p)) = 0, hence F �
C (p, ›) Ø |(„ ¶ �)ú(p)›| = |„ú(�(p))(�ú(p)›)|.

So taking the supremum over all possible „ yields

F �
C (p, ›) Ø F ‚�

C (�(p), �ú(p)›).

Since the Kobayashi and Caratheodory metrics are invariant under biholomorphism, the

inequalities become equalities. We can extend the definitions of Kobayashi and Carathodory

metrics to define respective measures.
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Definition 4.2.1 Let � ™ Cn be a domain, p œ �, and ›1, ›2, ..., ›m œ TC
p � be linearly

independent vectors on the complex tangent space to � at p for 1 Æ m Æ n. One can find an

(m, m) volume form M on � such that M(›1, ›2, ..., ›m, ›̄1, ..., ›̄m) = 1. Let U = Bm≠j ◊ �j

for 0 Æ j Æ m, and let µm =
rm

j=1(1
2dzj · dz̄j). We define the Kobayashi and Caratheodory

m-measures with respect to U as follows:

K�
U (p; ›1, ..., ›m) = inf

) 1
–

: � œ H(U, �) such that �(0) = p and �ú(0)M = –µm, for some – > 0
*

C�
U (p; ›1, ..., ›m) = sup

)
— : � œ H(�, U) such that �(p) = 0 and �ú(p)µm = —M, for some — > 0

*

Both measures satisfy the non-increasing property under holomorphic mappings as well.

I.e.,

Proposition 4.2.2 Let �1 ™ Cn and �2 ™ CnÕ be domains, and let U = Bm≠j ◊ �j , for

0 Æ j Æ m and m Æ min{n, nÕ}. Let p œ �1, and for j = 1, ..., m, let ›j œ TC
p �1 be linearly

independent. If „ œ H(�1, �2), then

K�1
U (p; ›1, ..., ›m) Ø K�2

U („(p); „ú(p)›1, ..., „ú›m)

and C�1
U (p; ›1, ..., ›m) Ø C�2

U („(p); „ú(p)›1, ..., „ú(p)›m)

Proof: Let M be an (m, m) volume form on �1 such that M(›1, ..., ›m, ›̄1, ..., ›̄m) = 1. And

let � : U æ �1 be a holomorphic mapping such that �(0) = p and �ú(0) = M = –µm.

Consider h = „ ¶ � : U æ �2. Let M Õ be an (m, m) volume form on �2 such that

38



„ ú (p)M Õ = M . Then h(0) = „(p) and

h ú (0)M Õ = �ú(0)(„ú(p)M Õ) = �(0)M = –µm.

Hence 1
– Ø K�2

U („(p), M) and inf 1
– Ø K�2

U („(p), M). The second inequality follows simi-

larly.

Remark 4.2.3 Let � ™ Cn, p œ �, and ›1, ..., ›m œ TC
p � where 1 Æ m Æ n, be linearly

independent vectors. If U = Bm≠j ◊ �j , for 0 Æ j Æ m, then

C�
U (p; ›1, ..., ›m)

K�
U (p; ›1, ..., ›m)

Æ 1.

Remark 4.2.4 Let � ™ Cn, p œ �, and ›1, ..., ›m œ TC
p � where 1 Æ m Æ n, be linearly

independent vectors. Let U = Bm≠j ◊ �j . We have

C�
U (p; ›1, ..., ›m)

K�
U (p; ›1, ..., ›m)

= 1.

if and only if � is biholomorphic to U .

Remark 4.2.5 Let � ™ Cn be a smoothly bounded convex domain and let p œ ˆ� be a

strongly pseudoconvex boundary point. Let V be a neighborhood of p. Then we have

K�
U (z; ›1, ...›m)

K�flV
U (z; ›1, ...›m)

æ 1,
C�

U (z; ›1, ...›m)
C�flV

U (z; ›1, ...›m)
æ 1, as z æ p.
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Remark 4.2.6 Let � be a smoothly bounded, convex domain. The domain � near a

strongly pseudoconvex boundary point can be approximated by ellipsoids which are biholo-

morphic to balls. Since Bm and Bm≠j ◊ �j , for j Ø 1, are not biholomorphic and since the

Kobayashi and Caratheodory measures are localizable near a strong pseudoconvex boundary

point by the previous remark, we have

C�
U (z; ›1, ..., ›m)

K�
U (z; ›1, ..., ›m)

< L < 1, U = Bm≠j ◊ �j , j Ø 1

C�
U (z; ›1, ..., ›m)

K�
U (z; ›1, ..., ›m)

æ 1, U = Bm

Theorem 4.2.7 (Theorem E in [11]) Let � be a bounded domain. Suppose there exists

a point x œ � such that |ME
� (x)| = |MC

� (x)|, where ME and MC are defined with respect

to the unit polydisc �n µ Cn, then � is biholomorphic to the polydisc, �n. If ME and

MC are defined with respect to the unit ball Bn µ Cn and the condition of the lemma is

satisfied with respect to these measures, then � is biholorphic to the unit ball, Bn.

Here ME
� (x) is the di�erential Eisenman-Kobayashi measure on �, (an (n, n)-form on �)

and recall that it is given by

ME
� (z) = |ME

� (z)|
nŸ

j=1

! i

2dzj · dz̄j
"
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where |ME
� | is a local function on � defined by

|ME
� | = inf{|detf Õ(0)|≠2 : f : �n æ �, a holomorphism with f(0) = z}

and MC
� (x) is the di�erential Caratheodory measure on �, (an (n, n)-form on �) given by

MC
� (z) = |MC

� (z)|
nŸ

j=1

! i

2dzj · dz̄j
"

where |MC
� | is a local function on � defined by

|MC
� | = sup{|detf Õ(z)|2 : f : � æ �n, a holomorphism with f(z) = 0}

From these definitions, we obtain the following facts:

Lemma 4.2.8 The following are true:

1) |ME
� | Ø |MC

� |

2) Given a holomorphism between two complex manifolds f : �1 æ �2, we have

fú(ME
�2) Æ ME

�1 and fú(MC
�2) Æ MC

�1

Consequently, both of these measures are preserved under biholomorphism.
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3) Let �̃ be the universal covering of � and let fi : �̃ æ � be the covering projection.

Then ME
� = fiú(ME

� ). Consequently, for all z œ �2 µ �1, we have |MC
�1(z)| Æ

|MC
�2(z)| and |ME

�1(z)| Æ |ME
�2(z)|.

Proposition 4.2.9 Let � µ Cn be a smoohtly bounded convex domain. Suppose �ˆ�
q

is not trivial for some q œ ˆ�. If there exists {gj} µ Aut(�) such that gj(z) æ �ˆ�
q for all

z œ �, then �ˆ�
q is biholomorphic to a complex m-ball, where m is the complex dimension

of �ˆ�
q .
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Chapter 5:

Proof of Main Theorem

5.1 One-Parameter Translation Groups

We will need a theorem from Kim [10], which comes from a derived version of a result from

Frankel [6].

Theorem 5.1.1 Let � be a convex hyperbolic domain in Cn and suppose there is a

subgroup � µ Aut(�) such that

1) � is discrete and acts freely,

2) � is co-compact in �.

Then � is biholomorphic to a bounded symemtric domain. Moreover, automorphisms and

maps of convex domains can be directly reduced to problems in a�ne geometry by an

elementary technique involving localization near a boundary point. Frankel developed the
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rescale blow-up to show that � admits a one-parameter group of automorphisms ‡t œ

Aut0(�).

Theorem 5.1.2 Let � be a convex hyperbolic domain in Cn and suppose there is a

subgroup � µ Aut(�) such that � is co-compact in �. Then Aut0(�) is non-trivial, in fact

there is a convex holomorphic embedding Ê : � æ Cn such that Ê(�) is invariant under a

one-parameter group of translations.

We have the following theorem which is a result of Frankel that can be found in Kim [10]

for which our domain � contains a non-compact one-parameter subgroup.

Theorem 5.1.3 (Kim [10]) If a bounded, convex domain in Cn possesses a non-compact

automorphism orbit accumulating at a boundary point with sphere contact inside, then the

automorphism group contains a non-compact one-parameter subgroup.

The condition of sphere contact inside means one can draw a ball of radius ‘ > 0 tangent to

the boundary accumulation point while it lies completely inside the domain. Visually, we

are also able to draw a perpendicular line to the line that is tangent to the boundary point.

Note that if the boundary is C1, then every boundary point has sphere contact inside of �.

Since � has a smooth boundary, we are able to satisfy the interior sphere contact condition,

our domain � has a non-compact one-parameter subgroup.
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5.2 Rescaling the Domain

Rescaling the domain and looking at its limit with respect to the local Hausdor� topology

is one of the steps we will need to prove the main result. We can use this result to show

that there is a disc in the boundary. This method of rescaling and showing there is a disc

in the boundary is used by Zimmer [21]. We will be able to use it in the same way. We first

start with the definition of convergence in the local Hausdor� topology.

Definition 5.2.1 Here we define the local Hausdor� topology on the set of all convex

domains in Cn. First, define the Hausdor� distance between two compact sets X, Y µ Cn

by

dH(X, Y ) = max
;

maxxœXminyœY ||x ≠ y||, maxyœY minxœX ||x ≠ y||
<

To obtain a topology on the set of all convex domains in Cn, we consider the local Hausdor�

pseudodistances defined by

d(R)
H (X, Y ) = dH(X fl BR(0), Y fl BR(0)), R > 0.

Then a sequence of convex domains �j converges to a convex domain � if there exists some

R0 Ø 0 such that

lim
jæŒ

d(R)
H (�j , �) = 0

for all R Ø R0.
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Remark 5.2.2 The Kobayashi metric is continuous with respect to the local Hausdor�

topology.

Theorem 5.2.3 Suppose �j µ Cn is a sequence of convex domains and � = limjæŒ �j

in the local Hausdor� topology. Assume the Kobayashi metric is nondegenerate on � and

each �j . Then

dK
� (z, w) = lim

jæŒ
dK

�j
(z, w)

for all z, w œ �. Moreover, the convergence is uniform on compact subsets of � ◊ �.

The rescaling method is most useful when the rescaled domain is biholomorphic to the

original one. The following convergence theorem by Frankel proves that when we have a

convex domain along with a couple of other conditions, our rescaled domain is biholomorphic

to the original domain.

Theorem 5.2.4 (Frankel 4.4 [6]) Suppose � µ Cn is a convex domain which does not

contain a complex line in its boundary. Let K µ � be compact and „j œ Aut(�). If there

exists a sequence pj œ K and complex a�ne maps �j such that

1) limjæŒ �j(�) = ‚�

2) „j(pj) æ p œ ‚�

where ‚� does not contain a complex line in its boundary, then � is biholomorphic to ‚�.
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Example 5.2.5 Let f : R ◊ C æ R be a smooth, convex, non-negative defining func-

tion, (z, w) œ C2, wj > 0 converging to 0, and the sequence of linear maps �j(z, w) =
!

z
f(0,wj) , w

wj

"
. �j(�) = ‚� is a sequence of rescaled domains, which will converge to ‚� as

j æ Œ because f(0, wj) æ 0 and wj æ 0. We are able to rescale any (z, w) since each

component of the coordinate will get bigger for any point as f(0, wj) æ 0 and wj æ 0.

5.3 Disc in the Boundary

We will use the rescaling map from 5.2 to show that when the blow-up domain converges in

the local Hausdor� topology to a C-proper convex open domain ‚�, ˆ ‚� contains a non-trivial

holomorphic disc.

Lemma 5.3.1 [21] Let � µ C2 be a C-proper convex domain with q œ ˆ� which is

a point of infinite type and f : R ◊ C æ R be a smooth, convex, non-negative defining

function such that f(Rez1, z2) < Imz1. Consider the sequence of linear transformations

�j(z, w) := ( z
f(0,wj) , w

wj
) such that (z, w) œ C2 and �j(�) converges in the local Hausdor�

topology to a C-proper convex open domain ‚�. Then ˆ ‚� contains a non-trivial holomorphic

disc.

Proof of Lemma 5.3.1: Suppose q is a point of infinite type. By McNeal, q is a point of

infinite line type. We can apply an a�ne transformation to q to let q = 0 œ ˆ�. We will
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consider neighborhoods of 0 and

� fl U = {(z, w) œ U : f(Rez, w) < Imz}

we may assume that ˆ� does not contain any non-trivial holomorphic discs. In particular,

there exists a w œ C such that f(0, w) ”= 0. We are able to apply infinite line type condition

to change coordinates since we satisfy the hypotheses of Lemma 2.3.12. Since

lim
wæ0

f(0, w)
|w|k = 0,

we can find an ak æ 0 and wk œ B1(0) such that f(0, wk) = ak|wk|k and for all w œ C with

|w| Æ |wk| we have

f(0, w) Æ ak|w|k.

The above inequality is true because f is a decreasing function. Since ˆ� has no non-trivial

holomorphic discs, we see that wk æ 0 and hence f(0, wk) æ 0.

Consider the linear transformations

�k(z, w) :=
A

z

f(0, wk) ,
w

wk

B

and let �k = �k(�). Now there exists ‘1, ‘2 > 0 such that B‘1(‘2i, 0) µ �k for all k.

Moreover for any R > 0 the set

{�Õ is open and convex : B‘1(‘2i, 0) µ �Õ µ BR(0)}
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is compact in the Hausdor� topology. Thus we can pass to a subsequence such that �

converges in the local Hausdor� topology to a convex open set set ‚�. We will consider

rescaled neighborhoods of 0. If U µ Im�k(U) we have

� fl U = {(z, w) : fk(Rez, w) < Imz}

where the rescaled defining function is

fk(Rez, w) = 1
f(0, wk)f(f(0, wk) · Rez, wkw)

Let w œ C such that |w| < 1. Then if Rez = 0 we have

fk(0, w) = 1
f(0, wk)f(f(0, wk)·Rez, wkw) = f(0, wkw)

f(0, wk) Æ ak|wkw|k

f(0, wk) = ak|wk|k|w|k

f(0, wk) = |w|k æ 0

as k æ Œ. Since this is true for any w œ C such that |w| < 1, and fk(Rez, w) is our defining

function, these imply that 0 ◊ � µ ˆ ‚�. Thus ˆ ‚� contains a non-trivial holomorphic disc.

5.4 Stabilizing the Map and Biholomorphism

Below we have a modified version of Hurwitz theorem that we will need to show there is a

biholomorphism between our domain � and the rescaled domain ‚�. We will need a map to

stabilize a point in the blow up domain of �.
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Let q = limkæŒ „k(p), „k = „k(p) where {„k} µ Aut(�). By the modification of Frankel’s

work ([9], using [5]), � has a one-parameter translation. Thus we can bring pk to a point p̃k

which lies on the hyperplane {Re(z) = 0} with translations, g̃k. Composing the translations

we obtain an orbit {p̃k} in {Re(z) = 0} converging to q. We choose a point wk œ ˆ� as

follows:

Let wk be a point on the closed curve ck = ˆ�fl{bk = f(0, w), bk = Imz ≠ p̃k}fl{Re(z) = 0}

such that |wk| = maxqkœC{|w ≠ qk|}. Then we proceed to blow up the domain � according

to the points {wk} æ q.

�k(z, w) =
3

z

f(0, wk) ,
w

wk

4

As discussed before the blow up domain ‚� = limkæŒ �k(�) contains a disc sitting on the

boundary ˆ ‚� at (0, 0). We notice the following facts

(i) ˆ ‚� contains no complex line at (0, 0). We do not have a complex line because we

localized around (0, 0).

(ii) Consider the map fk = �k¶g̃k, where g̃k is the composition of the described translation

with gk.

The sequence of {fk} stabilize the point p within a compact subset of ‚� (i.e. fk(p) lies in a

compact subset of ‚� for large k). Then we apply the convergence theorem 5.2.4. Thus we

can conclude that f = limkæŒ fk exists as a biholomorphism from � onto ‚�. By Kim [10]

we concluded Aut(‚�) contains a continuous one-parameter group of translations and were
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able to rescale �. In Section 5.3 we saw that there was a disc on ˆ ‚�. Next we will show

there is a biholomorphism between ‚� to the bidisc.

5.5 Blow-Up Domain Biholomorphic to the Bidisc

We would like to show using Kaylee Hamann and Bun Wong’s results from [7] and [20]

that ‚� is biholomorphic to �2. In Section 5.3 we saw that ˆ ‚� contains a disc D in the

boundary ˆ ‚�. Then the induced automorphism will take any point from ‚� to a point in D̄,

the closure of the disk D. Note that the induced automorphism group may not converge

to the disc. Our use of one-parameter group of translations allowed us to make a sequence

converging to a point in the disc on the boundary and rescale �. Then the same technique of

using invariant metrics and measures in [8] give us a biholomorphism between the rescaled

domain, ‚�, and �2. Note that the theorems from [7] apply to bounded convex domains,

but are still applicable to Koybayashi hyperbolic convex domains that are unbounded.

Furthermore, if we have a disc on ˆ ‚�, then ‚� is biholomorphic to the bidisc. In the next

section, we combine all of the previous sections in this chapter to give us the proof of the

main result.
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5.6 Proof of the Main Result

Recall the statement of the main theorem.

Theorem 5.6.1 Let � be a bounded convex domain in C2 with C2 boundary. Suppose

there is a sequence {„j} µ Aut(�) such that {„j(p)} accumulates at a boundary point for

some p œ �. If q œ ˆ� is an orbit accumulation point, then q is of finite type.

Proof: The proof follows by combining the knowledge of the previous sections in this

chapter. We will prove by contradiction that q is a point of finite type. First we assume

that q is a point of infinite type. Let {„j(p)} = {pj} be a sequence of points which converges

to q. We will translate {pj} to {p̃j} such that Imz = f(Rez, w). {p̃j} converges to q, but on

Rez = 0. By Frankel, if we have a convex domain with a non-compact automorphism group,

there exists a continuous parameter group of automorphisms g̃j . {g̃j(pj)} hits {Rez = 0}

at p̃j . We can define the linear transformation �j : C2 æ C2 by

�j(z, w) :=
1 z

f(0, wj) ,
w

wj

2

which we will use p̃j for the coordinates to construct a rescaled domain. Then limjæŒ �j(�) =

�j converges to an unbounded domain ‚� in the local Hausdor� topology, possibly in subse-

quence. Note that � rescales to the unbounded domain ‚� and ‚� is a homogenous domain.

We showed that ‚� contained a disc in the boundary and can apply the technique Kaylee

Hamann and Bun Wong used to prove that ‚� is biholomorphic to the �2. In section 5.4
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we showed that � is biholomorphic to ‚�. We now consider a modification of the following

local version of Bun Wong’s theorem.

Theorem 5.6.1 Let � µ Cn be any bounded domain with a strongly pseudoconvex bound-

ary point p œ ˆ�. Suppose further that there exist K ™ �, {zj} œ K, and {„j} œ Aut(�)

such that {„j(zj)} æ p. Then � is biholomorphic to the unit ball Bn µ Cn.

It follows from the above theorem that � is biholomorphic to the unit ball B2 µ C2. Then

since there is a biholomorphism between � and ‚�, this gives us a contradiction because

by Poincare’s Theorem, when n > 1, the unit ball and �n are not biholomorphically

equivalent. Therefore we know that there cannot be a biholomorphism between the bidisc

and ball. Thus q could not have been a point of infinite type, and must have been of finite

type.
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Chapter 6:

Conclusion

6.1 Applications

Recall the statement of the Greene-Krantz conjecture.

Conjecture 6.1.1 Let � ™ Cn be a bounded domain with smooth boundary. If q œ ˆ�

is a boundary orbit accumulation point for Aut(�) then ˆ� is of finite type at the point q.

Noack’s result, combined with some of the results from Zimmer [21] and Bedford and

Pinchuk [1] show:

Corollary 6.1.2 Let � ™ Cn be a bounded, convex domain with smooth boundary. If

there exists p œ � and a sequence of automorphisms {„j} œ Aut(�) such that „j(p) æ q œ

ˆ� non-tangentially, then � is biholomorphic to a polynomial ellipsoid.
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Our result in the previous section proves a special case of the Greene-Krantz conjecture.

We were able to drop the non-tangential condition and added the condition of convexity

used in results proved in [16] and [8]. Recall the statement of our theorem:

Theorem 6.1.3 Let � be a bounded, convex domain in C2 with C2 boundary. Suppose

there is a sequence {„j} µ Aut(�) such that {„j(p)} accumulates at a boundary point for

some p œ �. If q œ ˆ� is an orbit accumulation point, then q is of finite type.

Between our result and [1], we get the following:

Corollary 6.1.4 Let � be a bounded, convex domain in C2 with C2 boundary. If there

exists a p œ � and a sequence {„j} µ Aut(�) such that {„j(p)} accumulates at a boundary

point q œ ˆ�, then � is biholomorphic to a polynomial ellipsoid.

These results allow us to classify bounded, convex domains as ellipsoids, Em = {(z1, z2) œ

C2 : fl(z1, z2) = |z1|2 + |z2|2m ≠ 1 < 0}.

6.2 Further Results

We were able to remove the hypothesis of non-tangential convergence from the main result

in [16]. We are now able to classify smoothly bounded convex domains with non-compact
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automorphism groups in C2. We can generalize to higher dimensions and classify smoothly

bounded convex domains with non-compact automorphism groups.

Theorem 6.2.1 (Frankel [5]) Suppose � µ Cn is a convex domain that does not contain

any non-trivial complex lines. If V is a complex a�ne m-dimensional subspace intersecting

�, pj œ V fl � and {�j} is a sequence of complex a�ne maps such that

�j(� fl V, pj) æ (‰�V , u)

where ‰�V is a C-proper open domain, then there exists complex a�ne maps Bj such that

Bj(�, pj) æ (‚�, u)

where ‚� is a C-proper open domain. Furthermore, ‚� fl V = ‰�V .

With the previous Frankel theorem (Theorem 6.2.1), this will help us in generalizing in Cn

to obtain the following result.

Corollary 6.2.2 Let � be a bounded, convex domain in Cn with smooth boundary.

Suppose there is a sequence {„j} µ Aut(�) such that {„j(p)} accumulates at a boundary

point for some p œ �. If q œ ˆ� is an orbit accumulation point, then q is of finite type.
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Corollary 6.2.2 can then be combined with Theorem 3.2.17 to give us the following result:

Corollary 6.2.3 Let � be a bounded, convex domain in Cn with smooth boundary. If

there exists a p œ � and a sequence {„j} µ Aut(�) such that {„j(p)} accumulates at a

boundary point q œ ˆ�, then � is biholomorphic to a polynomial ellipsoid.

Beyond that, working to remove convexity to classify smooth domains with non-compact

automorphism groups in Cn would be the next goal.
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